1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->evlist = NULL; 236 evsel->bpf_fd = -1; 237 INIT_LIST_HEAD(&evsel->node); 238 INIT_LIST_HEAD(&evsel->config_terms); 239 perf_evsel__object.init(evsel); 240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 241 perf_evsel__calc_id_pos(evsel); 242 evsel->cmdline_group_boundary = false; 243 evsel->metric_expr = NULL; 244 evsel->metric_name = NULL; 245 evsel->metric_events = NULL; 246 evsel->collect_stat = false; 247 evsel->pmu_name = NULL; 248 } 249 250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 251 { 252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 253 254 if (!evsel) 255 return NULL; 256 perf_evsel__init(evsel, attr, idx); 257 258 if (perf_evsel__is_bpf_output(evsel)) { 259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 261 evsel->attr.sample_period = 1; 262 } 263 264 if (perf_evsel__is_clock(evsel)) { 265 /* 266 * The evsel->unit points to static alias->unit 267 * so it's ok to use static string in here. 268 */ 269 static const char *unit = "msec"; 270 271 evsel->unit = unit; 272 evsel->scale = 1e-6; 273 } 274 275 return evsel; 276 } 277 278 static bool perf_event_can_profile_kernel(void) 279 { 280 return geteuid() == 0 || perf_event_paranoid() == -1; 281 } 282 283 struct perf_evsel *perf_evsel__new_cycles(bool precise) 284 { 285 struct perf_event_attr attr = { 286 .type = PERF_TYPE_HARDWARE, 287 .config = PERF_COUNT_HW_CPU_CYCLES, 288 .exclude_kernel = !perf_event_can_profile_kernel(), 289 }; 290 struct perf_evsel *evsel; 291 292 event_attr_init(&attr); 293 294 if (!precise) 295 goto new_event; 296 /* 297 * Unnamed union member, not supported as struct member named 298 * initializer in older compilers such as gcc 4.4.7 299 * 300 * Just for probing the precise_ip: 301 */ 302 attr.sample_period = 1; 303 304 perf_event_attr__set_max_precise_ip(&attr); 305 /* 306 * Now let the usual logic to set up the perf_event_attr defaults 307 * to kick in when we return and before perf_evsel__open() is called. 308 */ 309 attr.sample_period = 0; 310 new_event: 311 evsel = perf_evsel__new(&attr); 312 if (evsel == NULL) 313 goto out; 314 315 /* use asprintf() because free(evsel) assumes name is allocated */ 316 if (asprintf(&evsel->name, "cycles%s%s%.*s", 317 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 318 attr.exclude_kernel ? "u" : "", 319 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 320 goto error_free; 321 out: 322 return evsel; 323 error_free: 324 perf_evsel__delete(evsel); 325 evsel = NULL; 326 goto out; 327 } 328 329 /* 330 * Returns pointer with encoded error via <linux/err.h> interface. 331 */ 332 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 333 { 334 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 335 int err = -ENOMEM; 336 337 if (evsel == NULL) { 338 goto out_err; 339 } else { 340 struct perf_event_attr attr = { 341 .type = PERF_TYPE_TRACEPOINT, 342 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 343 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 344 }; 345 346 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 347 goto out_free; 348 349 evsel->tp_format = trace_event__tp_format(sys, name); 350 if (IS_ERR(evsel->tp_format)) { 351 err = PTR_ERR(evsel->tp_format); 352 goto out_free; 353 } 354 355 event_attr_init(&attr); 356 attr.config = evsel->tp_format->id; 357 attr.sample_period = 1; 358 perf_evsel__init(evsel, &attr, idx); 359 } 360 361 return evsel; 362 363 out_free: 364 zfree(&evsel->name); 365 free(evsel); 366 out_err: 367 return ERR_PTR(err); 368 } 369 370 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 371 "cycles", 372 "instructions", 373 "cache-references", 374 "cache-misses", 375 "branches", 376 "branch-misses", 377 "bus-cycles", 378 "stalled-cycles-frontend", 379 "stalled-cycles-backend", 380 "ref-cycles", 381 }; 382 383 static const char *__perf_evsel__hw_name(u64 config) 384 { 385 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 386 return perf_evsel__hw_names[config]; 387 388 return "unknown-hardware"; 389 } 390 391 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 392 { 393 int colon = 0, r = 0; 394 struct perf_event_attr *attr = &evsel->attr; 395 bool exclude_guest_default = false; 396 397 #define MOD_PRINT(context, mod) do { \ 398 if (!attr->exclude_##context) { \ 399 if (!colon) colon = ++r; \ 400 r += scnprintf(bf + r, size - r, "%c", mod); \ 401 } } while(0) 402 403 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 404 MOD_PRINT(kernel, 'k'); 405 MOD_PRINT(user, 'u'); 406 MOD_PRINT(hv, 'h'); 407 exclude_guest_default = true; 408 } 409 410 if (attr->precise_ip) { 411 if (!colon) 412 colon = ++r; 413 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 414 exclude_guest_default = true; 415 } 416 417 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 418 MOD_PRINT(host, 'H'); 419 MOD_PRINT(guest, 'G'); 420 } 421 #undef MOD_PRINT 422 if (colon) 423 bf[colon - 1] = ':'; 424 return r; 425 } 426 427 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 428 { 429 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 430 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 431 } 432 433 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 434 "cpu-clock", 435 "task-clock", 436 "page-faults", 437 "context-switches", 438 "cpu-migrations", 439 "minor-faults", 440 "major-faults", 441 "alignment-faults", 442 "emulation-faults", 443 "dummy", 444 }; 445 446 static const char *__perf_evsel__sw_name(u64 config) 447 { 448 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 449 return perf_evsel__sw_names[config]; 450 return "unknown-software"; 451 } 452 453 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 454 { 455 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 456 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 457 } 458 459 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 460 { 461 int r; 462 463 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 464 465 if (type & HW_BREAKPOINT_R) 466 r += scnprintf(bf + r, size - r, "r"); 467 468 if (type & HW_BREAKPOINT_W) 469 r += scnprintf(bf + r, size - r, "w"); 470 471 if (type & HW_BREAKPOINT_X) 472 r += scnprintf(bf + r, size - r, "x"); 473 474 return r; 475 } 476 477 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 478 { 479 struct perf_event_attr *attr = &evsel->attr; 480 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 481 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 482 } 483 484 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 485 [PERF_EVSEL__MAX_ALIASES] = { 486 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 487 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 488 { "LLC", "L2", }, 489 { "dTLB", "d-tlb", "Data-TLB", }, 490 { "iTLB", "i-tlb", "Instruction-TLB", }, 491 { "branch", "branches", "bpu", "btb", "bpc", }, 492 { "node", }, 493 }; 494 495 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 496 [PERF_EVSEL__MAX_ALIASES] = { 497 { "load", "loads", "read", }, 498 { "store", "stores", "write", }, 499 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 500 }; 501 502 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 503 [PERF_EVSEL__MAX_ALIASES] = { 504 { "refs", "Reference", "ops", "access", }, 505 { "misses", "miss", }, 506 }; 507 508 #define C(x) PERF_COUNT_HW_CACHE_##x 509 #define CACHE_READ (1 << C(OP_READ)) 510 #define CACHE_WRITE (1 << C(OP_WRITE)) 511 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 512 #define COP(x) (1 << x) 513 514 /* 515 * cache operartion stat 516 * L1I : Read and prefetch only 517 * ITLB and BPU : Read-only 518 */ 519 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 520 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 521 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 522 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 523 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 524 [C(ITLB)] = (CACHE_READ), 525 [C(BPU)] = (CACHE_READ), 526 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 527 }; 528 529 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 530 { 531 if (perf_evsel__hw_cache_stat[type] & COP(op)) 532 return true; /* valid */ 533 else 534 return false; /* invalid */ 535 } 536 537 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 538 char *bf, size_t size) 539 { 540 if (result) { 541 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 542 perf_evsel__hw_cache_op[op][0], 543 perf_evsel__hw_cache_result[result][0]); 544 } 545 546 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 547 perf_evsel__hw_cache_op[op][1]); 548 } 549 550 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 551 { 552 u8 op, result, type = (config >> 0) & 0xff; 553 const char *err = "unknown-ext-hardware-cache-type"; 554 555 if (type >= PERF_COUNT_HW_CACHE_MAX) 556 goto out_err; 557 558 op = (config >> 8) & 0xff; 559 err = "unknown-ext-hardware-cache-op"; 560 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 561 goto out_err; 562 563 result = (config >> 16) & 0xff; 564 err = "unknown-ext-hardware-cache-result"; 565 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 566 goto out_err; 567 568 err = "invalid-cache"; 569 if (!perf_evsel__is_cache_op_valid(type, op)) 570 goto out_err; 571 572 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 573 out_err: 574 return scnprintf(bf, size, "%s", err); 575 } 576 577 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 578 { 579 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 581 } 582 583 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 584 { 585 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 586 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 587 } 588 589 const char *perf_evsel__name(struct perf_evsel *evsel) 590 { 591 char bf[128]; 592 593 if (evsel->name) 594 return evsel->name; 595 596 switch (evsel->attr.type) { 597 case PERF_TYPE_RAW: 598 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 599 break; 600 601 case PERF_TYPE_HARDWARE: 602 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 603 break; 604 605 case PERF_TYPE_HW_CACHE: 606 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 607 break; 608 609 case PERF_TYPE_SOFTWARE: 610 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 611 break; 612 613 case PERF_TYPE_TRACEPOINT: 614 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 615 break; 616 617 case PERF_TYPE_BREAKPOINT: 618 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 619 break; 620 621 default: 622 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 623 evsel->attr.type); 624 break; 625 } 626 627 evsel->name = strdup(bf); 628 629 return evsel->name ?: "unknown"; 630 } 631 632 const char *perf_evsel__group_name(struct perf_evsel *evsel) 633 { 634 return evsel->group_name ?: "anon group"; 635 } 636 637 /* 638 * Returns the group details for the specified leader, 639 * with following rules. 640 * 641 * For record -e '{cycles,instructions}' 642 * 'anon group { cycles:u, instructions:u }' 643 * 644 * For record -e 'cycles,instructions' and report --group 645 * 'cycles:u, instructions:u' 646 */ 647 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 648 { 649 int ret = 0; 650 struct perf_evsel *pos; 651 const char *group_name = perf_evsel__group_name(evsel); 652 653 if (!evsel->forced_leader) 654 ret = scnprintf(buf, size, "%s { ", group_name); 655 656 ret += scnprintf(buf + ret, size - ret, "%s", 657 perf_evsel__name(evsel)); 658 659 for_each_group_member(pos, evsel) 660 ret += scnprintf(buf + ret, size - ret, ", %s", 661 perf_evsel__name(pos)); 662 663 if (!evsel->forced_leader) 664 ret += scnprintf(buf + ret, size - ret, " }"); 665 666 return ret; 667 } 668 669 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 670 struct record_opts *opts, 671 struct callchain_param *param) 672 { 673 bool function = perf_evsel__is_function_event(evsel); 674 struct perf_event_attr *attr = &evsel->attr; 675 676 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 677 678 attr->sample_max_stack = param->max_stack; 679 680 if (param->record_mode == CALLCHAIN_LBR) { 681 if (!opts->branch_stack) { 682 if (attr->exclude_user) { 683 pr_warning("LBR callstack option is only available " 684 "to get user callchain information. " 685 "Falling back to framepointers.\n"); 686 } else { 687 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 688 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 689 PERF_SAMPLE_BRANCH_CALL_STACK | 690 PERF_SAMPLE_BRANCH_NO_CYCLES | 691 PERF_SAMPLE_BRANCH_NO_FLAGS; 692 } 693 } else 694 pr_warning("Cannot use LBR callstack with branch stack. " 695 "Falling back to framepointers.\n"); 696 } 697 698 if (param->record_mode == CALLCHAIN_DWARF) { 699 if (!function) { 700 perf_evsel__set_sample_bit(evsel, REGS_USER); 701 perf_evsel__set_sample_bit(evsel, STACK_USER); 702 attr->sample_regs_user |= PERF_REGS_MASK; 703 attr->sample_stack_user = param->dump_size; 704 attr->exclude_callchain_user = 1; 705 } else { 706 pr_info("Cannot use DWARF unwind for function trace event," 707 " falling back to framepointers.\n"); 708 } 709 } 710 711 if (function) { 712 pr_info("Disabling user space callchains for function trace event.\n"); 713 attr->exclude_callchain_user = 1; 714 } 715 } 716 717 void perf_evsel__config_callchain(struct perf_evsel *evsel, 718 struct record_opts *opts, 719 struct callchain_param *param) 720 { 721 if (param->enabled) 722 return __perf_evsel__config_callchain(evsel, opts, param); 723 } 724 725 static void 726 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 727 struct callchain_param *param) 728 { 729 struct perf_event_attr *attr = &evsel->attr; 730 731 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 732 if (param->record_mode == CALLCHAIN_LBR) { 733 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 734 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 735 PERF_SAMPLE_BRANCH_CALL_STACK); 736 } 737 if (param->record_mode == CALLCHAIN_DWARF) { 738 perf_evsel__reset_sample_bit(evsel, REGS_USER); 739 perf_evsel__reset_sample_bit(evsel, STACK_USER); 740 } 741 } 742 743 static void apply_config_terms(struct perf_evsel *evsel, 744 struct record_opts *opts, bool track) 745 { 746 struct perf_evsel_config_term *term; 747 struct list_head *config_terms = &evsel->config_terms; 748 struct perf_event_attr *attr = &evsel->attr; 749 /* callgraph default */ 750 struct callchain_param param = { 751 .record_mode = callchain_param.record_mode, 752 }; 753 u32 dump_size = 0; 754 int max_stack = 0; 755 const char *callgraph_buf = NULL; 756 757 list_for_each_entry(term, config_terms, list) { 758 switch (term->type) { 759 case PERF_EVSEL__CONFIG_TERM_PERIOD: 760 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 761 attr->sample_period = term->val.period; 762 attr->freq = 0; 763 perf_evsel__reset_sample_bit(evsel, PERIOD); 764 } 765 break; 766 case PERF_EVSEL__CONFIG_TERM_FREQ: 767 if (!(term->weak && opts->user_freq != UINT_MAX)) { 768 attr->sample_freq = term->val.freq; 769 attr->freq = 1; 770 perf_evsel__set_sample_bit(evsel, PERIOD); 771 } 772 break; 773 case PERF_EVSEL__CONFIG_TERM_TIME: 774 if (term->val.time) 775 perf_evsel__set_sample_bit(evsel, TIME); 776 else 777 perf_evsel__reset_sample_bit(evsel, TIME); 778 break; 779 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 780 callgraph_buf = term->val.callgraph; 781 break; 782 case PERF_EVSEL__CONFIG_TERM_BRANCH: 783 if (term->val.branch && strcmp(term->val.branch, "no")) { 784 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 785 parse_branch_str(term->val.branch, 786 &attr->branch_sample_type); 787 } else 788 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 789 break; 790 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 791 dump_size = term->val.stack_user; 792 break; 793 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 794 max_stack = term->val.max_stack; 795 break; 796 case PERF_EVSEL__CONFIG_TERM_INHERIT: 797 /* 798 * attr->inherit should has already been set by 799 * perf_evsel__config. If user explicitly set 800 * inherit using config terms, override global 801 * opt->no_inherit setting. 802 */ 803 attr->inherit = term->val.inherit ? 1 : 0; 804 break; 805 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 806 attr->write_backward = term->val.overwrite ? 1 : 0; 807 break; 808 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 809 break; 810 default: 811 break; 812 } 813 } 814 815 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 816 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 817 bool sample_address = false; 818 819 if (max_stack) { 820 param.max_stack = max_stack; 821 if (callgraph_buf == NULL) 822 callgraph_buf = "fp"; 823 } 824 825 /* parse callgraph parameters */ 826 if (callgraph_buf != NULL) { 827 if (!strcmp(callgraph_buf, "no")) { 828 param.enabled = false; 829 param.record_mode = CALLCHAIN_NONE; 830 } else { 831 param.enabled = true; 832 if (parse_callchain_record(callgraph_buf, ¶m)) { 833 pr_err("per-event callgraph setting for %s failed. " 834 "Apply callgraph global setting for it\n", 835 evsel->name); 836 return; 837 } 838 if (param.record_mode == CALLCHAIN_DWARF) 839 sample_address = true; 840 } 841 } 842 if (dump_size > 0) { 843 dump_size = round_up(dump_size, sizeof(u64)); 844 param.dump_size = dump_size; 845 } 846 847 /* If global callgraph set, clear it */ 848 if (callchain_param.enabled) 849 perf_evsel__reset_callgraph(evsel, &callchain_param); 850 851 /* set perf-event callgraph */ 852 if (param.enabled) { 853 if (sample_address) { 854 perf_evsel__set_sample_bit(evsel, ADDR); 855 perf_evsel__set_sample_bit(evsel, DATA_SRC); 856 evsel->attr.mmap_data = track; 857 } 858 perf_evsel__config_callchain(evsel, opts, ¶m); 859 } 860 } 861 } 862 863 static bool is_dummy_event(struct perf_evsel *evsel) 864 { 865 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 866 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 867 } 868 869 /* 870 * The enable_on_exec/disabled value strategy: 871 * 872 * 1) For any type of traced program: 873 * - all independent events and group leaders are disabled 874 * - all group members are enabled 875 * 876 * Group members are ruled by group leaders. They need to 877 * be enabled, because the group scheduling relies on that. 878 * 879 * 2) For traced programs executed by perf: 880 * - all independent events and group leaders have 881 * enable_on_exec set 882 * - we don't specifically enable or disable any event during 883 * the record command 884 * 885 * Independent events and group leaders are initially disabled 886 * and get enabled by exec. Group members are ruled by group 887 * leaders as stated in 1). 888 * 889 * 3) For traced programs attached by perf (pid/tid): 890 * - we specifically enable or disable all events during 891 * the record command 892 * 893 * When attaching events to already running traced we 894 * enable/disable events specifically, as there's no 895 * initial traced exec call. 896 */ 897 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 898 struct callchain_param *callchain) 899 { 900 struct perf_evsel *leader = evsel->leader; 901 struct perf_event_attr *attr = &evsel->attr; 902 int track = evsel->tracking; 903 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 904 905 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 906 attr->inherit = !opts->no_inherit; 907 attr->write_backward = opts->overwrite ? 1 : 0; 908 909 perf_evsel__set_sample_bit(evsel, IP); 910 perf_evsel__set_sample_bit(evsel, TID); 911 912 if (evsel->sample_read) { 913 perf_evsel__set_sample_bit(evsel, READ); 914 915 /* 916 * We need ID even in case of single event, because 917 * PERF_SAMPLE_READ process ID specific data. 918 */ 919 perf_evsel__set_sample_id(evsel, false); 920 921 /* 922 * Apply group format only if we belong to group 923 * with more than one members. 924 */ 925 if (leader->nr_members > 1) { 926 attr->read_format |= PERF_FORMAT_GROUP; 927 attr->inherit = 0; 928 } 929 } 930 931 /* 932 * We default some events to have a default interval. But keep 933 * it a weak assumption overridable by the user. 934 */ 935 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 936 opts->user_interval != ULLONG_MAX)) { 937 if (opts->freq) { 938 perf_evsel__set_sample_bit(evsel, PERIOD); 939 attr->freq = 1; 940 attr->sample_freq = opts->freq; 941 } else { 942 attr->sample_period = opts->default_interval; 943 } 944 } 945 946 /* 947 * Disable sampling for all group members other 948 * than leader in case leader 'leads' the sampling. 949 */ 950 if ((leader != evsel) && leader->sample_read) { 951 attr->freq = 0; 952 attr->sample_freq = 0; 953 attr->sample_period = 0; 954 attr->write_backward = 0; 955 attr->sample_id_all = 0; 956 } 957 958 if (opts->no_samples) 959 attr->sample_freq = 0; 960 961 if (opts->inherit_stat) { 962 evsel->attr.read_format |= 963 PERF_FORMAT_TOTAL_TIME_ENABLED | 964 PERF_FORMAT_TOTAL_TIME_RUNNING | 965 PERF_FORMAT_ID; 966 attr->inherit_stat = 1; 967 } 968 969 if (opts->sample_address) { 970 perf_evsel__set_sample_bit(evsel, ADDR); 971 attr->mmap_data = track; 972 } 973 974 /* 975 * We don't allow user space callchains for function trace 976 * event, due to issues with page faults while tracing page 977 * fault handler and its overall trickiness nature. 978 */ 979 if (perf_evsel__is_function_event(evsel)) 980 evsel->attr.exclude_callchain_user = 1; 981 982 if (callchain && callchain->enabled && !evsel->no_aux_samples) 983 perf_evsel__config_callchain(evsel, opts, callchain); 984 985 if (opts->sample_intr_regs) { 986 attr->sample_regs_intr = opts->sample_intr_regs; 987 perf_evsel__set_sample_bit(evsel, REGS_INTR); 988 } 989 990 if (opts->sample_user_regs) { 991 attr->sample_regs_user |= opts->sample_user_regs; 992 perf_evsel__set_sample_bit(evsel, REGS_USER); 993 } 994 995 if (target__has_cpu(&opts->target) || opts->sample_cpu) 996 perf_evsel__set_sample_bit(evsel, CPU); 997 998 /* 999 * When the user explicitly disabled time don't force it here. 1000 */ 1001 if (opts->sample_time && 1002 (!perf_missing_features.sample_id_all && 1003 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1004 opts->sample_time_set))) 1005 perf_evsel__set_sample_bit(evsel, TIME); 1006 1007 if (opts->raw_samples && !evsel->no_aux_samples) { 1008 perf_evsel__set_sample_bit(evsel, TIME); 1009 perf_evsel__set_sample_bit(evsel, RAW); 1010 perf_evsel__set_sample_bit(evsel, CPU); 1011 } 1012 1013 if (opts->sample_address) 1014 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1015 1016 if (opts->sample_phys_addr) 1017 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1018 1019 if (opts->no_buffering) { 1020 attr->watermark = 0; 1021 attr->wakeup_events = 1; 1022 } 1023 if (opts->branch_stack && !evsel->no_aux_samples) { 1024 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1025 attr->branch_sample_type = opts->branch_stack; 1026 } 1027 1028 if (opts->sample_weight) 1029 perf_evsel__set_sample_bit(evsel, WEIGHT); 1030 1031 attr->task = track; 1032 attr->mmap = track; 1033 attr->mmap2 = track && !perf_missing_features.mmap2; 1034 attr->comm = track; 1035 1036 if (opts->record_namespaces) 1037 attr->namespaces = track; 1038 1039 if (opts->record_switch_events) 1040 attr->context_switch = track; 1041 1042 if (opts->sample_transaction) 1043 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1044 1045 if (opts->running_time) { 1046 evsel->attr.read_format |= 1047 PERF_FORMAT_TOTAL_TIME_ENABLED | 1048 PERF_FORMAT_TOTAL_TIME_RUNNING; 1049 } 1050 1051 /* 1052 * XXX see the function comment above 1053 * 1054 * Disabling only independent events or group leaders, 1055 * keeping group members enabled. 1056 */ 1057 if (perf_evsel__is_group_leader(evsel)) 1058 attr->disabled = 1; 1059 1060 /* 1061 * Setting enable_on_exec for independent events and 1062 * group leaders for traced executed by perf. 1063 */ 1064 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1065 !opts->initial_delay) 1066 attr->enable_on_exec = 1; 1067 1068 if (evsel->immediate) { 1069 attr->disabled = 0; 1070 attr->enable_on_exec = 0; 1071 } 1072 1073 clockid = opts->clockid; 1074 if (opts->use_clockid) { 1075 attr->use_clockid = 1; 1076 attr->clockid = opts->clockid; 1077 } 1078 1079 if (evsel->precise_max) 1080 perf_event_attr__set_max_precise_ip(attr); 1081 1082 if (opts->all_user) { 1083 attr->exclude_kernel = 1; 1084 attr->exclude_user = 0; 1085 } 1086 1087 if (opts->all_kernel) { 1088 attr->exclude_kernel = 0; 1089 attr->exclude_user = 1; 1090 } 1091 1092 /* 1093 * Apply event specific term settings, 1094 * it overloads any global configuration. 1095 */ 1096 apply_config_terms(evsel, opts, track); 1097 1098 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1099 1100 /* The --period option takes the precedence. */ 1101 if (opts->period_set) { 1102 if (opts->period) 1103 perf_evsel__set_sample_bit(evsel, PERIOD); 1104 else 1105 perf_evsel__reset_sample_bit(evsel, PERIOD); 1106 } 1107 1108 /* 1109 * For initial_delay, a dummy event is added implicitly. 1110 * The software event will trigger -EOPNOTSUPP error out, 1111 * if BRANCH_STACK bit is set. 1112 */ 1113 if (opts->initial_delay && is_dummy_event(evsel)) 1114 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1115 } 1116 1117 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1118 { 1119 if (evsel->system_wide) 1120 nthreads = 1; 1121 1122 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1123 1124 if (evsel->fd) { 1125 int cpu, thread; 1126 for (cpu = 0; cpu < ncpus; cpu++) { 1127 for (thread = 0; thread < nthreads; thread++) { 1128 FD(evsel, cpu, thread) = -1; 1129 } 1130 } 1131 } 1132 1133 return evsel->fd != NULL ? 0 : -ENOMEM; 1134 } 1135 1136 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1137 int ioc, void *arg) 1138 { 1139 int cpu, thread; 1140 1141 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1142 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1143 int fd = FD(evsel, cpu, thread), 1144 err = ioctl(fd, ioc, arg); 1145 1146 if (err) 1147 return err; 1148 } 1149 } 1150 1151 return 0; 1152 } 1153 1154 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1155 { 1156 return perf_evsel__run_ioctl(evsel, 1157 PERF_EVENT_IOC_SET_FILTER, 1158 (void *)filter); 1159 } 1160 1161 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1162 { 1163 char *new_filter = strdup(filter); 1164 1165 if (new_filter != NULL) { 1166 free(evsel->filter); 1167 evsel->filter = new_filter; 1168 return 0; 1169 } 1170 1171 return -1; 1172 } 1173 1174 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1175 const char *fmt, const char *filter) 1176 { 1177 char *new_filter; 1178 1179 if (evsel->filter == NULL) 1180 return perf_evsel__set_filter(evsel, filter); 1181 1182 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1183 free(evsel->filter); 1184 evsel->filter = new_filter; 1185 return 0; 1186 } 1187 1188 return -1; 1189 } 1190 1191 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1192 { 1193 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1194 } 1195 1196 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1197 { 1198 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1199 } 1200 1201 int perf_evsel__enable(struct perf_evsel *evsel) 1202 { 1203 return perf_evsel__run_ioctl(evsel, 1204 PERF_EVENT_IOC_ENABLE, 1205 0); 1206 } 1207 1208 int perf_evsel__disable(struct perf_evsel *evsel) 1209 { 1210 return perf_evsel__run_ioctl(evsel, 1211 PERF_EVENT_IOC_DISABLE, 1212 0); 1213 } 1214 1215 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1216 { 1217 if (ncpus == 0 || nthreads == 0) 1218 return 0; 1219 1220 if (evsel->system_wide) 1221 nthreads = 1; 1222 1223 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1224 if (evsel->sample_id == NULL) 1225 return -ENOMEM; 1226 1227 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1228 if (evsel->id == NULL) { 1229 xyarray__delete(evsel->sample_id); 1230 evsel->sample_id = NULL; 1231 return -ENOMEM; 1232 } 1233 1234 return 0; 1235 } 1236 1237 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1238 { 1239 xyarray__delete(evsel->fd); 1240 evsel->fd = NULL; 1241 } 1242 1243 static void perf_evsel__free_id(struct perf_evsel *evsel) 1244 { 1245 xyarray__delete(evsel->sample_id); 1246 evsel->sample_id = NULL; 1247 zfree(&evsel->id); 1248 } 1249 1250 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1251 { 1252 struct perf_evsel_config_term *term, *h; 1253 1254 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1255 list_del(&term->list); 1256 free(term); 1257 } 1258 } 1259 1260 void perf_evsel__close_fd(struct perf_evsel *evsel) 1261 { 1262 int cpu, thread; 1263 1264 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1265 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1266 close(FD(evsel, cpu, thread)); 1267 FD(evsel, cpu, thread) = -1; 1268 } 1269 } 1270 1271 void perf_evsel__exit(struct perf_evsel *evsel) 1272 { 1273 assert(list_empty(&evsel->node)); 1274 assert(evsel->evlist == NULL); 1275 perf_evsel__free_fd(evsel); 1276 perf_evsel__free_id(evsel); 1277 perf_evsel__free_config_terms(evsel); 1278 cgroup__put(evsel->cgrp); 1279 cpu_map__put(evsel->cpus); 1280 cpu_map__put(evsel->own_cpus); 1281 thread_map__put(evsel->threads); 1282 zfree(&evsel->group_name); 1283 zfree(&evsel->name); 1284 perf_evsel__object.fini(evsel); 1285 } 1286 1287 void perf_evsel__delete(struct perf_evsel *evsel) 1288 { 1289 perf_evsel__exit(evsel); 1290 free(evsel); 1291 } 1292 1293 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1294 struct perf_counts_values *count) 1295 { 1296 struct perf_counts_values tmp; 1297 1298 if (!evsel->prev_raw_counts) 1299 return; 1300 1301 if (cpu == -1) { 1302 tmp = evsel->prev_raw_counts->aggr; 1303 evsel->prev_raw_counts->aggr = *count; 1304 } else { 1305 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1306 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1307 } 1308 1309 count->val = count->val - tmp.val; 1310 count->ena = count->ena - tmp.ena; 1311 count->run = count->run - tmp.run; 1312 } 1313 1314 void perf_counts_values__scale(struct perf_counts_values *count, 1315 bool scale, s8 *pscaled) 1316 { 1317 s8 scaled = 0; 1318 1319 if (scale) { 1320 if (count->run == 0) { 1321 scaled = -1; 1322 count->val = 0; 1323 } else if (count->run < count->ena) { 1324 scaled = 1; 1325 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1326 } 1327 } else 1328 count->ena = count->run = 0; 1329 1330 if (pscaled) 1331 *pscaled = scaled; 1332 } 1333 1334 static int perf_evsel__read_size(struct perf_evsel *evsel) 1335 { 1336 u64 read_format = evsel->attr.read_format; 1337 int entry = sizeof(u64); /* value */ 1338 int size = 0; 1339 int nr = 1; 1340 1341 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1342 size += sizeof(u64); 1343 1344 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1345 size += sizeof(u64); 1346 1347 if (read_format & PERF_FORMAT_ID) 1348 entry += sizeof(u64); 1349 1350 if (read_format & PERF_FORMAT_GROUP) { 1351 nr = evsel->nr_members; 1352 size += sizeof(u64); 1353 } 1354 1355 size += entry * nr; 1356 return size; 1357 } 1358 1359 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1360 struct perf_counts_values *count) 1361 { 1362 size_t size = perf_evsel__read_size(evsel); 1363 1364 memset(count, 0, sizeof(*count)); 1365 1366 if (FD(evsel, cpu, thread) < 0) 1367 return -EINVAL; 1368 1369 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1370 return -errno; 1371 1372 return 0; 1373 } 1374 1375 static int 1376 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1377 { 1378 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1379 1380 return perf_evsel__read(evsel, cpu, thread, count); 1381 } 1382 1383 static void 1384 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1385 u64 val, u64 ena, u64 run) 1386 { 1387 struct perf_counts_values *count; 1388 1389 count = perf_counts(counter->counts, cpu, thread); 1390 1391 count->val = val; 1392 count->ena = ena; 1393 count->run = run; 1394 count->loaded = true; 1395 } 1396 1397 static int 1398 perf_evsel__process_group_data(struct perf_evsel *leader, 1399 int cpu, int thread, u64 *data) 1400 { 1401 u64 read_format = leader->attr.read_format; 1402 struct sample_read_value *v; 1403 u64 nr, ena = 0, run = 0, i; 1404 1405 nr = *data++; 1406 1407 if (nr != (u64) leader->nr_members) 1408 return -EINVAL; 1409 1410 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1411 ena = *data++; 1412 1413 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1414 run = *data++; 1415 1416 v = (struct sample_read_value *) data; 1417 1418 perf_evsel__set_count(leader, cpu, thread, 1419 v[0].value, ena, run); 1420 1421 for (i = 1; i < nr; i++) { 1422 struct perf_evsel *counter; 1423 1424 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1425 if (!counter) 1426 return -EINVAL; 1427 1428 perf_evsel__set_count(counter, cpu, thread, 1429 v[i].value, ena, run); 1430 } 1431 1432 return 0; 1433 } 1434 1435 static int 1436 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1437 { 1438 struct perf_stat_evsel *ps = leader->stats; 1439 u64 read_format = leader->attr.read_format; 1440 int size = perf_evsel__read_size(leader); 1441 u64 *data = ps->group_data; 1442 1443 if (!(read_format & PERF_FORMAT_ID)) 1444 return -EINVAL; 1445 1446 if (!perf_evsel__is_group_leader(leader)) 1447 return -EINVAL; 1448 1449 if (!data) { 1450 data = zalloc(size); 1451 if (!data) 1452 return -ENOMEM; 1453 1454 ps->group_data = data; 1455 } 1456 1457 if (FD(leader, cpu, thread) < 0) 1458 return -EINVAL; 1459 1460 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1461 return -errno; 1462 1463 return perf_evsel__process_group_data(leader, cpu, thread, data); 1464 } 1465 1466 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1467 { 1468 u64 read_format = evsel->attr.read_format; 1469 1470 if (read_format & PERF_FORMAT_GROUP) 1471 return perf_evsel__read_group(evsel, cpu, thread); 1472 else 1473 return perf_evsel__read_one(evsel, cpu, thread); 1474 } 1475 1476 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1477 int cpu, int thread, bool scale) 1478 { 1479 struct perf_counts_values count; 1480 size_t nv = scale ? 3 : 1; 1481 1482 if (FD(evsel, cpu, thread) < 0) 1483 return -EINVAL; 1484 1485 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1486 return -ENOMEM; 1487 1488 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1489 return -errno; 1490 1491 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1492 perf_counts_values__scale(&count, scale, NULL); 1493 *perf_counts(evsel->counts, cpu, thread) = count; 1494 return 0; 1495 } 1496 1497 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1498 { 1499 struct perf_evsel *leader = evsel->leader; 1500 int fd; 1501 1502 if (perf_evsel__is_group_leader(evsel)) 1503 return -1; 1504 1505 /* 1506 * Leader must be already processed/open, 1507 * if not it's a bug. 1508 */ 1509 BUG_ON(!leader->fd); 1510 1511 fd = FD(leader, cpu, thread); 1512 BUG_ON(fd == -1); 1513 1514 return fd; 1515 } 1516 1517 struct bit_names { 1518 int bit; 1519 const char *name; 1520 }; 1521 1522 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1523 { 1524 bool first_bit = true; 1525 int i = 0; 1526 1527 do { 1528 if (value & bits[i].bit) { 1529 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1530 first_bit = false; 1531 } 1532 } while (bits[++i].name != NULL); 1533 } 1534 1535 static void __p_sample_type(char *buf, size_t size, u64 value) 1536 { 1537 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1538 struct bit_names bits[] = { 1539 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1540 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1541 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1542 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1543 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1544 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1545 { .name = NULL, } 1546 }; 1547 #undef bit_name 1548 __p_bits(buf, size, value, bits); 1549 } 1550 1551 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1552 { 1553 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1554 struct bit_names bits[] = { 1555 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1556 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1557 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1558 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1559 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1560 { .name = NULL, } 1561 }; 1562 #undef bit_name 1563 __p_bits(buf, size, value, bits); 1564 } 1565 1566 static void __p_read_format(char *buf, size_t size, u64 value) 1567 { 1568 #define bit_name(n) { PERF_FORMAT_##n, #n } 1569 struct bit_names bits[] = { 1570 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1571 bit_name(ID), bit_name(GROUP), 1572 { .name = NULL, } 1573 }; 1574 #undef bit_name 1575 __p_bits(buf, size, value, bits); 1576 } 1577 1578 #define BUF_SIZE 1024 1579 1580 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1581 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1582 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1583 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1584 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1585 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1586 1587 #define PRINT_ATTRn(_n, _f, _p) \ 1588 do { \ 1589 if (attr->_f) { \ 1590 _p(attr->_f); \ 1591 ret += attr__fprintf(fp, _n, buf, priv);\ 1592 } \ 1593 } while (0) 1594 1595 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1596 1597 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1598 attr__fprintf_f attr__fprintf, void *priv) 1599 { 1600 char buf[BUF_SIZE]; 1601 int ret = 0; 1602 1603 PRINT_ATTRf(type, p_unsigned); 1604 PRINT_ATTRf(size, p_unsigned); 1605 PRINT_ATTRf(config, p_hex); 1606 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1607 PRINT_ATTRf(sample_type, p_sample_type); 1608 PRINT_ATTRf(read_format, p_read_format); 1609 1610 PRINT_ATTRf(disabled, p_unsigned); 1611 PRINT_ATTRf(inherit, p_unsigned); 1612 PRINT_ATTRf(pinned, p_unsigned); 1613 PRINT_ATTRf(exclusive, p_unsigned); 1614 PRINT_ATTRf(exclude_user, p_unsigned); 1615 PRINT_ATTRf(exclude_kernel, p_unsigned); 1616 PRINT_ATTRf(exclude_hv, p_unsigned); 1617 PRINT_ATTRf(exclude_idle, p_unsigned); 1618 PRINT_ATTRf(mmap, p_unsigned); 1619 PRINT_ATTRf(comm, p_unsigned); 1620 PRINT_ATTRf(freq, p_unsigned); 1621 PRINT_ATTRf(inherit_stat, p_unsigned); 1622 PRINT_ATTRf(enable_on_exec, p_unsigned); 1623 PRINT_ATTRf(task, p_unsigned); 1624 PRINT_ATTRf(watermark, p_unsigned); 1625 PRINT_ATTRf(precise_ip, p_unsigned); 1626 PRINT_ATTRf(mmap_data, p_unsigned); 1627 PRINT_ATTRf(sample_id_all, p_unsigned); 1628 PRINT_ATTRf(exclude_host, p_unsigned); 1629 PRINT_ATTRf(exclude_guest, p_unsigned); 1630 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1631 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1632 PRINT_ATTRf(mmap2, p_unsigned); 1633 PRINT_ATTRf(comm_exec, p_unsigned); 1634 PRINT_ATTRf(use_clockid, p_unsigned); 1635 PRINT_ATTRf(context_switch, p_unsigned); 1636 PRINT_ATTRf(write_backward, p_unsigned); 1637 PRINT_ATTRf(namespaces, p_unsigned); 1638 1639 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1640 PRINT_ATTRf(bp_type, p_unsigned); 1641 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1642 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1643 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1644 PRINT_ATTRf(sample_regs_user, p_hex); 1645 PRINT_ATTRf(sample_stack_user, p_unsigned); 1646 PRINT_ATTRf(clockid, p_signed); 1647 PRINT_ATTRf(sample_regs_intr, p_hex); 1648 PRINT_ATTRf(aux_watermark, p_unsigned); 1649 PRINT_ATTRf(sample_max_stack, p_unsigned); 1650 1651 return ret; 1652 } 1653 1654 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1655 void *priv __maybe_unused) 1656 { 1657 return fprintf(fp, " %-32s %s\n", name, val); 1658 } 1659 1660 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1661 int nr_cpus, int nr_threads, 1662 int thread_idx) 1663 { 1664 for (int cpu = 0; cpu < nr_cpus; cpu++) 1665 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1666 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1667 } 1668 1669 static int update_fds(struct perf_evsel *evsel, 1670 int nr_cpus, int cpu_idx, 1671 int nr_threads, int thread_idx) 1672 { 1673 struct perf_evsel *pos; 1674 1675 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1676 return -EINVAL; 1677 1678 evlist__for_each_entry(evsel->evlist, pos) { 1679 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1680 1681 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1682 1683 /* 1684 * Since fds for next evsel has not been created, 1685 * there is no need to iterate whole event list. 1686 */ 1687 if (pos == evsel) 1688 break; 1689 } 1690 return 0; 1691 } 1692 1693 static bool ignore_missing_thread(struct perf_evsel *evsel, 1694 int nr_cpus, int cpu, 1695 struct thread_map *threads, 1696 int thread, int err) 1697 { 1698 pid_t ignore_pid = thread_map__pid(threads, thread); 1699 1700 if (!evsel->ignore_missing_thread) 1701 return false; 1702 1703 /* The system wide setup does not work with threads. */ 1704 if (evsel->system_wide) 1705 return false; 1706 1707 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1708 if (err != -ESRCH) 1709 return false; 1710 1711 /* If there's only one thread, let it fail. */ 1712 if (threads->nr == 1) 1713 return false; 1714 1715 /* 1716 * We should remove fd for missing_thread first 1717 * because thread_map__remove() will decrease threads->nr. 1718 */ 1719 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1720 return false; 1721 1722 if (thread_map__remove(threads, thread)) 1723 return false; 1724 1725 pr_warning("WARNING: Ignored open failure for pid %d\n", 1726 ignore_pid); 1727 return true; 1728 } 1729 1730 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1731 struct thread_map *threads) 1732 { 1733 int cpu, thread, nthreads; 1734 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1735 int pid = -1, err; 1736 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1737 1738 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1739 return -EINVAL; 1740 1741 if (cpus == NULL) { 1742 static struct cpu_map *empty_cpu_map; 1743 1744 if (empty_cpu_map == NULL) { 1745 empty_cpu_map = cpu_map__dummy_new(); 1746 if (empty_cpu_map == NULL) 1747 return -ENOMEM; 1748 } 1749 1750 cpus = empty_cpu_map; 1751 } 1752 1753 if (threads == NULL) { 1754 static struct thread_map *empty_thread_map; 1755 1756 if (empty_thread_map == NULL) { 1757 empty_thread_map = thread_map__new_by_tid(-1); 1758 if (empty_thread_map == NULL) 1759 return -ENOMEM; 1760 } 1761 1762 threads = empty_thread_map; 1763 } 1764 1765 if (evsel->system_wide) 1766 nthreads = 1; 1767 else 1768 nthreads = threads->nr; 1769 1770 if (evsel->fd == NULL && 1771 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1772 return -ENOMEM; 1773 1774 if (evsel->cgrp) { 1775 flags |= PERF_FLAG_PID_CGROUP; 1776 pid = evsel->cgrp->fd; 1777 } 1778 1779 fallback_missing_features: 1780 if (perf_missing_features.clockid_wrong) 1781 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1782 if (perf_missing_features.clockid) { 1783 evsel->attr.use_clockid = 0; 1784 evsel->attr.clockid = 0; 1785 } 1786 if (perf_missing_features.cloexec) 1787 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1788 if (perf_missing_features.mmap2) 1789 evsel->attr.mmap2 = 0; 1790 if (perf_missing_features.exclude_guest) 1791 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1792 if (perf_missing_features.lbr_flags) 1793 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1794 PERF_SAMPLE_BRANCH_NO_CYCLES); 1795 if (perf_missing_features.group_read && evsel->attr.inherit) 1796 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1797 retry_sample_id: 1798 if (perf_missing_features.sample_id_all) 1799 evsel->attr.sample_id_all = 0; 1800 1801 if (verbose >= 2) { 1802 fprintf(stderr, "%.60s\n", graph_dotted_line); 1803 fprintf(stderr, "perf_event_attr:\n"); 1804 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1805 fprintf(stderr, "%.60s\n", graph_dotted_line); 1806 } 1807 1808 for (cpu = 0; cpu < cpus->nr; cpu++) { 1809 1810 for (thread = 0; thread < nthreads; thread++) { 1811 int fd, group_fd; 1812 1813 if (!evsel->cgrp && !evsel->system_wide) 1814 pid = thread_map__pid(threads, thread); 1815 1816 group_fd = get_group_fd(evsel, cpu, thread); 1817 retry_open: 1818 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1819 pid, cpus->map[cpu], group_fd, flags); 1820 1821 test_attr__ready(); 1822 1823 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1824 group_fd, flags); 1825 1826 FD(evsel, cpu, thread) = fd; 1827 1828 if (fd < 0) { 1829 err = -errno; 1830 1831 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1832 /* 1833 * We just removed 1 thread, so take a step 1834 * back on thread index and lower the upper 1835 * nthreads limit. 1836 */ 1837 nthreads--; 1838 thread--; 1839 1840 /* ... and pretend like nothing have happened. */ 1841 err = 0; 1842 continue; 1843 } 1844 1845 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1846 err); 1847 goto try_fallback; 1848 } 1849 1850 pr_debug2(" = %d\n", fd); 1851 1852 if (evsel->bpf_fd >= 0) { 1853 int evt_fd = fd; 1854 int bpf_fd = evsel->bpf_fd; 1855 1856 err = ioctl(evt_fd, 1857 PERF_EVENT_IOC_SET_BPF, 1858 bpf_fd); 1859 if (err && errno != EEXIST) { 1860 pr_err("failed to attach bpf fd %d: %s\n", 1861 bpf_fd, strerror(errno)); 1862 err = -EINVAL; 1863 goto out_close; 1864 } 1865 } 1866 1867 set_rlimit = NO_CHANGE; 1868 1869 /* 1870 * If we succeeded but had to kill clockid, fail and 1871 * have perf_evsel__open_strerror() print us a nice 1872 * error. 1873 */ 1874 if (perf_missing_features.clockid || 1875 perf_missing_features.clockid_wrong) { 1876 err = -EINVAL; 1877 goto out_close; 1878 } 1879 } 1880 } 1881 1882 return 0; 1883 1884 try_fallback: 1885 /* 1886 * perf stat needs between 5 and 22 fds per CPU. When we run out 1887 * of them try to increase the limits. 1888 */ 1889 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1890 struct rlimit l; 1891 int old_errno = errno; 1892 1893 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1894 if (set_rlimit == NO_CHANGE) 1895 l.rlim_cur = l.rlim_max; 1896 else { 1897 l.rlim_cur = l.rlim_max + 1000; 1898 l.rlim_max = l.rlim_cur; 1899 } 1900 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1901 set_rlimit++; 1902 errno = old_errno; 1903 goto retry_open; 1904 } 1905 } 1906 errno = old_errno; 1907 } 1908 1909 if (err != -EINVAL || cpu > 0 || thread > 0) 1910 goto out_close; 1911 1912 /* 1913 * Must probe features in the order they were added to the 1914 * perf_event_attr interface. 1915 */ 1916 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1917 perf_missing_features.write_backward = true; 1918 pr_debug2("switching off write_backward\n"); 1919 goto out_close; 1920 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1921 perf_missing_features.clockid_wrong = true; 1922 pr_debug2("switching off clockid\n"); 1923 goto fallback_missing_features; 1924 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1925 perf_missing_features.clockid = true; 1926 pr_debug2("switching off use_clockid\n"); 1927 goto fallback_missing_features; 1928 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1929 perf_missing_features.cloexec = true; 1930 pr_debug2("switching off cloexec flag\n"); 1931 goto fallback_missing_features; 1932 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1933 perf_missing_features.mmap2 = true; 1934 pr_debug2("switching off mmap2\n"); 1935 goto fallback_missing_features; 1936 } else if (!perf_missing_features.exclude_guest && 1937 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1938 perf_missing_features.exclude_guest = true; 1939 pr_debug2("switching off exclude_guest, exclude_host\n"); 1940 goto fallback_missing_features; 1941 } else if (!perf_missing_features.sample_id_all) { 1942 perf_missing_features.sample_id_all = true; 1943 pr_debug2("switching off sample_id_all\n"); 1944 goto retry_sample_id; 1945 } else if (!perf_missing_features.lbr_flags && 1946 (evsel->attr.branch_sample_type & 1947 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1948 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1949 perf_missing_features.lbr_flags = true; 1950 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1951 goto fallback_missing_features; 1952 } else if (!perf_missing_features.group_read && 1953 evsel->attr.inherit && 1954 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 1955 perf_evsel__is_group_leader(evsel)) { 1956 perf_missing_features.group_read = true; 1957 pr_debug2("switching off group read\n"); 1958 goto fallback_missing_features; 1959 } 1960 out_close: 1961 if (err) 1962 threads->err_thread = thread; 1963 1964 do { 1965 while (--thread >= 0) { 1966 close(FD(evsel, cpu, thread)); 1967 FD(evsel, cpu, thread) = -1; 1968 } 1969 thread = nthreads; 1970 } while (--cpu >= 0); 1971 return err; 1972 } 1973 1974 void perf_evsel__close(struct perf_evsel *evsel) 1975 { 1976 if (evsel->fd == NULL) 1977 return; 1978 1979 perf_evsel__close_fd(evsel); 1980 perf_evsel__free_fd(evsel); 1981 } 1982 1983 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1984 struct cpu_map *cpus) 1985 { 1986 return perf_evsel__open(evsel, cpus, NULL); 1987 } 1988 1989 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1990 struct thread_map *threads) 1991 { 1992 return perf_evsel__open(evsel, NULL, threads); 1993 } 1994 1995 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1996 const union perf_event *event, 1997 struct perf_sample *sample) 1998 { 1999 u64 type = evsel->attr.sample_type; 2000 const u64 *array = event->sample.array; 2001 bool swapped = evsel->needs_swap; 2002 union u64_swap u; 2003 2004 array += ((event->header.size - 2005 sizeof(event->header)) / sizeof(u64)) - 1; 2006 2007 if (type & PERF_SAMPLE_IDENTIFIER) { 2008 sample->id = *array; 2009 array--; 2010 } 2011 2012 if (type & PERF_SAMPLE_CPU) { 2013 u.val64 = *array; 2014 if (swapped) { 2015 /* undo swap of u64, then swap on individual u32s */ 2016 u.val64 = bswap_64(u.val64); 2017 u.val32[0] = bswap_32(u.val32[0]); 2018 } 2019 2020 sample->cpu = u.val32[0]; 2021 array--; 2022 } 2023 2024 if (type & PERF_SAMPLE_STREAM_ID) { 2025 sample->stream_id = *array; 2026 array--; 2027 } 2028 2029 if (type & PERF_SAMPLE_ID) { 2030 sample->id = *array; 2031 array--; 2032 } 2033 2034 if (type & PERF_SAMPLE_TIME) { 2035 sample->time = *array; 2036 array--; 2037 } 2038 2039 if (type & PERF_SAMPLE_TID) { 2040 u.val64 = *array; 2041 if (swapped) { 2042 /* undo swap of u64, then swap on individual u32s */ 2043 u.val64 = bswap_64(u.val64); 2044 u.val32[0] = bswap_32(u.val32[0]); 2045 u.val32[1] = bswap_32(u.val32[1]); 2046 } 2047 2048 sample->pid = u.val32[0]; 2049 sample->tid = u.val32[1]; 2050 array--; 2051 } 2052 2053 return 0; 2054 } 2055 2056 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2057 u64 size) 2058 { 2059 return size > max_size || offset + size > endp; 2060 } 2061 2062 #define OVERFLOW_CHECK(offset, size, max_size) \ 2063 do { \ 2064 if (overflow(endp, (max_size), (offset), (size))) \ 2065 return -EFAULT; \ 2066 } while (0) 2067 2068 #define OVERFLOW_CHECK_u64(offset) \ 2069 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2070 2071 static int 2072 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2073 { 2074 /* 2075 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2076 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2077 * check the format does not go past the end of the event. 2078 */ 2079 if (sample_size + sizeof(event->header) > event->header.size) 2080 return -EFAULT; 2081 2082 return 0; 2083 } 2084 2085 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2086 struct perf_sample *data) 2087 { 2088 u64 type = evsel->attr.sample_type; 2089 bool swapped = evsel->needs_swap; 2090 const u64 *array; 2091 u16 max_size = event->header.size; 2092 const void *endp = (void *)event + max_size; 2093 u64 sz; 2094 2095 /* 2096 * used for cross-endian analysis. See git commit 65014ab3 2097 * for why this goofiness is needed. 2098 */ 2099 union u64_swap u; 2100 2101 memset(data, 0, sizeof(*data)); 2102 data->cpu = data->pid = data->tid = -1; 2103 data->stream_id = data->id = data->time = -1ULL; 2104 data->period = evsel->attr.sample_period; 2105 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2106 data->misc = event->header.misc; 2107 data->id = -1ULL; 2108 data->data_src = PERF_MEM_DATA_SRC_NONE; 2109 2110 if (event->header.type != PERF_RECORD_SAMPLE) { 2111 if (!evsel->attr.sample_id_all) 2112 return 0; 2113 return perf_evsel__parse_id_sample(evsel, event, data); 2114 } 2115 2116 array = event->sample.array; 2117 2118 if (perf_event__check_size(event, evsel->sample_size)) 2119 return -EFAULT; 2120 2121 if (type & PERF_SAMPLE_IDENTIFIER) { 2122 data->id = *array; 2123 array++; 2124 } 2125 2126 if (type & PERF_SAMPLE_IP) { 2127 data->ip = *array; 2128 array++; 2129 } 2130 2131 if (type & PERF_SAMPLE_TID) { 2132 u.val64 = *array; 2133 if (swapped) { 2134 /* undo swap of u64, then swap on individual u32s */ 2135 u.val64 = bswap_64(u.val64); 2136 u.val32[0] = bswap_32(u.val32[0]); 2137 u.val32[1] = bswap_32(u.val32[1]); 2138 } 2139 2140 data->pid = u.val32[0]; 2141 data->tid = u.val32[1]; 2142 array++; 2143 } 2144 2145 if (type & PERF_SAMPLE_TIME) { 2146 data->time = *array; 2147 array++; 2148 } 2149 2150 if (type & PERF_SAMPLE_ADDR) { 2151 data->addr = *array; 2152 array++; 2153 } 2154 2155 if (type & PERF_SAMPLE_ID) { 2156 data->id = *array; 2157 array++; 2158 } 2159 2160 if (type & PERF_SAMPLE_STREAM_ID) { 2161 data->stream_id = *array; 2162 array++; 2163 } 2164 2165 if (type & PERF_SAMPLE_CPU) { 2166 2167 u.val64 = *array; 2168 if (swapped) { 2169 /* undo swap of u64, then swap on individual u32s */ 2170 u.val64 = bswap_64(u.val64); 2171 u.val32[0] = bswap_32(u.val32[0]); 2172 } 2173 2174 data->cpu = u.val32[0]; 2175 array++; 2176 } 2177 2178 if (type & PERF_SAMPLE_PERIOD) { 2179 data->period = *array; 2180 array++; 2181 } 2182 2183 if (type & PERF_SAMPLE_READ) { 2184 u64 read_format = evsel->attr.read_format; 2185 2186 OVERFLOW_CHECK_u64(array); 2187 if (read_format & PERF_FORMAT_GROUP) 2188 data->read.group.nr = *array; 2189 else 2190 data->read.one.value = *array; 2191 2192 array++; 2193 2194 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2195 OVERFLOW_CHECK_u64(array); 2196 data->read.time_enabled = *array; 2197 array++; 2198 } 2199 2200 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2201 OVERFLOW_CHECK_u64(array); 2202 data->read.time_running = *array; 2203 array++; 2204 } 2205 2206 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2207 if (read_format & PERF_FORMAT_GROUP) { 2208 const u64 max_group_nr = UINT64_MAX / 2209 sizeof(struct sample_read_value); 2210 2211 if (data->read.group.nr > max_group_nr) 2212 return -EFAULT; 2213 sz = data->read.group.nr * 2214 sizeof(struct sample_read_value); 2215 OVERFLOW_CHECK(array, sz, max_size); 2216 data->read.group.values = 2217 (struct sample_read_value *)array; 2218 array = (void *)array + sz; 2219 } else { 2220 OVERFLOW_CHECK_u64(array); 2221 data->read.one.id = *array; 2222 array++; 2223 } 2224 } 2225 2226 if (evsel__has_callchain(evsel)) { 2227 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2228 2229 OVERFLOW_CHECK_u64(array); 2230 data->callchain = (struct ip_callchain *)array++; 2231 if (data->callchain->nr > max_callchain_nr) 2232 return -EFAULT; 2233 sz = data->callchain->nr * sizeof(u64); 2234 OVERFLOW_CHECK(array, sz, max_size); 2235 array = (void *)array + sz; 2236 } 2237 2238 if (type & PERF_SAMPLE_RAW) { 2239 OVERFLOW_CHECK_u64(array); 2240 u.val64 = *array; 2241 2242 /* 2243 * Undo swap of u64, then swap on individual u32s, 2244 * get the size of the raw area and undo all of the 2245 * swap. The pevent interface handles endianity by 2246 * itself. 2247 */ 2248 if (swapped) { 2249 u.val64 = bswap_64(u.val64); 2250 u.val32[0] = bswap_32(u.val32[0]); 2251 u.val32[1] = bswap_32(u.val32[1]); 2252 } 2253 data->raw_size = u.val32[0]; 2254 2255 /* 2256 * The raw data is aligned on 64bits including the 2257 * u32 size, so it's safe to use mem_bswap_64. 2258 */ 2259 if (swapped) 2260 mem_bswap_64((void *) array, data->raw_size); 2261 2262 array = (void *)array + sizeof(u32); 2263 2264 OVERFLOW_CHECK(array, data->raw_size, max_size); 2265 data->raw_data = (void *)array; 2266 array = (void *)array + data->raw_size; 2267 } 2268 2269 if (type & PERF_SAMPLE_BRANCH_STACK) { 2270 const u64 max_branch_nr = UINT64_MAX / 2271 sizeof(struct branch_entry); 2272 2273 OVERFLOW_CHECK_u64(array); 2274 data->branch_stack = (struct branch_stack *)array++; 2275 2276 if (data->branch_stack->nr > max_branch_nr) 2277 return -EFAULT; 2278 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2279 OVERFLOW_CHECK(array, sz, max_size); 2280 array = (void *)array + sz; 2281 } 2282 2283 if (type & PERF_SAMPLE_REGS_USER) { 2284 OVERFLOW_CHECK_u64(array); 2285 data->user_regs.abi = *array; 2286 array++; 2287 2288 if (data->user_regs.abi) { 2289 u64 mask = evsel->attr.sample_regs_user; 2290 2291 sz = hweight_long(mask) * sizeof(u64); 2292 OVERFLOW_CHECK(array, sz, max_size); 2293 data->user_regs.mask = mask; 2294 data->user_regs.regs = (u64 *)array; 2295 array = (void *)array + sz; 2296 } 2297 } 2298 2299 if (type & PERF_SAMPLE_STACK_USER) { 2300 OVERFLOW_CHECK_u64(array); 2301 sz = *array++; 2302 2303 data->user_stack.offset = ((char *)(array - 1) 2304 - (char *) event); 2305 2306 if (!sz) { 2307 data->user_stack.size = 0; 2308 } else { 2309 OVERFLOW_CHECK(array, sz, max_size); 2310 data->user_stack.data = (char *)array; 2311 array = (void *)array + sz; 2312 OVERFLOW_CHECK_u64(array); 2313 data->user_stack.size = *array++; 2314 if (WARN_ONCE(data->user_stack.size > sz, 2315 "user stack dump failure\n")) 2316 return -EFAULT; 2317 } 2318 } 2319 2320 if (type & PERF_SAMPLE_WEIGHT) { 2321 OVERFLOW_CHECK_u64(array); 2322 data->weight = *array; 2323 array++; 2324 } 2325 2326 if (type & PERF_SAMPLE_DATA_SRC) { 2327 OVERFLOW_CHECK_u64(array); 2328 data->data_src = *array; 2329 array++; 2330 } 2331 2332 if (type & PERF_SAMPLE_TRANSACTION) { 2333 OVERFLOW_CHECK_u64(array); 2334 data->transaction = *array; 2335 array++; 2336 } 2337 2338 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2339 if (type & PERF_SAMPLE_REGS_INTR) { 2340 OVERFLOW_CHECK_u64(array); 2341 data->intr_regs.abi = *array; 2342 array++; 2343 2344 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2345 u64 mask = evsel->attr.sample_regs_intr; 2346 2347 sz = hweight_long(mask) * sizeof(u64); 2348 OVERFLOW_CHECK(array, sz, max_size); 2349 data->intr_regs.mask = mask; 2350 data->intr_regs.regs = (u64 *)array; 2351 array = (void *)array + sz; 2352 } 2353 } 2354 2355 data->phys_addr = 0; 2356 if (type & PERF_SAMPLE_PHYS_ADDR) { 2357 data->phys_addr = *array; 2358 array++; 2359 } 2360 2361 return 0; 2362 } 2363 2364 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2365 union perf_event *event, 2366 u64 *timestamp) 2367 { 2368 u64 type = evsel->attr.sample_type; 2369 const u64 *array; 2370 2371 if (!(type & PERF_SAMPLE_TIME)) 2372 return -1; 2373 2374 if (event->header.type != PERF_RECORD_SAMPLE) { 2375 struct perf_sample data = { 2376 .time = -1ULL, 2377 }; 2378 2379 if (!evsel->attr.sample_id_all) 2380 return -1; 2381 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2382 return -1; 2383 2384 *timestamp = data.time; 2385 return 0; 2386 } 2387 2388 array = event->sample.array; 2389 2390 if (perf_event__check_size(event, evsel->sample_size)) 2391 return -EFAULT; 2392 2393 if (type & PERF_SAMPLE_IDENTIFIER) 2394 array++; 2395 2396 if (type & PERF_SAMPLE_IP) 2397 array++; 2398 2399 if (type & PERF_SAMPLE_TID) 2400 array++; 2401 2402 if (type & PERF_SAMPLE_TIME) 2403 *timestamp = *array; 2404 2405 return 0; 2406 } 2407 2408 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2409 u64 read_format) 2410 { 2411 size_t sz, result = sizeof(struct sample_event); 2412 2413 if (type & PERF_SAMPLE_IDENTIFIER) 2414 result += sizeof(u64); 2415 2416 if (type & PERF_SAMPLE_IP) 2417 result += sizeof(u64); 2418 2419 if (type & PERF_SAMPLE_TID) 2420 result += sizeof(u64); 2421 2422 if (type & PERF_SAMPLE_TIME) 2423 result += sizeof(u64); 2424 2425 if (type & PERF_SAMPLE_ADDR) 2426 result += sizeof(u64); 2427 2428 if (type & PERF_SAMPLE_ID) 2429 result += sizeof(u64); 2430 2431 if (type & PERF_SAMPLE_STREAM_ID) 2432 result += sizeof(u64); 2433 2434 if (type & PERF_SAMPLE_CPU) 2435 result += sizeof(u64); 2436 2437 if (type & PERF_SAMPLE_PERIOD) 2438 result += sizeof(u64); 2439 2440 if (type & PERF_SAMPLE_READ) { 2441 result += sizeof(u64); 2442 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2443 result += sizeof(u64); 2444 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2445 result += sizeof(u64); 2446 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2447 if (read_format & PERF_FORMAT_GROUP) { 2448 sz = sample->read.group.nr * 2449 sizeof(struct sample_read_value); 2450 result += sz; 2451 } else { 2452 result += sizeof(u64); 2453 } 2454 } 2455 2456 if (type & PERF_SAMPLE_CALLCHAIN) { 2457 sz = (sample->callchain->nr + 1) * sizeof(u64); 2458 result += sz; 2459 } 2460 2461 if (type & PERF_SAMPLE_RAW) { 2462 result += sizeof(u32); 2463 result += sample->raw_size; 2464 } 2465 2466 if (type & PERF_SAMPLE_BRANCH_STACK) { 2467 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2468 sz += sizeof(u64); 2469 result += sz; 2470 } 2471 2472 if (type & PERF_SAMPLE_REGS_USER) { 2473 if (sample->user_regs.abi) { 2474 result += sizeof(u64); 2475 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2476 result += sz; 2477 } else { 2478 result += sizeof(u64); 2479 } 2480 } 2481 2482 if (type & PERF_SAMPLE_STACK_USER) { 2483 sz = sample->user_stack.size; 2484 result += sizeof(u64); 2485 if (sz) { 2486 result += sz; 2487 result += sizeof(u64); 2488 } 2489 } 2490 2491 if (type & PERF_SAMPLE_WEIGHT) 2492 result += sizeof(u64); 2493 2494 if (type & PERF_SAMPLE_DATA_SRC) 2495 result += sizeof(u64); 2496 2497 if (type & PERF_SAMPLE_TRANSACTION) 2498 result += sizeof(u64); 2499 2500 if (type & PERF_SAMPLE_REGS_INTR) { 2501 if (sample->intr_regs.abi) { 2502 result += sizeof(u64); 2503 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2504 result += sz; 2505 } else { 2506 result += sizeof(u64); 2507 } 2508 } 2509 2510 if (type & PERF_SAMPLE_PHYS_ADDR) 2511 result += sizeof(u64); 2512 2513 return result; 2514 } 2515 2516 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2517 u64 read_format, 2518 const struct perf_sample *sample) 2519 { 2520 u64 *array; 2521 size_t sz; 2522 /* 2523 * used for cross-endian analysis. See git commit 65014ab3 2524 * for why this goofiness is needed. 2525 */ 2526 union u64_swap u; 2527 2528 array = event->sample.array; 2529 2530 if (type & PERF_SAMPLE_IDENTIFIER) { 2531 *array = sample->id; 2532 array++; 2533 } 2534 2535 if (type & PERF_SAMPLE_IP) { 2536 *array = sample->ip; 2537 array++; 2538 } 2539 2540 if (type & PERF_SAMPLE_TID) { 2541 u.val32[0] = sample->pid; 2542 u.val32[1] = sample->tid; 2543 *array = u.val64; 2544 array++; 2545 } 2546 2547 if (type & PERF_SAMPLE_TIME) { 2548 *array = sample->time; 2549 array++; 2550 } 2551 2552 if (type & PERF_SAMPLE_ADDR) { 2553 *array = sample->addr; 2554 array++; 2555 } 2556 2557 if (type & PERF_SAMPLE_ID) { 2558 *array = sample->id; 2559 array++; 2560 } 2561 2562 if (type & PERF_SAMPLE_STREAM_ID) { 2563 *array = sample->stream_id; 2564 array++; 2565 } 2566 2567 if (type & PERF_SAMPLE_CPU) { 2568 u.val32[0] = sample->cpu; 2569 u.val32[1] = 0; 2570 *array = u.val64; 2571 array++; 2572 } 2573 2574 if (type & PERF_SAMPLE_PERIOD) { 2575 *array = sample->period; 2576 array++; 2577 } 2578 2579 if (type & PERF_SAMPLE_READ) { 2580 if (read_format & PERF_FORMAT_GROUP) 2581 *array = sample->read.group.nr; 2582 else 2583 *array = sample->read.one.value; 2584 array++; 2585 2586 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2587 *array = sample->read.time_enabled; 2588 array++; 2589 } 2590 2591 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2592 *array = sample->read.time_running; 2593 array++; 2594 } 2595 2596 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2597 if (read_format & PERF_FORMAT_GROUP) { 2598 sz = sample->read.group.nr * 2599 sizeof(struct sample_read_value); 2600 memcpy(array, sample->read.group.values, sz); 2601 array = (void *)array + sz; 2602 } else { 2603 *array = sample->read.one.id; 2604 array++; 2605 } 2606 } 2607 2608 if (type & PERF_SAMPLE_CALLCHAIN) { 2609 sz = (sample->callchain->nr + 1) * sizeof(u64); 2610 memcpy(array, sample->callchain, sz); 2611 array = (void *)array + sz; 2612 } 2613 2614 if (type & PERF_SAMPLE_RAW) { 2615 u.val32[0] = sample->raw_size; 2616 *array = u.val64; 2617 array = (void *)array + sizeof(u32); 2618 2619 memcpy(array, sample->raw_data, sample->raw_size); 2620 array = (void *)array + sample->raw_size; 2621 } 2622 2623 if (type & PERF_SAMPLE_BRANCH_STACK) { 2624 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2625 sz += sizeof(u64); 2626 memcpy(array, sample->branch_stack, sz); 2627 array = (void *)array + sz; 2628 } 2629 2630 if (type & PERF_SAMPLE_REGS_USER) { 2631 if (sample->user_regs.abi) { 2632 *array++ = sample->user_regs.abi; 2633 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2634 memcpy(array, sample->user_regs.regs, sz); 2635 array = (void *)array + sz; 2636 } else { 2637 *array++ = 0; 2638 } 2639 } 2640 2641 if (type & PERF_SAMPLE_STACK_USER) { 2642 sz = sample->user_stack.size; 2643 *array++ = sz; 2644 if (sz) { 2645 memcpy(array, sample->user_stack.data, sz); 2646 array = (void *)array + sz; 2647 *array++ = sz; 2648 } 2649 } 2650 2651 if (type & PERF_SAMPLE_WEIGHT) { 2652 *array = sample->weight; 2653 array++; 2654 } 2655 2656 if (type & PERF_SAMPLE_DATA_SRC) { 2657 *array = sample->data_src; 2658 array++; 2659 } 2660 2661 if (type & PERF_SAMPLE_TRANSACTION) { 2662 *array = sample->transaction; 2663 array++; 2664 } 2665 2666 if (type & PERF_SAMPLE_REGS_INTR) { 2667 if (sample->intr_regs.abi) { 2668 *array++ = sample->intr_regs.abi; 2669 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2670 memcpy(array, sample->intr_regs.regs, sz); 2671 array = (void *)array + sz; 2672 } else { 2673 *array++ = 0; 2674 } 2675 } 2676 2677 if (type & PERF_SAMPLE_PHYS_ADDR) { 2678 *array = sample->phys_addr; 2679 array++; 2680 } 2681 2682 return 0; 2683 } 2684 2685 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2686 { 2687 return tep_find_field(evsel->tp_format, name); 2688 } 2689 2690 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2691 const char *name) 2692 { 2693 struct format_field *field = perf_evsel__field(evsel, name); 2694 int offset; 2695 2696 if (!field) 2697 return NULL; 2698 2699 offset = field->offset; 2700 2701 if (field->flags & FIELD_IS_DYNAMIC) { 2702 offset = *(int *)(sample->raw_data + field->offset); 2703 offset &= 0xffff; 2704 } 2705 2706 return sample->raw_data + offset; 2707 } 2708 2709 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2710 bool needs_swap) 2711 { 2712 u64 value; 2713 void *ptr = sample->raw_data + field->offset; 2714 2715 switch (field->size) { 2716 case 1: 2717 return *(u8 *)ptr; 2718 case 2: 2719 value = *(u16 *)ptr; 2720 break; 2721 case 4: 2722 value = *(u32 *)ptr; 2723 break; 2724 case 8: 2725 memcpy(&value, ptr, sizeof(u64)); 2726 break; 2727 default: 2728 return 0; 2729 } 2730 2731 if (!needs_swap) 2732 return value; 2733 2734 switch (field->size) { 2735 case 2: 2736 return bswap_16(value); 2737 case 4: 2738 return bswap_32(value); 2739 case 8: 2740 return bswap_64(value); 2741 default: 2742 return 0; 2743 } 2744 2745 return 0; 2746 } 2747 2748 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2749 const char *name) 2750 { 2751 struct format_field *field = perf_evsel__field(evsel, name); 2752 2753 if (!field) 2754 return 0; 2755 2756 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2757 } 2758 2759 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2760 char *msg, size_t msgsize) 2761 { 2762 int paranoid; 2763 2764 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2765 evsel->attr.type == PERF_TYPE_HARDWARE && 2766 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2767 /* 2768 * If it's cycles then fall back to hrtimer based 2769 * cpu-clock-tick sw counter, which is always available even if 2770 * no PMU support. 2771 * 2772 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2773 * b0a873e). 2774 */ 2775 scnprintf(msg, msgsize, "%s", 2776 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2777 2778 evsel->attr.type = PERF_TYPE_SOFTWARE; 2779 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2780 2781 zfree(&evsel->name); 2782 return true; 2783 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2784 (paranoid = perf_event_paranoid()) > 1) { 2785 const char *name = perf_evsel__name(evsel); 2786 char *new_name; 2787 const char *sep = ":"; 2788 2789 /* Is there already the separator in the name. */ 2790 if (strchr(name, '/') || 2791 strchr(name, ':')) 2792 sep = ""; 2793 2794 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2795 return false; 2796 2797 if (evsel->name) 2798 free(evsel->name); 2799 evsel->name = new_name; 2800 scnprintf(msg, msgsize, 2801 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2802 evsel->attr.exclude_kernel = 1; 2803 2804 return true; 2805 } 2806 2807 return false; 2808 } 2809 2810 static bool find_process(const char *name) 2811 { 2812 size_t len = strlen(name); 2813 DIR *dir; 2814 struct dirent *d; 2815 int ret = -1; 2816 2817 dir = opendir(procfs__mountpoint()); 2818 if (!dir) 2819 return false; 2820 2821 /* Walk through the directory. */ 2822 while (ret && (d = readdir(dir)) != NULL) { 2823 char path[PATH_MAX]; 2824 char *data; 2825 size_t size; 2826 2827 if ((d->d_type != DT_DIR) || 2828 !strcmp(".", d->d_name) || 2829 !strcmp("..", d->d_name)) 2830 continue; 2831 2832 scnprintf(path, sizeof(path), "%s/%s/comm", 2833 procfs__mountpoint(), d->d_name); 2834 2835 if (filename__read_str(path, &data, &size)) 2836 continue; 2837 2838 ret = strncmp(name, data, len); 2839 free(data); 2840 } 2841 2842 closedir(dir); 2843 return ret ? false : true; 2844 } 2845 2846 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2847 int err, char *msg, size_t size) 2848 { 2849 char sbuf[STRERR_BUFSIZE]; 2850 int printed = 0; 2851 2852 switch (err) { 2853 case EPERM: 2854 case EACCES: 2855 if (err == EPERM) 2856 printed = scnprintf(msg, size, 2857 "No permission to enable %s event.\n\n", 2858 perf_evsel__name(evsel)); 2859 2860 return scnprintf(msg + printed, size - printed, 2861 "You may not have permission to collect %sstats.\n\n" 2862 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2863 "which controls use of the performance events system by\n" 2864 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2865 "The current value is %d:\n\n" 2866 " -1: Allow use of (almost) all events by all users\n" 2867 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2868 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2869 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2870 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2871 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2872 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2873 " kernel.perf_event_paranoid = -1\n" , 2874 target->system_wide ? "system-wide " : "", 2875 perf_event_paranoid()); 2876 case ENOENT: 2877 return scnprintf(msg, size, "The %s event is not supported.", 2878 perf_evsel__name(evsel)); 2879 case EMFILE: 2880 return scnprintf(msg, size, "%s", 2881 "Too many events are opened.\n" 2882 "Probably the maximum number of open file descriptors has been reached.\n" 2883 "Hint: Try again after reducing the number of events.\n" 2884 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2885 case ENOMEM: 2886 if (evsel__has_callchain(evsel) && 2887 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2888 return scnprintf(msg, size, 2889 "Not enough memory to setup event with callchain.\n" 2890 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2891 "Hint: Current value: %d", sysctl__max_stack()); 2892 break; 2893 case ENODEV: 2894 if (target->cpu_list) 2895 return scnprintf(msg, size, "%s", 2896 "No such device - did you specify an out-of-range profile CPU?"); 2897 break; 2898 case EOPNOTSUPP: 2899 if (evsel->attr.sample_period != 0) 2900 return scnprintf(msg, size, 2901 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2902 perf_evsel__name(evsel)); 2903 if (evsel->attr.precise_ip) 2904 return scnprintf(msg, size, "%s", 2905 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2906 #if defined(__i386__) || defined(__x86_64__) 2907 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2908 return scnprintf(msg, size, "%s", 2909 "No hardware sampling interrupt available.\n"); 2910 #endif 2911 break; 2912 case EBUSY: 2913 if (find_process("oprofiled")) 2914 return scnprintf(msg, size, 2915 "The PMU counters are busy/taken by another profiler.\n" 2916 "We found oprofile daemon running, please stop it and try again."); 2917 break; 2918 case EINVAL: 2919 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2920 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2921 if (perf_missing_features.clockid) 2922 return scnprintf(msg, size, "clockid feature not supported."); 2923 if (perf_missing_features.clockid_wrong) 2924 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2925 break; 2926 default: 2927 break; 2928 } 2929 2930 return scnprintf(msg, size, 2931 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2932 "/bin/dmesg | grep -i perf may provide additional information.\n", 2933 err, str_error_r(err, sbuf, sizeof(sbuf)), 2934 perf_evsel__name(evsel)); 2935 } 2936 2937 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 2938 { 2939 if (evsel && evsel->evlist) 2940 return evsel->evlist->env; 2941 return NULL; 2942 } 2943