1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/tracing_path.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <linux/err.h> 17 #include <sys/resource.h> 18 #include "asm/bug.h" 19 #include "callchain.h" 20 #include "cgroup.h" 21 #include "evsel.h" 22 #include "evlist.h" 23 #include "util.h" 24 #include "cpumap.h" 25 #include "thread_map.h" 26 #include "target.h" 27 #include "perf_regs.h" 28 #include "debug.h" 29 #include "trace-event.h" 30 #include "stat.h" 31 #include "util/parse-branch-options.h" 32 33 static struct { 34 bool sample_id_all; 35 bool exclude_guest; 36 bool mmap2; 37 bool cloexec; 38 bool clockid; 39 bool clockid_wrong; 40 bool lbr_flags; 41 bool write_backward; 42 } perf_missing_features; 43 44 static clockid_t clockid; 45 46 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 47 { 48 return 0; 49 } 50 51 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 52 { 53 } 54 55 static struct { 56 size_t size; 57 int (*init)(struct perf_evsel *evsel); 58 void (*fini)(struct perf_evsel *evsel); 59 } perf_evsel__object = { 60 .size = sizeof(struct perf_evsel), 61 .init = perf_evsel__no_extra_init, 62 .fini = perf_evsel__no_extra_fini, 63 }; 64 65 int perf_evsel__object_config(size_t object_size, 66 int (*init)(struct perf_evsel *evsel), 67 void (*fini)(struct perf_evsel *evsel)) 68 { 69 70 if (object_size == 0) 71 goto set_methods; 72 73 if (perf_evsel__object.size > object_size) 74 return -EINVAL; 75 76 perf_evsel__object.size = object_size; 77 78 set_methods: 79 if (init != NULL) 80 perf_evsel__object.init = init; 81 82 if (fini != NULL) 83 perf_evsel__object.fini = fini; 84 85 return 0; 86 } 87 88 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 89 90 int __perf_evsel__sample_size(u64 sample_type) 91 { 92 u64 mask = sample_type & PERF_SAMPLE_MASK; 93 int size = 0; 94 int i; 95 96 for (i = 0; i < 64; i++) { 97 if (mask & (1ULL << i)) 98 size++; 99 } 100 101 size *= sizeof(u64); 102 103 return size; 104 } 105 106 /** 107 * __perf_evsel__calc_id_pos - calculate id_pos. 108 * @sample_type: sample type 109 * 110 * This function returns the position of the event id (PERF_SAMPLE_ID or 111 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 112 * sample_event. 113 */ 114 static int __perf_evsel__calc_id_pos(u64 sample_type) 115 { 116 int idx = 0; 117 118 if (sample_type & PERF_SAMPLE_IDENTIFIER) 119 return 0; 120 121 if (!(sample_type & PERF_SAMPLE_ID)) 122 return -1; 123 124 if (sample_type & PERF_SAMPLE_IP) 125 idx += 1; 126 127 if (sample_type & PERF_SAMPLE_TID) 128 idx += 1; 129 130 if (sample_type & PERF_SAMPLE_TIME) 131 idx += 1; 132 133 if (sample_type & PERF_SAMPLE_ADDR) 134 idx += 1; 135 136 return idx; 137 } 138 139 /** 140 * __perf_evsel__calc_is_pos - calculate is_pos. 141 * @sample_type: sample type 142 * 143 * This function returns the position (counting backwards) of the event id 144 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 145 * sample_id_all is used there is an id sample appended to non-sample events. 146 */ 147 static int __perf_evsel__calc_is_pos(u64 sample_type) 148 { 149 int idx = 1; 150 151 if (sample_type & PERF_SAMPLE_IDENTIFIER) 152 return 1; 153 154 if (!(sample_type & PERF_SAMPLE_ID)) 155 return -1; 156 157 if (sample_type & PERF_SAMPLE_CPU) 158 idx += 1; 159 160 if (sample_type & PERF_SAMPLE_STREAM_ID) 161 idx += 1; 162 163 return idx; 164 } 165 166 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 167 { 168 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 169 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 170 } 171 172 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 173 enum perf_event_sample_format bit) 174 { 175 if (!(evsel->attr.sample_type & bit)) { 176 evsel->attr.sample_type |= bit; 177 evsel->sample_size += sizeof(u64); 178 perf_evsel__calc_id_pos(evsel); 179 } 180 } 181 182 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 183 enum perf_event_sample_format bit) 184 { 185 if (evsel->attr.sample_type & bit) { 186 evsel->attr.sample_type &= ~bit; 187 evsel->sample_size -= sizeof(u64); 188 perf_evsel__calc_id_pos(evsel); 189 } 190 } 191 192 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 193 bool can_sample_identifier) 194 { 195 if (can_sample_identifier) { 196 perf_evsel__reset_sample_bit(evsel, ID); 197 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 198 } else { 199 perf_evsel__set_sample_bit(evsel, ID); 200 } 201 evsel->attr.read_format |= PERF_FORMAT_ID; 202 } 203 204 /** 205 * perf_evsel__is_function_event - Return whether given evsel is a function 206 * trace event 207 * 208 * @evsel - evsel selector to be tested 209 * 210 * Return %true if event is function trace event 211 */ 212 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 213 { 214 #define FUNCTION_EVENT "ftrace:function" 215 216 return evsel->name && 217 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 218 219 #undef FUNCTION_EVENT 220 } 221 222 void perf_evsel__init(struct perf_evsel *evsel, 223 struct perf_event_attr *attr, int idx) 224 { 225 evsel->idx = idx; 226 evsel->tracking = !idx; 227 evsel->attr = *attr; 228 evsel->leader = evsel; 229 evsel->unit = ""; 230 evsel->scale = 1.0; 231 evsel->evlist = NULL; 232 evsel->bpf_fd = -1; 233 INIT_LIST_HEAD(&evsel->node); 234 INIT_LIST_HEAD(&evsel->config_terms); 235 perf_evsel__object.init(evsel); 236 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 237 perf_evsel__calc_id_pos(evsel); 238 evsel->cmdline_group_boundary = false; 239 } 240 241 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 242 { 243 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 244 245 if (evsel != NULL) 246 perf_evsel__init(evsel, attr, idx); 247 248 if (perf_evsel__is_bpf_output(evsel)) { 249 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 250 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 251 evsel->attr.sample_period = 1; 252 } 253 254 return evsel; 255 } 256 257 struct perf_evsel *perf_evsel__new_cycles(void) 258 { 259 struct perf_event_attr attr = { 260 .type = PERF_TYPE_HARDWARE, 261 .config = PERF_COUNT_HW_CPU_CYCLES, 262 }; 263 struct perf_evsel *evsel; 264 265 event_attr_init(&attr); 266 267 perf_event_attr__set_max_precise_ip(&attr); 268 269 evsel = perf_evsel__new(&attr); 270 if (evsel == NULL) 271 goto out; 272 273 /* use asprintf() because free(evsel) assumes name is allocated */ 274 if (asprintf(&evsel->name, "cycles%.*s", 275 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0) 276 goto error_free; 277 out: 278 return evsel; 279 error_free: 280 perf_evsel__delete(evsel); 281 evsel = NULL; 282 goto out; 283 } 284 285 /* 286 * Returns pointer with encoded error via <linux/err.h> interface. 287 */ 288 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 289 { 290 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 291 int err = -ENOMEM; 292 293 if (evsel == NULL) { 294 goto out_err; 295 } else { 296 struct perf_event_attr attr = { 297 .type = PERF_TYPE_TRACEPOINT, 298 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 299 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 300 }; 301 302 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 303 goto out_free; 304 305 evsel->tp_format = trace_event__tp_format(sys, name); 306 if (IS_ERR(evsel->tp_format)) { 307 err = PTR_ERR(evsel->tp_format); 308 goto out_free; 309 } 310 311 event_attr_init(&attr); 312 attr.config = evsel->tp_format->id; 313 attr.sample_period = 1; 314 perf_evsel__init(evsel, &attr, idx); 315 } 316 317 return evsel; 318 319 out_free: 320 zfree(&evsel->name); 321 free(evsel); 322 out_err: 323 return ERR_PTR(err); 324 } 325 326 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 327 "cycles", 328 "instructions", 329 "cache-references", 330 "cache-misses", 331 "branches", 332 "branch-misses", 333 "bus-cycles", 334 "stalled-cycles-frontend", 335 "stalled-cycles-backend", 336 "ref-cycles", 337 }; 338 339 static const char *__perf_evsel__hw_name(u64 config) 340 { 341 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 342 return perf_evsel__hw_names[config]; 343 344 return "unknown-hardware"; 345 } 346 347 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 348 { 349 int colon = 0, r = 0; 350 struct perf_event_attr *attr = &evsel->attr; 351 bool exclude_guest_default = false; 352 353 #define MOD_PRINT(context, mod) do { \ 354 if (!attr->exclude_##context) { \ 355 if (!colon) colon = ++r; \ 356 r += scnprintf(bf + r, size - r, "%c", mod); \ 357 } } while(0) 358 359 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 360 MOD_PRINT(kernel, 'k'); 361 MOD_PRINT(user, 'u'); 362 MOD_PRINT(hv, 'h'); 363 exclude_guest_default = true; 364 } 365 366 if (attr->precise_ip) { 367 if (!colon) 368 colon = ++r; 369 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 370 exclude_guest_default = true; 371 } 372 373 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 374 MOD_PRINT(host, 'H'); 375 MOD_PRINT(guest, 'G'); 376 } 377 #undef MOD_PRINT 378 if (colon) 379 bf[colon - 1] = ':'; 380 return r; 381 } 382 383 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 384 { 385 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 386 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 387 } 388 389 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 390 "cpu-clock", 391 "task-clock", 392 "page-faults", 393 "context-switches", 394 "cpu-migrations", 395 "minor-faults", 396 "major-faults", 397 "alignment-faults", 398 "emulation-faults", 399 "dummy", 400 }; 401 402 static const char *__perf_evsel__sw_name(u64 config) 403 { 404 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 405 return perf_evsel__sw_names[config]; 406 return "unknown-software"; 407 } 408 409 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 410 { 411 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 412 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 413 } 414 415 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 416 { 417 int r; 418 419 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 420 421 if (type & HW_BREAKPOINT_R) 422 r += scnprintf(bf + r, size - r, "r"); 423 424 if (type & HW_BREAKPOINT_W) 425 r += scnprintf(bf + r, size - r, "w"); 426 427 if (type & HW_BREAKPOINT_X) 428 r += scnprintf(bf + r, size - r, "x"); 429 430 return r; 431 } 432 433 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 434 { 435 struct perf_event_attr *attr = &evsel->attr; 436 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 437 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 438 } 439 440 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 441 [PERF_EVSEL__MAX_ALIASES] = { 442 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 443 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 444 { "LLC", "L2", }, 445 { "dTLB", "d-tlb", "Data-TLB", }, 446 { "iTLB", "i-tlb", "Instruction-TLB", }, 447 { "branch", "branches", "bpu", "btb", "bpc", }, 448 { "node", }, 449 }; 450 451 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 452 [PERF_EVSEL__MAX_ALIASES] = { 453 { "load", "loads", "read", }, 454 { "store", "stores", "write", }, 455 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 456 }; 457 458 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 459 [PERF_EVSEL__MAX_ALIASES] = { 460 { "refs", "Reference", "ops", "access", }, 461 { "misses", "miss", }, 462 }; 463 464 #define C(x) PERF_COUNT_HW_CACHE_##x 465 #define CACHE_READ (1 << C(OP_READ)) 466 #define CACHE_WRITE (1 << C(OP_WRITE)) 467 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 468 #define COP(x) (1 << x) 469 470 /* 471 * cache operartion stat 472 * L1I : Read and prefetch only 473 * ITLB and BPU : Read-only 474 */ 475 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 476 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 477 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 478 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 479 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 480 [C(ITLB)] = (CACHE_READ), 481 [C(BPU)] = (CACHE_READ), 482 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 483 }; 484 485 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 486 { 487 if (perf_evsel__hw_cache_stat[type] & COP(op)) 488 return true; /* valid */ 489 else 490 return false; /* invalid */ 491 } 492 493 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 494 char *bf, size_t size) 495 { 496 if (result) { 497 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 498 perf_evsel__hw_cache_op[op][0], 499 perf_evsel__hw_cache_result[result][0]); 500 } 501 502 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 503 perf_evsel__hw_cache_op[op][1]); 504 } 505 506 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 507 { 508 u8 op, result, type = (config >> 0) & 0xff; 509 const char *err = "unknown-ext-hardware-cache-type"; 510 511 if (type >= PERF_COUNT_HW_CACHE_MAX) 512 goto out_err; 513 514 op = (config >> 8) & 0xff; 515 err = "unknown-ext-hardware-cache-op"; 516 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 517 goto out_err; 518 519 result = (config >> 16) & 0xff; 520 err = "unknown-ext-hardware-cache-result"; 521 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 522 goto out_err; 523 524 err = "invalid-cache"; 525 if (!perf_evsel__is_cache_op_valid(type, op)) 526 goto out_err; 527 528 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 529 out_err: 530 return scnprintf(bf, size, "%s", err); 531 } 532 533 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 534 { 535 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 536 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 537 } 538 539 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 540 { 541 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 542 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 543 } 544 545 const char *perf_evsel__name(struct perf_evsel *evsel) 546 { 547 char bf[128]; 548 549 if (evsel->name) 550 return evsel->name; 551 552 switch (evsel->attr.type) { 553 case PERF_TYPE_RAW: 554 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 555 break; 556 557 case PERF_TYPE_HARDWARE: 558 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 559 break; 560 561 case PERF_TYPE_HW_CACHE: 562 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 563 break; 564 565 case PERF_TYPE_SOFTWARE: 566 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 567 break; 568 569 case PERF_TYPE_TRACEPOINT: 570 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 571 break; 572 573 case PERF_TYPE_BREAKPOINT: 574 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 575 break; 576 577 default: 578 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 579 evsel->attr.type); 580 break; 581 } 582 583 evsel->name = strdup(bf); 584 585 return evsel->name ?: "unknown"; 586 } 587 588 const char *perf_evsel__group_name(struct perf_evsel *evsel) 589 { 590 return evsel->group_name ?: "anon group"; 591 } 592 593 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 594 { 595 int ret; 596 struct perf_evsel *pos; 597 const char *group_name = perf_evsel__group_name(evsel); 598 599 ret = scnprintf(buf, size, "%s", group_name); 600 601 ret += scnprintf(buf + ret, size - ret, " { %s", 602 perf_evsel__name(evsel)); 603 604 for_each_group_member(pos, evsel) 605 ret += scnprintf(buf + ret, size - ret, ", %s", 606 perf_evsel__name(pos)); 607 608 ret += scnprintf(buf + ret, size - ret, " }"); 609 610 return ret; 611 } 612 613 void perf_evsel__config_callchain(struct perf_evsel *evsel, 614 struct record_opts *opts, 615 struct callchain_param *param) 616 { 617 bool function = perf_evsel__is_function_event(evsel); 618 struct perf_event_attr *attr = &evsel->attr; 619 620 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 621 622 attr->sample_max_stack = param->max_stack; 623 624 if (param->record_mode == CALLCHAIN_LBR) { 625 if (!opts->branch_stack) { 626 if (attr->exclude_user) { 627 pr_warning("LBR callstack option is only available " 628 "to get user callchain information. " 629 "Falling back to framepointers.\n"); 630 } else { 631 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 632 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 633 PERF_SAMPLE_BRANCH_CALL_STACK | 634 PERF_SAMPLE_BRANCH_NO_CYCLES | 635 PERF_SAMPLE_BRANCH_NO_FLAGS; 636 } 637 } else 638 pr_warning("Cannot use LBR callstack with branch stack. " 639 "Falling back to framepointers.\n"); 640 } 641 642 if (param->record_mode == CALLCHAIN_DWARF) { 643 if (!function) { 644 perf_evsel__set_sample_bit(evsel, REGS_USER); 645 perf_evsel__set_sample_bit(evsel, STACK_USER); 646 attr->sample_regs_user = PERF_REGS_MASK; 647 attr->sample_stack_user = param->dump_size; 648 attr->exclude_callchain_user = 1; 649 } else { 650 pr_info("Cannot use DWARF unwind for function trace event," 651 " falling back to framepointers.\n"); 652 } 653 } 654 655 if (function) { 656 pr_info("Disabling user space callchains for function trace event.\n"); 657 attr->exclude_callchain_user = 1; 658 } 659 } 660 661 static void 662 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 663 struct callchain_param *param) 664 { 665 struct perf_event_attr *attr = &evsel->attr; 666 667 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 668 if (param->record_mode == CALLCHAIN_LBR) { 669 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 670 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 671 PERF_SAMPLE_BRANCH_CALL_STACK); 672 } 673 if (param->record_mode == CALLCHAIN_DWARF) { 674 perf_evsel__reset_sample_bit(evsel, REGS_USER); 675 perf_evsel__reset_sample_bit(evsel, STACK_USER); 676 } 677 } 678 679 static void apply_config_terms(struct perf_evsel *evsel, 680 struct record_opts *opts) 681 { 682 struct perf_evsel_config_term *term; 683 struct list_head *config_terms = &evsel->config_terms; 684 struct perf_event_attr *attr = &evsel->attr; 685 struct callchain_param param; 686 u32 dump_size = 0; 687 int max_stack = 0; 688 const char *callgraph_buf = NULL; 689 690 /* callgraph default */ 691 param.record_mode = callchain_param.record_mode; 692 693 list_for_each_entry(term, config_terms, list) { 694 switch (term->type) { 695 case PERF_EVSEL__CONFIG_TERM_PERIOD: 696 attr->sample_period = term->val.period; 697 attr->freq = 0; 698 break; 699 case PERF_EVSEL__CONFIG_TERM_FREQ: 700 attr->sample_freq = term->val.freq; 701 attr->freq = 1; 702 break; 703 case PERF_EVSEL__CONFIG_TERM_TIME: 704 if (term->val.time) 705 perf_evsel__set_sample_bit(evsel, TIME); 706 else 707 perf_evsel__reset_sample_bit(evsel, TIME); 708 break; 709 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 710 callgraph_buf = term->val.callgraph; 711 break; 712 case PERF_EVSEL__CONFIG_TERM_BRANCH: 713 if (term->val.branch && strcmp(term->val.branch, "no")) { 714 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 715 parse_branch_str(term->val.branch, 716 &attr->branch_sample_type); 717 } else 718 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 719 break; 720 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 721 dump_size = term->val.stack_user; 722 break; 723 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 724 max_stack = term->val.max_stack; 725 break; 726 case PERF_EVSEL__CONFIG_TERM_INHERIT: 727 /* 728 * attr->inherit should has already been set by 729 * perf_evsel__config. If user explicitly set 730 * inherit using config terms, override global 731 * opt->no_inherit setting. 732 */ 733 attr->inherit = term->val.inherit ? 1 : 0; 734 break; 735 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 736 attr->write_backward = term->val.overwrite ? 1 : 0; 737 break; 738 default: 739 break; 740 } 741 } 742 743 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 744 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 745 if (max_stack) { 746 param.max_stack = max_stack; 747 if (callgraph_buf == NULL) 748 callgraph_buf = "fp"; 749 } 750 751 /* parse callgraph parameters */ 752 if (callgraph_buf != NULL) { 753 if (!strcmp(callgraph_buf, "no")) { 754 param.enabled = false; 755 param.record_mode = CALLCHAIN_NONE; 756 } else { 757 param.enabled = true; 758 if (parse_callchain_record(callgraph_buf, ¶m)) { 759 pr_err("per-event callgraph setting for %s failed. " 760 "Apply callgraph global setting for it\n", 761 evsel->name); 762 return; 763 } 764 } 765 } 766 if (dump_size > 0) { 767 dump_size = round_up(dump_size, sizeof(u64)); 768 param.dump_size = dump_size; 769 } 770 771 /* If global callgraph set, clear it */ 772 if (callchain_param.enabled) 773 perf_evsel__reset_callgraph(evsel, &callchain_param); 774 775 /* set perf-event callgraph */ 776 if (param.enabled) 777 perf_evsel__config_callchain(evsel, opts, ¶m); 778 } 779 } 780 781 /* 782 * The enable_on_exec/disabled value strategy: 783 * 784 * 1) For any type of traced program: 785 * - all independent events and group leaders are disabled 786 * - all group members are enabled 787 * 788 * Group members are ruled by group leaders. They need to 789 * be enabled, because the group scheduling relies on that. 790 * 791 * 2) For traced programs executed by perf: 792 * - all independent events and group leaders have 793 * enable_on_exec set 794 * - we don't specifically enable or disable any event during 795 * the record command 796 * 797 * Independent events and group leaders are initially disabled 798 * and get enabled by exec. Group members are ruled by group 799 * leaders as stated in 1). 800 * 801 * 3) For traced programs attached by perf (pid/tid): 802 * - we specifically enable or disable all events during 803 * the record command 804 * 805 * When attaching events to already running traced we 806 * enable/disable events specifically, as there's no 807 * initial traced exec call. 808 */ 809 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 810 struct callchain_param *callchain) 811 { 812 struct perf_evsel *leader = evsel->leader; 813 struct perf_event_attr *attr = &evsel->attr; 814 int track = evsel->tracking; 815 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 816 817 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 818 attr->inherit = !opts->no_inherit; 819 attr->write_backward = opts->overwrite ? 1 : 0; 820 821 perf_evsel__set_sample_bit(evsel, IP); 822 perf_evsel__set_sample_bit(evsel, TID); 823 824 if (evsel->sample_read) { 825 perf_evsel__set_sample_bit(evsel, READ); 826 827 /* 828 * We need ID even in case of single event, because 829 * PERF_SAMPLE_READ process ID specific data. 830 */ 831 perf_evsel__set_sample_id(evsel, false); 832 833 /* 834 * Apply group format only if we belong to group 835 * with more than one members. 836 */ 837 if (leader->nr_members > 1) { 838 attr->read_format |= PERF_FORMAT_GROUP; 839 attr->inherit = 0; 840 } 841 } 842 843 /* 844 * We default some events to have a default interval. But keep 845 * it a weak assumption overridable by the user. 846 */ 847 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 848 opts->user_interval != ULLONG_MAX)) { 849 if (opts->freq) { 850 perf_evsel__set_sample_bit(evsel, PERIOD); 851 attr->freq = 1; 852 attr->sample_freq = opts->freq; 853 } else { 854 attr->sample_period = opts->default_interval; 855 } 856 } 857 858 /* 859 * Disable sampling for all group members other 860 * than leader in case leader 'leads' the sampling. 861 */ 862 if ((leader != evsel) && leader->sample_read) { 863 attr->sample_freq = 0; 864 attr->sample_period = 0; 865 } 866 867 if (opts->no_samples) 868 attr->sample_freq = 0; 869 870 if (opts->inherit_stat) 871 attr->inherit_stat = 1; 872 873 if (opts->sample_address) { 874 perf_evsel__set_sample_bit(evsel, ADDR); 875 attr->mmap_data = track; 876 } 877 878 /* 879 * We don't allow user space callchains for function trace 880 * event, due to issues with page faults while tracing page 881 * fault handler and its overall trickiness nature. 882 */ 883 if (perf_evsel__is_function_event(evsel)) 884 evsel->attr.exclude_callchain_user = 1; 885 886 if (callchain && callchain->enabled && !evsel->no_aux_samples) 887 perf_evsel__config_callchain(evsel, opts, callchain); 888 889 if (opts->sample_intr_regs) { 890 attr->sample_regs_intr = opts->sample_intr_regs; 891 perf_evsel__set_sample_bit(evsel, REGS_INTR); 892 } 893 894 if (target__has_cpu(&opts->target) || opts->sample_cpu) 895 perf_evsel__set_sample_bit(evsel, CPU); 896 897 if (opts->period) 898 perf_evsel__set_sample_bit(evsel, PERIOD); 899 900 /* 901 * When the user explicitly disabled time don't force it here. 902 */ 903 if (opts->sample_time && 904 (!perf_missing_features.sample_id_all && 905 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 906 opts->sample_time_set))) 907 perf_evsel__set_sample_bit(evsel, TIME); 908 909 if (opts->raw_samples && !evsel->no_aux_samples) { 910 perf_evsel__set_sample_bit(evsel, TIME); 911 perf_evsel__set_sample_bit(evsel, RAW); 912 perf_evsel__set_sample_bit(evsel, CPU); 913 } 914 915 if (opts->sample_address) 916 perf_evsel__set_sample_bit(evsel, DATA_SRC); 917 918 if (opts->no_buffering) { 919 attr->watermark = 0; 920 attr->wakeup_events = 1; 921 } 922 if (opts->branch_stack && !evsel->no_aux_samples) { 923 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 924 attr->branch_sample_type = opts->branch_stack; 925 } 926 927 if (opts->sample_weight) 928 perf_evsel__set_sample_bit(evsel, WEIGHT); 929 930 attr->task = track; 931 attr->mmap = track; 932 attr->mmap2 = track && !perf_missing_features.mmap2; 933 attr->comm = track; 934 935 if (opts->record_switch_events) 936 attr->context_switch = track; 937 938 if (opts->sample_transaction) 939 perf_evsel__set_sample_bit(evsel, TRANSACTION); 940 941 if (opts->running_time) { 942 evsel->attr.read_format |= 943 PERF_FORMAT_TOTAL_TIME_ENABLED | 944 PERF_FORMAT_TOTAL_TIME_RUNNING; 945 } 946 947 /* 948 * XXX see the function comment above 949 * 950 * Disabling only independent events or group leaders, 951 * keeping group members enabled. 952 */ 953 if (perf_evsel__is_group_leader(evsel)) 954 attr->disabled = 1; 955 956 /* 957 * Setting enable_on_exec for independent events and 958 * group leaders for traced executed by perf. 959 */ 960 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 961 !opts->initial_delay) 962 attr->enable_on_exec = 1; 963 964 if (evsel->immediate) { 965 attr->disabled = 0; 966 attr->enable_on_exec = 0; 967 } 968 969 clockid = opts->clockid; 970 if (opts->use_clockid) { 971 attr->use_clockid = 1; 972 attr->clockid = opts->clockid; 973 } 974 975 if (evsel->precise_max) 976 perf_event_attr__set_max_precise_ip(attr); 977 978 if (opts->all_user) { 979 attr->exclude_kernel = 1; 980 attr->exclude_user = 0; 981 } 982 983 if (opts->all_kernel) { 984 attr->exclude_kernel = 0; 985 attr->exclude_user = 1; 986 } 987 988 /* 989 * Apply event specific term settings, 990 * it overloads any global configuration. 991 */ 992 apply_config_terms(evsel, opts); 993 994 evsel->ignore_missing_thread = opts->ignore_missing_thread; 995 } 996 997 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 998 { 999 if (evsel->system_wide) 1000 nthreads = 1; 1001 1002 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1003 1004 if (evsel->fd) { 1005 int cpu, thread; 1006 for (cpu = 0; cpu < ncpus; cpu++) { 1007 for (thread = 0; thread < nthreads; thread++) { 1008 FD(evsel, cpu, thread) = -1; 1009 } 1010 } 1011 } 1012 1013 return evsel->fd != NULL ? 0 : -ENOMEM; 1014 } 1015 1016 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 1017 int ioc, void *arg) 1018 { 1019 int cpu, thread; 1020 1021 if (evsel->system_wide) 1022 nthreads = 1; 1023 1024 for (cpu = 0; cpu < ncpus; cpu++) { 1025 for (thread = 0; thread < nthreads; thread++) { 1026 int fd = FD(evsel, cpu, thread), 1027 err = ioctl(fd, ioc, arg); 1028 1029 if (err) 1030 return err; 1031 } 1032 } 1033 1034 return 0; 1035 } 1036 1037 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 1038 const char *filter) 1039 { 1040 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1041 PERF_EVENT_IOC_SET_FILTER, 1042 (void *)filter); 1043 } 1044 1045 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1046 { 1047 char *new_filter = strdup(filter); 1048 1049 if (new_filter != NULL) { 1050 free(evsel->filter); 1051 evsel->filter = new_filter; 1052 return 0; 1053 } 1054 1055 return -1; 1056 } 1057 1058 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1059 const char *fmt, const char *filter) 1060 { 1061 char *new_filter; 1062 1063 if (evsel->filter == NULL) 1064 return perf_evsel__set_filter(evsel, filter); 1065 1066 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1067 free(evsel->filter); 1068 evsel->filter = new_filter; 1069 return 0; 1070 } 1071 1072 return -1; 1073 } 1074 1075 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1076 { 1077 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1078 } 1079 1080 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1081 { 1082 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1083 } 1084 1085 int perf_evsel__enable(struct perf_evsel *evsel) 1086 { 1087 int nthreads = thread_map__nr(evsel->threads); 1088 int ncpus = cpu_map__nr(evsel->cpus); 1089 1090 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1091 PERF_EVENT_IOC_ENABLE, 1092 0); 1093 } 1094 1095 int perf_evsel__disable(struct perf_evsel *evsel) 1096 { 1097 int nthreads = thread_map__nr(evsel->threads); 1098 int ncpus = cpu_map__nr(evsel->cpus); 1099 1100 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1101 PERF_EVENT_IOC_DISABLE, 1102 0); 1103 } 1104 1105 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1106 { 1107 if (ncpus == 0 || nthreads == 0) 1108 return 0; 1109 1110 if (evsel->system_wide) 1111 nthreads = 1; 1112 1113 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1114 if (evsel->sample_id == NULL) 1115 return -ENOMEM; 1116 1117 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1118 if (evsel->id == NULL) { 1119 xyarray__delete(evsel->sample_id); 1120 evsel->sample_id = NULL; 1121 return -ENOMEM; 1122 } 1123 1124 return 0; 1125 } 1126 1127 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1128 { 1129 xyarray__delete(evsel->fd); 1130 evsel->fd = NULL; 1131 } 1132 1133 static void perf_evsel__free_id(struct perf_evsel *evsel) 1134 { 1135 xyarray__delete(evsel->sample_id); 1136 evsel->sample_id = NULL; 1137 zfree(&evsel->id); 1138 } 1139 1140 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1141 { 1142 struct perf_evsel_config_term *term, *h; 1143 1144 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1145 list_del(&term->list); 1146 free(term); 1147 } 1148 } 1149 1150 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1151 { 1152 int cpu, thread; 1153 1154 if (evsel->system_wide) 1155 nthreads = 1; 1156 1157 for (cpu = 0; cpu < ncpus; cpu++) 1158 for (thread = 0; thread < nthreads; ++thread) { 1159 close(FD(evsel, cpu, thread)); 1160 FD(evsel, cpu, thread) = -1; 1161 } 1162 } 1163 1164 void perf_evsel__exit(struct perf_evsel *evsel) 1165 { 1166 assert(list_empty(&evsel->node)); 1167 assert(evsel->evlist == NULL); 1168 perf_evsel__free_fd(evsel); 1169 perf_evsel__free_id(evsel); 1170 perf_evsel__free_config_terms(evsel); 1171 close_cgroup(evsel->cgrp); 1172 cpu_map__put(evsel->cpus); 1173 cpu_map__put(evsel->own_cpus); 1174 thread_map__put(evsel->threads); 1175 zfree(&evsel->group_name); 1176 zfree(&evsel->name); 1177 perf_evsel__object.fini(evsel); 1178 } 1179 1180 void perf_evsel__delete(struct perf_evsel *evsel) 1181 { 1182 perf_evsel__exit(evsel); 1183 free(evsel); 1184 } 1185 1186 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1187 struct perf_counts_values *count) 1188 { 1189 struct perf_counts_values tmp; 1190 1191 if (!evsel->prev_raw_counts) 1192 return; 1193 1194 if (cpu == -1) { 1195 tmp = evsel->prev_raw_counts->aggr; 1196 evsel->prev_raw_counts->aggr = *count; 1197 } else { 1198 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1199 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1200 } 1201 1202 count->val = count->val - tmp.val; 1203 count->ena = count->ena - tmp.ena; 1204 count->run = count->run - tmp.run; 1205 } 1206 1207 void perf_counts_values__scale(struct perf_counts_values *count, 1208 bool scale, s8 *pscaled) 1209 { 1210 s8 scaled = 0; 1211 1212 if (scale) { 1213 if (count->run == 0) { 1214 scaled = -1; 1215 count->val = 0; 1216 } else if (count->run < count->ena) { 1217 scaled = 1; 1218 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1219 } 1220 } else 1221 count->ena = count->run = 0; 1222 1223 if (pscaled) 1224 *pscaled = scaled; 1225 } 1226 1227 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1228 struct perf_counts_values *count) 1229 { 1230 memset(count, 0, sizeof(*count)); 1231 1232 if (FD(evsel, cpu, thread) < 0) 1233 return -EINVAL; 1234 1235 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0) 1236 return -errno; 1237 1238 return 0; 1239 } 1240 1241 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1242 int cpu, int thread, bool scale) 1243 { 1244 struct perf_counts_values count; 1245 size_t nv = scale ? 3 : 1; 1246 1247 if (FD(evsel, cpu, thread) < 0) 1248 return -EINVAL; 1249 1250 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1251 return -ENOMEM; 1252 1253 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 1254 return -errno; 1255 1256 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1257 perf_counts_values__scale(&count, scale, NULL); 1258 *perf_counts(evsel->counts, cpu, thread) = count; 1259 return 0; 1260 } 1261 1262 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1263 { 1264 struct perf_evsel *leader = evsel->leader; 1265 int fd; 1266 1267 if (perf_evsel__is_group_leader(evsel)) 1268 return -1; 1269 1270 /* 1271 * Leader must be already processed/open, 1272 * if not it's a bug. 1273 */ 1274 BUG_ON(!leader->fd); 1275 1276 fd = FD(leader, cpu, thread); 1277 BUG_ON(fd == -1); 1278 1279 return fd; 1280 } 1281 1282 struct bit_names { 1283 int bit; 1284 const char *name; 1285 }; 1286 1287 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1288 { 1289 bool first_bit = true; 1290 int i = 0; 1291 1292 do { 1293 if (value & bits[i].bit) { 1294 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1295 first_bit = false; 1296 } 1297 } while (bits[++i].name != NULL); 1298 } 1299 1300 static void __p_sample_type(char *buf, size_t size, u64 value) 1301 { 1302 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1303 struct bit_names bits[] = { 1304 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1305 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1306 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1307 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1308 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1309 bit_name(WEIGHT), 1310 { .name = NULL, } 1311 }; 1312 #undef bit_name 1313 __p_bits(buf, size, value, bits); 1314 } 1315 1316 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1317 { 1318 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1319 struct bit_names bits[] = { 1320 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1321 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1322 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1323 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1324 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1325 { .name = NULL, } 1326 }; 1327 #undef bit_name 1328 __p_bits(buf, size, value, bits); 1329 } 1330 1331 static void __p_read_format(char *buf, size_t size, u64 value) 1332 { 1333 #define bit_name(n) { PERF_FORMAT_##n, #n } 1334 struct bit_names bits[] = { 1335 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1336 bit_name(ID), bit_name(GROUP), 1337 { .name = NULL, } 1338 }; 1339 #undef bit_name 1340 __p_bits(buf, size, value, bits); 1341 } 1342 1343 #define BUF_SIZE 1024 1344 1345 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1346 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1347 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1348 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1349 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1350 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1351 1352 #define PRINT_ATTRn(_n, _f, _p) \ 1353 do { \ 1354 if (attr->_f) { \ 1355 _p(attr->_f); \ 1356 ret += attr__fprintf(fp, _n, buf, priv);\ 1357 } \ 1358 } while (0) 1359 1360 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1361 1362 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1363 attr__fprintf_f attr__fprintf, void *priv) 1364 { 1365 char buf[BUF_SIZE]; 1366 int ret = 0; 1367 1368 PRINT_ATTRf(type, p_unsigned); 1369 PRINT_ATTRf(size, p_unsigned); 1370 PRINT_ATTRf(config, p_hex); 1371 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1372 PRINT_ATTRf(sample_type, p_sample_type); 1373 PRINT_ATTRf(read_format, p_read_format); 1374 1375 PRINT_ATTRf(disabled, p_unsigned); 1376 PRINT_ATTRf(inherit, p_unsigned); 1377 PRINT_ATTRf(pinned, p_unsigned); 1378 PRINT_ATTRf(exclusive, p_unsigned); 1379 PRINT_ATTRf(exclude_user, p_unsigned); 1380 PRINT_ATTRf(exclude_kernel, p_unsigned); 1381 PRINT_ATTRf(exclude_hv, p_unsigned); 1382 PRINT_ATTRf(exclude_idle, p_unsigned); 1383 PRINT_ATTRf(mmap, p_unsigned); 1384 PRINT_ATTRf(comm, p_unsigned); 1385 PRINT_ATTRf(freq, p_unsigned); 1386 PRINT_ATTRf(inherit_stat, p_unsigned); 1387 PRINT_ATTRf(enable_on_exec, p_unsigned); 1388 PRINT_ATTRf(task, p_unsigned); 1389 PRINT_ATTRf(watermark, p_unsigned); 1390 PRINT_ATTRf(precise_ip, p_unsigned); 1391 PRINT_ATTRf(mmap_data, p_unsigned); 1392 PRINT_ATTRf(sample_id_all, p_unsigned); 1393 PRINT_ATTRf(exclude_host, p_unsigned); 1394 PRINT_ATTRf(exclude_guest, p_unsigned); 1395 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1396 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1397 PRINT_ATTRf(mmap2, p_unsigned); 1398 PRINT_ATTRf(comm_exec, p_unsigned); 1399 PRINT_ATTRf(use_clockid, p_unsigned); 1400 PRINT_ATTRf(context_switch, p_unsigned); 1401 PRINT_ATTRf(write_backward, p_unsigned); 1402 1403 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1404 PRINT_ATTRf(bp_type, p_unsigned); 1405 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1406 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1407 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1408 PRINT_ATTRf(sample_regs_user, p_hex); 1409 PRINT_ATTRf(sample_stack_user, p_unsigned); 1410 PRINT_ATTRf(clockid, p_signed); 1411 PRINT_ATTRf(sample_regs_intr, p_hex); 1412 PRINT_ATTRf(aux_watermark, p_unsigned); 1413 PRINT_ATTRf(sample_max_stack, p_unsigned); 1414 1415 return ret; 1416 } 1417 1418 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1419 void *priv __attribute__((unused))) 1420 { 1421 return fprintf(fp, " %-32s %s\n", name, val); 1422 } 1423 1424 static bool ignore_missing_thread(struct perf_evsel *evsel, 1425 struct thread_map *threads, 1426 int thread, int err) 1427 { 1428 if (!evsel->ignore_missing_thread) 1429 return false; 1430 1431 /* The system wide setup does not work with threads. */ 1432 if (evsel->system_wide) 1433 return false; 1434 1435 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1436 if (err != -ESRCH) 1437 return false; 1438 1439 /* If there's only one thread, let it fail. */ 1440 if (threads->nr == 1) 1441 return false; 1442 1443 if (thread_map__remove(threads, thread)) 1444 return false; 1445 1446 pr_warning("WARNING: Ignored open failure for pid %d\n", 1447 thread_map__pid(threads, thread)); 1448 return true; 1449 } 1450 1451 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1452 struct thread_map *threads) 1453 { 1454 int cpu, thread, nthreads; 1455 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1456 int pid = -1, err; 1457 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1458 1459 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1460 return -EINVAL; 1461 1462 if (cpus == NULL) { 1463 static struct cpu_map *empty_cpu_map; 1464 1465 if (empty_cpu_map == NULL) { 1466 empty_cpu_map = cpu_map__dummy_new(); 1467 if (empty_cpu_map == NULL) 1468 return -ENOMEM; 1469 } 1470 1471 cpus = empty_cpu_map; 1472 } 1473 1474 if (threads == NULL) { 1475 static struct thread_map *empty_thread_map; 1476 1477 if (empty_thread_map == NULL) { 1478 empty_thread_map = thread_map__new_by_tid(-1); 1479 if (empty_thread_map == NULL) 1480 return -ENOMEM; 1481 } 1482 1483 threads = empty_thread_map; 1484 } 1485 1486 if (evsel->system_wide) 1487 nthreads = 1; 1488 else 1489 nthreads = threads->nr; 1490 1491 if (evsel->fd == NULL && 1492 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1493 return -ENOMEM; 1494 1495 if (evsel->cgrp) { 1496 flags |= PERF_FLAG_PID_CGROUP; 1497 pid = evsel->cgrp->fd; 1498 } 1499 1500 fallback_missing_features: 1501 if (perf_missing_features.clockid_wrong) 1502 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1503 if (perf_missing_features.clockid) { 1504 evsel->attr.use_clockid = 0; 1505 evsel->attr.clockid = 0; 1506 } 1507 if (perf_missing_features.cloexec) 1508 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1509 if (perf_missing_features.mmap2) 1510 evsel->attr.mmap2 = 0; 1511 if (perf_missing_features.exclude_guest) 1512 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1513 if (perf_missing_features.lbr_flags) 1514 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1515 PERF_SAMPLE_BRANCH_NO_CYCLES); 1516 retry_sample_id: 1517 if (perf_missing_features.sample_id_all) 1518 evsel->attr.sample_id_all = 0; 1519 1520 if (verbose >= 2) { 1521 fprintf(stderr, "%.60s\n", graph_dotted_line); 1522 fprintf(stderr, "perf_event_attr:\n"); 1523 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1524 fprintf(stderr, "%.60s\n", graph_dotted_line); 1525 } 1526 1527 for (cpu = 0; cpu < cpus->nr; cpu++) { 1528 1529 for (thread = 0; thread < nthreads; thread++) { 1530 int fd, group_fd; 1531 1532 if (!evsel->cgrp && !evsel->system_wide) 1533 pid = thread_map__pid(threads, thread); 1534 1535 group_fd = get_group_fd(evsel, cpu, thread); 1536 retry_open: 1537 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1538 pid, cpus->map[cpu], group_fd, flags); 1539 1540 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1541 group_fd, flags); 1542 1543 FD(evsel, cpu, thread) = fd; 1544 1545 if (fd < 0) { 1546 err = -errno; 1547 1548 if (ignore_missing_thread(evsel, threads, thread, err)) { 1549 /* 1550 * We just removed 1 thread, so take a step 1551 * back on thread index and lower the upper 1552 * nthreads limit. 1553 */ 1554 nthreads--; 1555 thread--; 1556 1557 /* ... and pretend like nothing have happened. */ 1558 err = 0; 1559 continue; 1560 } 1561 1562 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1563 err); 1564 goto try_fallback; 1565 } 1566 1567 pr_debug2(" = %d\n", fd); 1568 1569 if (evsel->bpf_fd >= 0) { 1570 int evt_fd = fd; 1571 int bpf_fd = evsel->bpf_fd; 1572 1573 err = ioctl(evt_fd, 1574 PERF_EVENT_IOC_SET_BPF, 1575 bpf_fd); 1576 if (err && errno != EEXIST) { 1577 pr_err("failed to attach bpf fd %d: %s\n", 1578 bpf_fd, strerror(errno)); 1579 err = -EINVAL; 1580 goto out_close; 1581 } 1582 } 1583 1584 set_rlimit = NO_CHANGE; 1585 1586 /* 1587 * If we succeeded but had to kill clockid, fail and 1588 * have perf_evsel__open_strerror() print us a nice 1589 * error. 1590 */ 1591 if (perf_missing_features.clockid || 1592 perf_missing_features.clockid_wrong) { 1593 err = -EINVAL; 1594 goto out_close; 1595 } 1596 } 1597 } 1598 1599 return 0; 1600 1601 try_fallback: 1602 /* 1603 * perf stat needs between 5 and 22 fds per CPU. When we run out 1604 * of them try to increase the limits. 1605 */ 1606 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1607 struct rlimit l; 1608 int old_errno = errno; 1609 1610 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1611 if (set_rlimit == NO_CHANGE) 1612 l.rlim_cur = l.rlim_max; 1613 else { 1614 l.rlim_cur = l.rlim_max + 1000; 1615 l.rlim_max = l.rlim_cur; 1616 } 1617 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1618 set_rlimit++; 1619 errno = old_errno; 1620 goto retry_open; 1621 } 1622 } 1623 errno = old_errno; 1624 } 1625 1626 if (err != -EINVAL || cpu > 0 || thread > 0) 1627 goto out_close; 1628 1629 /* 1630 * Must probe features in the order they were added to the 1631 * perf_event_attr interface. 1632 */ 1633 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1634 perf_missing_features.write_backward = true; 1635 goto out_close; 1636 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1637 perf_missing_features.clockid_wrong = true; 1638 goto fallback_missing_features; 1639 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1640 perf_missing_features.clockid = true; 1641 goto fallback_missing_features; 1642 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1643 perf_missing_features.cloexec = true; 1644 goto fallback_missing_features; 1645 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1646 perf_missing_features.mmap2 = true; 1647 goto fallback_missing_features; 1648 } else if (!perf_missing_features.exclude_guest && 1649 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1650 perf_missing_features.exclude_guest = true; 1651 goto fallback_missing_features; 1652 } else if (!perf_missing_features.sample_id_all) { 1653 perf_missing_features.sample_id_all = true; 1654 goto retry_sample_id; 1655 } else if (!perf_missing_features.lbr_flags && 1656 (evsel->attr.branch_sample_type & 1657 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1658 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1659 perf_missing_features.lbr_flags = true; 1660 goto fallback_missing_features; 1661 } 1662 out_close: 1663 do { 1664 while (--thread >= 0) { 1665 close(FD(evsel, cpu, thread)); 1666 FD(evsel, cpu, thread) = -1; 1667 } 1668 thread = nthreads; 1669 } while (--cpu >= 0); 1670 return err; 1671 } 1672 1673 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1674 { 1675 if (evsel->fd == NULL) 1676 return; 1677 1678 perf_evsel__close_fd(evsel, ncpus, nthreads); 1679 perf_evsel__free_fd(evsel); 1680 } 1681 1682 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1683 struct cpu_map *cpus) 1684 { 1685 return perf_evsel__open(evsel, cpus, NULL); 1686 } 1687 1688 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1689 struct thread_map *threads) 1690 { 1691 return perf_evsel__open(evsel, NULL, threads); 1692 } 1693 1694 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1695 const union perf_event *event, 1696 struct perf_sample *sample) 1697 { 1698 u64 type = evsel->attr.sample_type; 1699 const u64 *array = event->sample.array; 1700 bool swapped = evsel->needs_swap; 1701 union u64_swap u; 1702 1703 array += ((event->header.size - 1704 sizeof(event->header)) / sizeof(u64)) - 1; 1705 1706 if (type & PERF_SAMPLE_IDENTIFIER) { 1707 sample->id = *array; 1708 array--; 1709 } 1710 1711 if (type & PERF_SAMPLE_CPU) { 1712 u.val64 = *array; 1713 if (swapped) { 1714 /* undo swap of u64, then swap on individual u32s */ 1715 u.val64 = bswap_64(u.val64); 1716 u.val32[0] = bswap_32(u.val32[0]); 1717 } 1718 1719 sample->cpu = u.val32[0]; 1720 array--; 1721 } 1722 1723 if (type & PERF_SAMPLE_STREAM_ID) { 1724 sample->stream_id = *array; 1725 array--; 1726 } 1727 1728 if (type & PERF_SAMPLE_ID) { 1729 sample->id = *array; 1730 array--; 1731 } 1732 1733 if (type & PERF_SAMPLE_TIME) { 1734 sample->time = *array; 1735 array--; 1736 } 1737 1738 if (type & PERF_SAMPLE_TID) { 1739 u.val64 = *array; 1740 if (swapped) { 1741 /* undo swap of u64, then swap on individual u32s */ 1742 u.val64 = bswap_64(u.val64); 1743 u.val32[0] = bswap_32(u.val32[0]); 1744 u.val32[1] = bswap_32(u.val32[1]); 1745 } 1746 1747 sample->pid = u.val32[0]; 1748 sample->tid = u.val32[1]; 1749 array--; 1750 } 1751 1752 return 0; 1753 } 1754 1755 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1756 u64 size) 1757 { 1758 return size > max_size || offset + size > endp; 1759 } 1760 1761 #define OVERFLOW_CHECK(offset, size, max_size) \ 1762 do { \ 1763 if (overflow(endp, (max_size), (offset), (size))) \ 1764 return -EFAULT; \ 1765 } while (0) 1766 1767 #define OVERFLOW_CHECK_u64(offset) \ 1768 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1769 1770 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1771 struct perf_sample *data) 1772 { 1773 u64 type = evsel->attr.sample_type; 1774 bool swapped = evsel->needs_swap; 1775 const u64 *array; 1776 u16 max_size = event->header.size; 1777 const void *endp = (void *)event + max_size; 1778 u64 sz; 1779 1780 /* 1781 * used for cross-endian analysis. See git commit 65014ab3 1782 * for why this goofiness is needed. 1783 */ 1784 union u64_swap u; 1785 1786 memset(data, 0, sizeof(*data)); 1787 data->cpu = data->pid = data->tid = -1; 1788 data->stream_id = data->id = data->time = -1ULL; 1789 data->period = evsel->attr.sample_period; 1790 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1791 1792 if (event->header.type != PERF_RECORD_SAMPLE) { 1793 if (!evsel->attr.sample_id_all) 1794 return 0; 1795 return perf_evsel__parse_id_sample(evsel, event, data); 1796 } 1797 1798 array = event->sample.array; 1799 1800 /* 1801 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1802 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1803 * check the format does not go past the end of the event. 1804 */ 1805 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1806 return -EFAULT; 1807 1808 data->id = -1ULL; 1809 if (type & PERF_SAMPLE_IDENTIFIER) { 1810 data->id = *array; 1811 array++; 1812 } 1813 1814 if (type & PERF_SAMPLE_IP) { 1815 data->ip = *array; 1816 array++; 1817 } 1818 1819 if (type & PERF_SAMPLE_TID) { 1820 u.val64 = *array; 1821 if (swapped) { 1822 /* undo swap of u64, then swap on individual u32s */ 1823 u.val64 = bswap_64(u.val64); 1824 u.val32[0] = bswap_32(u.val32[0]); 1825 u.val32[1] = bswap_32(u.val32[1]); 1826 } 1827 1828 data->pid = u.val32[0]; 1829 data->tid = u.val32[1]; 1830 array++; 1831 } 1832 1833 if (type & PERF_SAMPLE_TIME) { 1834 data->time = *array; 1835 array++; 1836 } 1837 1838 data->addr = 0; 1839 if (type & PERF_SAMPLE_ADDR) { 1840 data->addr = *array; 1841 array++; 1842 } 1843 1844 if (type & PERF_SAMPLE_ID) { 1845 data->id = *array; 1846 array++; 1847 } 1848 1849 if (type & PERF_SAMPLE_STREAM_ID) { 1850 data->stream_id = *array; 1851 array++; 1852 } 1853 1854 if (type & PERF_SAMPLE_CPU) { 1855 1856 u.val64 = *array; 1857 if (swapped) { 1858 /* undo swap of u64, then swap on individual u32s */ 1859 u.val64 = bswap_64(u.val64); 1860 u.val32[0] = bswap_32(u.val32[0]); 1861 } 1862 1863 data->cpu = u.val32[0]; 1864 array++; 1865 } 1866 1867 if (type & PERF_SAMPLE_PERIOD) { 1868 data->period = *array; 1869 array++; 1870 } 1871 1872 if (type & PERF_SAMPLE_READ) { 1873 u64 read_format = evsel->attr.read_format; 1874 1875 OVERFLOW_CHECK_u64(array); 1876 if (read_format & PERF_FORMAT_GROUP) 1877 data->read.group.nr = *array; 1878 else 1879 data->read.one.value = *array; 1880 1881 array++; 1882 1883 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1884 OVERFLOW_CHECK_u64(array); 1885 data->read.time_enabled = *array; 1886 array++; 1887 } 1888 1889 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1890 OVERFLOW_CHECK_u64(array); 1891 data->read.time_running = *array; 1892 array++; 1893 } 1894 1895 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1896 if (read_format & PERF_FORMAT_GROUP) { 1897 const u64 max_group_nr = UINT64_MAX / 1898 sizeof(struct sample_read_value); 1899 1900 if (data->read.group.nr > max_group_nr) 1901 return -EFAULT; 1902 sz = data->read.group.nr * 1903 sizeof(struct sample_read_value); 1904 OVERFLOW_CHECK(array, sz, max_size); 1905 data->read.group.values = 1906 (struct sample_read_value *)array; 1907 array = (void *)array + sz; 1908 } else { 1909 OVERFLOW_CHECK_u64(array); 1910 data->read.one.id = *array; 1911 array++; 1912 } 1913 } 1914 1915 if (type & PERF_SAMPLE_CALLCHAIN) { 1916 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1917 1918 OVERFLOW_CHECK_u64(array); 1919 data->callchain = (struct ip_callchain *)array++; 1920 if (data->callchain->nr > max_callchain_nr) 1921 return -EFAULT; 1922 sz = data->callchain->nr * sizeof(u64); 1923 OVERFLOW_CHECK(array, sz, max_size); 1924 array = (void *)array + sz; 1925 } 1926 1927 if (type & PERF_SAMPLE_RAW) { 1928 OVERFLOW_CHECK_u64(array); 1929 u.val64 = *array; 1930 if (WARN_ONCE(swapped, 1931 "Endianness of raw data not corrected!\n")) { 1932 /* undo swap of u64, then swap on individual u32s */ 1933 u.val64 = bswap_64(u.val64); 1934 u.val32[0] = bswap_32(u.val32[0]); 1935 u.val32[1] = bswap_32(u.val32[1]); 1936 } 1937 data->raw_size = u.val32[0]; 1938 array = (void *)array + sizeof(u32); 1939 1940 OVERFLOW_CHECK(array, data->raw_size, max_size); 1941 data->raw_data = (void *)array; 1942 array = (void *)array + data->raw_size; 1943 } 1944 1945 if (type & PERF_SAMPLE_BRANCH_STACK) { 1946 const u64 max_branch_nr = UINT64_MAX / 1947 sizeof(struct branch_entry); 1948 1949 OVERFLOW_CHECK_u64(array); 1950 data->branch_stack = (struct branch_stack *)array++; 1951 1952 if (data->branch_stack->nr > max_branch_nr) 1953 return -EFAULT; 1954 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1955 OVERFLOW_CHECK(array, sz, max_size); 1956 array = (void *)array + sz; 1957 } 1958 1959 if (type & PERF_SAMPLE_REGS_USER) { 1960 OVERFLOW_CHECK_u64(array); 1961 data->user_regs.abi = *array; 1962 array++; 1963 1964 if (data->user_regs.abi) { 1965 u64 mask = evsel->attr.sample_regs_user; 1966 1967 sz = hweight_long(mask) * sizeof(u64); 1968 OVERFLOW_CHECK(array, sz, max_size); 1969 data->user_regs.mask = mask; 1970 data->user_regs.regs = (u64 *)array; 1971 array = (void *)array + sz; 1972 } 1973 } 1974 1975 if (type & PERF_SAMPLE_STACK_USER) { 1976 OVERFLOW_CHECK_u64(array); 1977 sz = *array++; 1978 1979 data->user_stack.offset = ((char *)(array - 1) 1980 - (char *) event); 1981 1982 if (!sz) { 1983 data->user_stack.size = 0; 1984 } else { 1985 OVERFLOW_CHECK(array, sz, max_size); 1986 data->user_stack.data = (char *)array; 1987 array = (void *)array + sz; 1988 OVERFLOW_CHECK_u64(array); 1989 data->user_stack.size = *array++; 1990 if (WARN_ONCE(data->user_stack.size > sz, 1991 "user stack dump failure\n")) 1992 return -EFAULT; 1993 } 1994 } 1995 1996 if (type & PERF_SAMPLE_WEIGHT) { 1997 OVERFLOW_CHECK_u64(array); 1998 data->weight = *array; 1999 array++; 2000 } 2001 2002 data->data_src = PERF_MEM_DATA_SRC_NONE; 2003 if (type & PERF_SAMPLE_DATA_SRC) { 2004 OVERFLOW_CHECK_u64(array); 2005 data->data_src = *array; 2006 array++; 2007 } 2008 2009 data->transaction = 0; 2010 if (type & PERF_SAMPLE_TRANSACTION) { 2011 OVERFLOW_CHECK_u64(array); 2012 data->transaction = *array; 2013 array++; 2014 } 2015 2016 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2017 if (type & PERF_SAMPLE_REGS_INTR) { 2018 OVERFLOW_CHECK_u64(array); 2019 data->intr_regs.abi = *array; 2020 array++; 2021 2022 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2023 u64 mask = evsel->attr.sample_regs_intr; 2024 2025 sz = hweight_long(mask) * sizeof(u64); 2026 OVERFLOW_CHECK(array, sz, max_size); 2027 data->intr_regs.mask = mask; 2028 data->intr_regs.regs = (u64 *)array; 2029 array = (void *)array + sz; 2030 } 2031 } 2032 2033 return 0; 2034 } 2035 2036 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2037 u64 read_format) 2038 { 2039 size_t sz, result = sizeof(struct sample_event); 2040 2041 if (type & PERF_SAMPLE_IDENTIFIER) 2042 result += sizeof(u64); 2043 2044 if (type & PERF_SAMPLE_IP) 2045 result += sizeof(u64); 2046 2047 if (type & PERF_SAMPLE_TID) 2048 result += sizeof(u64); 2049 2050 if (type & PERF_SAMPLE_TIME) 2051 result += sizeof(u64); 2052 2053 if (type & PERF_SAMPLE_ADDR) 2054 result += sizeof(u64); 2055 2056 if (type & PERF_SAMPLE_ID) 2057 result += sizeof(u64); 2058 2059 if (type & PERF_SAMPLE_STREAM_ID) 2060 result += sizeof(u64); 2061 2062 if (type & PERF_SAMPLE_CPU) 2063 result += sizeof(u64); 2064 2065 if (type & PERF_SAMPLE_PERIOD) 2066 result += sizeof(u64); 2067 2068 if (type & PERF_SAMPLE_READ) { 2069 result += sizeof(u64); 2070 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2071 result += sizeof(u64); 2072 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2073 result += sizeof(u64); 2074 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2075 if (read_format & PERF_FORMAT_GROUP) { 2076 sz = sample->read.group.nr * 2077 sizeof(struct sample_read_value); 2078 result += sz; 2079 } else { 2080 result += sizeof(u64); 2081 } 2082 } 2083 2084 if (type & PERF_SAMPLE_CALLCHAIN) { 2085 sz = (sample->callchain->nr + 1) * sizeof(u64); 2086 result += sz; 2087 } 2088 2089 if (type & PERF_SAMPLE_RAW) { 2090 result += sizeof(u32); 2091 result += sample->raw_size; 2092 } 2093 2094 if (type & PERF_SAMPLE_BRANCH_STACK) { 2095 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2096 sz += sizeof(u64); 2097 result += sz; 2098 } 2099 2100 if (type & PERF_SAMPLE_REGS_USER) { 2101 if (sample->user_regs.abi) { 2102 result += sizeof(u64); 2103 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2104 result += sz; 2105 } else { 2106 result += sizeof(u64); 2107 } 2108 } 2109 2110 if (type & PERF_SAMPLE_STACK_USER) { 2111 sz = sample->user_stack.size; 2112 result += sizeof(u64); 2113 if (sz) { 2114 result += sz; 2115 result += sizeof(u64); 2116 } 2117 } 2118 2119 if (type & PERF_SAMPLE_WEIGHT) 2120 result += sizeof(u64); 2121 2122 if (type & PERF_SAMPLE_DATA_SRC) 2123 result += sizeof(u64); 2124 2125 if (type & PERF_SAMPLE_TRANSACTION) 2126 result += sizeof(u64); 2127 2128 if (type & PERF_SAMPLE_REGS_INTR) { 2129 if (sample->intr_regs.abi) { 2130 result += sizeof(u64); 2131 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2132 result += sz; 2133 } else { 2134 result += sizeof(u64); 2135 } 2136 } 2137 2138 return result; 2139 } 2140 2141 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2142 u64 read_format, 2143 const struct perf_sample *sample, 2144 bool swapped) 2145 { 2146 u64 *array; 2147 size_t sz; 2148 /* 2149 * used for cross-endian analysis. See git commit 65014ab3 2150 * for why this goofiness is needed. 2151 */ 2152 union u64_swap u; 2153 2154 array = event->sample.array; 2155 2156 if (type & PERF_SAMPLE_IDENTIFIER) { 2157 *array = sample->id; 2158 array++; 2159 } 2160 2161 if (type & PERF_SAMPLE_IP) { 2162 *array = sample->ip; 2163 array++; 2164 } 2165 2166 if (type & PERF_SAMPLE_TID) { 2167 u.val32[0] = sample->pid; 2168 u.val32[1] = sample->tid; 2169 if (swapped) { 2170 /* 2171 * Inverse of what is done in perf_evsel__parse_sample 2172 */ 2173 u.val32[0] = bswap_32(u.val32[0]); 2174 u.val32[1] = bswap_32(u.val32[1]); 2175 u.val64 = bswap_64(u.val64); 2176 } 2177 2178 *array = u.val64; 2179 array++; 2180 } 2181 2182 if (type & PERF_SAMPLE_TIME) { 2183 *array = sample->time; 2184 array++; 2185 } 2186 2187 if (type & PERF_SAMPLE_ADDR) { 2188 *array = sample->addr; 2189 array++; 2190 } 2191 2192 if (type & PERF_SAMPLE_ID) { 2193 *array = sample->id; 2194 array++; 2195 } 2196 2197 if (type & PERF_SAMPLE_STREAM_ID) { 2198 *array = sample->stream_id; 2199 array++; 2200 } 2201 2202 if (type & PERF_SAMPLE_CPU) { 2203 u.val32[0] = sample->cpu; 2204 if (swapped) { 2205 /* 2206 * Inverse of what is done in perf_evsel__parse_sample 2207 */ 2208 u.val32[0] = bswap_32(u.val32[0]); 2209 u.val64 = bswap_64(u.val64); 2210 } 2211 *array = u.val64; 2212 array++; 2213 } 2214 2215 if (type & PERF_SAMPLE_PERIOD) { 2216 *array = sample->period; 2217 array++; 2218 } 2219 2220 if (type & PERF_SAMPLE_READ) { 2221 if (read_format & PERF_FORMAT_GROUP) 2222 *array = sample->read.group.nr; 2223 else 2224 *array = sample->read.one.value; 2225 array++; 2226 2227 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2228 *array = sample->read.time_enabled; 2229 array++; 2230 } 2231 2232 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2233 *array = sample->read.time_running; 2234 array++; 2235 } 2236 2237 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2238 if (read_format & PERF_FORMAT_GROUP) { 2239 sz = sample->read.group.nr * 2240 sizeof(struct sample_read_value); 2241 memcpy(array, sample->read.group.values, sz); 2242 array = (void *)array + sz; 2243 } else { 2244 *array = sample->read.one.id; 2245 array++; 2246 } 2247 } 2248 2249 if (type & PERF_SAMPLE_CALLCHAIN) { 2250 sz = (sample->callchain->nr + 1) * sizeof(u64); 2251 memcpy(array, sample->callchain, sz); 2252 array = (void *)array + sz; 2253 } 2254 2255 if (type & PERF_SAMPLE_RAW) { 2256 u.val32[0] = sample->raw_size; 2257 if (WARN_ONCE(swapped, 2258 "Endianness of raw data not corrected!\n")) { 2259 /* 2260 * Inverse of what is done in perf_evsel__parse_sample 2261 */ 2262 u.val32[0] = bswap_32(u.val32[0]); 2263 u.val32[1] = bswap_32(u.val32[1]); 2264 u.val64 = bswap_64(u.val64); 2265 } 2266 *array = u.val64; 2267 array = (void *)array + sizeof(u32); 2268 2269 memcpy(array, sample->raw_data, sample->raw_size); 2270 array = (void *)array + sample->raw_size; 2271 } 2272 2273 if (type & PERF_SAMPLE_BRANCH_STACK) { 2274 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2275 sz += sizeof(u64); 2276 memcpy(array, sample->branch_stack, sz); 2277 array = (void *)array + sz; 2278 } 2279 2280 if (type & PERF_SAMPLE_REGS_USER) { 2281 if (sample->user_regs.abi) { 2282 *array++ = sample->user_regs.abi; 2283 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2284 memcpy(array, sample->user_regs.regs, sz); 2285 array = (void *)array + sz; 2286 } else { 2287 *array++ = 0; 2288 } 2289 } 2290 2291 if (type & PERF_SAMPLE_STACK_USER) { 2292 sz = sample->user_stack.size; 2293 *array++ = sz; 2294 if (sz) { 2295 memcpy(array, sample->user_stack.data, sz); 2296 array = (void *)array + sz; 2297 *array++ = sz; 2298 } 2299 } 2300 2301 if (type & PERF_SAMPLE_WEIGHT) { 2302 *array = sample->weight; 2303 array++; 2304 } 2305 2306 if (type & PERF_SAMPLE_DATA_SRC) { 2307 *array = sample->data_src; 2308 array++; 2309 } 2310 2311 if (type & PERF_SAMPLE_TRANSACTION) { 2312 *array = sample->transaction; 2313 array++; 2314 } 2315 2316 if (type & PERF_SAMPLE_REGS_INTR) { 2317 if (sample->intr_regs.abi) { 2318 *array++ = sample->intr_regs.abi; 2319 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2320 memcpy(array, sample->intr_regs.regs, sz); 2321 array = (void *)array + sz; 2322 } else { 2323 *array++ = 0; 2324 } 2325 } 2326 2327 return 0; 2328 } 2329 2330 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2331 { 2332 return pevent_find_field(evsel->tp_format, name); 2333 } 2334 2335 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2336 const char *name) 2337 { 2338 struct format_field *field = perf_evsel__field(evsel, name); 2339 int offset; 2340 2341 if (!field) 2342 return NULL; 2343 2344 offset = field->offset; 2345 2346 if (field->flags & FIELD_IS_DYNAMIC) { 2347 offset = *(int *)(sample->raw_data + field->offset); 2348 offset &= 0xffff; 2349 } 2350 2351 return sample->raw_data + offset; 2352 } 2353 2354 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2355 bool needs_swap) 2356 { 2357 u64 value; 2358 void *ptr = sample->raw_data + field->offset; 2359 2360 switch (field->size) { 2361 case 1: 2362 return *(u8 *)ptr; 2363 case 2: 2364 value = *(u16 *)ptr; 2365 break; 2366 case 4: 2367 value = *(u32 *)ptr; 2368 break; 2369 case 8: 2370 memcpy(&value, ptr, sizeof(u64)); 2371 break; 2372 default: 2373 return 0; 2374 } 2375 2376 if (!needs_swap) 2377 return value; 2378 2379 switch (field->size) { 2380 case 2: 2381 return bswap_16(value); 2382 case 4: 2383 return bswap_32(value); 2384 case 8: 2385 return bswap_64(value); 2386 default: 2387 return 0; 2388 } 2389 2390 return 0; 2391 } 2392 2393 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2394 const char *name) 2395 { 2396 struct format_field *field = perf_evsel__field(evsel, name); 2397 2398 if (!field) 2399 return 0; 2400 2401 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2402 } 2403 2404 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2405 char *msg, size_t msgsize) 2406 { 2407 int paranoid; 2408 2409 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2410 evsel->attr.type == PERF_TYPE_HARDWARE && 2411 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2412 /* 2413 * If it's cycles then fall back to hrtimer based 2414 * cpu-clock-tick sw counter, which is always available even if 2415 * no PMU support. 2416 * 2417 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2418 * b0a873e). 2419 */ 2420 scnprintf(msg, msgsize, "%s", 2421 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2422 2423 evsel->attr.type = PERF_TYPE_SOFTWARE; 2424 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2425 2426 zfree(&evsel->name); 2427 return true; 2428 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2429 (paranoid = perf_event_paranoid()) > 1) { 2430 const char *name = perf_evsel__name(evsel); 2431 char *new_name; 2432 2433 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2434 return false; 2435 2436 if (evsel->name) 2437 free(evsel->name); 2438 evsel->name = new_name; 2439 scnprintf(msg, msgsize, 2440 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2441 evsel->attr.exclude_kernel = 1; 2442 2443 return true; 2444 } 2445 2446 return false; 2447 } 2448 2449 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2450 int err, char *msg, size_t size) 2451 { 2452 char sbuf[STRERR_BUFSIZE]; 2453 2454 switch (err) { 2455 case EPERM: 2456 case EACCES: 2457 return scnprintf(msg, size, 2458 "You may not have permission to collect %sstats.\n\n" 2459 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2460 "which controls use of the performance events system by\n" 2461 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2462 "The current value is %d:\n\n" 2463 " -1: Allow use of (almost) all events by all users\n" 2464 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2465 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2466 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2467 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2468 " kernel.perf_event_paranoid = -1\n" , 2469 target->system_wide ? "system-wide " : "", 2470 perf_event_paranoid()); 2471 case ENOENT: 2472 return scnprintf(msg, size, "The %s event is not supported.", 2473 perf_evsel__name(evsel)); 2474 case EMFILE: 2475 return scnprintf(msg, size, "%s", 2476 "Too many events are opened.\n" 2477 "Probably the maximum number of open file descriptors has been reached.\n" 2478 "Hint: Try again after reducing the number of events.\n" 2479 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2480 case ENOMEM: 2481 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2482 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2483 return scnprintf(msg, size, 2484 "Not enough memory to setup event with callchain.\n" 2485 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2486 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2487 break; 2488 case ENODEV: 2489 if (target->cpu_list) 2490 return scnprintf(msg, size, "%s", 2491 "No such device - did you specify an out-of-range profile CPU?"); 2492 break; 2493 case EOPNOTSUPP: 2494 if (evsel->attr.sample_period != 0) 2495 return scnprintf(msg, size, "%s", 2496 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2497 if (evsel->attr.precise_ip) 2498 return scnprintf(msg, size, "%s", 2499 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2500 #if defined(__i386__) || defined(__x86_64__) 2501 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2502 return scnprintf(msg, size, "%s", 2503 "No hardware sampling interrupt available.\n" 2504 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2505 #endif 2506 break; 2507 case EBUSY: 2508 if (find_process("oprofiled")) 2509 return scnprintf(msg, size, 2510 "The PMU counters are busy/taken by another profiler.\n" 2511 "We found oprofile daemon running, please stop it and try again."); 2512 break; 2513 case EINVAL: 2514 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2515 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2516 if (perf_missing_features.clockid) 2517 return scnprintf(msg, size, "clockid feature not supported."); 2518 if (perf_missing_features.clockid_wrong) 2519 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2520 break; 2521 default: 2522 break; 2523 } 2524 2525 return scnprintf(msg, size, 2526 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2527 "/bin/dmesg may provide additional information.\n" 2528 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2529 err, str_error_r(err, sbuf, sizeof(sbuf)), 2530 perf_evsel__name(evsel)); 2531 } 2532 2533 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2534 { 2535 if (evsel && evsel->evlist && evsel->evlist->env) 2536 return evsel->evlist->env->arch; 2537 return NULL; 2538 } 2539