xref: /openbmc/linux/tools/perf/util/evsel.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->evlist	   = NULL;
236 	evsel->bpf_fd	   = -1;
237 	INIT_LIST_HEAD(&evsel->node);
238 	INIT_LIST_HEAD(&evsel->config_terms);
239 	perf_evsel__object.init(evsel);
240 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 	perf_evsel__calc_id_pos(evsel);
242 	evsel->cmdline_group_boundary = false;
243 	evsel->metric_expr   = NULL;
244 	evsel->metric_name   = NULL;
245 	evsel->metric_events = NULL;
246 	evsel->collect_stat  = false;
247 	evsel->pmu_name      = NULL;
248 }
249 
250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 {
252 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253 
254 	if (!evsel)
255 		return NULL;
256 	perf_evsel__init(evsel, attr, idx);
257 
258 	if (perf_evsel__is_bpf_output(evsel)) {
259 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 		evsel->attr.sample_period = 1;
262 	}
263 
264 	if (perf_evsel__is_clock(evsel)) {
265 		/*
266 		 * The evsel->unit points to static alias->unit
267 		 * so it's ok to use static string in here.
268 		 */
269 		static const char *unit = "msec";
270 
271 		evsel->unit = unit;
272 		evsel->scale = 1e-6;
273 	}
274 
275 	return evsel;
276 }
277 
278 static bool perf_event_can_profile_kernel(void)
279 {
280 	return geteuid() == 0 || perf_event_paranoid() == -1;
281 }
282 
283 struct perf_evsel *perf_evsel__new_cycles(bool precise)
284 {
285 	struct perf_event_attr attr = {
286 		.type	= PERF_TYPE_HARDWARE,
287 		.config	= PERF_COUNT_HW_CPU_CYCLES,
288 		.exclude_kernel	= !perf_event_can_profile_kernel(),
289 	};
290 	struct perf_evsel *evsel;
291 
292 	event_attr_init(&attr);
293 
294 	if (!precise)
295 		goto new_event;
296 	/*
297 	 * Unnamed union member, not supported as struct member named
298 	 * initializer in older compilers such as gcc 4.4.7
299 	 *
300 	 * Just for probing the precise_ip:
301 	 */
302 	attr.sample_period = 1;
303 
304 	perf_event_attr__set_max_precise_ip(&attr);
305 	/*
306 	 * Now let the usual logic to set up the perf_event_attr defaults
307 	 * to kick in when we return and before perf_evsel__open() is called.
308 	 */
309 	attr.sample_period = 0;
310 new_event:
311 	evsel = perf_evsel__new(&attr);
312 	if (evsel == NULL)
313 		goto out;
314 
315 	/* use asprintf() because free(evsel) assumes name is allocated */
316 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
317 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
318 		     attr.exclude_kernel ? "u" : "",
319 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
320 		goto error_free;
321 out:
322 	return evsel;
323 error_free:
324 	perf_evsel__delete(evsel);
325 	evsel = NULL;
326 	goto out;
327 }
328 
329 /*
330  * Returns pointer with encoded error via <linux/err.h> interface.
331  */
332 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
333 {
334 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
335 	int err = -ENOMEM;
336 
337 	if (evsel == NULL) {
338 		goto out_err;
339 	} else {
340 		struct perf_event_attr attr = {
341 			.type	       = PERF_TYPE_TRACEPOINT,
342 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
343 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
344 		};
345 
346 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
347 			goto out_free;
348 
349 		evsel->tp_format = trace_event__tp_format(sys, name);
350 		if (IS_ERR(evsel->tp_format)) {
351 			err = PTR_ERR(evsel->tp_format);
352 			goto out_free;
353 		}
354 
355 		event_attr_init(&attr);
356 		attr.config = evsel->tp_format->id;
357 		attr.sample_period = 1;
358 		perf_evsel__init(evsel, &attr, idx);
359 	}
360 
361 	return evsel;
362 
363 out_free:
364 	zfree(&evsel->name);
365 	free(evsel);
366 out_err:
367 	return ERR_PTR(err);
368 }
369 
370 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
371 	"cycles",
372 	"instructions",
373 	"cache-references",
374 	"cache-misses",
375 	"branches",
376 	"branch-misses",
377 	"bus-cycles",
378 	"stalled-cycles-frontend",
379 	"stalled-cycles-backend",
380 	"ref-cycles",
381 };
382 
383 static const char *__perf_evsel__hw_name(u64 config)
384 {
385 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
386 		return perf_evsel__hw_names[config];
387 
388 	return "unknown-hardware";
389 }
390 
391 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
392 {
393 	int colon = 0, r = 0;
394 	struct perf_event_attr *attr = &evsel->attr;
395 	bool exclude_guest_default = false;
396 
397 #define MOD_PRINT(context, mod)	do {					\
398 		if (!attr->exclude_##context) {				\
399 			if (!colon) colon = ++r;			\
400 			r += scnprintf(bf + r, size - r, "%c", mod);	\
401 		} } while(0)
402 
403 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
404 		MOD_PRINT(kernel, 'k');
405 		MOD_PRINT(user, 'u');
406 		MOD_PRINT(hv, 'h');
407 		exclude_guest_default = true;
408 	}
409 
410 	if (attr->precise_ip) {
411 		if (!colon)
412 			colon = ++r;
413 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
414 		exclude_guest_default = true;
415 	}
416 
417 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
418 		MOD_PRINT(host, 'H');
419 		MOD_PRINT(guest, 'G');
420 	}
421 #undef MOD_PRINT
422 	if (colon)
423 		bf[colon - 1] = ':';
424 	return r;
425 }
426 
427 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
428 {
429 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
430 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
431 }
432 
433 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
434 	"cpu-clock",
435 	"task-clock",
436 	"page-faults",
437 	"context-switches",
438 	"cpu-migrations",
439 	"minor-faults",
440 	"major-faults",
441 	"alignment-faults",
442 	"emulation-faults",
443 	"dummy",
444 };
445 
446 static const char *__perf_evsel__sw_name(u64 config)
447 {
448 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
449 		return perf_evsel__sw_names[config];
450 	return "unknown-software";
451 }
452 
453 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
454 {
455 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
456 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
457 }
458 
459 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
460 {
461 	int r;
462 
463 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
464 
465 	if (type & HW_BREAKPOINT_R)
466 		r += scnprintf(bf + r, size - r, "r");
467 
468 	if (type & HW_BREAKPOINT_W)
469 		r += scnprintf(bf + r, size - r, "w");
470 
471 	if (type & HW_BREAKPOINT_X)
472 		r += scnprintf(bf + r, size - r, "x");
473 
474 	return r;
475 }
476 
477 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
478 {
479 	struct perf_event_attr *attr = &evsel->attr;
480 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
481 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
482 }
483 
484 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
485 				[PERF_EVSEL__MAX_ALIASES] = {
486  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
487  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
488  { "LLC",	"L2",							},
489  { "dTLB",	"d-tlb",	"Data-TLB",				},
490  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
491  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
492  { "node",								},
493 };
494 
495 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
496 				   [PERF_EVSEL__MAX_ALIASES] = {
497  { "load",	"loads",	"read",					},
498  { "store",	"stores",	"write",				},
499  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
500 };
501 
502 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
503 				       [PERF_EVSEL__MAX_ALIASES] = {
504  { "refs",	"Reference",	"ops",		"access",		},
505  { "misses",	"miss",							},
506 };
507 
508 #define C(x)		PERF_COUNT_HW_CACHE_##x
509 #define CACHE_READ	(1 << C(OP_READ))
510 #define CACHE_WRITE	(1 << C(OP_WRITE))
511 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
512 #define COP(x)		(1 << x)
513 
514 /*
515  * cache operartion stat
516  * L1I : Read and prefetch only
517  * ITLB and BPU : Read-only
518  */
519 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
520  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
522  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524  [C(ITLB)]	= (CACHE_READ),
525  [C(BPU)]	= (CACHE_READ),
526  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
527 };
528 
529 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
530 {
531 	if (perf_evsel__hw_cache_stat[type] & COP(op))
532 		return true;	/* valid */
533 	else
534 		return false;	/* invalid */
535 }
536 
537 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
538 					    char *bf, size_t size)
539 {
540 	if (result) {
541 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
542 				 perf_evsel__hw_cache_op[op][0],
543 				 perf_evsel__hw_cache_result[result][0]);
544 	}
545 
546 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
547 			 perf_evsel__hw_cache_op[op][1]);
548 }
549 
550 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
551 {
552 	u8 op, result, type = (config >>  0) & 0xff;
553 	const char *err = "unknown-ext-hardware-cache-type";
554 
555 	if (type >= PERF_COUNT_HW_CACHE_MAX)
556 		goto out_err;
557 
558 	op = (config >>  8) & 0xff;
559 	err = "unknown-ext-hardware-cache-op";
560 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
561 		goto out_err;
562 
563 	result = (config >> 16) & 0xff;
564 	err = "unknown-ext-hardware-cache-result";
565 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
566 		goto out_err;
567 
568 	err = "invalid-cache";
569 	if (!perf_evsel__is_cache_op_valid(type, op))
570 		goto out_err;
571 
572 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
573 out_err:
574 	return scnprintf(bf, size, "%s", err);
575 }
576 
577 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
578 {
579 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
580 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581 }
582 
583 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
584 {
585 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
586 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
587 }
588 
589 const char *perf_evsel__name(struct perf_evsel *evsel)
590 {
591 	char bf[128];
592 
593 	if (evsel->name)
594 		return evsel->name;
595 
596 	switch (evsel->attr.type) {
597 	case PERF_TYPE_RAW:
598 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
599 		break;
600 
601 	case PERF_TYPE_HARDWARE:
602 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
603 		break;
604 
605 	case PERF_TYPE_HW_CACHE:
606 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
607 		break;
608 
609 	case PERF_TYPE_SOFTWARE:
610 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
611 		break;
612 
613 	case PERF_TYPE_TRACEPOINT:
614 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
615 		break;
616 
617 	case PERF_TYPE_BREAKPOINT:
618 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
619 		break;
620 
621 	default:
622 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
623 			  evsel->attr.type);
624 		break;
625 	}
626 
627 	evsel->name = strdup(bf);
628 
629 	return evsel->name ?: "unknown";
630 }
631 
632 const char *perf_evsel__group_name(struct perf_evsel *evsel)
633 {
634 	return evsel->group_name ?: "anon group";
635 }
636 
637 /*
638  * Returns the group details for the specified leader,
639  * with following rules.
640  *
641  *  For record -e '{cycles,instructions}'
642  *    'anon group { cycles:u, instructions:u }'
643  *
644  *  For record -e 'cycles,instructions' and report --group
645  *    'cycles:u, instructions:u'
646  */
647 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
648 {
649 	int ret = 0;
650 	struct perf_evsel *pos;
651 	const char *group_name = perf_evsel__group_name(evsel);
652 
653 	if (!evsel->forced_leader)
654 		ret = scnprintf(buf, size, "%s { ", group_name);
655 
656 	ret += scnprintf(buf + ret, size - ret, "%s",
657 			 perf_evsel__name(evsel));
658 
659 	for_each_group_member(pos, evsel)
660 		ret += scnprintf(buf + ret, size - ret, ", %s",
661 				 perf_evsel__name(pos));
662 
663 	if (!evsel->forced_leader)
664 		ret += scnprintf(buf + ret, size - ret, " }");
665 
666 	return ret;
667 }
668 
669 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
670 					   struct record_opts *opts,
671 					   struct callchain_param *param)
672 {
673 	bool function = perf_evsel__is_function_event(evsel);
674 	struct perf_event_attr *attr = &evsel->attr;
675 
676 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
677 
678 	attr->sample_max_stack = param->max_stack;
679 
680 	if (param->record_mode == CALLCHAIN_LBR) {
681 		if (!opts->branch_stack) {
682 			if (attr->exclude_user) {
683 				pr_warning("LBR callstack option is only available "
684 					   "to get user callchain information. "
685 					   "Falling back to framepointers.\n");
686 			} else {
687 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
688 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
689 							PERF_SAMPLE_BRANCH_CALL_STACK |
690 							PERF_SAMPLE_BRANCH_NO_CYCLES |
691 							PERF_SAMPLE_BRANCH_NO_FLAGS;
692 			}
693 		} else
694 			 pr_warning("Cannot use LBR callstack with branch stack. "
695 				    "Falling back to framepointers.\n");
696 	}
697 
698 	if (param->record_mode == CALLCHAIN_DWARF) {
699 		if (!function) {
700 			perf_evsel__set_sample_bit(evsel, REGS_USER);
701 			perf_evsel__set_sample_bit(evsel, STACK_USER);
702 			attr->sample_regs_user |= PERF_REGS_MASK;
703 			attr->sample_stack_user = param->dump_size;
704 			attr->exclude_callchain_user = 1;
705 		} else {
706 			pr_info("Cannot use DWARF unwind for function trace event,"
707 				" falling back to framepointers.\n");
708 		}
709 	}
710 
711 	if (function) {
712 		pr_info("Disabling user space callchains for function trace event.\n");
713 		attr->exclude_callchain_user = 1;
714 	}
715 }
716 
717 void perf_evsel__config_callchain(struct perf_evsel *evsel,
718 				  struct record_opts *opts,
719 				  struct callchain_param *param)
720 {
721 	if (param->enabled)
722 		return __perf_evsel__config_callchain(evsel, opts, param);
723 }
724 
725 static void
726 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
727 			    struct callchain_param *param)
728 {
729 	struct perf_event_attr *attr = &evsel->attr;
730 
731 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
732 	if (param->record_mode == CALLCHAIN_LBR) {
733 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
734 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
735 					      PERF_SAMPLE_BRANCH_CALL_STACK);
736 	}
737 	if (param->record_mode == CALLCHAIN_DWARF) {
738 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
739 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
740 	}
741 }
742 
743 static void apply_config_terms(struct perf_evsel *evsel,
744 			       struct record_opts *opts, bool track)
745 {
746 	struct perf_evsel_config_term *term;
747 	struct list_head *config_terms = &evsel->config_terms;
748 	struct perf_event_attr *attr = &evsel->attr;
749 	/* callgraph default */
750 	struct callchain_param param = {
751 		.record_mode = callchain_param.record_mode,
752 	};
753 	u32 dump_size = 0;
754 	int max_stack = 0;
755 	const char *callgraph_buf = NULL;
756 
757 	list_for_each_entry(term, config_terms, list) {
758 		switch (term->type) {
759 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
760 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
761 				attr->sample_period = term->val.period;
762 				attr->freq = 0;
763 				perf_evsel__reset_sample_bit(evsel, PERIOD);
764 			}
765 			break;
766 		case PERF_EVSEL__CONFIG_TERM_FREQ:
767 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
768 				attr->sample_freq = term->val.freq;
769 				attr->freq = 1;
770 				perf_evsel__set_sample_bit(evsel, PERIOD);
771 			}
772 			break;
773 		case PERF_EVSEL__CONFIG_TERM_TIME:
774 			if (term->val.time)
775 				perf_evsel__set_sample_bit(evsel, TIME);
776 			else
777 				perf_evsel__reset_sample_bit(evsel, TIME);
778 			break;
779 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
780 			callgraph_buf = term->val.callgraph;
781 			break;
782 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
783 			if (term->val.branch && strcmp(term->val.branch, "no")) {
784 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
785 				parse_branch_str(term->val.branch,
786 						 &attr->branch_sample_type);
787 			} else
788 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
789 			break;
790 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
791 			dump_size = term->val.stack_user;
792 			break;
793 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
794 			max_stack = term->val.max_stack;
795 			break;
796 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
797 			/*
798 			 * attr->inherit should has already been set by
799 			 * perf_evsel__config. If user explicitly set
800 			 * inherit using config terms, override global
801 			 * opt->no_inherit setting.
802 			 */
803 			attr->inherit = term->val.inherit ? 1 : 0;
804 			break;
805 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
806 			attr->write_backward = term->val.overwrite ? 1 : 0;
807 			break;
808 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
809 			break;
810 		default:
811 			break;
812 		}
813 	}
814 
815 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
816 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
817 		bool sample_address = false;
818 
819 		if (max_stack) {
820 			param.max_stack = max_stack;
821 			if (callgraph_buf == NULL)
822 				callgraph_buf = "fp";
823 		}
824 
825 		/* parse callgraph parameters */
826 		if (callgraph_buf != NULL) {
827 			if (!strcmp(callgraph_buf, "no")) {
828 				param.enabled = false;
829 				param.record_mode = CALLCHAIN_NONE;
830 			} else {
831 				param.enabled = true;
832 				if (parse_callchain_record(callgraph_buf, &param)) {
833 					pr_err("per-event callgraph setting for %s failed. "
834 					       "Apply callgraph global setting for it\n",
835 					       evsel->name);
836 					return;
837 				}
838 				if (param.record_mode == CALLCHAIN_DWARF)
839 					sample_address = true;
840 			}
841 		}
842 		if (dump_size > 0) {
843 			dump_size = round_up(dump_size, sizeof(u64));
844 			param.dump_size = dump_size;
845 		}
846 
847 		/* If global callgraph set, clear it */
848 		if (callchain_param.enabled)
849 			perf_evsel__reset_callgraph(evsel, &callchain_param);
850 
851 		/* set perf-event callgraph */
852 		if (param.enabled) {
853 			if (sample_address) {
854 				perf_evsel__set_sample_bit(evsel, ADDR);
855 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
856 				evsel->attr.mmap_data = track;
857 			}
858 			perf_evsel__config_callchain(evsel, opts, &param);
859 		}
860 	}
861 }
862 
863 static bool is_dummy_event(struct perf_evsel *evsel)
864 {
865 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
866 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
867 }
868 
869 /*
870  * The enable_on_exec/disabled value strategy:
871  *
872  *  1) For any type of traced program:
873  *    - all independent events and group leaders are disabled
874  *    - all group members are enabled
875  *
876  *     Group members are ruled by group leaders. They need to
877  *     be enabled, because the group scheduling relies on that.
878  *
879  *  2) For traced programs executed by perf:
880  *     - all independent events and group leaders have
881  *       enable_on_exec set
882  *     - we don't specifically enable or disable any event during
883  *       the record command
884  *
885  *     Independent events and group leaders are initially disabled
886  *     and get enabled by exec. Group members are ruled by group
887  *     leaders as stated in 1).
888  *
889  *  3) For traced programs attached by perf (pid/tid):
890  *     - we specifically enable or disable all events during
891  *       the record command
892  *
893  *     When attaching events to already running traced we
894  *     enable/disable events specifically, as there's no
895  *     initial traced exec call.
896  */
897 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
898 			struct callchain_param *callchain)
899 {
900 	struct perf_evsel *leader = evsel->leader;
901 	struct perf_event_attr *attr = &evsel->attr;
902 	int track = evsel->tracking;
903 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
904 
905 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
906 	attr->inherit	    = !opts->no_inherit;
907 	attr->write_backward = opts->overwrite ? 1 : 0;
908 
909 	perf_evsel__set_sample_bit(evsel, IP);
910 	perf_evsel__set_sample_bit(evsel, TID);
911 
912 	if (evsel->sample_read) {
913 		perf_evsel__set_sample_bit(evsel, READ);
914 
915 		/*
916 		 * We need ID even in case of single event, because
917 		 * PERF_SAMPLE_READ process ID specific data.
918 		 */
919 		perf_evsel__set_sample_id(evsel, false);
920 
921 		/*
922 		 * Apply group format only if we belong to group
923 		 * with more than one members.
924 		 */
925 		if (leader->nr_members > 1) {
926 			attr->read_format |= PERF_FORMAT_GROUP;
927 			attr->inherit = 0;
928 		}
929 	}
930 
931 	/*
932 	 * We default some events to have a default interval. But keep
933 	 * it a weak assumption overridable by the user.
934 	 */
935 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
936 				     opts->user_interval != ULLONG_MAX)) {
937 		if (opts->freq) {
938 			perf_evsel__set_sample_bit(evsel, PERIOD);
939 			attr->freq		= 1;
940 			attr->sample_freq	= opts->freq;
941 		} else {
942 			attr->sample_period = opts->default_interval;
943 		}
944 	}
945 
946 	/*
947 	 * Disable sampling for all group members other
948 	 * than leader in case leader 'leads' the sampling.
949 	 */
950 	if ((leader != evsel) && leader->sample_read) {
951 		attr->freq           = 0;
952 		attr->sample_freq    = 0;
953 		attr->sample_period  = 0;
954 		attr->write_backward = 0;
955 		attr->sample_id_all  = 0;
956 	}
957 
958 	if (opts->no_samples)
959 		attr->sample_freq = 0;
960 
961 	if (opts->inherit_stat) {
962 		evsel->attr.read_format |=
963 			PERF_FORMAT_TOTAL_TIME_ENABLED |
964 			PERF_FORMAT_TOTAL_TIME_RUNNING |
965 			PERF_FORMAT_ID;
966 		attr->inherit_stat = 1;
967 	}
968 
969 	if (opts->sample_address) {
970 		perf_evsel__set_sample_bit(evsel, ADDR);
971 		attr->mmap_data = track;
972 	}
973 
974 	/*
975 	 * We don't allow user space callchains for  function trace
976 	 * event, due to issues with page faults while tracing page
977 	 * fault handler and its overall trickiness nature.
978 	 */
979 	if (perf_evsel__is_function_event(evsel))
980 		evsel->attr.exclude_callchain_user = 1;
981 
982 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
983 		perf_evsel__config_callchain(evsel, opts, callchain);
984 
985 	if (opts->sample_intr_regs) {
986 		attr->sample_regs_intr = opts->sample_intr_regs;
987 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
988 	}
989 
990 	if (opts->sample_user_regs) {
991 		attr->sample_regs_user |= opts->sample_user_regs;
992 		perf_evsel__set_sample_bit(evsel, REGS_USER);
993 	}
994 
995 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
996 		perf_evsel__set_sample_bit(evsel, CPU);
997 
998 	/*
999 	 * When the user explicitly disabled time don't force it here.
1000 	 */
1001 	if (opts->sample_time &&
1002 	    (!perf_missing_features.sample_id_all &&
1003 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1004 	     opts->sample_time_set)))
1005 		perf_evsel__set_sample_bit(evsel, TIME);
1006 
1007 	if (opts->raw_samples && !evsel->no_aux_samples) {
1008 		perf_evsel__set_sample_bit(evsel, TIME);
1009 		perf_evsel__set_sample_bit(evsel, RAW);
1010 		perf_evsel__set_sample_bit(evsel, CPU);
1011 	}
1012 
1013 	if (opts->sample_address)
1014 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1015 
1016 	if (opts->sample_phys_addr)
1017 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1018 
1019 	if (opts->no_buffering) {
1020 		attr->watermark = 0;
1021 		attr->wakeup_events = 1;
1022 	}
1023 	if (opts->branch_stack && !evsel->no_aux_samples) {
1024 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1025 		attr->branch_sample_type = opts->branch_stack;
1026 	}
1027 
1028 	if (opts->sample_weight)
1029 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1030 
1031 	attr->task  = track;
1032 	attr->mmap  = track;
1033 	attr->mmap2 = track && !perf_missing_features.mmap2;
1034 	attr->comm  = track;
1035 
1036 	if (opts->record_namespaces)
1037 		attr->namespaces  = track;
1038 
1039 	if (opts->record_switch_events)
1040 		attr->context_switch = track;
1041 
1042 	if (opts->sample_transaction)
1043 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1044 
1045 	if (opts->running_time) {
1046 		evsel->attr.read_format |=
1047 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1048 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1049 	}
1050 
1051 	/*
1052 	 * XXX see the function comment above
1053 	 *
1054 	 * Disabling only independent events or group leaders,
1055 	 * keeping group members enabled.
1056 	 */
1057 	if (perf_evsel__is_group_leader(evsel))
1058 		attr->disabled = 1;
1059 
1060 	/*
1061 	 * Setting enable_on_exec for independent events and
1062 	 * group leaders for traced executed by perf.
1063 	 */
1064 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1065 		!opts->initial_delay)
1066 		attr->enable_on_exec = 1;
1067 
1068 	if (evsel->immediate) {
1069 		attr->disabled = 0;
1070 		attr->enable_on_exec = 0;
1071 	}
1072 
1073 	clockid = opts->clockid;
1074 	if (opts->use_clockid) {
1075 		attr->use_clockid = 1;
1076 		attr->clockid = opts->clockid;
1077 	}
1078 
1079 	if (evsel->precise_max)
1080 		perf_event_attr__set_max_precise_ip(attr);
1081 
1082 	if (opts->all_user) {
1083 		attr->exclude_kernel = 1;
1084 		attr->exclude_user   = 0;
1085 	}
1086 
1087 	if (opts->all_kernel) {
1088 		attr->exclude_kernel = 0;
1089 		attr->exclude_user   = 1;
1090 	}
1091 
1092 	/*
1093 	 * Apply event specific term settings,
1094 	 * it overloads any global configuration.
1095 	 */
1096 	apply_config_terms(evsel, opts, track);
1097 
1098 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1099 
1100 	/* The --period option takes the precedence. */
1101 	if (opts->period_set) {
1102 		if (opts->period)
1103 			perf_evsel__set_sample_bit(evsel, PERIOD);
1104 		else
1105 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1106 	}
1107 
1108 	/*
1109 	 * For initial_delay, a dummy event is added implicitly.
1110 	 * The software event will trigger -EOPNOTSUPP error out,
1111 	 * if BRANCH_STACK bit is set.
1112 	 */
1113 	if (opts->initial_delay && is_dummy_event(evsel))
1114 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1115 }
1116 
1117 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1118 {
1119 	if (evsel->system_wide)
1120 		nthreads = 1;
1121 
1122 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1123 
1124 	if (evsel->fd) {
1125 		int cpu, thread;
1126 		for (cpu = 0; cpu < ncpus; cpu++) {
1127 			for (thread = 0; thread < nthreads; thread++) {
1128 				FD(evsel, cpu, thread) = -1;
1129 			}
1130 		}
1131 	}
1132 
1133 	return evsel->fd != NULL ? 0 : -ENOMEM;
1134 }
1135 
1136 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1137 			  int ioc,  void *arg)
1138 {
1139 	int cpu, thread;
1140 
1141 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1142 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1143 			int fd = FD(evsel, cpu, thread),
1144 			    err = ioctl(fd, ioc, arg);
1145 
1146 			if (err)
1147 				return err;
1148 		}
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1155 {
1156 	return perf_evsel__run_ioctl(evsel,
1157 				     PERF_EVENT_IOC_SET_FILTER,
1158 				     (void *)filter);
1159 }
1160 
1161 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1162 {
1163 	char *new_filter = strdup(filter);
1164 
1165 	if (new_filter != NULL) {
1166 		free(evsel->filter);
1167 		evsel->filter = new_filter;
1168 		return 0;
1169 	}
1170 
1171 	return -1;
1172 }
1173 
1174 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1175 				     const char *fmt, const char *filter)
1176 {
1177 	char *new_filter;
1178 
1179 	if (evsel->filter == NULL)
1180 		return perf_evsel__set_filter(evsel, filter);
1181 
1182 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1183 		free(evsel->filter);
1184 		evsel->filter = new_filter;
1185 		return 0;
1186 	}
1187 
1188 	return -1;
1189 }
1190 
1191 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1192 {
1193 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1194 }
1195 
1196 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1197 {
1198 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1199 }
1200 
1201 int perf_evsel__enable(struct perf_evsel *evsel)
1202 {
1203 	return perf_evsel__run_ioctl(evsel,
1204 				     PERF_EVENT_IOC_ENABLE,
1205 				     0);
1206 }
1207 
1208 int perf_evsel__disable(struct perf_evsel *evsel)
1209 {
1210 	return perf_evsel__run_ioctl(evsel,
1211 				     PERF_EVENT_IOC_DISABLE,
1212 				     0);
1213 }
1214 
1215 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1216 {
1217 	if (ncpus == 0 || nthreads == 0)
1218 		return 0;
1219 
1220 	if (evsel->system_wide)
1221 		nthreads = 1;
1222 
1223 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1224 	if (evsel->sample_id == NULL)
1225 		return -ENOMEM;
1226 
1227 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1228 	if (evsel->id == NULL) {
1229 		xyarray__delete(evsel->sample_id);
1230 		evsel->sample_id = NULL;
1231 		return -ENOMEM;
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1238 {
1239 	xyarray__delete(evsel->fd);
1240 	evsel->fd = NULL;
1241 }
1242 
1243 static void perf_evsel__free_id(struct perf_evsel *evsel)
1244 {
1245 	xyarray__delete(evsel->sample_id);
1246 	evsel->sample_id = NULL;
1247 	zfree(&evsel->id);
1248 }
1249 
1250 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1251 {
1252 	struct perf_evsel_config_term *term, *h;
1253 
1254 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1255 		list_del(&term->list);
1256 		free(term);
1257 	}
1258 }
1259 
1260 void perf_evsel__close_fd(struct perf_evsel *evsel)
1261 {
1262 	int cpu, thread;
1263 
1264 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1265 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1266 			close(FD(evsel, cpu, thread));
1267 			FD(evsel, cpu, thread) = -1;
1268 		}
1269 }
1270 
1271 void perf_evsel__exit(struct perf_evsel *evsel)
1272 {
1273 	assert(list_empty(&evsel->node));
1274 	assert(evsel->evlist == NULL);
1275 	perf_evsel__free_fd(evsel);
1276 	perf_evsel__free_id(evsel);
1277 	perf_evsel__free_config_terms(evsel);
1278 	cgroup__put(evsel->cgrp);
1279 	cpu_map__put(evsel->cpus);
1280 	cpu_map__put(evsel->own_cpus);
1281 	thread_map__put(evsel->threads);
1282 	zfree(&evsel->group_name);
1283 	zfree(&evsel->name);
1284 	perf_evsel__object.fini(evsel);
1285 }
1286 
1287 void perf_evsel__delete(struct perf_evsel *evsel)
1288 {
1289 	perf_evsel__exit(evsel);
1290 	free(evsel);
1291 }
1292 
1293 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1294 				struct perf_counts_values *count)
1295 {
1296 	struct perf_counts_values tmp;
1297 
1298 	if (!evsel->prev_raw_counts)
1299 		return;
1300 
1301 	if (cpu == -1) {
1302 		tmp = evsel->prev_raw_counts->aggr;
1303 		evsel->prev_raw_counts->aggr = *count;
1304 	} else {
1305 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1306 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1307 	}
1308 
1309 	count->val = count->val - tmp.val;
1310 	count->ena = count->ena - tmp.ena;
1311 	count->run = count->run - tmp.run;
1312 }
1313 
1314 void perf_counts_values__scale(struct perf_counts_values *count,
1315 			       bool scale, s8 *pscaled)
1316 {
1317 	s8 scaled = 0;
1318 
1319 	if (scale) {
1320 		if (count->run == 0) {
1321 			scaled = -1;
1322 			count->val = 0;
1323 		} else if (count->run < count->ena) {
1324 			scaled = 1;
1325 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1326 		}
1327 	} else
1328 		count->ena = count->run = 0;
1329 
1330 	if (pscaled)
1331 		*pscaled = scaled;
1332 }
1333 
1334 static int perf_evsel__read_size(struct perf_evsel *evsel)
1335 {
1336 	u64 read_format = evsel->attr.read_format;
1337 	int entry = sizeof(u64); /* value */
1338 	int size = 0;
1339 	int nr = 1;
1340 
1341 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1342 		size += sizeof(u64);
1343 
1344 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1345 		size += sizeof(u64);
1346 
1347 	if (read_format & PERF_FORMAT_ID)
1348 		entry += sizeof(u64);
1349 
1350 	if (read_format & PERF_FORMAT_GROUP) {
1351 		nr = evsel->nr_members;
1352 		size += sizeof(u64);
1353 	}
1354 
1355 	size += entry * nr;
1356 	return size;
1357 }
1358 
1359 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1360 		     struct perf_counts_values *count)
1361 {
1362 	size_t size = perf_evsel__read_size(evsel);
1363 
1364 	memset(count, 0, sizeof(*count));
1365 
1366 	if (FD(evsel, cpu, thread) < 0)
1367 		return -EINVAL;
1368 
1369 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1370 		return -errno;
1371 
1372 	return 0;
1373 }
1374 
1375 static int
1376 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1377 {
1378 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1379 
1380 	return perf_evsel__read(evsel, cpu, thread, count);
1381 }
1382 
1383 static void
1384 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1385 		      u64 val, u64 ena, u64 run)
1386 {
1387 	struct perf_counts_values *count;
1388 
1389 	count = perf_counts(counter->counts, cpu, thread);
1390 
1391 	count->val    = val;
1392 	count->ena    = ena;
1393 	count->run    = run;
1394 	count->loaded = true;
1395 }
1396 
1397 static int
1398 perf_evsel__process_group_data(struct perf_evsel *leader,
1399 			       int cpu, int thread, u64 *data)
1400 {
1401 	u64 read_format = leader->attr.read_format;
1402 	struct sample_read_value *v;
1403 	u64 nr, ena = 0, run = 0, i;
1404 
1405 	nr = *data++;
1406 
1407 	if (nr != (u64) leader->nr_members)
1408 		return -EINVAL;
1409 
1410 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1411 		ena = *data++;
1412 
1413 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1414 		run = *data++;
1415 
1416 	v = (struct sample_read_value *) data;
1417 
1418 	perf_evsel__set_count(leader, cpu, thread,
1419 			      v[0].value, ena, run);
1420 
1421 	for (i = 1; i < nr; i++) {
1422 		struct perf_evsel *counter;
1423 
1424 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1425 		if (!counter)
1426 			return -EINVAL;
1427 
1428 		perf_evsel__set_count(counter, cpu, thread,
1429 				      v[i].value, ena, run);
1430 	}
1431 
1432 	return 0;
1433 }
1434 
1435 static int
1436 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1437 {
1438 	struct perf_stat_evsel *ps = leader->stats;
1439 	u64 read_format = leader->attr.read_format;
1440 	int size = perf_evsel__read_size(leader);
1441 	u64 *data = ps->group_data;
1442 
1443 	if (!(read_format & PERF_FORMAT_ID))
1444 		return -EINVAL;
1445 
1446 	if (!perf_evsel__is_group_leader(leader))
1447 		return -EINVAL;
1448 
1449 	if (!data) {
1450 		data = zalloc(size);
1451 		if (!data)
1452 			return -ENOMEM;
1453 
1454 		ps->group_data = data;
1455 	}
1456 
1457 	if (FD(leader, cpu, thread) < 0)
1458 		return -EINVAL;
1459 
1460 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1461 		return -errno;
1462 
1463 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1464 }
1465 
1466 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1467 {
1468 	u64 read_format = evsel->attr.read_format;
1469 
1470 	if (read_format & PERF_FORMAT_GROUP)
1471 		return perf_evsel__read_group(evsel, cpu, thread);
1472 	else
1473 		return perf_evsel__read_one(evsel, cpu, thread);
1474 }
1475 
1476 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1477 			      int cpu, int thread, bool scale)
1478 {
1479 	struct perf_counts_values count;
1480 	size_t nv = scale ? 3 : 1;
1481 
1482 	if (FD(evsel, cpu, thread) < 0)
1483 		return -EINVAL;
1484 
1485 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1486 		return -ENOMEM;
1487 
1488 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1489 		return -errno;
1490 
1491 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1492 	perf_counts_values__scale(&count, scale, NULL);
1493 	*perf_counts(evsel->counts, cpu, thread) = count;
1494 	return 0;
1495 }
1496 
1497 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1498 {
1499 	struct perf_evsel *leader = evsel->leader;
1500 	int fd;
1501 
1502 	if (perf_evsel__is_group_leader(evsel))
1503 		return -1;
1504 
1505 	/*
1506 	 * Leader must be already processed/open,
1507 	 * if not it's a bug.
1508 	 */
1509 	BUG_ON(!leader->fd);
1510 
1511 	fd = FD(leader, cpu, thread);
1512 	BUG_ON(fd == -1);
1513 
1514 	return fd;
1515 }
1516 
1517 struct bit_names {
1518 	int bit;
1519 	const char *name;
1520 };
1521 
1522 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1523 {
1524 	bool first_bit = true;
1525 	int i = 0;
1526 
1527 	do {
1528 		if (value & bits[i].bit) {
1529 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1530 			first_bit = false;
1531 		}
1532 	} while (bits[++i].name != NULL);
1533 }
1534 
1535 static void __p_sample_type(char *buf, size_t size, u64 value)
1536 {
1537 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1538 	struct bit_names bits[] = {
1539 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1540 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1541 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1542 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1543 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1544 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1545 		{ .name = NULL, }
1546 	};
1547 #undef bit_name
1548 	__p_bits(buf, size, value, bits);
1549 }
1550 
1551 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1552 {
1553 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1554 	struct bit_names bits[] = {
1555 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1556 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1557 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1558 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1559 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1560 		{ .name = NULL, }
1561 	};
1562 #undef bit_name
1563 	__p_bits(buf, size, value, bits);
1564 }
1565 
1566 static void __p_read_format(char *buf, size_t size, u64 value)
1567 {
1568 #define bit_name(n) { PERF_FORMAT_##n, #n }
1569 	struct bit_names bits[] = {
1570 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1571 		bit_name(ID), bit_name(GROUP),
1572 		{ .name = NULL, }
1573 	};
1574 #undef bit_name
1575 	__p_bits(buf, size, value, bits);
1576 }
1577 
1578 #define BUF_SIZE		1024
1579 
1580 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1581 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1582 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1583 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1584 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1585 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1586 
1587 #define PRINT_ATTRn(_n, _f, _p)				\
1588 do {							\
1589 	if (attr->_f) {					\
1590 		_p(attr->_f);				\
1591 		ret += attr__fprintf(fp, _n, buf, priv);\
1592 	}						\
1593 } while (0)
1594 
1595 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1596 
1597 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1598 			     attr__fprintf_f attr__fprintf, void *priv)
1599 {
1600 	char buf[BUF_SIZE];
1601 	int ret = 0;
1602 
1603 	PRINT_ATTRf(type, p_unsigned);
1604 	PRINT_ATTRf(size, p_unsigned);
1605 	PRINT_ATTRf(config, p_hex);
1606 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1607 	PRINT_ATTRf(sample_type, p_sample_type);
1608 	PRINT_ATTRf(read_format, p_read_format);
1609 
1610 	PRINT_ATTRf(disabled, p_unsigned);
1611 	PRINT_ATTRf(inherit, p_unsigned);
1612 	PRINT_ATTRf(pinned, p_unsigned);
1613 	PRINT_ATTRf(exclusive, p_unsigned);
1614 	PRINT_ATTRf(exclude_user, p_unsigned);
1615 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1616 	PRINT_ATTRf(exclude_hv, p_unsigned);
1617 	PRINT_ATTRf(exclude_idle, p_unsigned);
1618 	PRINT_ATTRf(mmap, p_unsigned);
1619 	PRINT_ATTRf(comm, p_unsigned);
1620 	PRINT_ATTRf(freq, p_unsigned);
1621 	PRINT_ATTRf(inherit_stat, p_unsigned);
1622 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1623 	PRINT_ATTRf(task, p_unsigned);
1624 	PRINT_ATTRf(watermark, p_unsigned);
1625 	PRINT_ATTRf(precise_ip, p_unsigned);
1626 	PRINT_ATTRf(mmap_data, p_unsigned);
1627 	PRINT_ATTRf(sample_id_all, p_unsigned);
1628 	PRINT_ATTRf(exclude_host, p_unsigned);
1629 	PRINT_ATTRf(exclude_guest, p_unsigned);
1630 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1631 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1632 	PRINT_ATTRf(mmap2, p_unsigned);
1633 	PRINT_ATTRf(comm_exec, p_unsigned);
1634 	PRINT_ATTRf(use_clockid, p_unsigned);
1635 	PRINT_ATTRf(context_switch, p_unsigned);
1636 	PRINT_ATTRf(write_backward, p_unsigned);
1637 	PRINT_ATTRf(namespaces, p_unsigned);
1638 
1639 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1640 	PRINT_ATTRf(bp_type, p_unsigned);
1641 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1642 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1643 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1644 	PRINT_ATTRf(sample_regs_user, p_hex);
1645 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1646 	PRINT_ATTRf(clockid, p_signed);
1647 	PRINT_ATTRf(sample_regs_intr, p_hex);
1648 	PRINT_ATTRf(aux_watermark, p_unsigned);
1649 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1650 
1651 	return ret;
1652 }
1653 
1654 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1655 				void *priv __maybe_unused)
1656 {
1657 	return fprintf(fp, "  %-32s %s\n", name, val);
1658 }
1659 
1660 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1661 				  int nr_cpus, int nr_threads,
1662 				  int thread_idx)
1663 {
1664 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1665 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1666 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1667 }
1668 
1669 static int update_fds(struct perf_evsel *evsel,
1670 		      int nr_cpus, int cpu_idx,
1671 		      int nr_threads, int thread_idx)
1672 {
1673 	struct perf_evsel *pos;
1674 
1675 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1676 		return -EINVAL;
1677 
1678 	evlist__for_each_entry(evsel->evlist, pos) {
1679 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1680 
1681 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1682 
1683 		/*
1684 		 * Since fds for next evsel has not been created,
1685 		 * there is no need to iterate whole event list.
1686 		 */
1687 		if (pos == evsel)
1688 			break;
1689 	}
1690 	return 0;
1691 }
1692 
1693 static bool ignore_missing_thread(struct perf_evsel *evsel,
1694 				  int nr_cpus, int cpu,
1695 				  struct thread_map *threads,
1696 				  int thread, int err)
1697 {
1698 	pid_t ignore_pid = thread_map__pid(threads, thread);
1699 
1700 	if (!evsel->ignore_missing_thread)
1701 		return false;
1702 
1703 	/* The system wide setup does not work with threads. */
1704 	if (evsel->system_wide)
1705 		return false;
1706 
1707 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1708 	if (err != -ESRCH)
1709 		return false;
1710 
1711 	/* If there's only one thread, let it fail. */
1712 	if (threads->nr == 1)
1713 		return false;
1714 
1715 	/*
1716 	 * We should remove fd for missing_thread first
1717 	 * because thread_map__remove() will decrease threads->nr.
1718 	 */
1719 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1720 		return false;
1721 
1722 	if (thread_map__remove(threads, thread))
1723 		return false;
1724 
1725 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1726 		   ignore_pid);
1727 	return true;
1728 }
1729 
1730 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1731 		     struct thread_map *threads)
1732 {
1733 	int cpu, thread, nthreads;
1734 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1735 	int pid = -1, err;
1736 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1737 
1738 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1739 		return -EINVAL;
1740 
1741 	if (cpus == NULL) {
1742 		static struct cpu_map *empty_cpu_map;
1743 
1744 		if (empty_cpu_map == NULL) {
1745 			empty_cpu_map = cpu_map__dummy_new();
1746 			if (empty_cpu_map == NULL)
1747 				return -ENOMEM;
1748 		}
1749 
1750 		cpus = empty_cpu_map;
1751 	}
1752 
1753 	if (threads == NULL) {
1754 		static struct thread_map *empty_thread_map;
1755 
1756 		if (empty_thread_map == NULL) {
1757 			empty_thread_map = thread_map__new_by_tid(-1);
1758 			if (empty_thread_map == NULL)
1759 				return -ENOMEM;
1760 		}
1761 
1762 		threads = empty_thread_map;
1763 	}
1764 
1765 	if (evsel->system_wide)
1766 		nthreads = 1;
1767 	else
1768 		nthreads = threads->nr;
1769 
1770 	if (evsel->fd == NULL &&
1771 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1772 		return -ENOMEM;
1773 
1774 	if (evsel->cgrp) {
1775 		flags |= PERF_FLAG_PID_CGROUP;
1776 		pid = evsel->cgrp->fd;
1777 	}
1778 
1779 fallback_missing_features:
1780 	if (perf_missing_features.clockid_wrong)
1781 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1782 	if (perf_missing_features.clockid) {
1783 		evsel->attr.use_clockid = 0;
1784 		evsel->attr.clockid = 0;
1785 	}
1786 	if (perf_missing_features.cloexec)
1787 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1788 	if (perf_missing_features.mmap2)
1789 		evsel->attr.mmap2 = 0;
1790 	if (perf_missing_features.exclude_guest)
1791 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1792 	if (perf_missing_features.lbr_flags)
1793 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1794 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1795 	if (perf_missing_features.group_read && evsel->attr.inherit)
1796 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1797 retry_sample_id:
1798 	if (perf_missing_features.sample_id_all)
1799 		evsel->attr.sample_id_all = 0;
1800 
1801 	if (verbose >= 2) {
1802 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1803 		fprintf(stderr, "perf_event_attr:\n");
1804 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1805 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1806 	}
1807 
1808 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1809 
1810 		for (thread = 0; thread < nthreads; thread++) {
1811 			int fd, group_fd;
1812 
1813 			if (!evsel->cgrp && !evsel->system_wide)
1814 				pid = thread_map__pid(threads, thread);
1815 
1816 			group_fd = get_group_fd(evsel, cpu, thread);
1817 retry_open:
1818 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1819 				  pid, cpus->map[cpu], group_fd, flags);
1820 
1821 			test_attr__ready();
1822 
1823 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1824 						 group_fd, flags);
1825 
1826 			FD(evsel, cpu, thread) = fd;
1827 
1828 			if (fd < 0) {
1829 				err = -errno;
1830 
1831 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1832 					/*
1833 					 * We just removed 1 thread, so take a step
1834 					 * back on thread index and lower the upper
1835 					 * nthreads limit.
1836 					 */
1837 					nthreads--;
1838 					thread--;
1839 
1840 					/* ... and pretend like nothing have happened. */
1841 					err = 0;
1842 					continue;
1843 				}
1844 
1845 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1846 					  err);
1847 				goto try_fallback;
1848 			}
1849 
1850 			pr_debug2(" = %d\n", fd);
1851 
1852 			if (evsel->bpf_fd >= 0) {
1853 				int evt_fd = fd;
1854 				int bpf_fd = evsel->bpf_fd;
1855 
1856 				err = ioctl(evt_fd,
1857 					    PERF_EVENT_IOC_SET_BPF,
1858 					    bpf_fd);
1859 				if (err && errno != EEXIST) {
1860 					pr_err("failed to attach bpf fd %d: %s\n",
1861 					       bpf_fd, strerror(errno));
1862 					err = -EINVAL;
1863 					goto out_close;
1864 				}
1865 			}
1866 
1867 			set_rlimit = NO_CHANGE;
1868 
1869 			/*
1870 			 * If we succeeded but had to kill clockid, fail and
1871 			 * have perf_evsel__open_strerror() print us a nice
1872 			 * error.
1873 			 */
1874 			if (perf_missing_features.clockid ||
1875 			    perf_missing_features.clockid_wrong) {
1876 				err = -EINVAL;
1877 				goto out_close;
1878 			}
1879 		}
1880 	}
1881 
1882 	return 0;
1883 
1884 try_fallback:
1885 	/*
1886 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1887 	 * of them try to increase the limits.
1888 	 */
1889 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1890 		struct rlimit l;
1891 		int old_errno = errno;
1892 
1893 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1894 			if (set_rlimit == NO_CHANGE)
1895 				l.rlim_cur = l.rlim_max;
1896 			else {
1897 				l.rlim_cur = l.rlim_max + 1000;
1898 				l.rlim_max = l.rlim_cur;
1899 			}
1900 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1901 				set_rlimit++;
1902 				errno = old_errno;
1903 				goto retry_open;
1904 			}
1905 		}
1906 		errno = old_errno;
1907 	}
1908 
1909 	if (err != -EINVAL || cpu > 0 || thread > 0)
1910 		goto out_close;
1911 
1912 	/*
1913 	 * Must probe features in the order they were added to the
1914 	 * perf_event_attr interface.
1915 	 */
1916 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1917 		perf_missing_features.write_backward = true;
1918 		pr_debug2("switching off write_backward\n");
1919 		goto out_close;
1920 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1921 		perf_missing_features.clockid_wrong = true;
1922 		pr_debug2("switching off clockid\n");
1923 		goto fallback_missing_features;
1924 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1925 		perf_missing_features.clockid = true;
1926 		pr_debug2("switching off use_clockid\n");
1927 		goto fallback_missing_features;
1928 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1929 		perf_missing_features.cloexec = true;
1930 		pr_debug2("switching off cloexec flag\n");
1931 		goto fallback_missing_features;
1932 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1933 		perf_missing_features.mmap2 = true;
1934 		pr_debug2("switching off mmap2\n");
1935 		goto fallback_missing_features;
1936 	} else if (!perf_missing_features.exclude_guest &&
1937 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1938 		perf_missing_features.exclude_guest = true;
1939 		pr_debug2("switching off exclude_guest, exclude_host\n");
1940 		goto fallback_missing_features;
1941 	} else if (!perf_missing_features.sample_id_all) {
1942 		perf_missing_features.sample_id_all = true;
1943 		pr_debug2("switching off sample_id_all\n");
1944 		goto retry_sample_id;
1945 	} else if (!perf_missing_features.lbr_flags &&
1946 			(evsel->attr.branch_sample_type &
1947 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1948 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1949 		perf_missing_features.lbr_flags = true;
1950 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1951 		goto fallback_missing_features;
1952 	} else if (!perf_missing_features.group_read &&
1953 		    evsel->attr.inherit &&
1954 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1955 		   perf_evsel__is_group_leader(evsel)) {
1956 		perf_missing_features.group_read = true;
1957 		pr_debug2("switching off group read\n");
1958 		goto fallback_missing_features;
1959 	}
1960 out_close:
1961 	if (err)
1962 		threads->err_thread = thread;
1963 
1964 	do {
1965 		while (--thread >= 0) {
1966 			close(FD(evsel, cpu, thread));
1967 			FD(evsel, cpu, thread) = -1;
1968 		}
1969 		thread = nthreads;
1970 	} while (--cpu >= 0);
1971 	return err;
1972 }
1973 
1974 void perf_evsel__close(struct perf_evsel *evsel)
1975 {
1976 	if (evsel->fd == NULL)
1977 		return;
1978 
1979 	perf_evsel__close_fd(evsel);
1980 	perf_evsel__free_fd(evsel);
1981 }
1982 
1983 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1984 			     struct cpu_map *cpus)
1985 {
1986 	return perf_evsel__open(evsel, cpus, NULL);
1987 }
1988 
1989 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1990 				struct thread_map *threads)
1991 {
1992 	return perf_evsel__open(evsel, NULL, threads);
1993 }
1994 
1995 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1996 				       const union perf_event *event,
1997 				       struct perf_sample *sample)
1998 {
1999 	u64 type = evsel->attr.sample_type;
2000 	const u64 *array = event->sample.array;
2001 	bool swapped = evsel->needs_swap;
2002 	union u64_swap u;
2003 
2004 	array += ((event->header.size -
2005 		   sizeof(event->header)) / sizeof(u64)) - 1;
2006 
2007 	if (type & PERF_SAMPLE_IDENTIFIER) {
2008 		sample->id = *array;
2009 		array--;
2010 	}
2011 
2012 	if (type & PERF_SAMPLE_CPU) {
2013 		u.val64 = *array;
2014 		if (swapped) {
2015 			/* undo swap of u64, then swap on individual u32s */
2016 			u.val64 = bswap_64(u.val64);
2017 			u.val32[0] = bswap_32(u.val32[0]);
2018 		}
2019 
2020 		sample->cpu = u.val32[0];
2021 		array--;
2022 	}
2023 
2024 	if (type & PERF_SAMPLE_STREAM_ID) {
2025 		sample->stream_id = *array;
2026 		array--;
2027 	}
2028 
2029 	if (type & PERF_SAMPLE_ID) {
2030 		sample->id = *array;
2031 		array--;
2032 	}
2033 
2034 	if (type & PERF_SAMPLE_TIME) {
2035 		sample->time = *array;
2036 		array--;
2037 	}
2038 
2039 	if (type & PERF_SAMPLE_TID) {
2040 		u.val64 = *array;
2041 		if (swapped) {
2042 			/* undo swap of u64, then swap on individual u32s */
2043 			u.val64 = bswap_64(u.val64);
2044 			u.val32[0] = bswap_32(u.val32[0]);
2045 			u.val32[1] = bswap_32(u.val32[1]);
2046 		}
2047 
2048 		sample->pid = u.val32[0];
2049 		sample->tid = u.val32[1];
2050 		array--;
2051 	}
2052 
2053 	return 0;
2054 }
2055 
2056 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2057 			    u64 size)
2058 {
2059 	return size > max_size || offset + size > endp;
2060 }
2061 
2062 #define OVERFLOW_CHECK(offset, size, max_size)				\
2063 	do {								\
2064 		if (overflow(endp, (max_size), (offset), (size)))	\
2065 			return -EFAULT;					\
2066 	} while (0)
2067 
2068 #define OVERFLOW_CHECK_u64(offset) \
2069 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2070 
2071 static int
2072 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2073 {
2074 	/*
2075 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2076 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2077 	 * check the format does not go past the end of the event.
2078 	 */
2079 	if (sample_size + sizeof(event->header) > event->header.size)
2080 		return -EFAULT;
2081 
2082 	return 0;
2083 }
2084 
2085 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2086 			     struct perf_sample *data)
2087 {
2088 	u64 type = evsel->attr.sample_type;
2089 	bool swapped = evsel->needs_swap;
2090 	const u64 *array;
2091 	u16 max_size = event->header.size;
2092 	const void *endp = (void *)event + max_size;
2093 	u64 sz;
2094 
2095 	/*
2096 	 * used for cross-endian analysis. See git commit 65014ab3
2097 	 * for why this goofiness is needed.
2098 	 */
2099 	union u64_swap u;
2100 
2101 	memset(data, 0, sizeof(*data));
2102 	data->cpu = data->pid = data->tid = -1;
2103 	data->stream_id = data->id = data->time = -1ULL;
2104 	data->period = evsel->attr.sample_period;
2105 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2106 	data->misc    = event->header.misc;
2107 	data->id = -1ULL;
2108 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2109 
2110 	if (event->header.type != PERF_RECORD_SAMPLE) {
2111 		if (!evsel->attr.sample_id_all)
2112 			return 0;
2113 		return perf_evsel__parse_id_sample(evsel, event, data);
2114 	}
2115 
2116 	array = event->sample.array;
2117 
2118 	if (perf_event__check_size(event, evsel->sample_size))
2119 		return -EFAULT;
2120 
2121 	if (type & PERF_SAMPLE_IDENTIFIER) {
2122 		data->id = *array;
2123 		array++;
2124 	}
2125 
2126 	if (type & PERF_SAMPLE_IP) {
2127 		data->ip = *array;
2128 		array++;
2129 	}
2130 
2131 	if (type & PERF_SAMPLE_TID) {
2132 		u.val64 = *array;
2133 		if (swapped) {
2134 			/* undo swap of u64, then swap on individual u32s */
2135 			u.val64 = bswap_64(u.val64);
2136 			u.val32[0] = bswap_32(u.val32[0]);
2137 			u.val32[1] = bswap_32(u.val32[1]);
2138 		}
2139 
2140 		data->pid = u.val32[0];
2141 		data->tid = u.val32[1];
2142 		array++;
2143 	}
2144 
2145 	if (type & PERF_SAMPLE_TIME) {
2146 		data->time = *array;
2147 		array++;
2148 	}
2149 
2150 	if (type & PERF_SAMPLE_ADDR) {
2151 		data->addr = *array;
2152 		array++;
2153 	}
2154 
2155 	if (type & PERF_SAMPLE_ID) {
2156 		data->id = *array;
2157 		array++;
2158 	}
2159 
2160 	if (type & PERF_SAMPLE_STREAM_ID) {
2161 		data->stream_id = *array;
2162 		array++;
2163 	}
2164 
2165 	if (type & PERF_SAMPLE_CPU) {
2166 
2167 		u.val64 = *array;
2168 		if (swapped) {
2169 			/* undo swap of u64, then swap on individual u32s */
2170 			u.val64 = bswap_64(u.val64);
2171 			u.val32[0] = bswap_32(u.val32[0]);
2172 		}
2173 
2174 		data->cpu = u.val32[0];
2175 		array++;
2176 	}
2177 
2178 	if (type & PERF_SAMPLE_PERIOD) {
2179 		data->period = *array;
2180 		array++;
2181 	}
2182 
2183 	if (type & PERF_SAMPLE_READ) {
2184 		u64 read_format = evsel->attr.read_format;
2185 
2186 		OVERFLOW_CHECK_u64(array);
2187 		if (read_format & PERF_FORMAT_GROUP)
2188 			data->read.group.nr = *array;
2189 		else
2190 			data->read.one.value = *array;
2191 
2192 		array++;
2193 
2194 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2195 			OVERFLOW_CHECK_u64(array);
2196 			data->read.time_enabled = *array;
2197 			array++;
2198 		}
2199 
2200 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2201 			OVERFLOW_CHECK_u64(array);
2202 			data->read.time_running = *array;
2203 			array++;
2204 		}
2205 
2206 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2207 		if (read_format & PERF_FORMAT_GROUP) {
2208 			const u64 max_group_nr = UINT64_MAX /
2209 					sizeof(struct sample_read_value);
2210 
2211 			if (data->read.group.nr > max_group_nr)
2212 				return -EFAULT;
2213 			sz = data->read.group.nr *
2214 			     sizeof(struct sample_read_value);
2215 			OVERFLOW_CHECK(array, sz, max_size);
2216 			data->read.group.values =
2217 					(struct sample_read_value *)array;
2218 			array = (void *)array + sz;
2219 		} else {
2220 			OVERFLOW_CHECK_u64(array);
2221 			data->read.one.id = *array;
2222 			array++;
2223 		}
2224 	}
2225 
2226 	if (evsel__has_callchain(evsel)) {
2227 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2228 
2229 		OVERFLOW_CHECK_u64(array);
2230 		data->callchain = (struct ip_callchain *)array++;
2231 		if (data->callchain->nr > max_callchain_nr)
2232 			return -EFAULT;
2233 		sz = data->callchain->nr * sizeof(u64);
2234 		OVERFLOW_CHECK(array, sz, max_size);
2235 		array = (void *)array + sz;
2236 	}
2237 
2238 	if (type & PERF_SAMPLE_RAW) {
2239 		OVERFLOW_CHECK_u64(array);
2240 		u.val64 = *array;
2241 
2242 		/*
2243 		 * Undo swap of u64, then swap on individual u32s,
2244 		 * get the size of the raw area and undo all of the
2245 		 * swap. The pevent interface handles endianity by
2246 		 * itself.
2247 		 */
2248 		if (swapped) {
2249 			u.val64 = bswap_64(u.val64);
2250 			u.val32[0] = bswap_32(u.val32[0]);
2251 			u.val32[1] = bswap_32(u.val32[1]);
2252 		}
2253 		data->raw_size = u.val32[0];
2254 
2255 		/*
2256 		 * The raw data is aligned on 64bits including the
2257 		 * u32 size, so it's safe to use mem_bswap_64.
2258 		 */
2259 		if (swapped)
2260 			mem_bswap_64((void *) array, data->raw_size);
2261 
2262 		array = (void *)array + sizeof(u32);
2263 
2264 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2265 		data->raw_data = (void *)array;
2266 		array = (void *)array + data->raw_size;
2267 	}
2268 
2269 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2270 		const u64 max_branch_nr = UINT64_MAX /
2271 					  sizeof(struct branch_entry);
2272 
2273 		OVERFLOW_CHECK_u64(array);
2274 		data->branch_stack = (struct branch_stack *)array++;
2275 
2276 		if (data->branch_stack->nr > max_branch_nr)
2277 			return -EFAULT;
2278 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2279 		OVERFLOW_CHECK(array, sz, max_size);
2280 		array = (void *)array + sz;
2281 	}
2282 
2283 	if (type & PERF_SAMPLE_REGS_USER) {
2284 		OVERFLOW_CHECK_u64(array);
2285 		data->user_regs.abi = *array;
2286 		array++;
2287 
2288 		if (data->user_regs.abi) {
2289 			u64 mask = evsel->attr.sample_regs_user;
2290 
2291 			sz = hweight_long(mask) * sizeof(u64);
2292 			OVERFLOW_CHECK(array, sz, max_size);
2293 			data->user_regs.mask = mask;
2294 			data->user_regs.regs = (u64 *)array;
2295 			array = (void *)array + sz;
2296 		}
2297 	}
2298 
2299 	if (type & PERF_SAMPLE_STACK_USER) {
2300 		OVERFLOW_CHECK_u64(array);
2301 		sz = *array++;
2302 
2303 		data->user_stack.offset = ((char *)(array - 1)
2304 					  - (char *) event);
2305 
2306 		if (!sz) {
2307 			data->user_stack.size = 0;
2308 		} else {
2309 			OVERFLOW_CHECK(array, sz, max_size);
2310 			data->user_stack.data = (char *)array;
2311 			array = (void *)array + sz;
2312 			OVERFLOW_CHECK_u64(array);
2313 			data->user_stack.size = *array++;
2314 			if (WARN_ONCE(data->user_stack.size > sz,
2315 				      "user stack dump failure\n"))
2316 				return -EFAULT;
2317 		}
2318 	}
2319 
2320 	if (type & PERF_SAMPLE_WEIGHT) {
2321 		OVERFLOW_CHECK_u64(array);
2322 		data->weight = *array;
2323 		array++;
2324 	}
2325 
2326 	if (type & PERF_SAMPLE_DATA_SRC) {
2327 		OVERFLOW_CHECK_u64(array);
2328 		data->data_src = *array;
2329 		array++;
2330 	}
2331 
2332 	if (type & PERF_SAMPLE_TRANSACTION) {
2333 		OVERFLOW_CHECK_u64(array);
2334 		data->transaction = *array;
2335 		array++;
2336 	}
2337 
2338 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2339 	if (type & PERF_SAMPLE_REGS_INTR) {
2340 		OVERFLOW_CHECK_u64(array);
2341 		data->intr_regs.abi = *array;
2342 		array++;
2343 
2344 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2345 			u64 mask = evsel->attr.sample_regs_intr;
2346 
2347 			sz = hweight_long(mask) * sizeof(u64);
2348 			OVERFLOW_CHECK(array, sz, max_size);
2349 			data->intr_regs.mask = mask;
2350 			data->intr_regs.regs = (u64 *)array;
2351 			array = (void *)array + sz;
2352 		}
2353 	}
2354 
2355 	data->phys_addr = 0;
2356 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2357 		data->phys_addr = *array;
2358 		array++;
2359 	}
2360 
2361 	return 0;
2362 }
2363 
2364 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2365 				       union perf_event *event,
2366 				       u64 *timestamp)
2367 {
2368 	u64 type = evsel->attr.sample_type;
2369 	const u64 *array;
2370 
2371 	if (!(type & PERF_SAMPLE_TIME))
2372 		return -1;
2373 
2374 	if (event->header.type != PERF_RECORD_SAMPLE) {
2375 		struct perf_sample data = {
2376 			.time = -1ULL,
2377 		};
2378 
2379 		if (!evsel->attr.sample_id_all)
2380 			return -1;
2381 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2382 			return -1;
2383 
2384 		*timestamp = data.time;
2385 		return 0;
2386 	}
2387 
2388 	array = event->sample.array;
2389 
2390 	if (perf_event__check_size(event, evsel->sample_size))
2391 		return -EFAULT;
2392 
2393 	if (type & PERF_SAMPLE_IDENTIFIER)
2394 		array++;
2395 
2396 	if (type & PERF_SAMPLE_IP)
2397 		array++;
2398 
2399 	if (type & PERF_SAMPLE_TID)
2400 		array++;
2401 
2402 	if (type & PERF_SAMPLE_TIME)
2403 		*timestamp = *array;
2404 
2405 	return 0;
2406 }
2407 
2408 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2409 				     u64 read_format)
2410 {
2411 	size_t sz, result = sizeof(struct sample_event);
2412 
2413 	if (type & PERF_SAMPLE_IDENTIFIER)
2414 		result += sizeof(u64);
2415 
2416 	if (type & PERF_SAMPLE_IP)
2417 		result += sizeof(u64);
2418 
2419 	if (type & PERF_SAMPLE_TID)
2420 		result += sizeof(u64);
2421 
2422 	if (type & PERF_SAMPLE_TIME)
2423 		result += sizeof(u64);
2424 
2425 	if (type & PERF_SAMPLE_ADDR)
2426 		result += sizeof(u64);
2427 
2428 	if (type & PERF_SAMPLE_ID)
2429 		result += sizeof(u64);
2430 
2431 	if (type & PERF_SAMPLE_STREAM_ID)
2432 		result += sizeof(u64);
2433 
2434 	if (type & PERF_SAMPLE_CPU)
2435 		result += sizeof(u64);
2436 
2437 	if (type & PERF_SAMPLE_PERIOD)
2438 		result += sizeof(u64);
2439 
2440 	if (type & PERF_SAMPLE_READ) {
2441 		result += sizeof(u64);
2442 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2443 			result += sizeof(u64);
2444 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2445 			result += sizeof(u64);
2446 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2447 		if (read_format & PERF_FORMAT_GROUP) {
2448 			sz = sample->read.group.nr *
2449 			     sizeof(struct sample_read_value);
2450 			result += sz;
2451 		} else {
2452 			result += sizeof(u64);
2453 		}
2454 	}
2455 
2456 	if (type & PERF_SAMPLE_CALLCHAIN) {
2457 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2458 		result += sz;
2459 	}
2460 
2461 	if (type & PERF_SAMPLE_RAW) {
2462 		result += sizeof(u32);
2463 		result += sample->raw_size;
2464 	}
2465 
2466 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2467 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2468 		sz += sizeof(u64);
2469 		result += sz;
2470 	}
2471 
2472 	if (type & PERF_SAMPLE_REGS_USER) {
2473 		if (sample->user_regs.abi) {
2474 			result += sizeof(u64);
2475 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2476 			result += sz;
2477 		} else {
2478 			result += sizeof(u64);
2479 		}
2480 	}
2481 
2482 	if (type & PERF_SAMPLE_STACK_USER) {
2483 		sz = sample->user_stack.size;
2484 		result += sizeof(u64);
2485 		if (sz) {
2486 			result += sz;
2487 			result += sizeof(u64);
2488 		}
2489 	}
2490 
2491 	if (type & PERF_SAMPLE_WEIGHT)
2492 		result += sizeof(u64);
2493 
2494 	if (type & PERF_SAMPLE_DATA_SRC)
2495 		result += sizeof(u64);
2496 
2497 	if (type & PERF_SAMPLE_TRANSACTION)
2498 		result += sizeof(u64);
2499 
2500 	if (type & PERF_SAMPLE_REGS_INTR) {
2501 		if (sample->intr_regs.abi) {
2502 			result += sizeof(u64);
2503 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2504 			result += sz;
2505 		} else {
2506 			result += sizeof(u64);
2507 		}
2508 	}
2509 
2510 	if (type & PERF_SAMPLE_PHYS_ADDR)
2511 		result += sizeof(u64);
2512 
2513 	return result;
2514 }
2515 
2516 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2517 				  u64 read_format,
2518 				  const struct perf_sample *sample)
2519 {
2520 	u64 *array;
2521 	size_t sz;
2522 	/*
2523 	 * used for cross-endian analysis. See git commit 65014ab3
2524 	 * for why this goofiness is needed.
2525 	 */
2526 	union u64_swap u;
2527 
2528 	array = event->sample.array;
2529 
2530 	if (type & PERF_SAMPLE_IDENTIFIER) {
2531 		*array = sample->id;
2532 		array++;
2533 	}
2534 
2535 	if (type & PERF_SAMPLE_IP) {
2536 		*array = sample->ip;
2537 		array++;
2538 	}
2539 
2540 	if (type & PERF_SAMPLE_TID) {
2541 		u.val32[0] = sample->pid;
2542 		u.val32[1] = sample->tid;
2543 		*array = u.val64;
2544 		array++;
2545 	}
2546 
2547 	if (type & PERF_SAMPLE_TIME) {
2548 		*array = sample->time;
2549 		array++;
2550 	}
2551 
2552 	if (type & PERF_SAMPLE_ADDR) {
2553 		*array = sample->addr;
2554 		array++;
2555 	}
2556 
2557 	if (type & PERF_SAMPLE_ID) {
2558 		*array = sample->id;
2559 		array++;
2560 	}
2561 
2562 	if (type & PERF_SAMPLE_STREAM_ID) {
2563 		*array = sample->stream_id;
2564 		array++;
2565 	}
2566 
2567 	if (type & PERF_SAMPLE_CPU) {
2568 		u.val32[0] = sample->cpu;
2569 		u.val32[1] = 0;
2570 		*array = u.val64;
2571 		array++;
2572 	}
2573 
2574 	if (type & PERF_SAMPLE_PERIOD) {
2575 		*array = sample->period;
2576 		array++;
2577 	}
2578 
2579 	if (type & PERF_SAMPLE_READ) {
2580 		if (read_format & PERF_FORMAT_GROUP)
2581 			*array = sample->read.group.nr;
2582 		else
2583 			*array = sample->read.one.value;
2584 		array++;
2585 
2586 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2587 			*array = sample->read.time_enabled;
2588 			array++;
2589 		}
2590 
2591 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2592 			*array = sample->read.time_running;
2593 			array++;
2594 		}
2595 
2596 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2597 		if (read_format & PERF_FORMAT_GROUP) {
2598 			sz = sample->read.group.nr *
2599 			     sizeof(struct sample_read_value);
2600 			memcpy(array, sample->read.group.values, sz);
2601 			array = (void *)array + sz;
2602 		} else {
2603 			*array = sample->read.one.id;
2604 			array++;
2605 		}
2606 	}
2607 
2608 	if (type & PERF_SAMPLE_CALLCHAIN) {
2609 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2610 		memcpy(array, sample->callchain, sz);
2611 		array = (void *)array + sz;
2612 	}
2613 
2614 	if (type & PERF_SAMPLE_RAW) {
2615 		u.val32[0] = sample->raw_size;
2616 		*array = u.val64;
2617 		array = (void *)array + sizeof(u32);
2618 
2619 		memcpy(array, sample->raw_data, sample->raw_size);
2620 		array = (void *)array + sample->raw_size;
2621 	}
2622 
2623 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2624 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2625 		sz += sizeof(u64);
2626 		memcpy(array, sample->branch_stack, sz);
2627 		array = (void *)array + sz;
2628 	}
2629 
2630 	if (type & PERF_SAMPLE_REGS_USER) {
2631 		if (sample->user_regs.abi) {
2632 			*array++ = sample->user_regs.abi;
2633 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2634 			memcpy(array, sample->user_regs.regs, sz);
2635 			array = (void *)array + sz;
2636 		} else {
2637 			*array++ = 0;
2638 		}
2639 	}
2640 
2641 	if (type & PERF_SAMPLE_STACK_USER) {
2642 		sz = sample->user_stack.size;
2643 		*array++ = sz;
2644 		if (sz) {
2645 			memcpy(array, sample->user_stack.data, sz);
2646 			array = (void *)array + sz;
2647 			*array++ = sz;
2648 		}
2649 	}
2650 
2651 	if (type & PERF_SAMPLE_WEIGHT) {
2652 		*array = sample->weight;
2653 		array++;
2654 	}
2655 
2656 	if (type & PERF_SAMPLE_DATA_SRC) {
2657 		*array = sample->data_src;
2658 		array++;
2659 	}
2660 
2661 	if (type & PERF_SAMPLE_TRANSACTION) {
2662 		*array = sample->transaction;
2663 		array++;
2664 	}
2665 
2666 	if (type & PERF_SAMPLE_REGS_INTR) {
2667 		if (sample->intr_regs.abi) {
2668 			*array++ = sample->intr_regs.abi;
2669 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2670 			memcpy(array, sample->intr_regs.regs, sz);
2671 			array = (void *)array + sz;
2672 		} else {
2673 			*array++ = 0;
2674 		}
2675 	}
2676 
2677 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2678 		*array = sample->phys_addr;
2679 		array++;
2680 	}
2681 
2682 	return 0;
2683 }
2684 
2685 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2686 {
2687 	return tep_find_field(evsel->tp_format, name);
2688 }
2689 
2690 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2691 			 const char *name)
2692 {
2693 	struct format_field *field = perf_evsel__field(evsel, name);
2694 	int offset;
2695 
2696 	if (!field)
2697 		return NULL;
2698 
2699 	offset = field->offset;
2700 
2701 	if (field->flags & FIELD_IS_DYNAMIC) {
2702 		offset = *(int *)(sample->raw_data + field->offset);
2703 		offset &= 0xffff;
2704 	}
2705 
2706 	return sample->raw_data + offset;
2707 }
2708 
2709 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2710 			 bool needs_swap)
2711 {
2712 	u64 value;
2713 	void *ptr = sample->raw_data + field->offset;
2714 
2715 	switch (field->size) {
2716 	case 1:
2717 		return *(u8 *)ptr;
2718 	case 2:
2719 		value = *(u16 *)ptr;
2720 		break;
2721 	case 4:
2722 		value = *(u32 *)ptr;
2723 		break;
2724 	case 8:
2725 		memcpy(&value, ptr, sizeof(u64));
2726 		break;
2727 	default:
2728 		return 0;
2729 	}
2730 
2731 	if (!needs_swap)
2732 		return value;
2733 
2734 	switch (field->size) {
2735 	case 2:
2736 		return bswap_16(value);
2737 	case 4:
2738 		return bswap_32(value);
2739 	case 8:
2740 		return bswap_64(value);
2741 	default:
2742 		return 0;
2743 	}
2744 
2745 	return 0;
2746 }
2747 
2748 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2749 		       const char *name)
2750 {
2751 	struct format_field *field = perf_evsel__field(evsel, name);
2752 
2753 	if (!field)
2754 		return 0;
2755 
2756 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2757 }
2758 
2759 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2760 			  char *msg, size_t msgsize)
2761 {
2762 	int paranoid;
2763 
2764 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2765 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2766 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2767 		/*
2768 		 * If it's cycles then fall back to hrtimer based
2769 		 * cpu-clock-tick sw counter, which is always available even if
2770 		 * no PMU support.
2771 		 *
2772 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2773 		 * b0a873e).
2774 		 */
2775 		scnprintf(msg, msgsize, "%s",
2776 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2777 
2778 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2779 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2780 
2781 		zfree(&evsel->name);
2782 		return true;
2783 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2784 		   (paranoid = perf_event_paranoid()) > 1) {
2785 		const char *name = perf_evsel__name(evsel);
2786 		char *new_name;
2787 		const char *sep = ":";
2788 
2789 		/* Is there already the separator in the name. */
2790 		if (strchr(name, '/') ||
2791 		    strchr(name, ':'))
2792 			sep = "";
2793 
2794 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2795 			return false;
2796 
2797 		if (evsel->name)
2798 			free(evsel->name);
2799 		evsel->name = new_name;
2800 		scnprintf(msg, msgsize,
2801 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2802 		evsel->attr.exclude_kernel = 1;
2803 
2804 		return true;
2805 	}
2806 
2807 	return false;
2808 }
2809 
2810 static bool find_process(const char *name)
2811 {
2812 	size_t len = strlen(name);
2813 	DIR *dir;
2814 	struct dirent *d;
2815 	int ret = -1;
2816 
2817 	dir = opendir(procfs__mountpoint());
2818 	if (!dir)
2819 		return false;
2820 
2821 	/* Walk through the directory. */
2822 	while (ret && (d = readdir(dir)) != NULL) {
2823 		char path[PATH_MAX];
2824 		char *data;
2825 		size_t size;
2826 
2827 		if ((d->d_type != DT_DIR) ||
2828 		     !strcmp(".", d->d_name) ||
2829 		     !strcmp("..", d->d_name))
2830 			continue;
2831 
2832 		scnprintf(path, sizeof(path), "%s/%s/comm",
2833 			  procfs__mountpoint(), d->d_name);
2834 
2835 		if (filename__read_str(path, &data, &size))
2836 			continue;
2837 
2838 		ret = strncmp(name, data, len);
2839 		free(data);
2840 	}
2841 
2842 	closedir(dir);
2843 	return ret ? false : true;
2844 }
2845 
2846 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2847 			      int err, char *msg, size_t size)
2848 {
2849 	char sbuf[STRERR_BUFSIZE];
2850 	int printed = 0;
2851 
2852 	switch (err) {
2853 	case EPERM:
2854 	case EACCES:
2855 		if (err == EPERM)
2856 			printed = scnprintf(msg, size,
2857 				"No permission to enable %s event.\n\n",
2858 				perf_evsel__name(evsel));
2859 
2860 		return scnprintf(msg + printed, size - printed,
2861 		 "You may not have permission to collect %sstats.\n\n"
2862 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2863 		 "which controls use of the performance events system by\n"
2864 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2865 		 "The current value is %d:\n\n"
2866 		 "  -1: Allow use of (almost) all events by all users\n"
2867 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2868 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2869 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2870 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2871 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2872 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2873 		 "	kernel.perf_event_paranoid = -1\n" ,
2874 				 target->system_wide ? "system-wide " : "",
2875 				 perf_event_paranoid());
2876 	case ENOENT:
2877 		return scnprintf(msg, size, "The %s event is not supported.",
2878 				 perf_evsel__name(evsel));
2879 	case EMFILE:
2880 		return scnprintf(msg, size, "%s",
2881 			 "Too many events are opened.\n"
2882 			 "Probably the maximum number of open file descriptors has been reached.\n"
2883 			 "Hint: Try again after reducing the number of events.\n"
2884 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2885 	case ENOMEM:
2886 		if (evsel__has_callchain(evsel) &&
2887 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2888 			return scnprintf(msg, size,
2889 					 "Not enough memory to setup event with callchain.\n"
2890 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2891 					 "Hint: Current value: %d", sysctl__max_stack());
2892 		break;
2893 	case ENODEV:
2894 		if (target->cpu_list)
2895 			return scnprintf(msg, size, "%s",
2896 	 "No such device - did you specify an out-of-range profile CPU?");
2897 		break;
2898 	case EOPNOTSUPP:
2899 		if (evsel->attr.sample_period != 0)
2900 			return scnprintf(msg, size,
2901 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2902 					 perf_evsel__name(evsel));
2903 		if (evsel->attr.precise_ip)
2904 			return scnprintf(msg, size, "%s",
2905 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2906 #if defined(__i386__) || defined(__x86_64__)
2907 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2908 			return scnprintf(msg, size, "%s",
2909 	"No hardware sampling interrupt available.\n");
2910 #endif
2911 		break;
2912 	case EBUSY:
2913 		if (find_process("oprofiled"))
2914 			return scnprintf(msg, size,
2915 	"The PMU counters are busy/taken by another profiler.\n"
2916 	"We found oprofile daemon running, please stop it and try again.");
2917 		break;
2918 	case EINVAL:
2919 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2920 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2921 		if (perf_missing_features.clockid)
2922 			return scnprintf(msg, size, "clockid feature not supported.");
2923 		if (perf_missing_features.clockid_wrong)
2924 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2925 		break;
2926 	default:
2927 		break;
2928 	}
2929 
2930 	return scnprintf(msg, size,
2931 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2932 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2933 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2934 			 perf_evsel__name(evsel));
2935 }
2936 
2937 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2938 {
2939 	if (evsel && evsel->evlist)
2940 		return evsel->evlist->env;
2941 	return NULL;
2942 }
2943