xref: /openbmc/linux/tools/perf/util/evsel.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <sys/ioctl.h>
21 #include <sys/resource.h>
22 #include <sys/types.h>
23 #include <dirent.h>
24 #include "asm/bug.h"
25 #include "callchain.h"
26 #include "cgroup.h"
27 #include "event.h"
28 #include "evsel.h"
29 #include "evlist.h"
30 #include "util.h"
31 #include "cpumap.h"
32 #include "thread_map.h"
33 #include "target.h"
34 #include "perf_regs.h"
35 #include "debug.h"
36 #include "trace-event.h"
37 #include "stat.h"
38 #include "memswap.h"
39 #include "util/parse-branch-options.h"
40 
41 #include "sane_ctype.h"
42 
43 struct perf_missing_features perf_missing_features;
44 
45 static clockid_t clockid;
46 
47 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
48 {
49 	return 0;
50 }
51 
52 void __weak test_attr__ready(void) { }
53 
54 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
55 {
56 }
57 
58 static struct {
59 	size_t	size;
60 	int	(*init)(struct perf_evsel *evsel);
61 	void	(*fini)(struct perf_evsel *evsel);
62 } perf_evsel__object = {
63 	.size = sizeof(struct perf_evsel),
64 	.init = perf_evsel__no_extra_init,
65 	.fini = perf_evsel__no_extra_fini,
66 };
67 
68 int perf_evsel__object_config(size_t object_size,
69 			      int (*init)(struct perf_evsel *evsel),
70 			      void (*fini)(struct perf_evsel *evsel))
71 {
72 
73 	if (object_size == 0)
74 		goto set_methods;
75 
76 	if (perf_evsel__object.size > object_size)
77 		return -EINVAL;
78 
79 	perf_evsel__object.size = object_size;
80 
81 set_methods:
82 	if (init != NULL)
83 		perf_evsel__object.init = init;
84 
85 	if (fini != NULL)
86 		perf_evsel__object.fini = fini;
87 
88 	return 0;
89 }
90 
91 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
92 
93 int __perf_evsel__sample_size(u64 sample_type)
94 {
95 	u64 mask = sample_type & PERF_SAMPLE_MASK;
96 	int size = 0;
97 	int i;
98 
99 	for (i = 0; i < 64; i++) {
100 		if (mask & (1ULL << i))
101 			size++;
102 	}
103 
104 	size *= sizeof(u64);
105 
106 	return size;
107 }
108 
109 /**
110  * __perf_evsel__calc_id_pos - calculate id_pos.
111  * @sample_type: sample type
112  *
113  * This function returns the position of the event id (PERF_SAMPLE_ID or
114  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
115  * sample_event.
116  */
117 static int __perf_evsel__calc_id_pos(u64 sample_type)
118 {
119 	int idx = 0;
120 
121 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
122 		return 0;
123 
124 	if (!(sample_type & PERF_SAMPLE_ID))
125 		return -1;
126 
127 	if (sample_type & PERF_SAMPLE_IP)
128 		idx += 1;
129 
130 	if (sample_type & PERF_SAMPLE_TID)
131 		idx += 1;
132 
133 	if (sample_type & PERF_SAMPLE_TIME)
134 		idx += 1;
135 
136 	if (sample_type & PERF_SAMPLE_ADDR)
137 		idx += 1;
138 
139 	return idx;
140 }
141 
142 /**
143  * __perf_evsel__calc_is_pos - calculate is_pos.
144  * @sample_type: sample type
145  *
146  * This function returns the position (counting backwards) of the event id
147  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
148  * sample_id_all is used there is an id sample appended to non-sample events.
149  */
150 static int __perf_evsel__calc_is_pos(u64 sample_type)
151 {
152 	int idx = 1;
153 
154 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
155 		return 1;
156 
157 	if (!(sample_type & PERF_SAMPLE_ID))
158 		return -1;
159 
160 	if (sample_type & PERF_SAMPLE_CPU)
161 		idx += 1;
162 
163 	if (sample_type & PERF_SAMPLE_STREAM_ID)
164 		idx += 1;
165 
166 	return idx;
167 }
168 
169 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
170 {
171 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
172 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
173 }
174 
175 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
176 				  enum perf_event_sample_format bit)
177 {
178 	if (!(evsel->attr.sample_type & bit)) {
179 		evsel->attr.sample_type |= bit;
180 		evsel->sample_size += sizeof(u64);
181 		perf_evsel__calc_id_pos(evsel);
182 	}
183 }
184 
185 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
186 				    enum perf_event_sample_format bit)
187 {
188 	if (evsel->attr.sample_type & bit) {
189 		evsel->attr.sample_type &= ~bit;
190 		evsel->sample_size -= sizeof(u64);
191 		perf_evsel__calc_id_pos(evsel);
192 	}
193 }
194 
195 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
196 			       bool can_sample_identifier)
197 {
198 	if (can_sample_identifier) {
199 		perf_evsel__reset_sample_bit(evsel, ID);
200 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
201 	} else {
202 		perf_evsel__set_sample_bit(evsel, ID);
203 	}
204 	evsel->attr.read_format |= PERF_FORMAT_ID;
205 }
206 
207 /**
208  * perf_evsel__is_function_event - Return whether given evsel is a function
209  * trace event
210  *
211  * @evsel - evsel selector to be tested
212  *
213  * Return %true if event is function trace event
214  */
215 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
216 {
217 #define FUNCTION_EVENT "ftrace:function"
218 
219 	return evsel->name &&
220 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
221 
222 #undef FUNCTION_EVENT
223 }
224 
225 void perf_evsel__init(struct perf_evsel *evsel,
226 		      struct perf_event_attr *attr, int idx)
227 {
228 	evsel->idx	   = idx;
229 	evsel->tracking	   = !idx;
230 	evsel->attr	   = *attr;
231 	evsel->leader	   = evsel;
232 	evsel->unit	   = "";
233 	evsel->scale	   = 1.0;
234 	evsel->max_events  = ULONG_MAX;
235 	evsel->evlist	   = NULL;
236 	evsel->bpf_fd	   = -1;
237 	INIT_LIST_HEAD(&evsel->node);
238 	INIT_LIST_HEAD(&evsel->config_terms);
239 	perf_evsel__object.init(evsel);
240 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 	perf_evsel__calc_id_pos(evsel);
242 	evsel->cmdline_group_boundary = false;
243 	evsel->metric_expr   = NULL;
244 	evsel->metric_name   = NULL;
245 	evsel->metric_events = NULL;
246 	evsel->collect_stat  = false;
247 	evsel->pmu_name      = NULL;
248 }
249 
250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 {
252 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253 
254 	if (!evsel)
255 		return NULL;
256 	perf_evsel__init(evsel, attr, idx);
257 
258 	if (perf_evsel__is_bpf_output(evsel)) {
259 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 		evsel->attr.sample_period = 1;
262 	}
263 
264 	if (perf_evsel__is_clock(evsel)) {
265 		/*
266 		 * The evsel->unit points to static alias->unit
267 		 * so it's ok to use static string in here.
268 		 */
269 		static const char *unit = "msec";
270 
271 		evsel->unit = unit;
272 		evsel->scale = 1e-6;
273 	}
274 
275 	return evsel;
276 }
277 
278 static bool perf_event_can_profile_kernel(void)
279 {
280 	return geteuid() == 0 || perf_event_paranoid() == -1;
281 }
282 
283 struct perf_evsel *perf_evsel__new_cycles(bool precise)
284 {
285 	struct perf_event_attr attr = {
286 		.type	= PERF_TYPE_HARDWARE,
287 		.config	= PERF_COUNT_HW_CPU_CYCLES,
288 		.exclude_kernel	= !perf_event_can_profile_kernel(),
289 	};
290 	struct perf_evsel *evsel;
291 
292 	event_attr_init(&attr);
293 
294 	if (!precise)
295 		goto new_event;
296 
297 	/*
298 	 * Now let the usual logic to set up the perf_event_attr defaults
299 	 * to kick in when we return and before perf_evsel__open() is called.
300 	 */
301 new_event:
302 	evsel = perf_evsel__new(&attr);
303 	if (evsel == NULL)
304 		goto out;
305 
306 	evsel->precise_max = true;
307 
308 	/* use asprintf() because free(evsel) assumes name is allocated */
309 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
310 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
311 		     attr.exclude_kernel ? "u" : "",
312 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
313 		goto error_free;
314 out:
315 	return evsel;
316 error_free:
317 	perf_evsel__delete(evsel);
318 	evsel = NULL;
319 	goto out;
320 }
321 
322 /*
323  * Returns pointer with encoded error via <linux/err.h> interface.
324  */
325 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
326 {
327 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
328 	int err = -ENOMEM;
329 
330 	if (evsel == NULL) {
331 		goto out_err;
332 	} else {
333 		struct perf_event_attr attr = {
334 			.type	       = PERF_TYPE_TRACEPOINT,
335 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
336 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
337 		};
338 
339 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
340 			goto out_free;
341 
342 		evsel->tp_format = trace_event__tp_format(sys, name);
343 		if (IS_ERR(evsel->tp_format)) {
344 			err = PTR_ERR(evsel->tp_format);
345 			goto out_free;
346 		}
347 
348 		event_attr_init(&attr);
349 		attr.config = evsel->tp_format->id;
350 		attr.sample_period = 1;
351 		perf_evsel__init(evsel, &attr, idx);
352 	}
353 
354 	return evsel;
355 
356 out_free:
357 	zfree(&evsel->name);
358 	free(evsel);
359 out_err:
360 	return ERR_PTR(err);
361 }
362 
363 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
364 	"cycles",
365 	"instructions",
366 	"cache-references",
367 	"cache-misses",
368 	"branches",
369 	"branch-misses",
370 	"bus-cycles",
371 	"stalled-cycles-frontend",
372 	"stalled-cycles-backend",
373 	"ref-cycles",
374 };
375 
376 static const char *__perf_evsel__hw_name(u64 config)
377 {
378 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
379 		return perf_evsel__hw_names[config];
380 
381 	return "unknown-hardware";
382 }
383 
384 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
385 {
386 	int colon = 0, r = 0;
387 	struct perf_event_attr *attr = &evsel->attr;
388 	bool exclude_guest_default = false;
389 
390 #define MOD_PRINT(context, mod)	do {					\
391 		if (!attr->exclude_##context) {				\
392 			if (!colon) colon = ++r;			\
393 			r += scnprintf(bf + r, size - r, "%c", mod);	\
394 		} } while(0)
395 
396 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
397 		MOD_PRINT(kernel, 'k');
398 		MOD_PRINT(user, 'u');
399 		MOD_PRINT(hv, 'h');
400 		exclude_guest_default = true;
401 	}
402 
403 	if (attr->precise_ip) {
404 		if (!colon)
405 			colon = ++r;
406 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
407 		exclude_guest_default = true;
408 	}
409 
410 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
411 		MOD_PRINT(host, 'H');
412 		MOD_PRINT(guest, 'G');
413 	}
414 #undef MOD_PRINT
415 	if (colon)
416 		bf[colon - 1] = ':';
417 	return r;
418 }
419 
420 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
421 {
422 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
423 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
424 }
425 
426 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
427 	"cpu-clock",
428 	"task-clock",
429 	"page-faults",
430 	"context-switches",
431 	"cpu-migrations",
432 	"minor-faults",
433 	"major-faults",
434 	"alignment-faults",
435 	"emulation-faults",
436 	"dummy",
437 };
438 
439 static const char *__perf_evsel__sw_name(u64 config)
440 {
441 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
442 		return perf_evsel__sw_names[config];
443 	return "unknown-software";
444 }
445 
446 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
447 {
448 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
449 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
450 }
451 
452 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
453 {
454 	int r;
455 
456 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
457 
458 	if (type & HW_BREAKPOINT_R)
459 		r += scnprintf(bf + r, size - r, "r");
460 
461 	if (type & HW_BREAKPOINT_W)
462 		r += scnprintf(bf + r, size - r, "w");
463 
464 	if (type & HW_BREAKPOINT_X)
465 		r += scnprintf(bf + r, size - r, "x");
466 
467 	return r;
468 }
469 
470 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
471 {
472 	struct perf_event_attr *attr = &evsel->attr;
473 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
474 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
475 }
476 
477 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
478 				[PERF_EVSEL__MAX_ALIASES] = {
479  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
480  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
481  { "LLC",	"L2",							},
482  { "dTLB",	"d-tlb",	"Data-TLB",				},
483  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
484  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
485  { "node",								},
486 };
487 
488 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
489 				   [PERF_EVSEL__MAX_ALIASES] = {
490  { "load",	"loads",	"read",					},
491  { "store",	"stores",	"write",				},
492  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
493 };
494 
495 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
496 				       [PERF_EVSEL__MAX_ALIASES] = {
497  { "refs",	"Reference",	"ops",		"access",		},
498  { "misses",	"miss",							},
499 };
500 
501 #define C(x)		PERF_COUNT_HW_CACHE_##x
502 #define CACHE_READ	(1 << C(OP_READ))
503 #define CACHE_WRITE	(1 << C(OP_WRITE))
504 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
505 #define COP(x)		(1 << x)
506 
507 /*
508  * cache operartion stat
509  * L1I : Read and prefetch only
510  * ITLB and BPU : Read-only
511  */
512 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
513  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
514  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
515  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
516  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517  [C(ITLB)]	= (CACHE_READ),
518  [C(BPU)]	= (CACHE_READ),
519  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520 };
521 
522 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
523 {
524 	if (perf_evsel__hw_cache_stat[type] & COP(op))
525 		return true;	/* valid */
526 	else
527 		return false;	/* invalid */
528 }
529 
530 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
531 					    char *bf, size_t size)
532 {
533 	if (result) {
534 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
535 				 perf_evsel__hw_cache_op[op][0],
536 				 perf_evsel__hw_cache_result[result][0]);
537 	}
538 
539 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
540 			 perf_evsel__hw_cache_op[op][1]);
541 }
542 
543 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
544 {
545 	u8 op, result, type = (config >>  0) & 0xff;
546 	const char *err = "unknown-ext-hardware-cache-type";
547 
548 	if (type >= PERF_COUNT_HW_CACHE_MAX)
549 		goto out_err;
550 
551 	op = (config >>  8) & 0xff;
552 	err = "unknown-ext-hardware-cache-op";
553 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
554 		goto out_err;
555 
556 	result = (config >> 16) & 0xff;
557 	err = "unknown-ext-hardware-cache-result";
558 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
559 		goto out_err;
560 
561 	err = "invalid-cache";
562 	if (!perf_evsel__is_cache_op_valid(type, op))
563 		goto out_err;
564 
565 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
566 out_err:
567 	return scnprintf(bf, size, "%s", err);
568 }
569 
570 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
571 {
572 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
573 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
574 }
575 
576 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
577 {
578 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
579 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
580 }
581 
582 static int perf_evsel__tool_name(char *bf, size_t size)
583 {
584 	int ret = scnprintf(bf, size, "duration_time");
585 	return ret;
586 }
587 
588 const char *perf_evsel__name(struct perf_evsel *evsel)
589 {
590 	char bf[128];
591 
592 	if (evsel->name)
593 		return evsel->name;
594 
595 	switch (evsel->attr.type) {
596 	case PERF_TYPE_RAW:
597 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
598 		break;
599 
600 	case PERF_TYPE_HARDWARE:
601 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
602 		break;
603 
604 	case PERF_TYPE_HW_CACHE:
605 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
606 		break;
607 
608 	case PERF_TYPE_SOFTWARE:
609 		if (evsel->tool_event)
610 			perf_evsel__tool_name(bf, sizeof(bf));
611 		else
612 			perf_evsel__sw_name(evsel, bf, sizeof(bf));
613 		break;
614 
615 	case PERF_TYPE_TRACEPOINT:
616 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
617 		break;
618 
619 	case PERF_TYPE_BREAKPOINT:
620 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
621 		break;
622 
623 	default:
624 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
625 			  evsel->attr.type);
626 		break;
627 	}
628 
629 	evsel->name = strdup(bf);
630 
631 	return evsel->name ?: "unknown";
632 }
633 
634 const char *perf_evsel__group_name(struct perf_evsel *evsel)
635 {
636 	return evsel->group_name ?: "anon group";
637 }
638 
639 /*
640  * Returns the group details for the specified leader,
641  * with following rules.
642  *
643  *  For record -e '{cycles,instructions}'
644  *    'anon group { cycles:u, instructions:u }'
645  *
646  *  For record -e 'cycles,instructions' and report --group
647  *    'cycles:u, instructions:u'
648  */
649 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
650 {
651 	int ret = 0;
652 	struct perf_evsel *pos;
653 	const char *group_name = perf_evsel__group_name(evsel);
654 
655 	if (!evsel->forced_leader)
656 		ret = scnprintf(buf, size, "%s { ", group_name);
657 
658 	ret += scnprintf(buf + ret, size - ret, "%s",
659 			 perf_evsel__name(evsel));
660 
661 	for_each_group_member(pos, evsel)
662 		ret += scnprintf(buf + ret, size - ret, ", %s",
663 				 perf_evsel__name(pos));
664 
665 	if (!evsel->forced_leader)
666 		ret += scnprintf(buf + ret, size - ret, " }");
667 
668 	return ret;
669 }
670 
671 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
672 					   struct record_opts *opts,
673 					   struct callchain_param *param)
674 {
675 	bool function = perf_evsel__is_function_event(evsel);
676 	struct perf_event_attr *attr = &evsel->attr;
677 
678 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
679 
680 	attr->sample_max_stack = param->max_stack;
681 
682 	if (param->record_mode == CALLCHAIN_LBR) {
683 		if (!opts->branch_stack) {
684 			if (attr->exclude_user) {
685 				pr_warning("LBR callstack option is only available "
686 					   "to get user callchain information. "
687 					   "Falling back to framepointers.\n");
688 			} else {
689 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
690 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
691 							PERF_SAMPLE_BRANCH_CALL_STACK |
692 							PERF_SAMPLE_BRANCH_NO_CYCLES |
693 							PERF_SAMPLE_BRANCH_NO_FLAGS;
694 			}
695 		} else
696 			 pr_warning("Cannot use LBR callstack with branch stack. "
697 				    "Falling back to framepointers.\n");
698 	}
699 
700 	if (param->record_mode == CALLCHAIN_DWARF) {
701 		if (!function) {
702 			perf_evsel__set_sample_bit(evsel, REGS_USER);
703 			perf_evsel__set_sample_bit(evsel, STACK_USER);
704 			attr->sample_regs_user |= PERF_REGS_MASK;
705 			attr->sample_stack_user = param->dump_size;
706 			attr->exclude_callchain_user = 1;
707 		} else {
708 			pr_info("Cannot use DWARF unwind for function trace event,"
709 				" falling back to framepointers.\n");
710 		}
711 	}
712 
713 	if (function) {
714 		pr_info("Disabling user space callchains for function trace event.\n");
715 		attr->exclude_callchain_user = 1;
716 	}
717 }
718 
719 void perf_evsel__config_callchain(struct perf_evsel *evsel,
720 				  struct record_opts *opts,
721 				  struct callchain_param *param)
722 {
723 	if (param->enabled)
724 		return __perf_evsel__config_callchain(evsel, opts, param);
725 }
726 
727 static void
728 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
729 			    struct callchain_param *param)
730 {
731 	struct perf_event_attr *attr = &evsel->attr;
732 
733 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
734 	if (param->record_mode == CALLCHAIN_LBR) {
735 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
736 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
737 					      PERF_SAMPLE_BRANCH_CALL_STACK);
738 	}
739 	if (param->record_mode == CALLCHAIN_DWARF) {
740 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
741 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
742 	}
743 }
744 
745 static void apply_config_terms(struct perf_evsel *evsel,
746 			       struct record_opts *opts, bool track)
747 {
748 	struct perf_evsel_config_term *term;
749 	struct list_head *config_terms = &evsel->config_terms;
750 	struct perf_event_attr *attr = &evsel->attr;
751 	/* callgraph default */
752 	struct callchain_param param = {
753 		.record_mode = callchain_param.record_mode,
754 	};
755 	u32 dump_size = 0;
756 	int max_stack = 0;
757 	const char *callgraph_buf = NULL;
758 
759 	list_for_each_entry(term, config_terms, list) {
760 		switch (term->type) {
761 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
762 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
763 				attr->sample_period = term->val.period;
764 				attr->freq = 0;
765 				perf_evsel__reset_sample_bit(evsel, PERIOD);
766 			}
767 			break;
768 		case PERF_EVSEL__CONFIG_TERM_FREQ:
769 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
770 				attr->sample_freq = term->val.freq;
771 				attr->freq = 1;
772 				perf_evsel__set_sample_bit(evsel, PERIOD);
773 			}
774 			break;
775 		case PERF_EVSEL__CONFIG_TERM_TIME:
776 			if (term->val.time)
777 				perf_evsel__set_sample_bit(evsel, TIME);
778 			else
779 				perf_evsel__reset_sample_bit(evsel, TIME);
780 			break;
781 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
782 			callgraph_buf = term->val.callgraph;
783 			break;
784 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
785 			if (term->val.branch && strcmp(term->val.branch, "no")) {
786 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
787 				parse_branch_str(term->val.branch,
788 						 &attr->branch_sample_type);
789 			} else
790 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
791 			break;
792 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
793 			dump_size = term->val.stack_user;
794 			break;
795 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
796 			max_stack = term->val.max_stack;
797 			break;
798 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
799 			evsel->max_events = term->val.max_events;
800 			break;
801 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
802 			/*
803 			 * attr->inherit should has already been set by
804 			 * perf_evsel__config. If user explicitly set
805 			 * inherit using config terms, override global
806 			 * opt->no_inherit setting.
807 			 */
808 			attr->inherit = term->val.inherit ? 1 : 0;
809 			break;
810 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
811 			attr->write_backward = term->val.overwrite ? 1 : 0;
812 			break;
813 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
814 			break;
815 		case PERF_EVSEL__CONFIG_TERM_PERCORE:
816 			break;
817 		default:
818 			break;
819 		}
820 	}
821 
822 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
823 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
824 		bool sample_address = false;
825 
826 		if (max_stack) {
827 			param.max_stack = max_stack;
828 			if (callgraph_buf == NULL)
829 				callgraph_buf = "fp";
830 		}
831 
832 		/* parse callgraph parameters */
833 		if (callgraph_buf != NULL) {
834 			if (!strcmp(callgraph_buf, "no")) {
835 				param.enabled = false;
836 				param.record_mode = CALLCHAIN_NONE;
837 			} else {
838 				param.enabled = true;
839 				if (parse_callchain_record(callgraph_buf, &param)) {
840 					pr_err("per-event callgraph setting for %s failed. "
841 					       "Apply callgraph global setting for it\n",
842 					       evsel->name);
843 					return;
844 				}
845 				if (param.record_mode == CALLCHAIN_DWARF)
846 					sample_address = true;
847 			}
848 		}
849 		if (dump_size > 0) {
850 			dump_size = round_up(dump_size, sizeof(u64));
851 			param.dump_size = dump_size;
852 		}
853 
854 		/* If global callgraph set, clear it */
855 		if (callchain_param.enabled)
856 			perf_evsel__reset_callgraph(evsel, &callchain_param);
857 
858 		/* set perf-event callgraph */
859 		if (param.enabled) {
860 			if (sample_address) {
861 				perf_evsel__set_sample_bit(evsel, ADDR);
862 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
863 				evsel->attr.mmap_data = track;
864 			}
865 			perf_evsel__config_callchain(evsel, opts, &param);
866 		}
867 	}
868 }
869 
870 static bool is_dummy_event(struct perf_evsel *evsel)
871 {
872 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
873 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
874 }
875 
876 /*
877  * The enable_on_exec/disabled value strategy:
878  *
879  *  1) For any type of traced program:
880  *    - all independent events and group leaders are disabled
881  *    - all group members are enabled
882  *
883  *     Group members are ruled by group leaders. They need to
884  *     be enabled, because the group scheduling relies on that.
885  *
886  *  2) For traced programs executed by perf:
887  *     - all independent events and group leaders have
888  *       enable_on_exec set
889  *     - we don't specifically enable or disable any event during
890  *       the record command
891  *
892  *     Independent events and group leaders are initially disabled
893  *     and get enabled by exec. Group members are ruled by group
894  *     leaders as stated in 1).
895  *
896  *  3) For traced programs attached by perf (pid/tid):
897  *     - we specifically enable or disable all events during
898  *       the record command
899  *
900  *     When attaching events to already running traced we
901  *     enable/disable events specifically, as there's no
902  *     initial traced exec call.
903  */
904 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
905 			struct callchain_param *callchain)
906 {
907 	struct perf_evsel *leader = evsel->leader;
908 	struct perf_event_attr *attr = &evsel->attr;
909 	int track = evsel->tracking;
910 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
911 
912 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
913 	attr->inherit	    = !opts->no_inherit;
914 	attr->write_backward = opts->overwrite ? 1 : 0;
915 
916 	perf_evsel__set_sample_bit(evsel, IP);
917 	perf_evsel__set_sample_bit(evsel, TID);
918 
919 	if (evsel->sample_read) {
920 		perf_evsel__set_sample_bit(evsel, READ);
921 
922 		/*
923 		 * We need ID even in case of single event, because
924 		 * PERF_SAMPLE_READ process ID specific data.
925 		 */
926 		perf_evsel__set_sample_id(evsel, false);
927 
928 		/*
929 		 * Apply group format only if we belong to group
930 		 * with more than one members.
931 		 */
932 		if (leader->nr_members > 1) {
933 			attr->read_format |= PERF_FORMAT_GROUP;
934 			attr->inherit = 0;
935 		}
936 	}
937 
938 	/*
939 	 * We default some events to have a default interval. But keep
940 	 * it a weak assumption overridable by the user.
941 	 */
942 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
943 				     opts->user_interval != ULLONG_MAX)) {
944 		if (opts->freq) {
945 			perf_evsel__set_sample_bit(evsel, PERIOD);
946 			attr->freq		= 1;
947 			attr->sample_freq	= opts->freq;
948 		} else {
949 			attr->sample_period = opts->default_interval;
950 		}
951 	}
952 
953 	/*
954 	 * Disable sampling for all group members other
955 	 * than leader in case leader 'leads' the sampling.
956 	 */
957 	if ((leader != evsel) && leader->sample_read) {
958 		attr->freq           = 0;
959 		attr->sample_freq    = 0;
960 		attr->sample_period  = 0;
961 		attr->write_backward = 0;
962 
963 		/*
964 		 * We don't get sample for slave events, we make them
965 		 * when delivering group leader sample. Set the slave
966 		 * event to follow the master sample_type to ease up
967 		 * report.
968 		 */
969 		attr->sample_type = leader->attr.sample_type;
970 	}
971 
972 	if (opts->no_samples)
973 		attr->sample_freq = 0;
974 
975 	if (opts->inherit_stat) {
976 		evsel->attr.read_format |=
977 			PERF_FORMAT_TOTAL_TIME_ENABLED |
978 			PERF_FORMAT_TOTAL_TIME_RUNNING |
979 			PERF_FORMAT_ID;
980 		attr->inherit_stat = 1;
981 	}
982 
983 	if (opts->sample_address) {
984 		perf_evsel__set_sample_bit(evsel, ADDR);
985 		attr->mmap_data = track;
986 	}
987 
988 	/*
989 	 * We don't allow user space callchains for  function trace
990 	 * event, due to issues with page faults while tracing page
991 	 * fault handler and its overall trickiness nature.
992 	 */
993 	if (perf_evsel__is_function_event(evsel))
994 		evsel->attr.exclude_callchain_user = 1;
995 
996 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
997 		perf_evsel__config_callchain(evsel, opts, callchain);
998 
999 	if (opts->sample_intr_regs) {
1000 		attr->sample_regs_intr = opts->sample_intr_regs;
1001 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
1002 	}
1003 
1004 	if (opts->sample_user_regs) {
1005 		attr->sample_regs_user |= opts->sample_user_regs;
1006 		perf_evsel__set_sample_bit(evsel, REGS_USER);
1007 	}
1008 
1009 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1010 		perf_evsel__set_sample_bit(evsel, CPU);
1011 
1012 	/*
1013 	 * When the user explicitly disabled time don't force it here.
1014 	 */
1015 	if (opts->sample_time &&
1016 	    (!perf_missing_features.sample_id_all &&
1017 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1018 	     opts->sample_time_set)))
1019 		perf_evsel__set_sample_bit(evsel, TIME);
1020 
1021 	if (opts->raw_samples && !evsel->no_aux_samples) {
1022 		perf_evsel__set_sample_bit(evsel, TIME);
1023 		perf_evsel__set_sample_bit(evsel, RAW);
1024 		perf_evsel__set_sample_bit(evsel, CPU);
1025 	}
1026 
1027 	if (opts->sample_address)
1028 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1029 
1030 	if (opts->sample_phys_addr)
1031 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1032 
1033 	if (opts->no_buffering) {
1034 		attr->watermark = 0;
1035 		attr->wakeup_events = 1;
1036 	}
1037 	if (opts->branch_stack && !evsel->no_aux_samples) {
1038 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1039 		attr->branch_sample_type = opts->branch_stack;
1040 	}
1041 
1042 	if (opts->sample_weight)
1043 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1044 
1045 	attr->task  = track;
1046 	attr->mmap  = track;
1047 	attr->mmap2 = track && !perf_missing_features.mmap2;
1048 	attr->comm  = track;
1049 	attr->ksymbol = track && !perf_missing_features.ksymbol;
1050 	attr->bpf_event = track && !opts->no_bpf_event &&
1051 		!perf_missing_features.bpf_event;
1052 
1053 	if (opts->record_namespaces)
1054 		attr->namespaces  = track;
1055 
1056 	if (opts->record_switch_events)
1057 		attr->context_switch = track;
1058 
1059 	if (opts->sample_transaction)
1060 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1061 
1062 	if (opts->running_time) {
1063 		evsel->attr.read_format |=
1064 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1065 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1066 	}
1067 
1068 	/*
1069 	 * XXX see the function comment above
1070 	 *
1071 	 * Disabling only independent events or group leaders,
1072 	 * keeping group members enabled.
1073 	 */
1074 	if (perf_evsel__is_group_leader(evsel))
1075 		attr->disabled = 1;
1076 
1077 	/*
1078 	 * Setting enable_on_exec for independent events and
1079 	 * group leaders for traced executed by perf.
1080 	 */
1081 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1082 		!opts->initial_delay)
1083 		attr->enable_on_exec = 1;
1084 
1085 	if (evsel->immediate) {
1086 		attr->disabled = 0;
1087 		attr->enable_on_exec = 0;
1088 	}
1089 
1090 	clockid = opts->clockid;
1091 	if (opts->use_clockid) {
1092 		attr->use_clockid = 1;
1093 		attr->clockid = opts->clockid;
1094 	}
1095 
1096 	if (evsel->precise_max)
1097 		attr->precise_ip = 3;
1098 
1099 	if (opts->all_user) {
1100 		attr->exclude_kernel = 1;
1101 		attr->exclude_user   = 0;
1102 	}
1103 
1104 	if (opts->all_kernel) {
1105 		attr->exclude_kernel = 0;
1106 		attr->exclude_user   = 1;
1107 	}
1108 
1109 	if (evsel->own_cpus || evsel->unit)
1110 		evsel->attr.read_format |= PERF_FORMAT_ID;
1111 
1112 	/*
1113 	 * Apply event specific term settings,
1114 	 * it overloads any global configuration.
1115 	 */
1116 	apply_config_terms(evsel, opts, track);
1117 
1118 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1119 
1120 	/* The --period option takes the precedence. */
1121 	if (opts->period_set) {
1122 		if (opts->period)
1123 			perf_evsel__set_sample_bit(evsel, PERIOD);
1124 		else
1125 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1126 	}
1127 
1128 	/*
1129 	 * For initial_delay, a dummy event is added implicitly.
1130 	 * The software event will trigger -EOPNOTSUPP error out,
1131 	 * if BRANCH_STACK bit is set.
1132 	 */
1133 	if (opts->initial_delay && is_dummy_event(evsel))
1134 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1135 }
1136 
1137 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1138 {
1139 	if (evsel->system_wide)
1140 		nthreads = 1;
1141 
1142 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1143 
1144 	if (evsel->fd) {
1145 		int cpu, thread;
1146 		for (cpu = 0; cpu < ncpus; cpu++) {
1147 			for (thread = 0; thread < nthreads; thread++) {
1148 				FD(evsel, cpu, thread) = -1;
1149 			}
1150 		}
1151 	}
1152 
1153 	return evsel->fd != NULL ? 0 : -ENOMEM;
1154 }
1155 
1156 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1157 			  int ioc,  void *arg)
1158 {
1159 	int cpu, thread;
1160 
1161 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1162 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1163 			int fd = FD(evsel, cpu, thread),
1164 			    err = ioctl(fd, ioc, arg);
1165 
1166 			if (err)
1167 				return err;
1168 		}
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1175 {
1176 	return perf_evsel__run_ioctl(evsel,
1177 				     PERF_EVENT_IOC_SET_FILTER,
1178 				     (void *)filter);
1179 }
1180 
1181 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1182 {
1183 	char *new_filter = strdup(filter);
1184 
1185 	if (new_filter != NULL) {
1186 		free(evsel->filter);
1187 		evsel->filter = new_filter;
1188 		return 0;
1189 	}
1190 
1191 	return -1;
1192 }
1193 
1194 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1195 				     const char *fmt, const char *filter)
1196 {
1197 	char *new_filter;
1198 
1199 	if (evsel->filter == NULL)
1200 		return perf_evsel__set_filter(evsel, filter);
1201 
1202 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1203 		free(evsel->filter);
1204 		evsel->filter = new_filter;
1205 		return 0;
1206 	}
1207 
1208 	return -1;
1209 }
1210 
1211 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1212 {
1213 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1214 }
1215 
1216 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1217 {
1218 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1219 }
1220 
1221 int perf_evsel__enable(struct perf_evsel *evsel)
1222 {
1223 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1224 
1225 	if (!err)
1226 		evsel->disabled = false;
1227 
1228 	return err;
1229 }
1230 
1231 int perf_evsel__disable(struct perf_evsel *evsel)
1232 {
1233 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1234 	/*
1235 	 * We mark it disabled here so that tools that disable a event can
1236 	 * ignore events after they disable it. I.e. the ring buffer may have
1237 	 * already a few more events queued up before the kernel got the stop
1238 	 * request.
1239 	 */
1240 	if (!err)
1241 		evsel->disabled = true;
1242 
1243 	return err;
1244 }
1245 
1246 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1247 {
1248 	if (ncpus == 0 || nthreads == 0)
1249 		return 0;
1250 
1251 	if (evsel->system_wide)
1252 		nthreads = 1;
1253 
1254 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1255 	if (evsel->sample_id == NULL)
1256 		return -ENOMEM;
1257 
1258 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1259 	if (evsel->id == NULL) {
1260 		xyarray__delete(evsel->sample_id);
1261 		evsel->sample_id = NULL;
1262 		return -ENOMEM;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1269 {
1270 	xyarray__delete(evsel->fd);
1271 	evsel->fd = NULL;
1272 }
1273 
1274 static void perf_evsel__free_id(struct perf_evsel *evsel)
1275 {
1276 	xyarray__delete(evsel->sample_id);
1277 	evsel->sample_id = NULL;
1278 	zfree(&evsel->id);
1279 }
1280 
1281 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1282 {
1283 	struct perf_evsel_config_term *term, *h;
1284 
1285 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1286 		list_del(&term->list);
1287 		free(term);
1288 	}
1289 }
1290 
1291 void perf_evsel__close_fd(struct perf_evsel *evsel)
1292 {
1293 	int cpu, thread;
1294 
1295 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1296 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1297 			close(FD(evsel, cpu, thread));
1298 			FD(evsel, cpu, thread) = -1;
1299 		}
1300 }
1301 
1302 void perf_evsel__exit(struct perf_evsel *evsel)
1303 {
1304 	assert(list_empty(&evsel->node));
1305 	assert(evsel->evlist == NULL);
1306 	perf_evsel__free_counts(evsel);
1307 	perf_evsel__free_fd(evsel);
1308 	perf_evsel__free_id(evsel);
1309 	perf_evsel__free_config_terms(evsel);
1310 	cgroup__put(evsel->cgrp);
1311 	cpu_map__put(evsel->cpus);
1312 	cpu_map__put(evsel->own_cpus);
1313 	thread_map__put(evsel->threads);
1314 	zfree(&evsel->group_name);
1315 	zfree(&evsel->name);
1316 	perf_evsel__object.fini(evsel);
1317 }
1318 
1319 void perf_evsel__delete(struct perf_evsel *evsel)
1320 {
1321 	perf_evsel__exit(evsel);
1322 	free(evsel);
1323 }
1324 
1325 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1326 				struct perf_counts_values *count)
1327 {
1328 	struct perf_counts_values tmp;
1329 
1330 	if (!evsel->prev_raw_counts)
1331 		return;
1332 
1333 	if (cpu == -1) {
1334 		tmp = evsel->prev_raw_counts->aggr;
1335 		evsel->prev_raw_counts->aggr = *count;
1336 	} else {
1337 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1338 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1339 	}
1340 
1341 	count->val = count->val - tmp.val;
1342 	count->ena = count->ena - tmp.ena;
1343 	count->run = count->run - tmp.run;
1344 }
1345 
1346 void perf_counts_values__scale(struct perf_counts_values *count,
1347 			       bool scale, s8 *pscaled)
1348 {
1349 	s8 scaled = 0;
1350 
1351 	if (scale) {
1352 		if (count->run == 0) {
1353 			scaled = -1;
1354 			count->val = 0;
1355 		} else if (count->run < count->ena) {
1356 			scaled = 1;
1357 			count->val = (u64)((double) count->val * count->ena / count->run);
1358 		}
1359 	}
1360 
1361 	if (pscaled)
1362 		*pscaled = scaled;
1363 }
1364 
1365 static int perf_evsel__read_size(struct perf_evsel *evsel)
1366 {
1367 	u64 read_format = evsel->attr.read_format;
1368 	int entry = sizeof(u64); /* value */
1369 	int size = 0;
1370 	int nr = 1;
1371 
1372 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1373 		size += sizeof(u64);
1374 
1375 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1376 		size += sizeof(u64);
1377 
1378 	if (read_format & PERF_FORMAT_ID)
1379 		entry += sizeof(u64);
1380 
1381 	if (read_format & PERF_FORMAT_GROUP) {
1382 		nr = evsel->nr_members;
1383 		size += sizeof(u64);
1384 	}
1385 
1386 	size += entry * nr;
1387 	return size;
1388 }
1389 
1390 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1391 		     struct perf_counts_values *count)
1392 {
1393 	size_t size = perf_evsel__read_size(evsel);
1394 
1395 	memset(count, 0, sizeof(*count));
1396 
1397 	if (FD(evsel, cpu, thread) < 0)
1398 		return -EINVAL;
1399 
1400 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1401 		return -errno;
1402 
1403 	return 0;
1404 }
1405 
1406 static int
1407 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1408 {
1409 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1410 
1411 	return perf_evsel__read(evsel, cpu, thread, count);
1412 }
1413 
1414 static void
1415 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1416 		      u64 val, u64 ena, u64 run)
1417 {
1418 	struct perf_counts_values *count;
1419 
1420 	count = perf_counts(counter->counts, cpu, thread);
1421 
1422 	count->val    = val;
1423 	count->ena    = ena;
1424 	count->run    = run;
1425 	count->loaded = true;
1426 }
1427 
1428 static int
1429 perf_evsel__process_group_data(struct perf_evsel *leader,
1430 			       int cpu, int thread, u64 *data)
1431 {
1432 	u64 read_format = leader->attr.read_format;
1433 	struct sample_read_value *v;
1434 	u64 nr, ena = 0, run = 0, i;
1435 
1436 	nr = *data++;
1437 
1438 	if (nr != (u64) leader->nr_members)
1439 		return -EINVAL;
1440 
1441 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1442 		ena = *data++;
1443 
1444 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1445 		run = *data++;
1446 
1447 	v = (struct sample_read_value *) data;
1448 
1449 	perf_evsel__set_count(leader, cpu, thread,
1450 			      v[0].value, ena, run);
1451 
1452 	for (i = 1; i < nr; i++) {
1453 		struct perf_evsel *counter;
1454 
1455 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1456 		if (!counter)
1457 			return -EINVAL;
1458 
1459 		perf_evsel__set_count(counter, cpu, thread,
1460 				      v[i].value, ena, run);
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static int
1467 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1468 {
1469 	struct perf_stat_evsel *ps = leader->stats;
1470 	u64 read_format = leader->attr.read_format;
1471 	int size = perf_evsel__read_size(leader);
1472 	u64 *data = ps->group_data;
1473 
1474 	if (!(read_format & PERF_FORMAT_ID))
1475 		return -EINVAL;
1476 
1477 	if (!perf_evsel__is_group_leader(leader))
1478 		return -EINVAL;
1479 
1480 	if (!data) {
1481 		data = zalloc(size);
1482 		if (!data)
1483 			return -ENOMEM;
1484 
1485 		ps->group_data = data;
1486 	}
1487 
1488 	if (FD(leader, cpu, thread) < 0)
1489 		return -EINVAL;
1490 
1491 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1492 		return -errno;
1493 
1494 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1495 }
1496 
1497 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1498 {
1499 	u64 read_format = evsel->attr.read_format;
1500 
1501 	if (read_format & PERF_FORMAT_GROUP)
1502 		return perf_evsel__read_group(evsel, cpu, thread);
1503 	else
1504 		return perf_evsel__read_one(evsel, cpu, thread);
1505 }
1506 
1507 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1508 			      int cpu, int thread, bool scale)
1509 {
1510 	struct perf_counts_values count;
1511 	size_t nv = scale ? 3 : 1;
1512 
1513 	if (FD(evsel, cpu, thread) < 0)
1514 		return -EINVAL;
1515 
1516 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1517 		return -ENOMEM;
1518 
1519 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1520 		return -errno;
1521 
1522 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1523 	perf_counts_values__scale(&count, scale, NULL);
1524 	*perf_counts(evsel->counts, cpu, thread) = count;
1525 	return 0;
1526 }
1527 
1528 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1529 {
1530 	struct perf_evsel *leader = evsel->leader;
1531 	int fd;
1532 
1533 	if (perf_evsel__is_group_leader(evsel))
1534 		return -1;
1535 
1536 	/*
1537 	 * Leader must be already processed/open,
1538 	 * if not it's a bug.
1539 	 */
1540 	BUG_ON(!leader->fd);
1541 
1542 	fd = FD(leader, cpu, thread);
1543 	BUG_ON(fd == -1);
1544 
1545 	return fd;
1546 }
1547 
1548 struct bit_names {
1549 	int bit;
1550 	const char *name;
1551 };
1552 
1553 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1554 {
1555 	bool first_bit = true;
1556 	int i = 0;
1557 
1558 	do {
1559 		if (value & bits[i].bit) {
1560 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1561 			first_bit = false;
1562 		}
1563 	} while (bits[++i].name != NULL);
1564 }
1565 
1566 static void __p_sample_type(char *buf, size_t size, u64 value)
1567 {
1568 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1569 	struct bit_names bits[] = {
1570 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1571 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1572 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1573 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1574 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1575 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1576 		{ .name = NULL, }
1577 	};
1578 #undef bit_name
1579 	__p_bits(buf, size, value, bits);
1580 }
1581 
1582 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1583 {
1584 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1585 	struct bit_names bits[] = {
1586 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1587 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1588 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1589 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1590 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1591 		{ .name = NULL, }
1592 	};
1593 #undef bit_name
1594 	__p_bits(buf, size, value, bits);
1595 }
1596 
1597 static void __p_read_format(char *buf, size_t size, u64 value)
1598 {
1599 #define bit_name(n) { PERF_FORMAT_##n, #n }
1600 	struct bit_names bits[] = {
1601 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1602 		bit_name(ID), bit_name(GROUP),
1603 		{ .name = NULL, }
1604 	};
1605 #undef bit_name
1606 	__p_bits(buf, size, value, bits);
1607 }
1608 
1609 #define BUF_SIZE		1024
1610 
1611 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1612 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1613 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1614 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1615 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1616 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1617 
1618 #define PRINT_ATTRn(_n, _f, _p)				\
1619 do {							\
1620 	if (attr->_f) {					\
1621 		_p(attr->_f);				\
1622 		ret += attr__fprintf(fp, _n, buf, priv);\
1623 	}						\
1624 } while (0)
1625 
1626 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1627 
1628 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1629 			     attr__fprintf_f attr__fprintf, void *priv)
1630 {
1631 	char buf[BUF_SIZE];
1632 	int ret = 0;
1633 
1634 	PRINT_ATTRf(type, p_unsigned);
1635 	PRINT_ATTRf(size, p_unsigned);
1636 	PRINT_ATTRf(config, p_hex);
1637 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1638 	PRINT_ATTRf(sample_type, p_sample_type);
1639 	PRINT_ATTRf(read_format, p_read_format);
1640 
1641 	PRINT_ATTRf(disabled, p_unsigned);
1642 	PRINT_ATTRf(inherit, p_unsigned);
1643 	PRINT_ATTRf(pinned, p_unsigned);
1644 	PRINT_ATTRf(exclusive, p_unsigned);
1645 	PRINT_ATTRf(exclude_user, p_unsigned);
1646 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1647 	PRINT_ATTRf(exclude_hv, p_unsigned);
1648 	PRINT_ATTRf(exclude_idle, p_unsigned);
1649 	PRINT_ATTRf(mmap, p_unsigned);
1650 	PRINT_ATTRf(comm, p_unsigned);
1651 	PRINT_ATTRf(freq, p_unsigned);
1652 	PRINT_ATTRf(inherit_stat, p_unsigned);
1653 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1654 	PRINT_ATTRf(task, p_unsigned);
1655 	PRINT_ATTRf(watermark, p_unsigned);
1656 	PRINT_ATTRf(precise_ip, p_unsigned);
1657 	PRINT_ATTRf(mmap_data, p_unsigned);
1658 	PRINT_ATTRf(sample_id_all, p_unsigned);
1659 	PRINT_ATTRf(exclude_host, p_unsigned);
1660 	PRINT_ATTRf(exclude_guest, p_unsigned);
1661 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1662 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1663 	PRINT_ATTRf(mmap2, p_unsigned);
1664 	PRINT_ATTRf(comm_exec, p_unsigned);
1665 	PRINT_ATTRf(use_clockid, p_unsigned);
1666 	PRINT_ATTRf(context_switch, p_unsigned);
1667 	PRINT_ATTRf(write_backward, p_unsigned);
1668 	PRINT_ATTRf(namespaces, p_unsigned);
1669 	PRINT_ATTRf(ksymbol, p_unsigned);
1670 	PRINT_ATTRf(bpf_event, p_unsigned);
1671 
1672 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1673 	PRINT_ATTRf(bp_type, p_unsigned);
1674 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1675 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1676 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1677 	PRINT_ATTRf(sample_regs_user, p_hex);
1678 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1679 	PRINT_ATTRf(clockid, p_signed);
1680 	PRINT_ATTRf(sample_regs_intr, p_hex);
1681 	PRINT_ATTRf(aux_watermark, p_unsigned);
1682 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1683 
1684 	return ret;
1685 }
1686 
1687 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1688 				void *priv __maybe_unused)
1689 {
1690 	return fprintf(fp, "  %-32s %s\n", name, val);
1691 }
1692 
1693 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1694 				  int nr_cpus, int nr_threads,
1695 				  int thread_idx)
1696 {
1697 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1698 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1699 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1700 }
1701 
1702 static int update_fds(struct perf_evsel *evsel,
1703 		      int nr_cpus, int cpu_idx,
1704 		      int nr_threads, int thread_idx)
1705 {
1706 	struct perf_evsel *pos;
1707 
1708 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1709 		return -EINVAL;
1710 
1711 	evlist__for_each_entry(evsel->evlist, pos) {
1712 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1713 
1714 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1715 
1716 		/*
1717 		 * Since fds for next evsel has not been created,
1718 		 * there is no need to iterate whole event list.
1719 		 */
1720 		if (pos == evsel)
1721 			break;
1722 	}
1723 	return 0;
1724 }
1725 
1726 static bool ignore_missing_thread(struct perf_evsel *evsel,
1727 				  int nr_cpus, int cpu,
1728 				  struct thread_map *threads,
1729 				  int thread, int err)
1730 {
1731 	pid_t ignore_pid = thread_map__pid(threads, thread);
1732 
1733 	if (!evsel->ignore_missing_thread)
1734 		return false;
1735 
1736 	/* The system wide setup does not work with threads. */
1737 	if (evsel->system_wide)
1738 		return false;
1739 
1740 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1741 	if (err != -ESRCH)
1742 		return false;
1743 
1744 	/* If there's only one thread, let it fail. */
1745 	if (threads->nr == 1)
1746 		return false;
1747 
1748 	/*
1749 	 * We should remove fd for missing_thread first
1750 	 * because thread_map__remove() will decrease threads->nr.
1751 	 */
1752 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1753 		return false;
1754 
1755 	if (thread_map__remove(threads, thread))
1756 		return false;
1757 
1758 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1759 		   ignore_pid);
1760 	return true;
1761 }
1762 
1763 static void display_attr(struct perf_event_attr *attr)
1764 {
1765 	if (verbose >= 2) {
1766 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1767 		fprintf(stderr, "perf_event_attr:\n");
1768 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1769 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1770 	}
1771 }
1772 
1773 static int perf_event_open(struct perf_evsel *evsel,
1774 			   pid_t pid, int cpu, int group_fd,
1775 			   unsigned long flags)
1776 {
1777 	int precise_ip = evsel->attr.precise_ip;
1778 	int fd;
1779 
1780 	while (1) {
1781 		pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1782 			  pid, cpu, group_fd, flags);
1783 
1784 		fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags);
1785 		if (fd >= 0)
1786 			break;
1787 
1788 		/*
1789 		 * Do quick precise_ip fallback if:
1790 		 *  - there is precise_ip set in perf_event_attr
1791 		 *  - maximum precise is requested
1792 		 *  - sys_perf_event_open failed with ENOTSUP error,
1793 		 *    which is associated with wrong precise_ip
1794 		 */
1795 		if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP))
1796 			break;
1797 
1798 		/*
1799 		 * We tried all the precise_ip values, and it's
1800 		 * still failing, so leave it to standard fallback.
1801 		 */
1802 		if (!evsel->attr.precise_ip) {
1803 			evsel->attr.precise_ip = precise_ip;
1804 			break;
1805 		}
1806 
1807 		pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1808 		evsel->attr.precise_ip--;
1809 		pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip);
1810 		display_attr(&evsel->attr);
1811 	}
1812 
1813 	return fd;
1814 }
1815 
1816 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1817 		     struct thread_map *threads)
1818 {
1819 	int cpu, thread, nthreads;
1820 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1821 	int pid = -1, err;
1822 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1823 
1824 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1825 		return -EINVAL;
1826 
1827 	if (cpus == NULL) {
1828 		static struct cpu_map *empty_cpu_map;
1829 
1830 		if (empty_cpu_map == NULL) {
1831 			empty_cpu_map = cpu_map__dummy_new();
1832 			if (empty_cpu_map == NULL)
1833 				return -ENOMEM;
1834 		}
1835 
1836 		cpus = empty_cpu_map;
1837 	}
1838 
1839 	if (threads == NULL) {
1840 		static struct thread_map *empty_thread_map;
1841 
1842 		if (empty_thread_map == NULL) {
1843 			empty_thread_map = thread_map__new_by_tid(-1);
1844 			if (empty_thread_map == NULL)
1845 				return -ENOMEM;
1846 		}
1847 
1848 		threads = empty_thread_map;
1849 	}
1850 
1851 	if (evsel->system_wide)
1852 		nthreads = 1;
1853 	else
1854 		nthreads = threads->nr;
1855 
1856 	if (evsel->fd == NULL &&
1857 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1858 		return -ENOMEM;
1859 
1860 	if (evsel->cgrp) {
1861 		flags |= PERF_FLAG_PID_CGROUP;
1862 		pid = evsel->cgrp->fd;
1863 	}
1864 
1865 fallback_missing_features:
1866 	if (perf_missing_features.clockid_wrong)
1867 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1868 	if (perf_missing_features.clockid) {
1869 		evsel->attr.use_clockid = 0;
1870 		evsel->attr.clockid = 0;
1871 	}
1872 	if (perf_missing_features.cloexec)
1873 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1874 	if (perf_missing_features.mmap2)
1875 		evsel->attr.mmap2 = 0;
1876 	if (perf_missing_features.exclude_guest)
1877 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1878 	if (perf_missing_features.lbr_flags)
1879 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1880 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1881 	if (perf_missing_features.group_read && evsel->attr.inherit)
1882 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1883 	if (perf_missing_features.ksymbol)
1884 		evsel->attr.ksymbol = 0;
1885 	if (perf_missing_features.bpf_event)
1886 		evsel->attr.bpf_event = 0;
1887 retry_sample_id:
1888 	if (perf_missing_features.sample_id_all)
1889 		evsel->attr.sample_id_all = 0;
1890 
1891 	display_attr(&evsel->attr);
1892 
1893 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1894 
1895 		for (thread = 0; thread < nthreads; thread++) {
1896 			int fd, group_fd;
1897 
1898 			if (!evsel->cgrp && !evsel->system_wide)
1899 				pid = thread_map__pid(threads, thread);
1900 
1901 			group_fd = get_group_fd(evsel, cpu, thread);
1902 retry_open:
1903 			test_attr__ready();
1904 
1905 			fd = perf_event_open(evsel, pid, cpus->map[cpu],
1906 					     group_fd, flags);
1907 
1908 			FD(evsel, cpu, thread) = fd;
1909 
1910 			if (fd < 0) {
1911 				err = -errno;
1912 
1913 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1914 					/*
1915 					 * We just removed 1 thread, so take a step
1916 					 * back on thread index and lower the upper
1917 					 * nthreads limit.
1918 					 */
1919 					nthreads--;
1920 					thread--;
1921 
1922 					/* ... and pretend like nothing have happened. */
1923 					err = 0;
1924 					continue;
1925 				}
1926 
1927 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1928 					  err);
1929 				goto try_fallback;
1930 			}
1931 
1932 			pr_debug2(" = %d\n", fd);
1933 
1934 			if (evsel->bpf_fd >= 0) {
1935 				int evt_fd = fd;
1936 				int bpf_fd = evsel->bpf_fd;
1937 
1938 				err = ioctl(evt_fd,
1939 					    PERF_EVENT_IOC_SET_BPF,
1940 					    bpf_fd);
1941 				if (err && errno != EEXIST) {
1942 					pr_err("failed to attach bpf fd %d: %s\n",
1943 					       bpf_fd, strerror(errno));
1944 					err = -EINVAL;
1945 					goto out_close;
1946 				}
1947 			}
1948 
1949 			set_rlimit = NO_CHANGE;
1950 
1951 			/*
1952 			 * If we succeeded but had to kill clockid, fail and
1953 			 * have perf_evsel__open_strerror() print us a nice
1954 			 * error.
1955 			 */
1956 			if (perf_missing_features.clockid ||
1957 			    perf_missing_features.clockid_wrong) {
1958 				err = -EINVAL;
1959 				goto out_close;
1960 			}
1961 		}
1962 	}
1963 
1964 	return 0;
1965 
1966 try_fallback:
1967 	/*
1968 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1969 	 * of them try to increase the limits.
1970 	 */
1971 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1972 		struct rlimit l;
1973 		int old_errno = errno;
1974 
1975 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1976 			if (set_rlimit == NO_CHANGE)
1977 				l.rlim_cur = l.rlim_max;
1978 			else {
1979 				l.rlim_cur = l.rlim_max + 1000;
1980 				l.rlim_max = l.rlim_cur;
1981 			}
1982 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1983 				set_rlimit++;
1984 				errno = old_errno;
1985 				goto retry_open;
1986 			}
1987 		}
1988 		errno = old_errno;
1989 	}
1990 
1991 	if (err != -EINVAL || cpu > 0 || thread > 0)
1992 		goto out_close;
1993 
1994 	/*
1995 	 * Must probe features in the order they were added to the
1996 	 * perf_event_attr interface.
1997 	 */
1998 	if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
1999 		perf_missing_features.bpf_event = true;
2000 		pr_debug2("switching off bpf_event\n");
2001 		goto fallback_missing_features;
2002 	} else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
2003 		perf_missing_features.ksymbol = true;
2004 		pr_debug2("switching off ksymbol\n");
2005 		goto fallback_missing_features;
2006 	} else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
2007 		perf_missing_features.write_backward = true;
2008 		pr_debug2("switching off write_backward\n");
2009 		goto out_close;
2010 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
2011 		perf_missing_features.clockid_wrong = true;
2012 		pr_debug2("switching off clockid\n");
2013 		goto fallback_missing_features;
2014 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
2015 		perf_missing_features.clockid = true;
2016 		pr_debug2("switching off use_clockid\n");
2017 		goto fallback_missing_features;
2018 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
2019 		perf_missing_features.cloexec = true;
2020 		pr_debug2("switching off cloexec flag\n");
2021 		goto fallback_missing_features;
2022 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
2023 		perf_missing_features.mmap2 = true;
2024 		pr_debug2("switching off mmap2\n");
2025 		goto fallback_missing_features;
2026 	} else if (!perf_missing_features.exclude_guest &&
2027 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
2028 		perf_missing_features.exclude_guest = true;
2029 		pr_debug2("switching off exclude_guest, exclude_host\n");
2030 		goto fallback_missing_features;
2031 	} else if (!perf_missing_features.sample_id_all) {
2032 		perf_missing_features.sample_id_all = true;
2033 		pr_debug2("switching off sample_id_all\n");
2034 		goto retry_sample_id;
2035 	} else if (!perf_missing_features.lbr_flags &&
2036 			(evsel->attr.branch_sample_type &
2037 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
2038 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
2039 		perf_missing_features.lbr_flags = true;
2040 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
2041 		goto fallback_missing_features;
2042 	} else if (!perf_missing_features.group_read &&
2043 		    evsel->attr.inherit &&
2044 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
2045 		   perf_evsel__is_group_leader(evsel)) {
2046 		perf_missing_features.group_read = true;
2047 		pr_debug2("switching off group read\n");
2048 		goto fallback_missing_features;
2049 	}
2050 out_close:
2051 	if (err)
2052 		threads->err_thread = thread;
2053 
2054 	do {
2055 		while (--thread >= 0) {
2056 			close(FD(evsel, cpu, thread));
2057 			FD(evsel, cpu, thread) = -1;
2058 		}
2059 		thread = nthreads;
2060 	} while (--cpu >= 0);
2061 	return err;
2062 }
2063 
2064 void perf_evsel__close(struct perf_evsel *evsel)
2065 {
2066 	if (evsel->fd == NULL)
2067 		return;
2068 
2069 	perf_evsel__close_fd(evsel);
2070 	perf_evsel__free_fd(evsel);
2071 }
2072 
2073 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2074 			     struct cpu_map *cpus)
2075 {
2076 	return perf_evsel__open(evsel, cpus, NULL);
2077 }
2078 
2079 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2080 				struct thread_map *threads)
2081 {
2082 	return perf_evsel__open(evsel, NULL, threads);
2083 }
2084 
2085 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2086 				       const union perf_event *event,
2087 				       struct perf_sample *sample)
2088 {
2089 	u64 type = evsel->attr.sample_type;
2090 	const u64 *array = event->sample.array;
2091 	bool swapped = evsel->needs_swap;
2092 	union u64_swap u;
2093 
2094 	array += ((event->header.size -
2095 		   sizeof(event->header)) / sizeof(u64)) - 1;
2096 
2097 	if (type & PERF_SAMPLE_IDENTIFIER) {
2098 		sample->id = *array;
2099 		array--;
2100 	}
2101 
2102 	if (type & PERF_SAMPLE_CPU) {
2103 		u.val64 = *array;
2104 		if (swapped) {
2105 			/* undo swap of u64, then swap on individual u32s */
2106 			u.val64 = bswap_64(u.val64);
2107 			u.val32[0] = bswap_32(u.val32[0]);
2108 		}
2109 
2110 		sample->cpu = u.val32[0];
2111 		array--;
2112 	}
2113 
2114 	if (type & PERF_SAMPLE_STREAM_ID) {
2115 		sample->stream_id = *array;
2116 		array--;
2117 	}
2118 
2119 	if (type & PERF_SAMPLE_ID) {
2120 		sample->id = *array;
2121 		array--;
2122 	}
2123 
2124 	if (type & PERF_SAMPLE_TIME) {
2125 		sample->time = *array;
2126 		array--;
2127 	}
2128 
2129 	if (type & PERF_SAMPLE_TID) {
2130 		u.val64 = *array;
2131 		if (swapped) {
2132 			/* undo swap of u64, then swap on individual u32s */
2133 			u.val64 = bswap_64(u.val64);
2134 			u.val32[0] = bswap_32(u.val32[0]);
2135 			u.val32[1] = bswap_32(u.val32[1]);
2136 		}
2137 
2138 		sample->pid = u.val32[0];
2139 		sample->tid = u.val32[1];
2140 		array--;
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2147 			    u64 size)
2148 {
2149 	return size > max_size || offset + size > endp;
2150 }
2151 
2152 #define OVERFLOW_CHECK(offset, size, max_size)				\
2153 	do {								\
2154 		if (overflow(endp, (max_size), (offset), (size)))	\
2155 			return -EFAULT;					\
2156 	} while (0)
2157 
2158 #define OVERFLOW_CHECK_u64(offset) \
2159 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2160 
2161 static int
2162 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2163 {
2164 	/*
2165 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2166 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2167 	 * check the format does not go past the end of the event.
2168 	 */
2169 	if (sample_size + sizeof(event->header) > event->header.size)
2170 		return -EFAULT;
2171 
2172 	return 0;
2173 }
2174 
2175 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2176 			     struct perf_sample *data)
2177 {
2178 	u64 type = evsel->attr.sample_type;
2179 	bool swapped = evsel->needs_swap;
2180 	const u64 *array;
2181 	u16 max_size = event->header.size;
2182 	const void *endp = (void *)event + max_size;
2183 	u64 sz;
2184 
2185 	/*
2186 	 * used for cross-endian analysis. See git commit 65014ab3
2187 	 * for why this goofiness is needed.
2188 	 */
2189 	union u64_swap u;
2190 
2191 	memset(data, 0, sizeof(*data));
2192 	data->cpu = data->pid = data->tid = -1;
2193 	data->stream_id = data->id = data->time = -1ULL;
2194 	data->period = evsel->attr.sample_period;
2195 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2196 	data->misc    = event->header.misc;
2197 	data->id = -1ULL;
2198 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2199 
2200 	if (event->header.type != PERF_RECORD_SAMPLE) {
2201 		if (!evsel->attr.sample_id_all)
2202 			return 0;
2203 		return perf_evsel__parse_id_sample(evsel, event, data);
2204 	}
2205 
2206 	array = event->sample.array;
2207 
2208 	if (perf_event__check_size(event, evsel->sample_size))
2209 		return -EFAULT;
2210 
2211 	if (type & PERF_SAMPLE_IDENTIFIER) {
2212 		data->id = *array;
2213 		array++;
2214 	}
2215 
2216 	if (type & PERF_SAMPLE_IP) {
2217 		data->ip = *array;
2218 		array++;
2219 	}
2220 
2221 	if (type & PERF_SAMPLE_TID) {
2222 		u.val64 = *array;
2223 		if (swapped) {
2224 			/* undo swap of u64, then swap on individual u32s */
2225 			u.val64 = bswap_64(u.val64);
2226 			u.val32[0] = bswap_32(u.val32[0]);
2227 			u.val32[1] = bswap_32(u.val32[1]);
2228 		}
2229 
2230 		data->pid = u.val32[0];
2231 		data->tid = u.val32[1];
2232 		array++;
2233 	}
2234 
2235 	if (type & PERF_SAMPLE_TIME) {
2236 		data->time = *array;
2237 		array++;
2238 	}
2239 
2240 	if (type & PERF_SAMPLE_ADDR) {
2241 		data->addr = *array;
2242 		array++;
2243 	}
2244 
2245 	if (type & PERF_SAMPLE_ID) {
2246 		data->id = *array;
2247 		array++;
2248 	}
2249 
2250 	if (type & PERF_SAMPLE_STREAM_ID) {
2251 		data->stream_id = *array;
2252 		array++;
2253 	}
2254 
2255 	if (type & PERF_SAMPLE_CPU) {
2256 
2257 		u.val64 = *array;
2258 		if (swapped) {
2259 			/* undo swap of u64, then swap on individual u32s */
2260 			u.val64 = bswap_64(u.val64);
2261 			u.val32[0] = bswap_32(u.val32[0]);
2262 		}
2263 
2264 		data->cpu = u.val32[0];
2265 		array++;
2266 	}
2267 
2268 	if (type & PERF_SAMPLE_PERIOD) {
2269 		data->period = *array;
2270 		array++;
2271 	}
2272 
2273 	if (type & PERF_SAMPLE_READ) {
2274 		u64 read_format = evsel->attr.read_format;
2275 
2276 		OVERFLOW_CHECK_u64(array);
2277 		if (read_format & PERF_FORMAT_GROUP)
2278 			data->read.group.nr = *array;
2279 		else
2280 			data->read.one.value = *array;
2281 
2282 		array++;
2283 
2284 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2285 			OVERFLOW_CHECK_u64(array);
2286 			data->read.time_enabled = *array;
2287 			array++;
2288 		}
2289 
2290 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2291 			OVERFLOW_CHECK_u64(array);
2292 			data->read.time_running = *array;
2293 			array++;
2294 		}
2295 
2296 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2297 		if (read_format & PERF_FORMAT_GROUP) {
2298 			const u64 max_group_nr = UINT64_MAX /
2299 					sizeof(struct sample_read_value);
2300 
2301 			if (data->read.group.nr > max_group_nr)
2302 				return -EFAULT;
2303 			sz = data->read.group.nr *
2304 			     sizeof(struct sample_read_value);
2305 			OVERFLOW_CHECK(array, sz, max_size);
2306 			data->read.group.values =
2307 					(struct sample_read_value *)array;
2308 			array = (void *)array + sz;
2309 		} else {
2310 			OVERFLOW_CHECK_u64(array);
2311 			data->read.one.id = *array;
2312 			array++;
2313 		}
2314 	}
2315 
2316 	if (evsel__has_callchain(evsel)) {
2317 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2318 
2319 		OVERFLOW_CHECK_u64(array);
2320 		data->callchain = (struct ip_callchain *)array++;
2321 		if (data->callchain->nr > max_callchain_nr)
2322 			return -EFAULT;
2323 		sz = data->callchain->nr * sizeof(u64);
2324 		OVERFLOW_CHECK(array, sz, max_size);
2325 		array = (void *)array + sz;
2326 	}
2327 
2328 	if (type & PERF_SAMPLE_RAW) {
2329 		OVERFLOW_CHECK_u64(array);
2330 		u.val64 = *array;
2331 
2332 		/*
2333 		 * Undo swap of u64, then swap on individual u32s,
2334 		 * get the size of the raw area and undo all of the
2335 		 * swap. The pevent interface handles endianity by
2336 		 * itself.
2337 		 */
2338 		if (swapped) {
2339 			u.val64 = bswap_64(u.val64);
2340 			u.val32[0] = bswap_32(u.val32[0]);
2341 			u.val32[1] = bswap_32(u.val32[1]);
2342 		}
2343 		data->raw_size = u.val32[0];
2344 
2345 		/*
2346 		 * The raw data is aligned on 64bits including the
2347 		 * u32 size, so it's safe to use mem_bswap_64.
2348 		 */
2349 		if (swapped)
2350 			mem_bswap_64((void *) array, data->raw_size);
2351 
2352 		array = (void *)array + sizeof(u32);
2353 
2354 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2355 		data->raw_data = (void *)array;
2356 		array = (void *)array + data->raw_size;
2357 	}
2358 
2359 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2360 		const u64 max_branch_nr = UINT64_MAX /
2361 					  sizeof(struct branch_entry);
2362 
2363 		OVERFLOW_CHECK_u64(array);
2364 		data->branch_stack = (struct branch_stack *)array++;
2365 
2366 		if (data->branch_stack->nr > max_branch_nr)
2367 			return -EFAULT;
2368 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2369 		OVERFLOW_CHECK(array, sz, max_size);
2370 		array = (void *)array + sz;
2371 	}
2372 
2373 	if (type & PERF_SAMPLE_REGS_USER) {
2374 		OVERFLOW_CHECK_u64(array);
2375 		data->user_regs.abi = *array;
2376 		array++;
2377 
2378 		if (data->user_regs.abi) {
2379 			u64 mask = evsel->attr.sample_regs_user;
2380 
2381 			sz = hweight64(mask) * sizeof(u64);
2382 			OVERFLOW_CHECK(array, sz, max_size);
2383 			data->user_regs.mask = mask;
2384 			data->user_regs.regs = (u64 *)array;
2385 			array = (void *)array + sz;
2386 		}
2387 	}
2388 
2389 	if (type & PERF_SAMPLE_STACK_USER) {
2390 		OVERFLOW_CHECK_u64(array);
2391 		sz = *array++;
2392 
2393 		data->user_stack.offset = ((char *)(array - 1)
2394 					  - (char *) event);
2395 
2396 		if (!sz) {
2397 			data->user_stack.size = 0;
2398 		} else {
2399 			OVERFLOW_CHECK(array, sz, max_size);
2400 			data->user_stack.data = (char *)array;
2401 			array = (void *)array + sz;
2402 			OVERFLOW_CHECK_u64(array);
2403 			data->user_stack.size = *array++;
2404 			if (WARN_ONCE(data->user_stack.size > sz,
2405 				      "user stack dump failure\n"))
2406 				return -EFAULT;
2407 		}
2408 	}
2409 
2410 	if (type & PERF_SAMPLE_WEIGHT) {
2411 		OVERFLOW_CHECK_u64(array);
2412 		data->weight = *array;
2413 		array++;
2414 	}
2415 
2416 	if (type & PERF_SAMPLE_DATA_SRC) {
2417 		OVERFLOW_CHECK_u64(array);
2418 		data->data_src = *array;
2419 		array++;
2420 	}
2421 
2422 	if (type & PERF_SAMPLE_TRANSACTION) {
2423 		OVERFLOW_CHECK_u64(array);
2424 		data->transaction = *array;
2425 		array++;
2426 	}
2427 
2428 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2429 	if (type & PERF_SAMPLE_REGS_INTR) {
2430 		OVERFLOW_CHECK_u64(array);
2431 		data->intr_regs.abi = *array;
2432 		array++;
2433 
2434 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2435 			u64 mask = evsel->attr.sample_regs_intr;
2436 
2437 			sz = hweight64(mask) * sizeof(u64);
2438 			OVERFLOW_CHECK(array, sz, max_size);
2439 			data->intr_regs.mask = mask;
2440 			data->intr_regs.regs = (u64 *)array;
2441 			array = (void *)array + sz;
2442 		}
2443 	}
2444 
2445 	data->phys_addr = 0;
2446 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2447 		data->phys_addr = *array;
2448 		array++;
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2455 				       union perf_event *event,
2456 				       u64 *timestamp)
2457 {
2458 	u64 type = evsel->attr.sample_type;
2459 	const u64 *array;
2460 
2461 	if (!(type & PERF_SAMPLE_TIME))
2462 		return -1;
2463 
2464 	if (event->header.type != PERF_RECORD_SAMPLE) {
2465 		struct perf_sample data = {
2466 			.time = -1ULL,
2467 		};
2468 
2469 		if (!evsel->attr.sample_id_all)
2470 			return -1;
2471 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2472 			return -1;
2473 
2474 		*timestamp = data.time;
2475 		return 0;
2476 	}
2477 
2478 	array = event->sample.array;
2479 
2480 	if (perf_event__check_size(event, evsel->sample_size))
2481 		return -EFAULT;
2482 
2483 	if (type & PERF_SAMPLE_IDENTIFIER)
2484 		array++;
2485 
2486 	if (type & PERF_SAMPLE_IP)
2487 		array++;
2488 
2489 	if (type & PERF_SAMPLE_TID)
2490 		array++;
2491 
2492 	if (type & PERF_SAMPLE_TIME)
2493 		*timestamp = *array;
2494 
2495 	return 0;
2496 }
2497 
2498 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2499 				     u64 read_format)
2500 {
2501 	size_t sz, result = sizeof(struct sample_event);
2502 
2503 	if (type & PERF_SAMPLE_IDENTIFIER)
2504 		result += sizeof(u64);
2505 
2506 	if (type & PERF_SAMPLE_IP)
2507 		result += sizeof(u64);
2508 
2509 	if (type & PERF_SAMPLE_TID)
2510 		result += sizeof(u64);
2511 
2512 	if (type & PERF_SAMPLE_TIME)
2513 		result += sizeof(u64);
2514 
2515 	if (type & PERF_SAMPLE_ADDR)
2516 		result += sizeof(u64);
2517 
2518 	if (type & PERF_SAMPLE_ID)
2519 		result += sizeof(u64);
2520 
2521 	if (type & PERF_SAMPLE_STREAM_ID)
2522 		result += sizeof(u64);
2523 
2524 	if (type & PERF_SAMPLE_CPU)
2525 		result += sizeof(u64);
2526 
2527 	if (type & PERF_SAMPLE_PERIOD)
2528 		result += sizeof(u64);
2529 
2530 	if (type & PERF_SAMPLE_READ) {
2531 		result += sizeof(u64);
2532 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2533 			result += sizeof(u64);
2534 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2535 			result += sizeof(u64);
2536 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2537 		if (read_format & PERF_FORMAT_GROUP) {
2538 			sz = sample->read.group.nr *
2539 			     sizeof(struct sample_read_value);
2540 			result += sz;
2541 		} else {
2542 			result += sizeof(u64);
2543 		}
2544 	}
2545 
2546 	if (type & PERF_SAMPLE_CALLCHAIN) {
2547 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2548 		result += sz;
2549 	}
2550 
2551 	if (type & PERF_SAMPLE_RAW) {
2552 		result += sizeof(u32);
2553 		result += sample->raw_size;
2554 	}
2555 
2556 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2557 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2558 		sz += sizeof(u64);
2559 		result += sz;
2560 	}
2561 
2562 	if (type & PERF_SAMPLE_REGS_USER) {
2563 		if (sample->user_regs.abi) {
2564 			result += sizeof(u64);
2565 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2566 			result += sz;
2567 		} else {
2568 			result += sizeof(u64);
2569 		}
2570 	}
2571 
2572 	if (type & PERF_SAMPLE_STACK_USER) {
2573 		sz = sample->user_stack.size;
2574 		result += sizeof(u64);
2575 		if (sz) {
2576 			result += sz;
2577 			result += sizeof(u64);
2578 		}
2579 	}
2580 
2581 	if (type & PERF_SAMPLE_WEIGHT)
2582 		result += sizeof(u64);
2583 
2584 	if (type & PERF_SAMPLE_DATA_SRC)
2585 		result += sizeof(u64);
2586 
2587 	if (type & PERF_SAMPLE_TRANSACTION)
2588 		result += sizeof(u64);
2589 
2590 	if (type & PERF_SAMPLE_REGS_INTR) {
2591 		if (sample->intr_regs.abi) {
2592 			result += sizeof(u64);
2593 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2594 			result += sz;
2595 		} else {
2596 			result += sizeof(u64);
2597 		}
2598 	}
2599 
2600 	if (type & PERF_SAMPLE_PHYS_ADDR)
2601 		result += sizeof(u64);
2602 
2603 	return result;
2604 }
2605 
2606 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2607 				  u64 read_format,
2608 				  const struct perf_sample *sample)
2609 {
2610 	u64 *array;
2611 	size_t sz;
2612 	/*
2613 	 * used for cross-endian analysis. See git commit 65014ab3
2614 	 * for why this goofiness is needed.
2615 	 */
2616 	union u64_swap u;
2617 
2618 	array = event->sample.array;
2619 
2620 	if (type & PERF_SAMPLE_IDENTIFIER) {
2621 		*array = sample->id;
2622 		array++;
2623 	}
2624 
2625 	if (type & PERF_SAMPLE_IP) {
2626 		*array = sample->ip;
2627 		array++;
2628 	}
2629 
2630 	if (type & PERF_SAMPLE_TID) {
2631 		u.val32[0] = sample->pid;
2632 		u.val32[1] = sample->tid;
2633 		*array = u.val64;
2634 		array++;
2635 	}
2636 
2637 	if (type & PERF_SAMPLE_TIME) {
2638 		*array = sample->time;
2639 		array++;
2640 	}
2641 
2642 	if (type & PERF_SAMPLE_ADDR) {
2643 		*array = sample->addr;
2644 		array++;
2645 	}
2646 
2647 	if (type & PERF_SAMPLE_ID) {
2648 		*array = sample->id;
2649 		array++;
2650 	}
2651 
2652 	if (type & PERF_SAMPLE_STREAM_ID) {
2653 		*array = sample->stream_id;
2654 		array++;
2655 	}
2656 
2657 	if (type & PERF_SAMPLE_CPU) {
2658 		u.val32[0] = sample->cpu;
2659 		u.val32[1] = 0;
2660 		*array = u.val64;
2661 		array++;
2662 	}
2663 
2664 	if (type & PERF_SAMPLE_PERIOD) {
2665 		*array = sample->period;
2666 		array++;
2667 	}
2668 
2669 	if (type & PERF_SAMPLE_READ) {
2670 		if (read_format & PERF_FORMAT_GROUP)
2671 			*array = sample->read.group.nr;
2672 		else
2673 			*array = sample->read.one.value;
2674 		array++;
2675 
2676 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2677 			*array = sample->read.time_enabled;
2678 			array++;
2679 		}
2680 
2681 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2682 			*array = sample->read.time_running;
2683 			array++;
2684 		}
2685 
2686 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2687 		if (read_format & PERF_FORMAT_GROUP) {
2688 			sz = sample->read.group.nr *
2689 			     sizeof(struct sample_read_value);
2690 			memcpy(array, sample->read.group.values, sz);
2691 			array = (void *)array + sz;
2692 		} else {
2693 			*array = sample->read.one.id;
2694 			array++;
2695 		}
2696 	}
2697 
2698 	if (type & PERF_SAMPLE_CALLCHAIN) {
2699 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2700 		memcpy(array, sample->callchain, sz);
2701 		array = (void *)array + sz;
2702 	}
2703 
2704 	if (type & PERF_SAMPLE_RAW) {
2705 		u.val32[0] = sample->raw_size;
2706 		*array = u.val64;
2707 		array = (void *)array + sizeof(u32);
2708 
2709 		memcpy(array, sample->raw_data, sample->raw_size);
2710 		array = (void *)array + sample->raw_size;
2711 	}
2712 
2713 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2714 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2715 		sz += sizeof(u64);
2716 		memcpy(array, sample->branch_stack, sz);
2717 		array = (void *)array + sz;
2718 	}
2719 
2720 	if (type & PERF_SAMPLE_REGS_USER) {
2721 		if (sample->user_regs.abi) {
2722 			*array++ = sample->user_regs.abi;
2723 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2724 			memcpy(array, sample->user_regs.regs, sz);
2725 			array = (void *)array + sz;
2726 		} else {
2727 			*array++ = 0;
2728 		}
2729 	}
2730 
2731 	if (type & PERF_SAMPLE_STACK_USER) {
2732 		sz = sample->user_stack.size;
2733 		*array++ = sz;
2734 		if (sz) {
2735 			memcpy(array, sample->user_stack.data, sz);
2736 			array = (void *)array + sz;
2737 			*array++ = sz;
2738 		}
2739 	}
2740 
2741 	if (type & PERF_SAMPLE_WEIGHT) {
2742 		*array = sample->weight;
2743 		array++;
2744 	}
2745 
2746 	if (type & PERF_SAMPLE_DATA_SRC) {
2747 		*array = sample->data_src;
2748 		array++;
2749 	}
2750 
2751 	if (type & PERF_SAMPLE_TRANSACTION) {
2752 		*array = sample->transaction;
2753 		array++;
2754 	}
2755 
2756 	if (type & PERF_SAMPLE_REGS_INTR) {
2757 		if (sample->intr_regs.abi) {
2758 			*array++ = sample->intr_regs.abi;
2759 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2760 			memcpy(array, sample->intr_regs.regs, sz);
2761 			array = (void *)array + sz;
2762 		} else {
2763 			*array++ = 0;
2764 		}
2765 	}
2766 
2767 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2768 		*array = sample->phys_addr;
2769 		array++;
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2776 {
2777 	return tep_find_field(evsel->tp_format, name);
2778 }
2779 
2780 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2781 			 const char *name)
2782 {
2783 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2784 	int offset;
2785 
2786 	if (!field)
2787 		return NULL;
2788 
2789 	offset = field->offset;
2790 
2791 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2792 		offset = *(int *)(sample->raw_data + field->offset);
2793 		offset &= 0xffff;
2794 	}
2795 
2796 	return sample->raw_data + offset;
2797 }
2798 
2799 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2800 			 bool needs_swap)
2801 {
2802 	u64 value;
2803 	void *ptr = sample->raw_data + field->offset;
2804 
2805 	switch (field->size) {
2806 	case 1:
2807 		return *(u8 *)ptr;
2808 	case 2:
2809 		value = *(u16 *)ptr;
2810 		break;
2811 	case 4:
2812 		value = *(u32 *)ptr;
2813 		break;
2814 	case 8:
2815 		memcpy(&value, ptr, sizeof(u64));
2816 		break;
2817 	default:
2818 		return 0;
2819 	}
2820 
2821 	if (!needs_swap)
2822 		return value;
2823 
2824 	switch (field->size) {
2825 	case 2:
2826 		return bswap_16(value);
2827 	case 4:
2828 		return bswap_32(value);
2829 	case 8:
2830 		return bswap_64(value);
2831 	default:
2832 		return 0;
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2839 		       const char *name)
2840 {
2841 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2842 
2843 	if (!field)
2844 		return 0;
2845 
2846 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2847 }
2848 
2849 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2850 			  char *msg, size_t msgsize)
2851 {
2852 	int paranoid;
2853 
2854 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2855 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2856 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2857 		/*
2858 		 * If it's cycles then fall back to hrtimer based
2859 		 * cpu-clock-tick sw counter, which is always available even if
2860 		 * no PMU support.
2861 		 *
2862 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2863 		 * b0a873e).
2864 		 */
2865 		scnprintf(msg, msgsize, "%s",
2866 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2867 
2868 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2869 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2870 
2871 		zfree(&evsel->name);
2872 		return true;
2873 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2874 		   (paranoid = perf_event_paranoid()) > 1) {
2875 		const char *name = perf_evsel__name(evsel);
2876 		char *new_name;
2877 		const char *sep = ":";
2878 
2879 		/* Is there already the separator in the name. */
2880 		if (strchr(name, '/') ||
2881 		    strchr(name, ':'))
2882 			sep = "";
2883 
2884 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2885 			return false;
2886 
2887 		if (evsel->name)
2888 			free(evsel->name);
2889 		evsel->name = new_name;
2890 		scnprintf(msg, msgsize,
2891 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2892 		evsel->attr.exclude_kernel = 1;
2893 
2894 		return true;
2895 	}
2896 
2897 	return false;
2898 }
2899 
2900 static bool find_process(const char *name)
2901 {
2902 	size_t len = strlen(name);
2903 	DIR *dir;
2904 	struct dirent *d;
2905 	int ret = -1;
2906 
2907 	dir = opendir(procfs__mountpoint());
2908 	if (!dir)
2909 		return false;
2910 
2911 	/* Walk through the directory. */
2912 	while (ret && (d = readdir(dir)) != NULL) {
2913 		char path[PATH_MAX];
2914 		char *data;
2915 		size_t size;
2916 
2917 		if ((d->d_type != DT_DIR) ||
2918 		     !strcmp(".", d->d_name) ||
2919 		     !strcmp("..", d->d_name))
2920 			continue;
2921 
2922 		scnprintf(path, sizeof(path), "%s/%s/comm",
2923 			  procfs__mountpoint(), d->d_name);
2924 
2925 		if (filename__read_str(path, &data, &size))
2926 			continue;
2927 
2928 		ret = strncmp(name, data, len);
2929 		free(data);
2930 	}
2931 
2932 	closedir(dir);
2933 	return ret ? false : true;
2934 }
2935 
2936 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2937 			      int err, char *msg, size_t size)
2938 {
2939 	char sbuf[STRERR_BUFSIZE];
2940 	int printed = 0;
2941 
2942 	switch (err) {
2943 	case EPERM:
2944 	case EACCES:
2945 		if (err == EPERM)
2946 			printed = scnprintf(msg, size,
2947 				"No permission to enable %s event.\n\n",
2948 				perf_evsel__name(evsel));
2949 
2950 		return scnprintf(msg + printed, size - printed,
2951 		 "You may not have permission to collect %sstats.\n\n"
2952 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2953 		 "which controls use of the performance events system by\n"
2954 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2955 		 "The current value is %d:\n\n"
2956 		 "  -1: Allow use of (almost) all events by all users\n"
2957 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2958 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2959 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2960 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2961 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2962 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2963 		 "	kernel.perf_event_paranoid = -1\n" ,
2964 				 target->system_wide ? "system-wide " : "",
2965 				 perf_event_paranoid());
2966 	case ENOENT:
2967 		return scnprintf(msg, size, "The %s event is not supported.",
2968 				 perf_evsel__name(evsel));
2969 	case EMFILE:
2970 		return scnprintf(msg, size, "%s",
2971 			 "Too many events are opened.\n"
2972 			 "Probably the maximum number of open file descriptors has been reached.\n"
2973 			 "Hint: Try again after reducing the number of events.\n"
2974 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2975 	case ENOMEM:
2976 		if (evsel__has_callchain(evsel) &&
2977 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2978 			return scnprintf(msg, size,
2979 					 "Not enough memory to setup event with callchain.\n"
2980 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2981 					 "Hint: Current value: %d", sysctl__max_stack());
2982 		break;
2983 	case ENODEV:
2984 		if (target->cpu_list)
2985 			return scnprintf(msg, size, "%s",
2986 	 "No such device - did you specify an out-of-range profile CPU?");
2987 		break;
2988 	case EOPNOTSUPP:
2989 		if (evsel->attr.sample_period != 0)
2990 			return scnprintf(msg, size,
2991 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2992 					 perf_evsel__name(evsel));
2993 		if (evsel->attr.precise_ip)
2994 			return scnprintf(msg, size, "%s",
2995 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2996 #if defined(__i386__) || defined(__x86_64__)
2997 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2998 			return scnprintf(msg, size, "%s",
2999 	"No hardware sampling interrupt available.\n");
3000 #endif
3001 		break;
3002 	case EBUSY:
3003 		if (find_process("oprofiled"))
3004 			return scnprintf(msg, size,
3005 	"The PMU counters are busy/taken by another profiler.\n"
3006 	"We found oprofile daemon running, please stop it and try again.");
3007 		break;
3008 	case EINVAL:
3009 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
3010 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
3011 		if (perf_missing_features.clockid)
3012 			return scnprintf(msg, size, "clockid feature not supported.");
3013 		if (perf_missing_features.clockid_wrong)
3014 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
3015 		break;
3016 	default:
3017 		break;
3018 	}
3019 
3020 	return scnprintf(msg, size,
3021 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
3022 	"/bin/dmesg | grep -i perf may provide additional information.\n",
3023 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
3024 			 perf_evsel__name(evsel));
3025 }
3026 
3027 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
3028 {
3029 	if (evsel && evsel->evlist)
3030 		return evsel->evlist->env;
3031 	return NULL;
3032 }
3033 
3034 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3035 {
3036 	int cpu, thread;
3037 
3038 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
3039 		for (thread = 0; thread < xyarray__max_y(evsel->fd);
3040 		     thread++) {
3041 			int fd = FD(evsel, cpu, thread);
3042 
3043 			if (perf_evlist__id_add_fd(evlist, evsel,
3044 						   cpu, thread, fd) < 0)
3045 				return -1;
3046 		}
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3053 {
3054 	struct cpu_map *cpus = evsel->cpus;
3055 	struct thread_map *threads = evsel->threads;
3056 
3057 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
3058 		return -ENOMEM;
3059 
3060 	return store_evsel_ids(evsel, evlist);
3061 }
3062