1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->max_events = ULONG_MAX; 236 evsel->evlist = NULL; 237 evsel->bpf_fd = -1; 238 INIT_LIST_HEAD(&evsel->node); 239 INIT_LIST_HEAD(&evsel->config_terms); 240 perf_evsel__object.init(evsel); 241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 242 perf_evsel__calc_id_pos(evsel); 243 evsel->cmdline_group_boundary = false; 244 evsel->metric_expr = NULL; 245 evsel->metric_name = NULL; 246 evsel->metric_events = NULL; 247 evsel->collect_stat = false; 248 evsel->pmu_name = NULL; 249 } 250 251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 252 { 253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 254 255 if (!evsel) 256 return NULL; 257 perf_evsel__init(evsel, attr, idx); 258 259 if (perf_evsel__is_bpf_output(evsel)) { 260 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 261 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 262 evsel->attr.sample_period = 1; 263 } 264 265 if (perf_evsel__is_clock(evsel)) { 266 /* 267 * The evsel->unit points to static alias->unit 268 * so it's ok to use static string in here. 269 */ 270 static const char *unit = "msec"; 271 272 evsel->unit = unit; 273 evsel->scale = 1e-6; 274 } 275 276 return evsel; 277 } 278 279 static bool perf_event_can_profile_kernel(void) 280 { 281 return geteuid() == 0 || perf_event_paranoid() == -1; 282 } 283 284 struct perf_evsel *perf_evsel__new_cycles(bool precise) 285 { 286 struct perf_event_attr attr = { 287 .type = PERF_TYPE_HARDWARE, 288 .config = PERF_COUNT_HW_CPU_CYCLES, 289 .exclude_kernel = !perf_event_can_profile_kernel(), 290 }; 291 struct perf_evsel *evsel; 292 293 event_attr_init(&attr); 294 295 if (!precise) 296 goto new_event; 297 /* 298 * Unnamed union member, not supported as struct member named 299 * initializer in older compilers such as gcc 4.4.7 300 * 301 * Just for probing the precise_ip: 302 */ 303 attr.sample_period = 1; 304 305 perf_event_attr__set_max_precise_ip(&attr); 306 /* 307 * Now let the usual logic to set up the perf_event_attr defaults 308 * to kick in when we return and before perf_evsel__open() is called. 309 */ 310 attr.sample_period = 0; 311 new_event: 312 evsel = perf_evsel__new(&attr); 313 if (evsel == NULL) 314 goto out; 315 316 /* use asprintf() because free(evsel) assumes name is allocated */ 317 if (asprintf(&evsel->name, "cycles%s%s%.*s", 318 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 319 attr.exclude_kernel ? "u" : "", 320 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 321 goto error_free; 322 out: 323 return evsel; 324 error_free: 325 perf_evsel__delete(evsel); 326 evsel = NULL; 327 goto out; 328 } 329 330 /* 331 * Returns pointer with encoded error via <linux/err.h> interface. 332 */ 333 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 334 { 335 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 336 int err = -ENOMEM; 337 338 if (evsel == NULL) { 339 goto out_err; 340 } else { 341 struct perf_event_attr attr = { 342 .type = PERF_TYPE_TRACEPOINT, 343 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 344 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 345 }; 346 347 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 348 goto out_free; 349 350 evsel->tp_format = trace_event__tp_format(sys, name); 351 if (IS_ERR(evsel->tp_format)) { 352 err = PTR_ERR(evsel->tp_format); 353 goto out_free; 354 } 355 356 event_attr_init(&attr); 357 attr.config = evsel->tp_format->id; 358 attr.sample_period = 1; 359 perf_evsel__init(evsel, &attr, idx); 360 } 361 362 return evsel; 363 364 out_free: 365 zfree(&evsel->name); 366 free(evsel); 367 out_err: 368 return ERR_PTR(err); 369 } 370 371 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 372 "cycles", 373 "instructions", 374 "cache-references", 375 "cache-misses", 376 "branches", 377 "branch-misses", 378 "bus-cycles", 379 "stalled-cycles-frontend", 380 "stalled-cycles-backend", 381 "ref-cycles", 382 }; 383 384 static const char *__perf_evsel__hw_name(u64 config) 385 { 386 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 387 return perf_evsel__hw_names[config]; 388 389 return "unknown-hardware"; 390 } 391 392 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 393 { 394 int colon = 0, r = 0; 395 struct perf_event_attr *attr = &evsel->attr; 396 bool exclude_guest_default = false; 397 398 #define MOD_PRINT(context, mod) do { \ 399 if (!attr->exclude_##context) { \ 400 if (!colon) colon = ++r; \ 401 r += scnprintf(bf + r, size - r, "%c", mod); \ 402 } } while(0) 403 404 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 405 MOD_PRINT(kernel, 'k'); 406 MOD_PRINT(user, 'u'); 407 MOD_PRINT(hv, 'h'); 408 exclude_guest_default = true; 409 } 410 411 if (attr->precise_ip) { 412 if (!colon) 413 colon = ++r; 414 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 415 exclude_guest_default = true; 416 } 417 418 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 419 MOD_PRINT(host, 'H'); 420 MOD_PRINT(guest, 'G'); 421 } 422 #undef MOD_PRINT 423 if (colon) 424 bf[colon - 1] = ':'; 425 return r; 426 } 427 428 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 429 { 430 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 431 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 432 } 433 434 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 435 "cpu-clock", 436 "task-clock", 437 "page-faults", 438 "context-switches", 439 "cpu-migrations", 440 "minor-faults", 441 "major-faults", 442 "alignment-faults", 443 "emulation-faults", 444 "dummy", 445 }; 446 447 static const char *__perf_evsel__sw_name(u64 config) 448 { 449 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 450 return perf_evsel__sw_names[config]; 451 return "unknown-software"; 452 } 453 454 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 455 { 456 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 457 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 458 } 459 460 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 461 { 462 int r; 463 464 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 465 466 if (type & HW_BREAKPOINT_R) 467 r += scnprintf(bf + r, size - r, "r"); 468 469 if (type & HW_BREAKPOINT_W) 470 r += scnprintf(bf + r, size - r, "w"); 471 472 if (type & HW_BREAKPOINT_X) 473 r += scnprintf(bf + r, size - r, "x"); 474 475 return r; 476 } 477 478 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 479 { 480 struct perf_event_attr *attr = &evsel->attr; 481 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 482 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 483 } 484 485 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 486 [PERF_EVSEL__MAX_ALIASES] = { 487 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 488 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 489 { "LLC", "L2", }, 490 { "dTLB", "d-tlb", "Data-TLB", }, 491 { "iTLB", "i-tlb", "Instruction-TLB", }, 492 { "branch", "branches", "bpu", "btb", "bpc", }, 493 { "node", }, 494 }; 495 496 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 497 [PERF_EVSEL__MAX_ALIASES] = { 498 { "load", "loads", "read", }, 499 { "store", "stores", "write", }, 500 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 501 }; 502 503 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 504 [PERF_EVSEL__MAX_ALIASES] = { 505 { "refs", "Reference", "ops", "access", }, 506 { "misses", "miss", }, 507 }; 508 509 #define C(x) PERF_COUNT_HW_CACHE_##x 510 #define CACHE_READ (1 << C(OP_READ)) 511 #define CACHE_WRITE (1 << C(OP_WRITE)) 512 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 513 #define COP(x) (1 << x) 514 515 /* 516 * cache operartion stat 517 * L1I : Read and prefetch only 518 * ITLB and BPU : Read-only 519 */ 520 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 521 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 522 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 523 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 524 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 525 [C(ITLB)] = (CACHE_READ), 526 [C(BPU)] = (CACHE_READ), 527 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 528 }; 529 530 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 531 { 532 if (perf_evsel__hw_cache_stat[type] & COP(op)) 533 return true; /* valid */ 534 else 535 return false; /* invalid */ 536 } 537 538 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 539 char *bf, size_t size) 540 { 541 if (result) { 542 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 543 perf_evsel__hw_cache_op[op][0], 544 perf_evsel__hw_cache_result[result][0]); 545 } 546 547 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 548 perf_evsel__hw_cache_op[op][1]); 549 } 550 551 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 552 { 553 u8 op, result, type = (config >> 0) & 0xff; 554 const char *err = "unknown-ext-hardware-cache-type"; 555 556 if (type >= PERF_COUNT_HW_CACHE_MAX) 557 goto out_err; 558 559 op = (config >> 8) & 0xff; 560 err = "unknown-ext-hardware-cache-op"; 561 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 562 goto out_err; 563 564 result = (config >> 16) & 0xff; 565 err = "unknown-ext-hardware-cache-result"; 566 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 567 goto out_err; 568 569 err = "invalid-cache"; 570 if (!perf_evsel__is_cache_op_valid(type, op)) 571 goto out_err; 572 573 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 574 out_err: 575 return scnprintf(bf, size, "%s", err); 576 } 577 578 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 579 { 580 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 581 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 582 } 583 584 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 585 { 586 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 587 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 588 } 589 590 const char *perf_evsel__name(struct perf_evsel *evsel) 591 { 592 char bf[128]; 593 594 if (evsel->name) 595 return evsel->name; 596 597 switch (evsel->attr.type) { 598 case PERF_TYPE_RAW: 599 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 600 break; 601 602 case PERF_TYPE_HARDWARE: 603 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 604 break; 605 606 case PERF_TYPE_HW_CACHE: 607 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 608 break; 609 610 case PERF_TYPE_SOFTWARE: 611 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 612 break; 613 614 case PERF_TYPE_TRACEPOINT: 615 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 616 break; 617 618 case PERF_TYPE_BREAKPOINT: 619 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 620 break; 621 622 default: 623 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 624 evsel->attr.type); 625 break; 626 } 627 628 evsel->name = strdup(bf); 629 630 return evsel->name ?: "unknown"; 631 } 632 633 const char *perf_evsel__group_name(struct perf_evsel *evsel) 634 { 635 return evsel->group_name ?: "anon group"; 636 } 637 638 /* 639 * Returns the group details for the specified leader, 640 * with following rules. 641 * 642 * For record -e '{cycles,instructions}' 643 * 'anon group { cycles:u, instructions:u }' 644 * 645 * For record -e 'cycles,instructions' and report --group 646 * 'cycles:u, instructions:u' 647 */ 648 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 649 { 650 int ret = 0; 651 struct perf_evsel *pos; 652 const char *group_name = perf_evsel__group_name(evsel); 653 654 if (!evsel->forced_leader) 655 ret = scnprintf(buf, size, "%s { ", group_name); 656 657 ret += scnprintf(buf + ret, size - ret, "%s", 658 perf_evsel__name(evsel)); 659 660 for_each_group_member(pos, evsel) 661 ret += scnprintf(buf + ret, size - ret, ", %s", 662 perf_evsel__name(pos)); 663 664 if (!evsel->forced_leader) 665 ret += scnprintf(buf + ret, size - ret, " }"); 666 667 return ret; 668 } 669 670 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 671 struct record_opts *opts, 672 struct callchain_param *param) 673 { 674 bool function = perf_evsel__is_function_event(evsel); 675 struct perf_event_attr *attr = &evsel->attr; 676 677 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 678 679 attr->sample_max_stack = param->max_stack; 680 681 if (param->record_mode == CALLCHAIN_LBR) { 682 if (!opts->branch_stack) { 683 if (attr->exclude_user) { 684 pr_warning("LBR callstack option is only available " 685 "to get user callchain information. " 686 "Falling back to framepointers.\n"); 687 } else { 688 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 689 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 690 PERF_SAMPLE_BRANCH_CALL_STACK | 691 PERF_SAMPLE_BRANCH_NO_CYCLES | 692 PERF_SAMPLE_BRANCH_NO_FLAGS; 693 } 694 } else 695 pr_warning("Cannot use LBR callstack with branch stack. " 696 "Falling back to framepointers.\n"); 697 } 698 699 if (param->record_mode == CALLCHAIN_DWARF) { 700 if (!function) { 701 perf_evsel__set_sample_bit(evsel, REGS_USER); 702 perf_evsel__set_sample_bit(evsel, STACK_USER); 703 attr->sample_regs_user |= PERF_REGS_MASK; 704 attr->sample_stack_user = param->dump_size; 705 attr->exclude_callchain_user = 1; 706 } else { 707 pr_info("Cannot use DWARF unwind for function trace event," 708 " falling back to framepointers.\n"); 709 } 710 } 711 712 if (function) { 713 pr_info("Disabling user space callchains for function trace event.\n"); 714 attr->exclude_callchain_user = 1; 715 } 716 } 717 718 void perf_evsel__config_callchain(struct perf_evsel *evsel, 719 struct record_opts *opts, 720 struct callchain_param *param) 721 { 722 if (param->enabled) 723 return __perf_evsel__config_callchain(evsel, opts, param); 724 } 725 726 static void 727 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 728 struct callchain_param *param) 729 { 730 struct perf_event_attr *attr = &evsel->attr; 731 732 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 733 if (param->record_mode == CALLCHAIN_LBR) { 734 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 735 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 736 PERF_SAMPLE_BRANCH_CALL_STACK); 737 } 738 if (param->record_mode == CALLCHAIN_DWARF) { 739 perf_evsel__reset_sample_bit(evsel, REGS_USER); 740 perf_evsel__reset_sample_bit(evsel, STACK_USER); 741 } 742 } 743 744 static void apply_config_terms(struct perf_evsel *evsel, 745 struct record_opts *opts, bool track) 746 { 747 struct perf_evsel_config_term *term; 748 struct list_head *config_terms = &evsel->config_terms; 749 struct perf_event_attr *attr = &evsel->attr; 750 /* callgraph default */ 751 struct callchain_param param = { 752 .record_mode = callchain_param.record_mode, 753 }; 754 u32 dump_size = 0; 755 int max_stack = 0; 756 const char *callgraph_buf = NULL; 757 758 list_for_each_entry(term, config_terms, list) { 759 switch (term->type) { 760 case PERF_EVSEL__CONFIG_TERM_PERIOD: 761 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 762 attr->sample_period = term->val.period; 763 attr->freq = 0; 764 perf_evsel__reset_sample_bit(evsel, PERIOD); 765 } 766 break; 767 case PERF_EVSEL__CONFIG_TERM_FREQ: 768 if (!(term->weak && opts->user_freq != UINT_MAX)) { 769 attr->sample_freq = term->val.freq; 770 attr->freq = 1; 771 perf_evsel__set_sample_bit(evsel, PERIOD); 772 } 773 break; 774 case PERF_EVSEL__CONFIG_TERM_TIME: 775 if (term->val.time) 776 perf_evsel__set_sample_bit(evsel, TIME); 777 else 778 perf_evsel__reset_sample_bit(evsel, TIME); 779 break; 780 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 781 callgraph_buf = term->val.callgraph; 782 break; 783 case PERF_EVSEL__CONFIG_TERM_BRANCH: 784 if (term->val.branch && strcmp(term->val.branch, "no")) { 785 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 786 parse_branch_str(term->val.branch, 787 &attr->branch_sample_type); 788 } else 789 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 790 break; 791 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 792 dump_size = term->val.stack_user; 793 break; 794 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 795 max_stack = term->val.max_stack; 796 break; 797 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 798 evsel->max_events = term->val.max_events; 799 break; 800 case PERF_EVSEL__CONFIG_TERM_INHERIT: 801 /* 802 * attr->inherit should has already been set by 803 * perf_evsel__config. If user explicitly set 804 * inherit using config terms, override global 805 * opt->no_inherit setting. 806 */ 807 attr->inherit = term->val.inherit ? 1 : 0; 808 break; 809 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 810 attr->write_backward = term->val.overwrite ? 1 : 0; 811 break; 812 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 813 break; 814 default: 815 break; 816 } 817 } 818 819 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 820 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 821 bool sample_address = false; 822 823 if (max_stack) { 824 param.max_stack = max_stack; 825 if (callgraph_buf == NULL) 826 callgraph_buf = "fp"; 827 } 828 829 /* parse callgraph parameters */ 830 if (callgraph_buf != NULL) { 831 if (!strcmp(callgraph_buf, "no")) { 832 param.enabled = false; 833 param.record_mode = CALLCHAIN_NONE; 834 } else { 835 param.enabled = true; 836 if (parse_callchain_record(callgraph_buf, ¶m)) { 837 pr_err("per-event callgraph setting for %s failed. " 838 "Apply callgraph global setting for it\n", 839 evsel->name); 840 return; 841 } 842 if (param.record_mode == CALLCHAIN_DWARF) 843 sample_address = true; 844 } 845 } 846 if (dump_size > 0) { 847 dump_size = round_up(dump_size, sizeof(u64)); 848 param.dump_size = dump_size; 849 } 850 851 /* If global callgraph set, clear it */ 852 if (callchain_param.enabled) 853 perf_evsel__reset_callgraph(evsel, &callchain_param); 854 855 /* set perf-event callgraph */ 856 if (param.enabled) { 857 if (sample_address) { 858 perf_evsel__set_sample_bit(evsel, ADDR); 859 perf_evsel__set_sample_bit(evsel, DATA_SRC); 860 evsel->attr.mmap_data = track; 861 } 862 perf_evsel__config_callchain(evsel, opts, ¶m); 863 } 864 } 865 } 866 867 static bool is_dummy_event(struct perf_evsel *evsel) 868 { 869 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 870 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 871 } 872 873 /* 874 * The enable_on_exec/disabled value strategy: 875 * 876 * 1) For any type of traced program: 877 * - all independent events and group leaders are disabled 878 * - all group members are enabled 879 * 880 * Group members are ruled by group leaders. They need to 881 * be enabled, because the group scheduling relies on that. 882 * 883 * 2) For traced programs executed by perf: 884 * - all independent events and group leaders have 885 * enable_on_exec set 886 * - we don't specifically enable or disable any event during 887 * the record command 888 * 889 * Independent events and group leaders are initially disabled 890 * and get enabled by exec. Group members are ruled by group 891 * leaders as stated in 1). 892 * 893 * 3) For traced programs attached by perf (pid/tid): 894 * - we specifically enable or disable all events during 895 * the record command 896 * 897 * When attaching events to already running traced we 898 * enable/disable events specifically, as there's no 899 * initial traced exec call. 900 */ 901 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 902 struct callchain_param *callchain) 903 { 904 struct perf_evsel *leader = evsel->leader; 905 struct perf_event_attr *attr = &evsel->attr; 906 int track = evsel->tracking; 907 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 908 909 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 910 attr->inherit = !opts->no_inherit; 911 attr->write_backward = opts->overwrite ? 1 : 0; 912 913 perf_evsel__set_sample_bit(evsel, IP); 914 perf_evsel__set_sample_bit(evsel, TID); 915 916 if (evsel->sample_read) { 917 perf_evsel__set_sample_bit(evsel, READ); 918 919 /* 920 * We need ID even in case of single event, because 921 * PERF_SAMPLE_READ process ID specific data. 922 */ 923 perf_evsel__set_sample_id(evsel, false); 924 925 /* 926 * Apply group format only if we belong to group 927 * with more than one members. 928 */ 929 if (leader->nr_members > 1) { 930 attr->read_format |= PERF_FORMAT_GROUP; 931 attr->inherit = 0; 932 } 933 } 934 935 /* 936 * We default some events to have a default interval. But keep 937 * it a weak assumption overridable by the user. 938 */ 939 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 940 opts->user_interval != ULLONG_MAX)) { 941 if (opts->freq) { 942 perf_evsel__set_sample_bit(evsel, PERIOD); 943 attr->freq = 1; 944 attr->sample_freq = opts->freq; 945 } else { 946 attr->sample_period = opts->default_interval; 947 } 948 } 949 950 /* 951 * Disable sampling for all group members other 952 * than leader in case leader 'leads' the sampling. 953 */ 954 if ((leader != evsel) && leader->sample_read) { 955 attr->freq = 0; 956 attr->sample_freq = 0; 957 attr->sample_period = 0; 958 attr->write_backward = 0; 959 } 960 961 if (opts->no_samples) 962 attr->sample_freq = 0; 963 964 if (opts->inherit_stat) { 965 evsel->attr.read_format |= 966 PERF_FORMAT_TOTAL_TIME_ENABLED | 967 PERF_FORMAT_TOTAL_TIME_RUNNING | 968 PERF_FORMAT_ID; 969 attr->inherit_stat = 1; 970 } 971 972 if (opts->sample_address) { 973 perf_evsel__set_sample_bit(evsel, ADDR); 974 attr->mmap_data = track; 975 } 976 977 /* 978 * We don't allow user space callchains for function trace 979 * event, due to issues with page faults while tracing page 980 * fault handler and its overall trickiness nature. 981 */ 982 if (perf_evsel__is_function_event(evsel)) 983 evsel->attr.exclude_callchain_user = 1; 984 985 if (callchain && callchain->enabled && !evsel->no_aux_samples) 986 perf_evsel__config_callchain(evsel, opts, callchain); 987 988 if (opts->sample_intr_regs) { 989 attr->sample_regs_intr = opts->sample_intr_regs; 990 perf_evsel__set_sample_bit(evsel, REGS_INTR); 991 } 992 993 if (opts->sample_user_regs) { 994 attr->sample_regs_user |= opts->sample_user_regs; 995 perf_evsel__set_sample_bit(evsel, REGS_USER); 996 } 997 998 if (target__has_cpu(&opts->target) || opts->sample_cpu) 999 perf_evsel__set_sample_bit(evsel, CPU); 1000 1001 /* 1002 * When the user explicitly disabled time don't force it here. 1003 */ 1004 if (opts->sample_time && 1005 (!perf_missing_features.sample_id_all && 1006 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1007 opts->sample_time_set))) 1008 perf_evsel__set_sample_bit(evsel, TIME); 1009 1010 if (opts->raw_samples && !evsel->no_aux_samples) { 1011 perf_evsel__set_sample_bit(evsel, TIME); 1012 perf_evsel__set_sample_bit(evsel, RAW); 1013 perf_evsel__set_sample_bit(evsel, CPU); 1014 } 1015 1016 if (opts->sample_address) 1017 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1018 1019 if (opts->sample_phys_addr) 1020 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1021 1022 if (opts->no_buffering) { 1023 attr->watermark = 0; 1024 attr->wakeup_events = 1; 1025 } 1026 if (opts->branch_stack && !evsel->no_aux_samples) { 1027 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1028 attr->branch_sample_type = opts->branch_stack; 1029 } 1030 1031 if (opts->sample_weight) 1032 perf_evsel__set_sample_bit(evsel, WEIGHT); 1033 1034 attr->task = track; 1035 attr->mmap = track; 1036 attr->mmap2 = track && !perf_missing_features.mmap2; 1037 attr->comm = track; 1038 1039 if (opts->record_namespaces) 1040 attr->namespaces = track; 1041 1042 if (opts->record_switch_events) 1043 attr->context_switch = track; 1044 1045 if (opts->sample_transaction) 1046 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1047 1048 if (opts->running_time) { 1049 evsel->attr.read_format |= 1050 PERF_FORMAT_TOTAL_TIME_ENABLED | 1051 PERF_FORMAT_TOTAL_TIME_RUNNING; 1052 } 1053 1054 /* 1055 * XXX see the function comment above 1056 * 1057 * Disabling only independent events or group leaders, 1058 * keeping group members enabled. 1059 */ 1060 if (perf_evsel__is_group_leader(evsel)) 1061 attr->disabled = 1; 1062 1063 /* 1064 * Setting enable_on_exec for independent events and 1065 * group leaders for traced executed by perf. 1066 */ 1067 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1068 !opts->initial_delay) 1069 attr->enable_on_exec = 1; 1070 1071 if (evsel->immediate) { 1072 attr->disabled = 0; 1073 attr->enable_on_exec = 0; 1074 } 1075 1076 clockid = opts->clockid; 1077 if (opts->use_clockid) { 1078 attr->use_clockid = 1; 1079 attr->clockid = opts->clockid; 1080 } 1081 1082 if (evsel->precise_max) 1083 perf_event_attr__set_max_precise_ip(attr); 1084 1085 if (opts->all_user) { 1086 attr->exclude_kernel = 1; 1087 attr->exclude_user = 0; 1088 } 1089 1090 if (opts->all_kernel) { 1091 attr->exclude_kernel = 0; 1092 attr->exclude_user = 1; 1093 } 1094 1095 if (evsel->own_cpus) 1096 evsel->attr.read_format |= PERF_FORMAT_ID; 1097 1098 /* 1099 * Apply event specific term settings, 1100 * it overloads any global configuration. 1101 */ 1102 apply_config_terms(evsel, opts, track); 1103 1104 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1105 1106 /* The --period option takes the precedence. */ 1107 if (opts->period_set) { 1108 if (opts->period) 1109 perf_evsel__set_sample_bit(evsel, PERIOD); 1110 else 1111 perf_evsel__reset_sample_bit(evsel, PERIOD); 1112 } 1113 1114 /* 1115 * For initial_delay, a dummy event is added implicitly. 1116 * The software event will trigger -EOPNOTSUPP error out, 1117 * if BRANCH_STACK bit is set. 1118 */ 1119 if (opts->initial_delay && is_dummy_event(evsel)) 1120 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1121 } 1122 1123 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1124 { 1125 if (evsel->system_wide) 1126 nthreads = 1; 1127 1128 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1129 1130 if (evsel->fd) { 1131 int cpu, thread; 1132 for (cpu = 0; cpu < ncpus; cpu++) { 1133 for (thread = 0; thread < nthreads; thread++) { 1134 FD(evsel, cpu, thread) = -1; 1135 } 1136 } 1137 } 1138 1139 return evsel->fd != NULL ? 0 : -ENOMEM; 1140 } 1141 1142 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1143 int ioc, void *arg) 1144 { 1145 int cpu, thread; 1146 1147 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1148 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1149 int fd = FD(evsel, cpu, thread), 1150 err = ioctl(fd, ioc, arg); 1151 1152 if (err) 1153 return err; 1154 } 1155 } 1156 1157 return 0; 1158 } 1159 1160 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1161 { 1162 return perf_evsel__run_ioctl(evsel, 1163 PERF_EVENT_IOC_SET_FILTER, 1164 (void *)filter); 1165 } 1166 1167 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1168 { 1169 char *new_filter = strdup(filter); 1170 1171 if (new_filter != NULL) { 1172 free(evsel->filter); 1173 evsel->filter = new_filter; 1174 return 0; 1175 } 1176 1177 return -1; 1178 } 1179 1180 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1181 const char *fmt, const char *filter) 1182 { 1183 char *new_filter; 1184 1185 if (evsel->filter == NULL) 1186 return perf_evsel__set_filter(evsel, filter); 1187 1188 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1189 free(evsel->filter); 1190 evsel->filter = new_filter; 1191 return 0; 1192 } 1193 1194 return -1; 1195 } 1196 1197 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1198 { 1199 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1200 } 1201 1202 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1203 { 1204 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1205 } 1206 1207 int perf_evsel__enable(struct perf_evsel *evsel) 1208 { 1209 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0); 1210 1211 if (!err) 1212 evsel->disabled = false; 1213 1214 return err; 1215 } 1216 1217 int perf_evsel__disable(struct perf_evsel *evsel) 1218 { 1219 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0); 1220 /* 1221 * We mark it disabled here so that tools that disable a event can 1222 * ignore events after they disable it. I.e. the ring buffer may have 1223 * already a few more events queued up before the kernel got the stop 1224 * request. 1225 */ 1226 if (!err) 1227 evsel->disabled = true; 1228 1229 return err; 1230 } 1231 1232 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1233 { 1234 if (ncpus == 0 || nthreads == 0) 1235 return 0; 1236 1237 if (evsel->system_wide) 1238 nthreads = 1; 1239 1240 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1241 if (evsel->sample_id == NULL) 1242 return -ENOMEM; 1243 1244 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1245 if (evsel->id == NULL) { 1246 xyarray__delete(evsel->sample_id); 1247 evsel->sample_id = NULL; 1248 return -ENOMEM; 1249 } 1250 1251 return 0; 1252 } 1253 1254 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1255 { 1256 xyarray__delete(evsel->fd); 1257 evsel->fd = NULL; 1258 } 1259 1260 static void perf_evsel__free_id(struct perf_evsel *evsel) 1261 { 1262 xyarray__delete(evsel->sample_id); 1263 evsel->sample_id = NULL; 1264 zfree(&evsel->id); 1265 } 1266 1267 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1268 { 1269 struct perf_evsel_config_term *term, *h; 1270 1271 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1272 list_del(&term->list); 1273 free(term); 1274 } 1275 } 1276 1277 void perf_evsel__close_fd(struct perf_evsel *evsel) 1278 { 1279 int cpu, thread; 1280 1281 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1282 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1283 close(FD(evsel, cpu, thread)); 1284 FD(evsel, cpu, thread) = -1; 1285 } 1286 } 1287 1288 void perf_evsel__exit(struct perf_evsel *evsel) 1289 { 1290 assert(list_empty(&evsel->node)); 1291 assert(evsel->evlist == NULL); 1292 perf_evsel__free_fd(evsel); 1293 perf_evsel__free_id(evsel); 1294 perf_evsel__free_config_terms(evsel); 1295 cgroup__put(evsel->cgrp); 1296 cpu_map__put(evsel->cpus); 1297 cpu_map__put(evsel->own_cpus); 1298 thread_map__put(evsel->threads); 1299 zfree(&evsel->group_name); 1300 zfree(&evsel->name); 1301 perf_evsel__object.fini(evsel); 1302 } 1303 1304 void perf_evsel__delete(struct perf_evsel *evsel) 1305 { 1306 perf_evsel__exit(evsel); 1307 free(evsel); 1308 } 1309 1310 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1311 struct perf_counts_values *count) 1312 { 1313 struct perf_counts_values tmp; 1314 1315 if (!evsel->prev_raw_counts) 1316 return; 1317 1318 if (cpu == -1) { 1319 tmp = evsel->prev_raw_counts->aggr; 1320 evsel->prev_raw_counts->aggr = *count; 1321 } else { 1322 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1323 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1324 } 1325 1326 count->val = count->val - tmp.val; 1327 count->ena = count->ena - tmp.ena; 1328 count->run = count->run - tmp.run; 1329 } 1330 1331 void perf_counts_values__scale(struct perf_counts_values *count, 1332 bool scale, s8 *pscaled) 1333 { 1334 s8 scaled = 0; 1335 1336 if (scale) { 1337 if (count->run == 0) { 1338 scaled = -1; 1339 count->val = 0; 1340 } else if (count->run < count->ena) { 1341 scaled = 1; 1342 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1343 } 1344 } else 1345 count->ena = count->run = 0; 1346 1347 if (pscaled) 1348 *pscaled = scaled; 1349 } 1350 1351 static int perf_evsel__read_size(struct perf_evsel *evsel) 1352 { 1353 u64 read_format = evsel->attr.read_format; 1354 int entry = sizeof(u64); /* value */ 1355 int size = 0; 1356 int nr = 1; 1357 1358 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1359 size += sizeof(u64); 1360 1361 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1362 size += sizeof(u64); 1363 1364 if (read_format & PERF_FORMAT_ID) 1365 entry += sizeof(u64); 1366 1367 if (read_format & PERF_FORMAT_GROUP) { 1368 nr = evsel->nr_members; 1369 size += sizeof(u64); 1370 } 1371 1372 size += entry * nr; 1373 return size; 1374 } 1375 1376 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1377 struct perf_counts_values *count) 1378 { 1379 size_t size = perf_evsel__read_size(evsel); 1380 1381 memset(count, 0, sizeof(*count)); 1382 1383 if (FD(evsel, cpu, thread) < 0) 1384 return -EINVAL; 1385 1386 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1387 return -errno; 1388 1389 return 0; 1390 } 1391 1392 static int 1393 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1394 { 1395 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1396 1397 return perf_evsel__read(evsel, cpu, thread, count); 1398 } 1399 1400 static void 1401 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1402 u64 val, u64 ena, u64 run) 1403 { 1404 struct perf_counts_values *count; 1405 1406 count = perf_counts(counter->counts, cpu, thread); 1407 1408 count->val = val; 1409 count->ena = ena; 1410 count->run = run; 1411 count->loaded = true; 1412 } 1413 1414 static int 1415 perf_evsel__process_group_data(struct perf_evsel *leader, 1416 int cpu, int thread, u64 *data) 1417 { 1418 u64 read_format = leader->attr.read_format; 1419 struct sample_read_value *v; 1420 u64 nr, ena = 0, run = 0, i; 1421 1422 nr = *data++; 1423 1424 if (nr != (u64) leader->nr_members) 1425 return -EINVAL; 1426 1427 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1428 ena = *data++; 1429 1430 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1431 run = *data++; 1432 1433 v = (struct sample_read_value *) data; 1434 1435 perf_evsel__set_count(leader, cpu, thread, 1436 v[0].value, ena, run); 1437 1438 for (i = 1; i < nr; i++) { 1439 struct perf_evsel *counter; 1440 1441 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1442 if (!counter) 1443 return -EINVAL; 1444 1445 perf_evsel__set_count(counter, cpu, thread, 1446 v[i].value, ena, run); 1447 } 1448 1449 return 0; 1450 } 1451 1452 static int 1453 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1454 { 1455 struct perf_stat_evsel *ps = leader->stats; 1456 u64 read_format = leader->attr.read_format; 1457 int size = perf_evsel__read_size(leader); 1458 u64 *data = ps->group_data; 1459 1460 if (!(read_format & PERF_FORMAT_ID)) 1461 return -EINVAL; 1462 1463 if (!perf_evsel__is_group_leader(leader)) 1464 return -EINVAL; 1465 1466 if (!data) { 1467 data = zalloc(size); 1468 if (!data) 1469 return -ENOMEM; 1470 1471 ps->group_data = data; 1472 } 1473 1474 if (FD(leader, cpu, thread) < 0) 1475 return -EINVAL; 1476 1477 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1478 return -errno; 1479 1480 return perf_evsel__process_group_data(leader, cpu, thread, data); 1481 } 1482 1483 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1484 { 1485 u64 read_format = evsel->attr.read_format; 1486 1487 if (read_format & PERF_FORMAT_GROUP) 1488 return perf_evsel__read_group(evsel, cpu, thread); 1489 else 1490 return perf_evsel__read_one(evsel, cpu, thread); 1491 } 1492 1493 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1494 int cpu, int thread, bool scale) 1495 { 1496 struct perf_counts_values count; 1497 size_t nv = scale ? 3 : 1; 1498 1499 if (FD(evsel, cpu, thread) < 0) 1500 return -EINVAL; 1501 1502 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1503 return -ENOMEM; 1504 1505 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1506 return -errno; 1507 1508 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1509 perf_counts_values__scale(&count, scale, NULL); 1510 *perf_counts(evsel->counts, cpu, thread) = count; 1511 return 0; 1512 } 1513 1514 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1515 { 1516 struct perf_evsel *leader = evsel->leader; 1517 int fd; 1518 1519 if (perf_evsel__is_group_leader(evsel)) 1520 return -1; 1521 1522 /* 1523 * Leader must be already processed/open, 1524 * if not it's a bug. 1525 */ 1526 BUG_ON(!leader->fd); 1527 1528 fd = FD(leader, cpu, thread); 1529 BUG_ON(fd == -1); 1530 1531 return fd; 1532 } 1533 1534 struct bit_names { 1535 int bit; 1536 const char *name; 1537 }; 1538 1539 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1540 { 1541 bool first_bit = true; 1542 int i = 0; 1543 1544 do { 1545 if (value & bits[i].bit) { 1546 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1547 first_bit = false; 1548 } 1549 } while (bits[++i].name != NULL); 1550 } 1551 1552 static void __p_sample_type(char *buf, size_t size, u64 value) 1553 { 1554 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1555 struct bit_names bits[] = { 1556 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1557 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1558 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1559 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1560 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1561 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1562 { .name = NULL, } 1563 }; 1564 #undef bit_name 1565 __p_bits(buf, size, value, bits); 1566 } 1567 1568 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1569 { 1570 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1571 struct bit_names bits[] = { 1572 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1573 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1574 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1575 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1576 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1577 { .name = NULL, } 1578 }; 1579 #undef bit_name 1580 __p_bits(buf, size, value, bits); 1581 } 1582 1583 static void __p_read_format(char *buf, size_t size, u64 value) 1584 { 1585 #define bit_name(n) { PERF_FORMAT_##n, #n } 1586 struct bit_names bits[] = { 1587 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1588 bit_name(ID), bit_name(GROUP), 1589 { .name = NULL, } 1590 }; 1591 #undef bit_name 1592 __p_bits(buf, size, value, bits); 1593 } 1594 1595 #define BUF_SIZE 1024 1596 1597 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1598 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1599 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1600 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1601 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1602 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1603 1604 #define PRINT_ATTRn(_n, _f, _p) \ 1605 do { \ 1606 if (attr->_f) { \ 1607 _p(attr->_f); \ 1608 ret += attr__fprintf(fp, _n, buf, priv);\ 1609 } \ 1610 } while (0) 1611 1612 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1613 1614 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1615 attr__fprintf_f attr__fprintf, void *priv) 1616 { 1617 char buf[BUF_SIZE]; 1618 int ret = 0; 1619 1620 PRINT_ATTRf(type, p_unsigned); 1621 PRINT_ATTRf(size, p_unsigned); 1622 PRINT_ATTRf(config, p_hex); 1623 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1624 PRINT_ATTRf(sample_type, p_sample_type); 1625 PRINT_ATTRf(read_format, p_read_format); 1626 1627 PRINT_ATTRf(disabled, p_unsigned); 1628 PRINT_ATTRf(inherit, p_unsigned); 1629 PRINT_ATTRf(pinned, p_unsigned); 1630 PRINT_ATTRf(exclusive, p_unsigned); 1631 PRINT_ATTRf(exclude_user, p_unsigned); 1632 PRINT_ATTRf(exclude_kernel, p_unsigned); 1633 PRINT_ATTRf(exclude_hv, p_unsigned); 1634 PRINT_ATTRf(exclude_idle, p_unsigned); 1635 PRINT_ATTRf(mmap, p_unsigned); 1636 PRINT_ATTRf(comm, p_unsigned); 1637 PRINT_ATTRf(freq, p_unsigned); 1638 PRINT_ATTRf(inherit_stat, p_unsigned); 1639 PRINT_ATTRf(enable_on_exec, p_unsigned); 1640 PRINT_ATTRf(task, p_unsigned); 1641 PRINT_ATTRf(watermark, p_unsigned); 1642 PRINT_ATTRf(precise_ip, p_unsigned); 1643 PRINT_ATTRf(mmap_data, p_unsigned); 1644 PRINT_ATTRf(sample_id_all, p_unsigned); 1645 PRINT_ATTRf(exclude_host, p_unsigned); 1646 PRINT_ATTRf(exclude_guest, p_unsigned); 1647 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1648 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1649 PRINT_ATTRf(mmap2, p_unsigned); 1650 PRINT_ATTRf(comm_exec, p_unsigned); 1651 PRINT_ATTRf(use_clockid, p_unsigned); 1652 PRINT_ATTRf(context_switch, p_unsigned); 1653 PRINT_ATTRf(write_backward, p_unsigned); 1654 PRINT_ATTRf(namespaces, p_unsigned); 1655 1656 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1657 PRINT_ATTRf(bp_type, p_unsigned); 1658 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1659 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1660 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1661 PRINT_ATTRf(sample_regs_user, p_hex); 1662 PRINT_ATTRf(sample_stack_user, p_unsigned); 1663 PRINT_ATTRf(clockid, p_signed); 1664 PRINT_ATTRf(sample_regs_intr, p_hex); 1665 PRINT_ATTRf(aux_watermark, p_unsigned); 1666 PRINT_ATTRf(sample_max_stack, p_unsigned); 1667 1668 return ret; 1669 } 1670 1671 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1672 void *priv __maybe_unused) 1673 { 1674 return fprintf(fp, " %-32s %s\n", name, val); 1675 } 1676 1677 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1678 int nr_cpus, int nr_threads, 1679 int thread_idx) 1680 { 1681 for (int cpu = 0; cpu < nr_cpus; cpu++) 1682 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1683 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1684 } 1685 1686 static int update_fds(struct perf_evsel *evsel, 1687 int nr_cpus, int cpu_idx, 1688 int nr_threads, int thread_idx) 1689 { 1690 struct perf_evsel *pos; 1691 1692 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1693 return -EINVAL; 1694 1695 evlist__for_each_entry(evsel->evlist, pos) { 1696 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1697 1698 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1699 1700 /* 1701 * Since fds for next evsel has not been created, 1702 * there is no need to iterate whole event list. 1703 */ 1704 if (pos == evsel) 1705 break; 1706 } 1707 return 0; 1708 } 1709 1710 static bool ignore_missing_thread(struct perf_evsel *evsel, 1711 int nr_cpus, int cpu, 1712 struct thread_map *threads, 1713 int thread, int err) 1714 { 1715 pid_t ignore_pid = thread_map__pid(threads, thread); 1716 1717 if (!evsel->ignore_missing_thread) 1718 return false; 1719 1720 /* The system wide setup does not work with threads. */ 1721 if (evsel->system_wide) 1722 return false; 1723 1724 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1725 if (err != -ESRCH) 1726 return false; 1727 1728 /* If there's only one thread, let it fail. */ 1729 if (threads->nr == 1) 1730 return false; 1731 1732 /* 1733 * We should remove fd for missing_thread first 1734 * because thread_map__remove() will decrease threads->nr. 1735 */ 1736 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1737 return false; 1738 1739 if (thread_map__remove(threads, thread)) 1740 return false; 1741 1742 pr_warning("WARNING: Ignored open failure for pid %d\n", 1743 ignore_pid); 1744 return true; 1745 } 1746 1747 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1748 struct thread_map *threads) 1749 { 1750 int cpu, thread, nthreads; 1751 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1752 int pid = -1, err; 1753 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1754 1755 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1756 return -EINVAL; 1757 1758 if (cpus == NULL) { 1759 static struct cpu_map *empty_cpu_map; 1760 1761 if (empty_cpu_map == NULL) { 1762 empty_cpu_map = cpu_map__dummy_new(); 1763 if (empty_cpu_map == NULL) 1764 return -ENOMEM; 1765 } 1766 1767 cpus = empty_cpu_map; 1768 } 1769 1770 if (threads == NULL) { 1771 static struct thread_map *empty_thread_map; 1772 1773 if (empty_thread_map == NULL) { 1774 empty_thread_map = thread_map__new_by_tid(-1); 1775 if (empty_thread_map == NULL) 1776 return -ENOMEM; 1777 } 1778 1779 threads = empty_thread_map; 1780 } 1781 1782 if (evsel->system_wide) 1783 nthreads = 1; 1784 else 1785 nthreads = threads->nr; 1786 1787 if (evsel->fd == NULL && 1788 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1789 return -ENOMEM; 1790 1791 if (evsel->cgrp) { 1792 flags |= PERF_FLAG_PID_CGROUP; 1793 pid = evsel->cgrp->fd; 1794 } 1795 1796 fallback_missing_features: 1797 if (perf_missing_features.clockid_wrong) 1798 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1799 if (perf_missing_features.clockid) { 1800 evsel->attr.use_clockid = 0; 1801 evsel->attr.clockid = 0; 1802 } 1803 if (perf_missing_features.cloexec) 1804 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1805 if (perf_missing_features.mmap2) 1806 evsel->attr.mmap2 = 0; 1807 if (perf_missing_features.exclude_guest) 1808 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1809 if (perf_missing_features.lbr_flags) 1810 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1811 PERF_SAMPLE_BRANCH_NO_CYCLES); 1812 if (perf_missing_features.group_read && evsel->attr.inherit) 1813 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1814 retry_sample_id: 1815 if (perf_missing_features.sample_id_all) 1816 evsel->attr.sample_id_all = 0; 1817 1818 if (verbose >= 2) { 1819 fprintf(stderr, "%.60s\n", graph_dotted_line); 1820 fprintf(stderr, "perf_event_attr:\n"); 1821 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1822 fprintf(stderr, "%.60s\n", graph_dotted_line); 1823 } 1824 1825 for (cpu = 0; cpu < cpus->nr; cpu++) { 1826 1827 for (thread = 0; thread < nthreads; thread++) { 1828 int fd, group_fd; 1829 1830 if (!evsel->cgrp && !evsel->system_wide) 1831 pid = thread_map__pid(threads, thread); 1832 1833 group_fd = get_group_fd(evsel, cpu, thread); 1834 retry_open: 1835 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1836 pid, cpus->map[cpu], group_fd, flags); 1837 1838 test_attr__ready(); 1839 1840 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1841 group_fd, flags); 1842 1843 FD(evsel, cpu, thread) = fd; 1844 1845 if (fd < 0) { 1846 err = -errno; 1847 1848 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1849 /* 1850 * We just removed 1 thread, so take a step 1851 * back on thread index and lower the upper 1852 * nthreads limit. 1853 */ 1854 nthreads--; 1855 thread--; 1856 1857 /* ... and pretend like nothing have happened. */ 1858 err = 0; 1859 continue; 1860 } 1861 1862 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1863 err); 1864 goto try_fallback; 1865 } 1866 1867 pr_debug2(" = %d\n", fd); 1868 1869 if (evsel->bpf_fd >= 0) { 1870 int evt_fd = fd; 1871 int bpf_fd = evsel->bpf_fd; 1872 1873 err = ioctl(evt_fd, 1874 PERF_EVENT_IOC_SET_BPF, 1875 bpf_fd); 1876 if (err && errno != EEXIST) { 1877 pr_err("failed to attach bpf fd %d: %s\n", 1878 bpf_fd, strerror(errno)); 1879 err = -EINVAL; 1880 goto out_close; 1881 } 1882 } 1883 1884 set_rlimit = NO_CHANGE; 1885 1886 /* 1887 * If we succeeded but had to kill clockid, fail and 1888 * have perf_evsel__open_strerror() print us a nice 1889 * error. 1890 */ 1891 if (perf_missing_features.clockid || 1892 perf_missing_features.clockid_wrong) { 1893 err = -EINVAL; 1894 goto out_close; 1895 } 1896 } 1897 } 1898 1899 return 0; 1900 1901 try_fallback: 1902 /* 1903 * perf stat needs between 5 and 22 fds per CPU. When we run out 1904 * of them try to increase the limits. 1905 */ 1906 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1907 struct rlimit l; 1908 int old_errno = errno; 1909 1910 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1911 if (set_rlimit == NO_CHANGE) 1912 l.rlim_cur = l.rlim_max; 1913 else { 1914 l.rlim_cur = l.rlim_max + 1000; 1915 l.rlim_max = l.rlim_cur; 1916 } 1917 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1918 set_rlimit++; 1919 errno = old_errno; 1920 goto retry_open; 1921 } 1922 } 1923 errno = old_errno; 1924 } 1925 1926 if (err != -EINVAL || cpu > 0 || thread > 0) 1927 goto out_close; 1928 1929 /* 1930 * Must probe features in the order they were added to the 1931 * perf_event_attr interface. 1932 */ 1933 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1934 perf_missing_features.write_backward = true; 1935 pr_debug2("switching off write_backward\n"); 1936 goto out_close; 1937 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1938 perf_missing_features.clockid_wrong = true; 1939 pr_debug2("switching off clockid\n"); 1940 goto fallback_missing_features; 1941 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1942 perf_missing_features.clockid = true; 1943 pr_debug2("switching off use_clockid\n"); 1944 goto fallback_missing_features; 1945 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1946 perf_missing_features.cloexec = true; 1947 pr_debug2("switching off cloexec flag\n"); 1948 goto fallback_missing_features; 1949 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1950 perf_missing_features.mmap2 = true; 1951 pr_debug2("switching off mmap2\n"); 1952 goto fallback_missing_features; 1953 } else if (!perf_missing_features.exclude_guest && 1954 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1955 perf_missing_features.exclude_guest = true; 1956 pr_debug2("switching off exclude_guest, exclude_host\n"); 1957 goto fallback_missing_features; 1958 } else if (!perf_missing_features.sample_id_all) { 1959 perf_missing_features.sample_id_all = true; 1960 pr_debug2("switching off sample_id_all\n"); 1961 goto retry_sample_id; 1962 } else if (!perf_missing_features.lbr_flags && 1963 (evsel->attr.branch_sample_type & 1964 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1965 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1966 perf_missing_features.lbr_flags = true; 1967 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1968 goto fallback_missing_features; 1969 } else if (!perf_missing_features.group_read && 1970 evsel->attr.inherit && 1971 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 1972 perf_evsel__is_group_leader(evsel)) { 1973 perf_missing_features.group_read = true; 1974 pr_debug2("switching off group read\n"); 1975 goto fallback_missing_features; 1976 } 1977 out_close: 1978 if (err) 1979 threads->err_thread = thread; 1980 1981 do { 1982 while (--thread >= 0) { 1983 close(FD(evsel, cpu, thread)); 1984 FD(evsel, cpu, thread) = -1; 1985 } 1986 thread = nthreads; 1987 } while (--cpu >= 0); 1988 return err; 1989 } 1990 1991 void perf_evsel__close(struct perf_evsel *evsel) 1992 { 1993 if (evsel->fd == NULL) 1994 return; 1995 1996 perf_evsel__close_fd(evsel); 1997 perf_evsel__free_fd(evsel); 1998 } 1999 2000 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 2001 struct cpu_map *cpus) 2002 { 2003 return perf_evsel__open(evsel, cpus, NULL); 2004 } 2005 2006 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 2007 struct thread_map *threads) 2008 { 2009 return perf_evsel__open(evsel, NULL, threads); 2010 } 2011 2012 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 2013 const union perf_event *event, 2014 struct perf_sample *sample) 2015 { 2016 u64 type = evsel->attr.sample_type; 2017 const u64 *array = event->sample.array; 2018 bool swapped = evsel->needs_swap; 2019 union u64_swap u; 2020 2021 array += ((event->header.size - 2022 sizeof(event->header)) / sizeof(u64)) - 1; 2023 2024 if (type & PERF_SAMPLE_IDENTIFIER) { 2025 sample->id = *array; 2026 array--; 2027 } 2028 2029 if (type & PERF_SAMPLE_CPU) { 2030 u.val64 = *array; 2031 if (swapped) { 2032 /* undo swap of u64, then swap on individual u32s */ 2033 u.val64 = bswap_64(u.val64); 2034 u.val32[0] = bswap_32(u.val32[0]); 2035 } 2036 2037 sample->cpu = u.val32[0]; 2038 array--; 2039 } 2040 2041 if (type & PERF_SAMPLE_STREAM_ID) { 2042 sample->stream_id = *array; 2043 array--; 2044 } 2045 2046 if (type & PERF_SAMPLE_ID) { 2047 sample->id = *array; 2048 array--; 2049 } 2050 2051 if (type & PERF_SAMPLE_TIME) { 2052 sample->time = *array; 2053 array--; 2054 } 2055 2056 if (type & PERF_SAMPLE_TID) { 2057 u.val64 = *array; 2058 if (swapped) { 2059 /* undo swap of u64, then swap on individual u32s */ 2060 u.val64 = bswap_64(u.val64); 2061 u.val32[0] = bswap_32(u.val32[0]); 2062 u.val32[1] = bswap_32(u.val32[1]); 2063 } 2064 2065 sample->pid = u.val32[0]; 2066 sample->tid = u.val32[1]; 2067 array--; 2068 } 2069 2070 return 0; 2071 } 2072 2073 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2074 u64 size) 2075 { 2076 return size > max_size || offset + size > endp; 2077 } 2078 2079 #define OVERFLOW_CHECK(offset, size, max_size) \ 2080 do { \ 2081 if (overflow(endp, (max_size), (offset), (size))) \ 2082 return -EFAULT; \ 2083 } while (0) 2084 2085 #define OVERFLOW_CHECK_u64(offset) \ 2086 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2087 2088 static int 2089 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2090 { 2091 /* 2092 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2093 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2094 * check the format does not go past the end of the event. 2095 */ 2096 if (sample_size + sizeof(event->header) > event->header.size) 2097 return -EFAULT; 2098 2099 return 0; 2100 } 2101 2102 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2103 struct perf_sample *data) 2104 { 2105 u64 type = evsel->attr.sample_type; 2106 bool swapped = evsel->needs_swap; 2107 const u64 *array; 2108 u16 max_size = event->header.size; 2109 const void *endp = (void *)event + max_size; 2110 u64 sz; 2111 2112 /* 2113 * used for cross-endian analysis. See git commit 65014ab3 2114 * for why this goofiness is needed. 2115 */ 2116 union u64_swap u; 2117 2118 memset(data, 0, sizeof(*data)); 2119 data->cpu = data->pid = data->tid = -1; 2120 data->stream_id = data->id = data->time = -1ULL; 2121 data->period = evsel->attr.sample_period; 2122 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2123 data->misc = event->header.misc; 2124 data->id = -1ULL; 2125 data->data_src = PERF_MEM_DATA_SRC_NONE; 2126 2127 if (event->header.type != PERF_RECORD_SAMPLE) { 2128 if (!evsel->attr.sample_id_all) 2129 return 0; 2130 return perf_evsel__parse_id_sample(evsel, event, data); 2131 } 2132 2133 array = event->sample.array; 2134 2135 if (perf_event__check_size(event, evsel->sample_size)) 2136 return -EFAULT; 2137 2138 if (type & PERF_SAMPLE_IDENTIFIER) { 2139 data->id = *array; 2140 array++; 2141 } 2142 2143 if (type & PERF_SAMPLE_IP) { 2144 data->ip = *array; 2145 array++; 2146 } 2147 2148 if (type & PERF_SAMPLE_TID) { 2149 u.val64 = *array; 2150 if (swapped) { 2151 /* undo swap of u64, then swap on individual u32s */ 2152 u.val64 = bswap_64(u.val64); 2153 u.val32[0] = bswap_32(u.val32[0]); 2154 u.val32[1] = bswap_32(u.val32[1]); 2155 } 2156 2157 data->pid = u.val32[0]; 2158 data->tid = u.val32[1]; 2159 array++; 2160 } 2161 2162 if (type & PERF_SAMPLE_TIME) { 2163 data->time = *array; 2164 array++; 2165 } 2166 2167 if (type & PERF_SAMPLE_ADDR) { 2168 data->addr = *array; 2169 array++; 2170 } 2171 2172 if (type & PERF_SAMPLE_ID) { 2173 data->id = *array; 2174 array++; 2175 } 2176 2177 if (type & PERF_SAMPLE_STREAM_ID) { 2178 data->stream_id = *array; 2179 array++; 2180 } 2181 2182 if (type & PERF_SAMPLE_CPU) { 2183 2184 u.val64 = *array; 2185 if (swapped) { 2186 /* undo swap of u64, then swap on individual u32s */ 2187 u.val64 = bswap_64(u.val64); 2188 u.val32[0] = bswap_32(u.val32[0]); 2189 } 2190 2191 data->cpu = u.val32[0]; 2192 array++; 2193 } 2194 2195 if (type & PERF_SAMPLE_PERIOD) { 2196 data->period = *array; 2197 array++; 2198 } 2199 2200 if (type & PERF_SAMPLE_READ) { 2201 u64 read_format = evsel->attr.read_format; 2202 2203 OVERFLOW_CHECK_u64(array); 2204 if (read_format & PERF_FORMAT_GROUP) 2205 data->read.group.nr = *array; 2206 else 2207 data->read.one.value = *array; 2208 2209 array++; 2210 2211 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2212 OVERFLOW_CHECK_u64(array); 2213 data->read.time_enabled = *array; 2214 array++; 2215 } 2216 2217 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2218 OVERFLOW_CHECK_u64(array); 2219 data->read.time_running = *array; 2220 array++; 2221 } 2222 2223 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2224 if (read_format & PERF_FORMAT_GROUP) { 2225 const u64 max_group_nr = UINT64_MAX / 2226 sizeof(struct sample_read_value); 2227 2228 if (data->read.group.nr > max_group_nr) 2229 return -EFAULT; 2230 sz = data->read.group.nr * 2231 sizeof(struct sample_read_value); 2232 OVERFLOW_CHECK(array, sz, max_size); 2233 data->read.group.values = 2234 (struct sample_read_value *)array; 2235 array = (void *)array + sz; 2236 } else { 2237 OVERFLOW_CHECK_u64(array); 2238 data->read.one.id = *array; 2239 array++; 2240 } 2241 } 2242 2243 if (evsel__has_callchain(evsel)) { 2244 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2245 2246 OVERFLOW_CHECK_u64(array); 2247 data->callchain = (struct ip_callchain *)array++; 2248 if (data->callchain->nr > max_callchain_nr) 2249 return -EFAULT; 2250 sz = data->callchain->nr * sizeof(u64); 2251 OVERFLOW_CHECK(array, sz, max_size); 2252 array = (void *)array + sz; 2253 } 2254 2255 if (type & PERF_SAMPLE_RAW) { 2256 OVERFLOW_CHECK_u64(array); 2257 u.val64 = *array; 2258 2259 /* 2260 * Undo swap of u64, then swap on individual u32s, 2261 * get the size of the raw area and undo all of the 2262 * swap. The pevent interface handles endianity by 2263 * itself. 2264 */ 2265 if (swapped) { 2266 u.val64 = bswap_64(u.val64); 2267 u.val32[0] = bswap_32(u.val32[0]); 2268 u.val32[1] = bswap_32(u.val32[1]); 2269 } 2270 data->raw_size = u.val32[0]; 2271 2272 /* 2273 * The raw data is aligned on 64bits including the 2274 * u32 size, so it's safe to use mem_bswap_64. 2275 */ 2276 if (swapped) 2277 mem_bswap_64((void *) array, data->raw_size); 2278 2279 array = (void *)array + sizeof(u32); 2280 2281 OVERFLOW_CHECK(array, data->raw_size, max_size); 2282 data->raw_data = (void *)array; 2283 array = (void *)array + data->raw_size; 2284 } 2285 2286 if (type & PERF_SAMPLE_BRANCH_STACK) { 2287 const u64 max_branch_nr = UINT64_MAX / 2288 sizeof(struct branch_entry); 2289 2290 OVERFLOW_CHECK_u64(array); 2291 data->branch_stack = (struct branch_stack *)array++; 2292 2293 if (data->branch_stack->nr > max_branch_nr) 2294 return -EFAULT; 2295 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2296 OVERFLOW_CHECK(array, sz, max_size); 2297 array = (void *)array + sz; 2298 } 2299 2300 if (type & PERF_SAMPLE_REGS_USER) { 2301 OVERFLOW_CHECK_u64(array); 2302 data->user_regs.abi = *array; 2303 array++; 2304 2305 if (data->user_regs.abi) { 2306 u64 mask = evsel->attr.sample_regs_user; 2307 2308 sz = hweight_long(mask) * sizeof(u64); 2309 OVERFLOW_CHECK(array, sz, max_size); 2310 data->user_regs.mask = mask; 2311 data->user_regs.regs = (u64 *)array; 2312 array = (void *)array + sz; 2313 } 2314 } 2315 2316 if (type & PERF_SAMPLE_STACK_USER) { 2317 OVERFLOW_CHECK_u64(array); 2318 sz = *array++; 2319 2320 data->user_stack.offset = ((char *)(array - 1) 2321 - (char *) event); 2322 2323 if (!sz) { 2324 data->user_stack.size = 0; 2325 } else { 2326 OVERFLOW_CHECK(array, sz, max_size); 2327 data->user_stack.data = (char *)array; 2328 array = (void *)array + sz; 2329 OVERFLOW_CHECK_u64(array); 2330 data->user_stack.size = *array++; 2331 if (WARN_ONCE(data->user_stack.size > sz, 2332 "user stack dump failure\n")) 2333 return -EFAULT; 2334 } 2335 } 2336 2337 if (type & PERF_SAMPLE_WEIGHT) { 2338 OVERFLOW_CHECK_u64(array); 2339 data->weight = *array; 2340 array++; 2341 } 2342 2343 if (type & PERF_SAMPLE_DATA_SRC) { 2344 OVERFLOW_CHECK_u64(array); 2345 data->data_src = *array; 2346 array++; 2347 } 2348 2349 if (type & PERF_SAMPLE_TRANSACTION) { 2350 OVERFLOW_CHECK_u64(array); 2351 data->transaction = *array; 2352 array++; 2353 } 2354 2355 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2356 if (type & PERF_SAMPLE_REGS_INTR) { 2357 OVERFLOW_CHECK_u64(array); 2358 data->intr_regs.abi = *array; 2359 array++; 2360 2361 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2362 u64 mask = evsel->attr.sample_regs_intr; 2363 2364 sz = hweight_long(mask) * sizeof(u64); 2365 OVERFLOW_CHECK(array, sz, max_size); 2366 data->intr_regs.mask = mask; 2367 data->intr_regs.regs = (u64 *)array; 2368 array = (void *)array + sz; 2369 } 2370 } 2371 2372 data->phys_addr = 0; 2373 if (type & PERF_SAMPLE_PHYS_ADDR) { 2374 data->phys_addr = *array; 2375 array++; 2376 } 2377 2378 return 0; 2379 } 2380 2381 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2382 union perf_event *event, 2383 u64 *timestamp) 2384 { 2385 u64 type = evsel->attr.sample_type; 2386 const u64 *array; 2387 2388 if (!(type & PERF_SAMPLE_TIME)) 2389 return -1; 2390 2391 if (event->header.type != PERF_RECORD_SAMPLE) { 2392 struct perf_sample data = { 2393 .time = -1ULL, 2394 }; 2395 2396 if (!evsel->attr.sample_id_all) 2397 return -1; 2398 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2399 return -1; 2400 2401 *timestamp = data.time; 2402 return 0; 2403 } 2404 2405 array = event->sample.array; 2406 2407 if (perf_event__check_size(event, evsel->sample_size)) 2408 return -EFAULT; 2409 2410 if (type & PERF_SAMPLE_IDENTIFIER) 2411 array++; 2412 2413 if (type & PERF_SAMPLE_IP) 2414 array++; 2415 2416 if (type & PERF_SAMPLE_TID) 2417 array++; 2418 2419 if (type & PERF_SAMPLE_TIME) 2420 *timestamp = *array; 2421 2422 return 0; 2423 } 2424 2425 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2426 u64 read_format) 2427 { 2428 size_t sz, result = sizeof(struct sample_event); 2429 2430 if (type & PERF_SAMPLE_IDENTIFIER) 2431 result += sizeof(u64); 2432 2433 if (type & PERF_SAMPLE_IP) 2434 result += sizeof(u64); 2435 2436 if (type & PERF_SAMPLE_TID) 2437 result += sizeof(u64); 2438 2439 if (type & PERF_SAMPLE_TIME) 2440 result += sizeof(u64); 2441 2442 if (type & PERF_SAMPLE_ADDR) 2443 result += sizeof(u64); 2444 2445 if (type & PERF_SAMPLE_ID) 2446 result += sizeof(u64); 2447 2448 if (type & PERF_SAMPLE_STREAM_ID) 2449 result += sizeof(u64); 2450 2451 if (type & PERF_SAMPLE_CPU) 2452 result += sizeof(u64); 2453 2454 if (type & PERF_SAMPLE_PERIOD) 2455 result += sizeof(u64); 2456 2457 if (type & PERF_SAMPLE_READ) { 2458 result += sizeof(u64); 2459 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2460 result += sizeof(u64); 2461 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2462 result += sizeof(u64); 2463 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2464 if (read_format & PERF_FORMAT_GROUP) { 2465 sz = sample->read.group.nr * 2466 sizeof(struct sample_read_value); 2467 result += sz; 2468 } else { 2469 result += sizeof(u64); 2470 } 2471 } 2472 2473 if (type & PERF_SAMPLE_CALLCHAIN) { 2474 sz = (sample->callchain->nr + 1) * sizeof(u64); 2475 result += sz; 2476 } 2477 2478 if (type & PERF_SAMPLE_RAW) { 2479 result += sizeof(u32); 2480 result += sample->raw_size; 2481 } 2482 2483 if (type & PERF_SAMPLE_BRANCH_STACK) { 2484 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2485 sz += sizeof(u64); 2486 result += sz; 2487 } 2488 2489 if (type & PERF_SAMPLE_REGS_USER) { 2490 if (sample->user_regs.abi) { 2491 result += sizeof(u64); 2492 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2493 result += sz; 2494 } else { 2495 result += sizeof(u64); 2496 } 2497 } 2498 2499 if (type & PERF_SAMPLE_STACK_USER) { 2500 sz = sample->user_stack.size; 2501 result += sizeof(u64); 2502 if (sz) { 2503 result += sz; 2504 result += sizeof(u64); 2505 } 2506 } 2507 2508 if (type & PERF_SAMPLE_WEIGHT) 2509 result += sizeof(u64); 2510 2511 if (type & PERF_SAMPLE_DATA_SRC) 2512 result += sizeof(u64); 2513 2514 if (type & PERF_SAMPLE_TRANSACTION) 2515 result += sizeof(u64); 2516 2517 if (type & PERF_SAMPLE_REGS_INTR) { 2518 if (sample->intr_regs.abi) { 2519 result += sizeof(u64); 2520 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2521 result += sz; 2522 } else { 2523 result += sizeof(u64); 2524 } 2525 } 2526 2527 if (type & PERF_SAMPLE_PHYS_ADDR) 2528 result += sizeof(u64); 2529 2530 return result; 2531 } 2532 2533 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2534 u64 read_format, 2535 const struct perf_sample *sample) 2536 { 2537 u64 *array; 2538 size_t sz; 2539 /* 2540 * used for cross-endian analysis. See git commit 65014ab3 2541 * for why this goofiness is needed. 2542 */ 2543 union u64_swap u; 2544 2545 array = event->sample.array; 2546 2547 if (type & PERF_SAMPLE_IDENTIFIER) { 2548 *array = sample->id; 2549 array++; 2550 } 2551 2552 if (type & PERF_SAMPLE_IP) { 2553 *array = sample->ip; 2554 array++; 2555 } 2556 2557 if (type & PERF_SAMPLE_TID) { 2558 u.val32[0] = sample->pid; 2559 u.val32[1] = sample->tid; 2560 *array = u.val64; 2561 array++; 2562 } 2563 2564 if (type & PERF_SAMPLE_TIME) { 2565 *array = sample->time; 2566 array++; 2567 } 2568 2569 if (type & PERF_SAMPLE_ADDR) { 2570 *array = sample->addr; 2571 array++; 2572 } 2573 2574 if (type & PERF_SAMPLE_ID) { 2575 *array = sample->id; 2576 array++; 2577 } 2578 2579 if (type & PERF_SAMPLE_STREAM_ID) { 2580 *array = sample->stream_id; 2581 array++; 2582 } 2583 2584 if (type & PERF_SAMPLE_CPU) { 2585 u.val32[0] = sample->cpu; 2586 u.val32[1] = 0; 2587 *array = u.val64; 2588 array++; 2589 } 2590 2591 if (type & PERF_SAMPLE_PERIOD) { 2592 *array = sample->period; 2593 array++; 2594 } 2595 2596 if (type & PERF_SAMPLE_READ) { 2597 if (read_format & PERF_FORMAT_GROUP) 2598 *array = sample->read.group.nr; 2599 else 2600 *array = sample->read.one.value; 2601 array++; 2602 2603 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2604 *array = sample->read.time_enabled; 2605 array++; 2606 } 2607 2608 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2609 *array = sample->read.time_running; 2610 array++; 2611 } 2612 2613 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2614 if (read_format & PERF_FORMAT_GROUP) { 2615 sz = sample->read.group.nr * 2616 sizeof(struct sample_read_value); 2617 memcpy(array, sample->read.group.values, sz); 2618 array = (void *)array + sz; 2619 } else { 2620 *array = sample->read.one.id; 2621 array++; 2622 } 2623 } 2624 2625 if (type & PERF_SAMPLE_CALLCHAIN) { 2626 sz = (sample->callchain->nr + 1) * sizeof(u64); 2627 memcpy(array, sample->callchain, sz); 2628 array = (void *)array + sz; 2629 } 2630 2631 if (type & PERF_SAMPLE_RAW) { 2632 u.val32[0] = sample->raw_size; 2633 *array = u.val64; 2634 array = (void *)array + sizeof(u32); 2635 2636 memcpy(array, sample->raw_data, sample->raw_size); 2637 array = (void *)array + sample->raw_size; 2638 } 2639 2640 if (type & PERF_SAMPLE_BRANCH_STACK) { 2641 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2642 sz += sizeof(u64); 2643 memcpy(array, sample->branch_stack, sz); 2644 array = (void *)array + sz; 2645 } 2646 2647 if (type & PERF_SAMPLE_REGS_USER) { 2648 if (sample->user_regs.abi) { 2649 *array++ = sample->user_regs.abi; 2650 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2651 memcpy(array, sample->user_regs.regs, sz); 2652 array = (void *)array + sz; 2653 } else { 2654 *array++ = 0; 2655 } 2656 } 2657 2658 if (type & PERF_SAMPLE_STACK_USER) { 2659 sz = sample->user_stack.size; 2660 *array++ = sz; 2661 if (sz) { 2662 memcpy(array, sample->user_stack.data, sz); 2663 array = (void *)array + sz; 2664 *array++ = sz; 2665 } 2666 } 2667 2668 if (type & PERF_SAMPLE_WEIGHT) { 2669 *array = sample->weight; 2670 array++; 2671 } 2672 2673 if (type & PERF_SAMPLE_DATA_SRC) { 2674 *array = sample->data_src; 2675 array++; 2676 } 2677 2678 if (type & PERF_SAMPLE_TRANSACTION) { 2679 *array = sample->transaction; 2680 array++; 2681 } 2682 2683 if (type & PERF_SAMPLE_REGS_INTR) { 2684 if (sample->intr_regs.abi) { 2685 *array++ = sample->intr_regs.abi; 2686 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2687 memcpy(array, sample->intr_regs.regs, sz); 2688 array = (void *)array + sz; 2689 } else { 2690 *array++ = 0; 2691 } 2692 } 2693 2694 if (type & PERF_SAMPLE_PHYS_ADDR) { 2695 *array = sample->phys_addr; 2696 array++; 2697 } 2698 2699 return 0; 2700 } 2701 2702 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2703 { 2704 return tep_find_field(evsel->tp_format, name); 2705 } 2706 2707 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2708 const char *name) 2709 { 2710 struct tep_format_field *field = perf_evsel__field(evsel, name); 2711 int offset; 2712 2713 if (!field) 2714 return NULL; 2715 2716 offset = field->offset; 2717 2718 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2719 offset = *(int *)(sample->raw_data + field->offset); 2720 offset &= 0xffff; 2721 } 2722 2723 return sample->raw_data + offset; 2724 } 2725 2726 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2727 bool needs_swap) 2728 { 2729 u64 value; 2730 void *ptr = sample->raw_data + field->offset; 2731 2732 switch (field->size) { 2733 case 1: 2734 return *(u8 *)ptr; 2735 case 2: 2736 value = *(u16 *)ptr; 2737 break; 2738 case 4: 2739 value = *(u32 *)ptr; 2740 break; 2741 case 8: 2742 memcpy(&value, ptr, sizeof(u64)); 2743 break; 2744 default: 2745 return 0; 2746 } 2747 2748 if (!needs_swap) 2749 return value; 2750 2751 switch (field->size) { 2752 case 2: 2753 return bswap_16(value); 2754 case 4: 2755 return bswap_32(value); 2756 case 8: 2757 return bswap_64(value); 2758 default: 2759 return 0; 2760 } 2761 2762 return 0; 2763 } 2764 2765 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2766 const char *name) 2767 { 2768 struct tep_format_field *field = perf_evsel__field(evsel, name); 2769 2770 if (!field) 2771 return 0; 2772 2773 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2774 } 2775 2776 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2777 char *msg, size_t msgsize) 2778 { 2779 int paranoid; 2780 2781 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2782 evsel->attr.type == PERF_TYPE_HARDWARE && 2783 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2784 /* 2785 * If it's cycles then fall back to hrtimer based 2786 * cpu-clock-tick sw counter, which is always available even if 2787 * no PMU support. 2788 * 2789 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2790 * b0a873e). 2791 */ 2792 scnprintf(msg, msgsize, "%s", 2793 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2794 2795 evsel->attr.type = PERF_TYPE_SOFTWARE; 2796 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2797 2798 zfree(&evsel->name); 2799 return true; 2800 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2801 (paranoid = perf_event_paranoid()) > 1) { 2802 const char *name = perf_evsel__name(evsel); 2803 char *new_name; 2804 const char *sep = ":"; 2805 2806 /* Is there already the separator in the name. */ 2807 if (strchr(name, '/') || 2808 strchr(name, ':')) 2809 sep = ""; 2810 2811 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2812 return false; 2813 2814 if (evsel->name) 2815 free(evsel->name); 2816 evsel->name = new_name; 2817 scnprintf(msg, msgsize, 2818 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2819 evsel->attr.exclude_kernel = 1; 2820 2821 return true; 2822 } 2823 2824 return false; 2825 } 2826 2827 static bool find_process(const char *name) 2828 { 2829 size_t len = strlen(name); 2830 DIR *dir; 2831 struct dirent *d; 2832 int ret = -1; 2833 2834 dir = opendir(procfs__mountpoint()); 2835 if (!dir) 2836 return false; 2837 2838 /* Walk through the directory. */ 2839 while (ret && (d = readdir(dir)) != NULL) { 2840 char path[PATH_MAX]; 2841 char *data; 2842 size_t size; 2843 2844 if ((d->d_type != DT_DIR) || 2845 !strcmp(".", d->d_name) || 2846 !strcmp("..", d->d_name)) 2847 continue; 2848 2849 scnprintf(path, sizeof(path), "%s/%s/comm", 2850 procfs__mountpoint(), d->d_name); 2851 2852 if (filename__read_str(path, &data, &size)) 2853 continue; 2854 2855 ret = strncmp(name, data, len); 2856 free(data); 2857 } 2858 2859 closedir(dir); 2860 return ret ? false : true; 2861 } 2862 2863 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2864 int err, char *msg, size_t size) 2865 { 2866 char sbuf[STRERR_BUFSIZE]; 2867 int printed = 0; 2868 2869 switch (err) { 2870 case EPERM: 2871 case EACCES: 2872 if (err == EPERM) 2873 printed = scnprintf(msg, size, 2874 "No permission to enable %s event.\n\n", 2875 perf_evsel__name(evsel)); 2876 2877 return scnprintf(msg + printed, size - printed, 2878 "You may not have permission to collect %sstats.\n\n" 2879 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2880 "which controls use of the performance events system by\n" 2881 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2882 "The current value is %d:\n\n" 2883 " -1: Allow use of (almost) all events by all users\n" 2884 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2885 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2886 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2887 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2888 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2889 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2890 " kernel.perf_event_paranoid = -1\n" , 2891 target->system_wide ? "system-wide " : "", 2892 perf_event_paranoid()); 2893 case ENOENT: 2894 return scnprintf(msg, size, "The %s event is not supported.", 2895 perf_evsel__name(evsel)); 2896 case EMFILE: 2897 return scnprintf(msg, size, "%s", 2898 "Too many events are opened.\n" 2899 "Probably the maximum number of open file descriptors has been reached.\n" 2900 "Hint: Try again after reducing the number of events.\n" 2901 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2902 case ENOMEM: 2903 if (evsel__has_callchain(evsel) && 2904 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2905 return scnprintf(msg, size, 2906 "Not enough memory to setup event with callchain.\n" 2907 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2908 "Hint: Current value: %d", sysctl__max_stack()); 2909 break; 2910 case ENODEV: 2911 if (target->cpu_list) 2912 return scnprintf(msg, size, "%s", 2913 "No such device - did you specify an out-of-range profile CPU?"); 2914 break; 2915 case EOPNOTSUPP: 2916 if (evsel->attr.sample_period != 0) 2917 return scnprintf(msg, size, 2918 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2919 perf_evsel__name(evsel)); 2920 if (evsel->attr.precise_ip) 2921 return scnprintf(msg, size, "%s", 2922 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2923 #if defined(__i386__) || defined(__x86_64__) 2924 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2925 return scnprintf(msg, size, "%s", 2926 "No hardware sampling interrupt available.\n"); 2927 #endif 2928 break; 2929 case EBUSY: 2930 if (find_process("oprofiled")) 2931 return scnprintf(msg, size, 2932 "The PMU counters are busy/taken by another profiler.\n" 2933 "We found oprofile daemon running, please stop it and try again."); 2934 break; 2935 case EINVAL: 2936 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2937 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2938 if (perf_missing_features.clockid) 2939 return scnprintf(msg, size, "clockid feature not supported."); 2940 if (perf_missing_features.clockid_wrong) 2941 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2942 break; 2943 default: 2944 break; 2945 } 2946 2947 return scnprintf(msg, size, 2948 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2949 "/bin/dmesg | grep -i perf may provide additional information.\n", 2950 err, str_error_r(err, sbuf, sizeof(sbuf)), 2951 perf_evsel__name(evsel)); 2952 } 2953 2954 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 2955 { 2956 if (evsel && evsel->evlist) 2957 return evsel->evlist->env; 2958 return NULL; 2959 } 2960 2961 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 2962 { 2963 int cpu, thread; 2964 2965 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 2966 for (thread = 0; thread < xyarray__max_y(evsel->fd); 2967 thread++) { 2968 int fd = FD(evsel, cpu, thread); 2969 2970 if (perf_evlist__id_add_fd(evlist, evsel, 2971 cpu, thread, fd) < 0) 2972 return -1; 2973 } 2974 } 2975 2976 return 0; 2977 } 2978 2979 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 2980 { 2981 struct cpu_map *cpus = evsel->cpus; 2982 struct thread_map *threads = evsel->threads; 2983 2984 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 2985 return -ENOMEM; 2986 2987 return store_evsel_ids(evsel, evlist); 2988 } 2989