xref: /openbmc/linux/tools/perf/util/evsel.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->max_events  = ULONG_MAX;
236 	evsel->evlist	   = NULL;
237 	evsel->bpf_fd	   = -1;
238 	INIT_LIST_HEAD(&evsel->node);
239 	INIT_LIST_HEAD(&evsel->config_terms);
240 	perf_evsel__object.init(evsel);
241 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
242 	perf_evsel__calc_id_pos(evsel);
243 	evsel->cmdline_group_boundary = false;
244 	evsel->metric_expr   = NULL;
245 	evsel->metric_name   = NULL;
246 	evsel->metric_events = NULL;
247 	evsel->collect_stat  = false;
248 	evsel->pmu_name      = NULL;
249 }
250 
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254 
255 	if (!evsel)
256 		return NULL;
257 	perf_evsel__init(evsel, attr, idx);
258 
259 	if (perf_evsel__is_bpf_output(evsel)) {
260 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
261 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
262 		evsel->attr.sample_period = 1;
263 	}
264 
265 	if (perf_evsel__is_clock(evsel)) {
266 		/*
267 		 * The evsel->unit points to static alias->unit
268 		 * so it's ok to use static string in here.
269 		 */
270 		static const char *unit = "msec";
271 
272 		evsel->unit = unit;
273 		evsel->scale = 1e-6;
274 	}
275 
276 	return evsel;
277 }
278 
279 static bool perf_event_can_profile_kernel(void)
280 {
281 	return geteuid() == 0 || perf_event_paranoid() == -1;
282 }
283 
284 struct perf_evsel *perf_evsel__new_cycles(bool precise)
285 {
286 	struct perf_event_attr attr = {
287 		.type	= PERF_TYPE_HARDWARE,
288 		.config	= PERF_COUNT_HW_CPU_CYCLES,
289 		.exclude_kernel	= !perf_event_can_profile_kernel(),
290 	};
291 	struct perf_evsel *evsel;
292 
293 	event_attr_init(&attr);
294 
295 	if (!precise)
296 		goto new_event;
297 
298 	/*
299 	 * Now let the usual logic to set up the perf_event_attr defaults
300 	 * to kick in when we return and before perf_evsel__open() is called.
301 	 */
302 new_event:
303 	evsel = perf_evsel__new(&attr);
304 	if (evsel == NULL)
305 		goto out;
306 
307 	evsel->precise_max = true;
308 
309 	/* use asprintf() because free(evsel) assumes name is allocated */
310 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
311 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
312 		     attr.exclude_kernel ? "u" : "",
313 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
314 		goto error_free;
315 out:
316 	return evsel;
317 error_free:
318 	perf_evsel__delete(evsel);
319 	evsel = NULL;
320 	goto out;
321 }
322 
323 /*
324  * Returns pointer with encoded error via <linux/err.h> interface.
325  */
326 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
327 {
328 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
329 	int err = -ENOMEM;
330 
331 	if (evsel == NULL) {
332 		goto out_err;
333 	} else {
334 		struct perf_event_attr attr = {
335 			.type	       = PERF_TYPE_TRACEPOINT,
336 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
337 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
338 		};
339 
340 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
341 			goto out_free;
342 
343 		evsel->tp_format = trace_event__tp_format(sys, name);
344 		if (IS_ERR(evsel->tp_format)) {
345 			err = PTR_ERR(evsel->tp_format);
346 			goto out_free;
347 		}
348 
349 		event_attr_init(&attr);
350 		attr.config = evsel->tp_format->id;
351 		attr.sample_period = 1;
352 		perf_evsel__init(evsel, &attr, idx);
353 	}
354 
355 	return evsel;
356 
357 out_free:
358 	zfree(&evsel->name);
359 	free(evsel);
360 out_err:
361 	return ERR_PTR(err);
362 }
363 
364 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
365 	"cycles",
366 	"instructions",
367 	"cache-references",
368 	"cache-misses",
369 	"branches",
370 	"branch-misses",
371 	"bus-cycles",
372 	"stalled-cycles-frontend",
373 	"stalled-cycles-backend",
374 	"ref-cycles",
375 };
376 
377 static const char *__perf_evsel__hw_name(u64 config)
378 {
379 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
380 		return perf_evsel__hw_names[config];
381 
382 	return "unknown-hardware";
383 }
384 
385 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
386 {
387 	int colon = 0, r = 0;
388 	struct perf_event_attr *attr = &evsel->attr;
389 	bool exclude_guest_default = false;
390 
391 #define MOD_PRINT(context, mod)	do {					\
392 		if (!attr->exclude_##context) {				\
393 			if (!colon) colon = ++r;			\
394 			r += scnprintf(bf + r, size - r, "%c", mod);	\
395 		} } while(0)
396 
397 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
398 		MOD_PRINT(kernel, 'k');
399 		MOD_PRINT(user, 'u');
400 		MOD_PRINT(hv, 'h');
401 		exclude_guest_default = true;
402 	}
403 
404 	if (attr->precise_ip) {
405 		if (!colon)
406 			colon = ++r;
407 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
408 		exclude_guest_default = true;
409 	}
410 
411 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
412 		MOD_PRINT(host, 'H');
413 		MOD_PRINT(guest, 'G');
414 	}
415 #undef MOD_PRINT
416 	if (colon)
417 		bf[colon - 1] = ':';
418 	return r;
419 }
420 
421 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
422 {
423 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
424 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
425 }
426 
427 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
428 	"cpu-clock",
429 	"task-clock",
430 	"page-faults",
431 	"context-switches",
432 	"cpu-migrations",
433 	"minor-faults",
434 	"major-faults",
435 	"alignment-faults",
436 	"emulation-faults",
437 	"dummy",
438 };
439 
440 static const char *__perf_evsel__sw_name(u64 config)
441 {
442 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
443 		return perf_evsel__sw_names[config];
444 	return "unknown-software";
445 }
446 
447 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
448 {
449 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
450 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
451 }
452 
453 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
454 {
455 	int r;
456 
457 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
458 
459 	if (type & HW_BREAKPOINT_R)
460 		r += scnprintf(bf + r, size - r, "r");
461 
462 	if (type & HW_BREAKPOINT_W)
463 		r += scnprintf(bf + r, size - r, "w");
464 
465 	if (type & HW_BREAKPOINT_X)
466 		r += scnprintf(bf + r, size - r, "x");
467 
468 	return r;
469 }
470 
471 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
472 {
473 	struct perf_event_attr *attr = &evsel->attr;
474 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
475 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
476 }
477 
478 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
479 				[PERF_EVSEL__MAX_ALIASES] = {
480  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
481  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
482  { "LLC",	"L2",							},
483  { "dTLB",	"d-tlb",	"Data-TLB",				},
484  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
485  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
486  { "node",								},
487 };
488 
489 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
490 				   [PERF_EVSEL__MAX_ALIASES] = {
491  { "load",	"loads",	"read",					},
492  { "store",	"stores",	"write",				},
493  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
494 };
495 
496 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
497 				       [PERF_EVSEL__MAX_ALIASES] = {
498  { "refs",	"Reference",	"ops",		"access",		},
499  { "misses",	"miss",							},
500 };
501 
502 #define C(x)		PERF_COUNT_HW_CACHE_##x
503 #define CACHE_READ	(1 << C(OP_READ))
504 #define CACHE_WRITE	(1 << C(OP_WRITE))
505 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
506 #define COP(x)		(1 << x)
507 
508 /*
509  * cache operartion stat
510  * L1I : Read and prefetch only
511  * ITLB and BPU : Read-only
512  */
513 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
514  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
515  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
516  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518  [C(ITLB)]	= (CACHE_READ),
519  [C(BPU)]	= (CACHE_READ),
520  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 };
522 
523 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
524 {
525 	if (perf_evsel__hw_cache_stat[type] & COP(op))
526 		return true;	/* valid */
527 	else
528 		return false;	/* invalid */
529 }
530 
531 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
532 					    char *bf, size_t size)
533 {
534 	if (result) {
535 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
536 				 perf_evsel__hw_cache_op[op][0],
537 				 perf_evsel__hw_cache_result[result][0]);
538 	}
539 
540 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
541 			 perf_evsel__hw_cache_op[op][1]);
542 }
543 
544 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
545 {
546 	u8 op, result, type = (config >>  0) & 0xff;
547 	const char *err = "unknown-ext-hardware-cache-type";
548 
549 	if (type >= PERF_COUNT_HW_CACHE_MAX)
550 		goto out_err;
551 
552 	op = (config >>  8) & 0xff;
553 	err = "unknown-ext-hardware-cache-op";
554 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
555 		goto out_err;
556 
557 	result = (config >> 16) & 0xff;
558 	err = "unknown-ext-hardware-cache-result";
559 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
560 		goto out_err;
561 
562 	err = "invalid-cache";
563 	if (!perf_evsel__is_cache_op_valid(type, op))
564 		goto out_err;
565 
566 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
567 out_err:
568 	return scnprintf(bf, size, "%s", err);
569 }
570 
571 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
572 {
573 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
574 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
575 }
576 
577 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
578 {
579 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
580 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581 }
582 
583 static int perf_evsel__tool_name(char *bf, size_t size)
584 {
585 	int ret = scnprintf(bf, size, "duration_time");
586 	return ret;
587 }
588 
589 const char *perf_evsel__name(struct perf_evsel *evsel)
590 {
591 	char bf[128];
592 
593 	if (evsel->name)
594 		return evsel->name;
595 
596 	switch (evsel->attr.type) {
597 	case PERF_TYPE_RAW:
598 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
599 		break;
600 
601 	case PERF_TYPE_HARDWARE:
602 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
603 		break;
604 
605 	case PERF_TYPE_HW_CACHE:
606 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
607 		break;
608 
609 	case PERF_TYPE_SOFTWARE:
610 		if (evsel->tool_event)
611 			perf_evsel__tool_name(bf, sizeof(bf));
612 		else
613 			perf_evsel__sw_name(evsel, bf, sizeof(bf));
614 		break;
615 
616 	case PERF_TYPE_TRACEPOINT:
617 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
618 		break;
619 
620 	case PERF_TYPE_BREAKPOINT:
621 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
622 		break;
623 
624 	default:
625 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
626 			  evsel->attr.type);
627 		break;
628 	}
629 
630 	evsel->name = strdup(bf);
631 
632 	return evsel->name ?: "unknown";
633 }
634 
635 const char *perf_evsel__group_name(struct perf_evsel *evsel)
636 {
637 	return evsel->group_name ?: "anon group";
638 }
639 
640 /*
641  * Returns the group details for the specified leader,
642  * with following rules.
643  *
644  *  For record -e '{cycles,instructions}'
645  *    'anon group { cycles:u, instructions:u }'
646  *
647  *  For record -e 'cycles,instructions' and report --group
648  *    'cycles:u, instructions:u'
649  */
650 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
651 {
652 	int ret = 0;
653 	struct perf_evsel *pos;
654 	const char *group_name = perf_evsel__group_name(evsel);
655 
656 	if (!evsel->forced_leader)
657 		ret = scnprintf(buf, size, "%s { ", group_name);
658 
659 	ret += scnprintf(buf + ret, size - ret, "%s",
660 			 perf_evsel__name(evsel));
661 
662 	for_each_group_member(pos, evsel)
663 		ret += scnprintf(buf + ret, size - ret, ", %s",
664 				 perf_evsel__name(pos));
665 
666 	if (!evsel->forced_leader)
667 		ret += scnprintf(buf + ret, size - ret, " }");
668 
669 	return ret;
670 }
671 
672 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
673 					   struct record_opts *opts,
674 					   struct callchain_param *param)
675 {
676 	bool function = perf_evsel__is_function_event(evsel);
677 	struct perf_event_attr *attr = &evsel->attr;
678 
679 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
680 
681 	attr->sample_max_stack = param->max_stack;
682 
683 	if (param->record_mode == CALLCHAIN_LBR) {
684 		if (!opts->branch_stack) {
685 			if (attr->exclude_user) {
686 				pr_warning("LBR callstack option is only available "
687 					   "to get user callchain information. "
688 					   "Falling back to framepointers.\n");
689 			} else {
690 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
691 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
692 							PERF_SAMPLE_BRANCH_CALL_STACK |
693 							PERF_SAMPLE_BRANCH_NO_CYCLES |
694 							PERF_SAMPLE_BRANCH_NO_FLAGS;
695 			}
696 		} else
697 			 pr_warning("Cannot use LBR callstack with branch stack. "
698 				    "Falling back to framepointers.\n");
699 	}
700 
701 	if (param->record_mode == CALLCHAIN_DWARF) {
702 		if (!function) {
703 			perf_evsel__set_sample_bit(evsel, REGS_USER);
704 			perf_evsel__set_sample_bit(evsel, STACK_USER);
705 			attr->sample_regs_user |= PERF_REGS_MASK;
706 			attr->sample_stack_user = param->dump_size;
707 			attr->exclude_callchain_user = 1;
708 		} else {
709 			pr_info("Cannot use DWARF unwind for function trace event,"
710 				" falling back to framepointers.\n");
711 		}
712 	}
713 
714 	if (function) {
715 		pr_info("Disabling user space callchains for function trace event.\n");
716 		attr->exclude_callchain_user = 1;
717 	}
718 }
719 
720 void perf_evsel__config_callchain(struct perf_evsel *evsel,
721 				  struct record_opts *opts,
722 				  struct callchain_param *param)
723 {
724 	if (param->enabled)
725 		return __perf_evsel__config_callchain(evsel, opts, param);
726 }
727 
728 static void
729 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
730 			    struct callchain_param *param)
731 {
732 	struct perf_event_attr *attr = &evsel->attr;
733 
734 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
735 	if (param->record_mode == CALLCHAIN_LBR) {
736 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
737 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
738 					      PERF_SAMPLE_BRANCH_CALL_STACK);
739 	}
740 	if (param->record_mode == CALLCHAIN_DWARF) {
741 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
742 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
743 	}
744 }
745 
746 static void apply_config_terms(struct perf_evsel *evsel,
747 			       struct record_opts *opts, bool track)
748 {
749 	struct perf_evsel_config_term *term;
750 	struct list_head *config_terms = &evsel->config_terms;
751 	struct perf_event_attr *attr = &evsel->attr;
752 	/* callgraph default */
753 	struct callchain_param param = {
754 		.record_mode = callchain_param.record_mode,
755 	};
756 	u32 dump_size = 0;
757 	int max_stack = 0;
758 	const char *callgraph_buf = NULL;
759 
760 	list_for_each_entry(term, config_terms, list) {
761 		switch (term->type) {
762 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
763 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
764 				attr->sample_period = term->val.period;
765 				attr->freq = 0;
766 				perf_evsel__reset_sample_bit(evsel, PERIOD);
767 			}
768 			break;
769 		case PERF_EVSEL__CONFIG_TERM_FREQ:
770 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
771 				attr->sample_freq = term->val.freq;
772 				attr->freq = 1;
773 				perf_evsel__set_sample_bit(evsel, PERIOD);
774 			}
775 			break;
776 		case PERF_EVSEL__CONFIG_TERM_TIME:
777 			if (term->val.time)
778 				perf_evsel__set_sample_bit(evsel, TIME);
779 			else
780 				perf_evsel__reset_sample_bit(evsel, TIME);
781 			break;
782 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
783 			callgraph_buf = term->val.callgraph;
784 			break;
785 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
786 			if (term->val.branch && strcmp(term->val.branch, "no")) {
787 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
788 				parse_branch_str(term->val.branch,
789 						 &attr->branch_sample_type);
790 			} else
791 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
792 			break;
793 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
794 			dump_size = term->val.stack_user;
795 			break;
796 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
797 			max_stack = term->val.max_stack;
798 			break;
799 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
800 			evsel->max_events = term->val.max_events;
801 			break;
802 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
803 			/*
804 			 * attr->inherit should has already been set by
805 			 * perf_evsel__config. If user explicitly set
806 			 * inherit using config terms, override global
807 			 * opt->no_inherit setting.
808 			 */
809 			attr->inherit = term->val.inherit ? 1 : 0;
810 			break;
811 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
812 			attr->write_backward = term->val.overwrite ? 1 : 0;
813 			break;
814 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
815 			break;
816 		case PERF_EVSEL__CONFIG_TERM_PERCORE:
817 			break;
818 		default:
819 			break;
820 		}
821 	}
822 
823 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
824 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
825 		bool sample_address = false;
826 
827 		if (max_stack) {
828 			param.max_stack = max_stack;
829 			if (callgraph_buf == NULL)
830 				callgraph_buf = "fp";
831 		}
832 
833 		/* parse callgraph parameters */
834 		if (callgraph_buf != NULL) {
835 			if (!strcmp(callgraph_buf, "no")) {
836 				param.enabled = false;
837 				param.record_mode = CALLCHAIN_NONE;
838 			} else {
839 				param.enabled = true;
840 				if (parse_callchain_record(callgraph_buf, &param)) {
841 					pr_err("per-event callgraph setting for %s failed. "
842 					       "Apply callgraph global setting for it\n",
843 					       evsel->name);
844 					return;
845 				}
846 				if (param.record_mode == CALLCHAIN_DWARF)
847 					sample_address = true;
848 			}
849 		}
850 		if (dump_size > 0) {
851 			dump_size = round_up(dump_size, sizeof(u64));
852 			param.dump_size = dump_size;
853 		}
854 
855 		/* If global callgraph set, clear it */
856 		if (callchain_param.enabled)
857 			perf_evsel__reset_callgraph(evsel, &callchain_param);
858 
859 		/* set perf-event callgraph */
860 		if (param.enabled) {
861 			if (sample_address) {
862 				perf_evsel__set_sample_bit(evsel, ADDR);
863 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
864 				evsel->attr.mmap_data = track;
865 			}
866 			perf_evsel__config_callchain(evsel, opts, &param);
867 		}
868 	}
869 }
870 
871 static bool is_dummy_event(struct perf_evsel *evsel)
872 {
873 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
874 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
875 }
876 
877 /*
878  * The enable_on_exec/disabled value strategy:
879  *
880  *  1) For any type of traced program:
881  *    - all independent events and group leaders are disabled
882  *    - all group members are enabled
883  *
884  *     Group members are ruled by group leaders. They need to
885  *     be enabled, because the group scheduling relies on that.
886  *
887  *  2) For traced programs executed by perf:
888  *     - all independent events and group leaders have
889  *       enable_on_exec set
890  *     - we don't specifically enable or disable any event during
891  *       the record command
892  *
893  *     Independent events and group leaders are initially disabled
894  *     and get enabled by exec. Group members are ruled by group
895  *     leaders as stated in 1).
896  *
897  *  3) For traced programs attached by perf (pid/tid):
898  *     - we specifically enable or disable all events during
899  *       the record command
900  *
901  *     When attaching events to already running traced we
902  *     enable/disable events specifically, as there's no
903  *     initial traced exec call.
904  */
905 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
906 			struct callchain_param *callchain)
907 {
908 	struct perf_evsel *leader = evsel->leader;
909 	struct perf_event_attr *attr = &evsel->attr;
910 	int track = evsel->tracking;
911 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
912 
913 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
914 	attr->inherit	    = !opts->no_inherit;
915 	attr->write_backward = opts->overwrite ? 1 : 0;
916 
917 	perf_evsel__set_sample_bit(evsel, IP);
918 	perf_evsel__set_sample_bit(evsel, TID);
919 
920 	if (evsel->sample_read) {
921 		perf_evsel__set_sample_bit(evsel, READ);
922 
923 		/*
924 		 * We need ID even in case of single event, because
925 		 * PERF_SAMPLE_READ process ID specific data.
926 		 */
927 		perf_evsel__set_sample_id(evsel, false);
928 
929 		/*
930 		 * Apply group format only if we belong to group
931 		 * with more than one members.
932 		 */
933 		if (leader->nr_members > 1) {
934 			attr->read_format |= PERF_FORMAT_GROUP;
935 			attr->inherit = 0;
936 		}
937 	}
938 
939 	/*
940 	 * We default some events to have a default interval. But keep
941 	 * it a weak assumption overridable by the user.
942 	 */
943 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
944 				     opts->user_interval != ULLONG_MAX)) {
945 		if (opts->freq) {
946 			perf_evsel__set_sample_bit(evsel, PERIOD);
947 			attr->freq		= 1;
948 			attr->sample_freq	= opts->freq;
949 		} else {
950 			attr->sample_period = opts->default_interval;
951 		}
952 	}
953 
954 	/*
955 	 * Disable sampling for all group members other
956 	 * than leader in case leader 'leads' the sampling.
957 	 */
958 	if ((leader != evsel) && leader->sample_read) {
959 		attr->freq           = 0;
960 		attr->sample_freq    = 0;
961 		attr->sample_period  = 0;
962 		attr->write_backward = 0;
963 
964 		/*
965 		 * We don't get sample for slave events, we make them
966 		 * when delivering group leader sample. Set the slave
967 		 * event to follow the master sample_type to ease up
968 		 * report.
969 		 */
970 		attr->sample_type = leader->attr.sample_type;
971 	}
972 
973 	if (opts->no_samples)
974 		attr->sample_freq = 0;
975 
976 	if (opts->inherit_stat) {
977 		evsel->attr.read_format |=
978 			PERF_FORMAT_TOTAL_TIME_ENABLED |
979 			PERF_FORMAT_TOTAL_TIME_RUNNING |
980 			PERF_FORMAT_ID;
981 		attr->inherit_stat = 1;
982 	}
983 
984 	if (opts->sample_address) {
985 		perf_evsel__set_sample_bit(evsel, ADDR);
986 		attr->mmap_data = track;
987 	}
988 
989 	/*
990 	 * We don't allow user space callchains for  function trace
991 	 * event, due to issues with page faults while tracing page
992 	 * fault handler and its overall trickiness nature.
993 	 */
994 	if (perf_evsel__is_function_event(evsel))
995 		evsel->attr.exclude_callchain_user = 1;
996 
997 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
998 		perf_evsel__config_callchain(evsel, opts, callchain);
999 
1000 	if (opts->sample_intr_regs) {
1001 		attr->sample_regs_intr = opts->sample_intr_regs;
1002 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
1003 	}
1004 
1005 	if (opts->sample_user_regs) {
1006 		attr->sample_regs_user |= opts->sample_user_regs;
1007 		perf_evsel__set_sample_bit(evsel, REGS_USER);
1008 	}
1009 
1010 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1011 		perf_evsel__set_sample_bit(evsel, CPU);
1012 
1013 	/*
1014 	 * When the user explicitly disabled time don't force it here.
1015 	 */
1016 	if (opts->sample_time &&
1017 	    (!perf_missing_features.sample_id_all &&
1018 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1019 	     opts->sample_time_set)))
1020 		perf_evsel__set_sample_bit(evsel, TIME);
1021 
1022 	if (opts->raw_samples && !evsel->no_aux_samples) {
1023 		perf_evsel__set_sample_bit(evsel, TIME);
1024 		perf_evsel__set_sample_bit(evsel, RAW);
1025 		perf_evsel__set_sample_bit(evsel, CPU);
1026 	}
1027 
1028 	if (opts->sample_address)
1029 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1030 
1031 	if (opts->sample_phys_addr)
1032 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1033 
1034 	if (opts->no_buffering) {
1035 		attr->watermark = 0;
1036 		attr->wakeup_events = 1;
1037 	}
1038 	if (opts->branch_stack && !evsel->no_aux_samples) {
1039 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1040 		attr->branch_sample_type = opts->branch_stack;
1041 	}
1042 
1043 	if (opts->sample_weight)
1044 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1045 
1046 	attr->task  = track;
1047 	attr->mmap  = track;
1048 	attr->mmap2 = track && !perf_missing_features.mmap2;
1049 	attr->comm  = track;
1050 	attr->ksymbol = track && !perf_missing_features.ksymbol;
1051 	attr->bpf_event = track && !opts->no_bpf_event &&
1052 		!perf_missing_features.bpf_event;
1053 
1054 	if (opts->record_namespaces)
1055 		attr->namespaces  = track;
1056 
1057 	if (opts->record_switch_events)
1058 		attr->context_switch = track;
1059 
1060 	if (opts->sample_transaction)
1061 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1062 
1063 	if (opts->running_time) {
1064 		evsel->attr.read_format |=
1065 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1066 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1067 	}
1068 
1069 	/*
1070 	 * XXX see the function comment above
1071 	 *
1072 	 * Disabling only independent events or group leaders,
1073 	 * keeping group members enabled.
1074 	 */
1075 	if (perf_evsel__is_group_leader(evsel))
1076 		attr->disabled = 1;
1077 
1078 	/*
1079 	 * Setting enable_on_exec for independent events and
1080 	 * group leaders for traced executed by perf.
1081 	 */
1082 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1083 		!opts->initial_delay)
1084 		attr->enable_on_exec = 1;
1085 
1086 	if (evsel->immediate) {
1087 		attr->disabled = 0;
1088 		attr->enable_on_exec = 0;
1089 	}
1090 
1091 	clockid = opts->clockid;
1092 	if (opts->use_clockid) {
1093 		attr->use_clockid = 1;
1094 		attr->clockid = opts->clockid;
1095 	}
1096 
1097 	if (evsel->precise_max)
1098 		attr->precise_ip = 3;
1099 
1100 	if (opts->all_user) {
1101 		attr->exclude_kernel = 1;
1102 		attr->exclude_user   = 0;
1103 	}
1104 
1105 	if (opts->all_kernel) {
1106 		attr->exclude_kernel = 0;
1107 		attr->exclude_user   = 1;
1108 	}
1109 
1110 	if (evsel->own_cpus || evsel->unit)
1111 		evsel->attr.read_format |= PERF_FORMAT_ID;
1112 
1113 	/*
1114 	 * Apply event specific term settings,
1115 	 * it overloads any global configuration.
1116 	 */
1117 	apply_config_terms(evsel, opts, track);
1118 
1119 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1120 
1121 	/* The --period option takes the precedence. */
1122 	if (opts->period_set) {
1123 		if (opts->period)
1124 			perf_evsel__set_sample_bit(evsel, PERIOD);
1125 		else
1126 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1127 	}
1128 
1129 	/*
1130 	 * For initial_delay, a dummy event is added implicitly.
1131 	 * The software event will trigger -EOPNOTSUPP error out,
1132 	 * if BRANCH_STACK bit is set.
1133 	 */
1134 	if (opts->initial_delay && is_dummy_event(evsel))
1135 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1136 }
1137 
1138 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1139 {
1140 	if (evsel->system_wide)
1141 		nthreads = 1;
1142 
1143 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1144 
1145 	if (evsel->fd) {
1146 		int cpu, thread;
1147 		for (cpu = 0; cpu < ncpus; cpu++) {
1148 			for (thread = 0; thread < nthreads; thread++) {
1149 				FD(evsel, cpu, thread) = -1;
1150 			}
1151 		}
1152 	}
1153 
1154 	return evsel->fd != NULL ? 0 : -ENOMEM;
1155 }
1156 
1157 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1158 			  int ioc,  void *arg)
1159 {
1160 	int cpu, thread;
1161 
1162 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1163 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1164 			int fd = FD(evsel, cpu, thread),
1165 			    err = ioctl(fd, ioc, arg);
1166 
1167 			if (err)
1168 				return err;
1169 		}
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1176 {
1177 	return perf_evsel__run_ioctl(evsel,
1178 				     PERF_EVENT_IOC_SET_FILTER,
1179 				     (void *)filter);
1180 }
1181 
1182 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1183 {
1184 	char *new_filter = strdup(filter);
1185 
1186 	if (new_filter != NULL) {
1187 		free(evsel->filter);
1188 		evsel->filter = new_filter;
1189 		return 0;
1190 	}
1191 
1192 	return -1;
1193 }
1194 
1195 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1196 				     const char *fmt, const char *filter)
1197 {
1198 	char *new_filter;
1199 
1200 	if (evsel->filter == NULL)
1201 		return perf_evsel__set_filter(evsel, filter);
1202 
1203 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1204 		free(evsel->filter);
1205 		evsel->filter = new_filter;
1206 		return 0;
1207 	}
1208 
1209 	return -1;
1210 }
1211 
1212 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1213 {
1214 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1215 }
1216 
1217 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1218 {
1219 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1220 }
1221 
1222 int perf_evsel__enable(struct perf_evsel *evsel)
1223 {
1224 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1225 
1226 	if (!err)
1227 		evsel->disabled = false;
1228 
1229 	return err;
1230 }
1231 
1232 int perf_evsel__disable(struct perf_evsel *evsel)
1233 {
1234 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1235 	/*
1236 	 * We mark it disabled here so that tools that disable a event can
1237 	 * ignore events after they disable it. I.e. the ring buffer may have
1238 	 * already a few more events queued up before the kernel got the stop
1239 	 * request.
1240 	 */
1241 	if (!err)
1242 		evsel->disabled = true;
1243 
1244 	return err;
1245 }
1246 
1247 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1248 {
1249 	if (ncpus == 0 || nthreads == 0)
1250 		return 0;
1251 
1252 	if (evsel->system_wide)
1253 		nthreads = 1;
1254 
1255 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1256 	if (evsel->sample_id == NULL)
1257 		return -ENOMEM;
1258 
1259 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1260 	if (evsel->id == NULL) {
1261 		xyarray__delete(evsel->sample_id);
1262 		evsel->sample_id = NULL;
1263 		return -ENOMEM;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1270 {
1271 	xyarray__delete(evsel->fd);
1272 	evsel->fd = NULL;
1273 }
1274 
1275 static void perf_evsel__free_id(struct perf_evsel *evsel)
1276 {
1277 	xyarray__delete(evsel->sample_id);
1278 	evsel->sample_id = NULL;
1279 	zfree(&evsel->id);
1280 }
1281 
1282 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1283 {
1284 	struct perf_evsel_config_term *term, *h;
1285 
1286 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1287 		list_del(&term->list);
1288 		free(term);
1289 	}
1290 }
1291 
1292 void perf_evsel__close_fd(struct perf_evsel *evsel)
1293 {
1294 	int cpu, thread;
1295 
1296 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1297 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1298 			close(FD(evsel, cpu, thread));
1299 			FD(evsel, cpu, thread) = -1;
1300 		}
1301 }
1302 
1303 void perf_evsel__exit(struct perf_evsel *evsel)
1304 {
1305 	assert(list_empty(&evsel->node));
1306 	assert(evsel->evlist == NULL);
1307 	perf_evsel__free_counts(evsel);
1308 	perf_evsel__free_fd(evsel);
1309 	perf_evsel__free_id(evsel);
1310 	perf_evsel__free_config_terms(evsel);
1311 	cgroup__put(evsel->cgrp);
1312 	cpu_map__put(evsel->cpus);
1313 	cpu_map__put(evsel->own_cpus);
1314 	thread_map__put(evsel->threads);
1315 	zfree(&evsel->group_name);
1316 	zfree(&evsel->name);
1317 	perf_evsel__object.fini(evsel);
1318 }
1319 
1320 void perf_evsel__delete(struct perf_evsel *evsel)
1321 {
1322 	perf_evsel__exit(evsel);
1323 	free(evsel);
1324 }
1325 
1326 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1327 				struct perf_counts_values *count)
1328 {
1329 	struct perf_counts_values tmp;
1330 
1331 	if (!evsel->prev_raw_counts)
1332 		return;
1333 
1334 	if (cpu == -1) {
1335 		tmp = evsel->prev_raw_counts->aggr;
1336 		evsel->prev_raw_counts->aggr = *count;
1337 	} else {
1338 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1339 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1340 	}
1341 
1342 	count->val = count->val - tmp.val;
1343 	count->ena = count->ena - tmp.ena;
1344 	count->run = count->run - tmp.run;
1345 }
1346 
1347 void perf_counts_values__scale(struct perf_counts_values *count,
1348 			       bool scale, s8 *pscaled)
1349 {
1350 	s8 scaled = 0;
1351 
1352 	if (scale) {
1353 		if (count->run == 0) {
1354 			scaled = -1;
1355 			count->val = 0;
1356 		} else if (count->run < count->ena) {
1357 			scaled = 1;
1358 			count->val = (u64)((double) count->val * count->ena / count->run);
1359 		}
1360 	}
1361 
1362 	if (pscaled)
1363 		*pscaled = scaled;
1364 }
1365 
1366 static int perf_evsel__read_size(struct perf_evsel *evsel)
1367 {
1368 	u64 read_format = evsel->attr.read_format;
1369 	int entry = sizeof(u64); /* value */
1370 	int size = 0;
1371 	int nr = 1;
1372 
1373 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1374 		size += sizeof(u64);
1375 
1376 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1377 		size += sizeof(u64);
1378 
1379 	if (read_format & PERF_FORMAT_ID)
1380 		entry += sizeof(u64);
1381 
1382 	if (read_format & PERF_FORMAT_GROUP) {
1383 		nr = evsel->nr_members;
1384 		size += sizeof(u64);
1385 	}
1386 
1387 	size += entry * nr;
1388 	return size;
1389 }
1390 
1391 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1392 		     struct perf_counts_values *count)
1393 {
1394 	size_t size = perf_evsel__read_size(evsel);
1395 
1396 	memset(count, 0, sizeof(*count));
1397 
1398 	if (FD(evsel, cpu, thread) < 0)
1399 		return -EINVAL;
1400 
1401 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1402 		return -errno;
1403 
1404 	return 0;
1405 }
1406 
1407 static int
1408 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1409 {
1410 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1411 
1412 	return perf_evsel__read(evsel, cpu, thread, count);
1413 }
1414 
1415 static void
1416 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1417 		      u64 val, u64 ena, u64 run)
1418 {
1419 	struct perf_counts_values *count;
1420 
1421 	count = perf_counts(counter->counts, cpu, thread);
1422 
1423 	count->val    = val;
1424 	count->ena    = ena;
1425 	count->run    = run;
1426 	count->loaded = true;
1427 }
1428 
1429 static int
1430 perf_evsel__process_group_data(struct perf_evsel *leader,
1431 			       int cpu, int thread, u64 *data)
1432 {
1433 	u64 read_format = leader->attr.read_format;
1434 	struct sample_read_value *v;
1435 	u64 nr, ena = 0, run = 0, i;
1436 
1437 	nr = *data++;
1438 
1439 	if (nr != (u64) leader->nr_members)
1440 		return -EINVAL;
1441 
1442 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1443 		ena = *data++;
1444 
1445 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1446 		run = *data++;
1447 
1448 	v = (struct sample_read_value *) data;
1449 
1450 	perf_evsel__set_count(leader, cpu, thread,
1451 			      v[0].value, ena, run);
1452 
1453 	for (i = 1; i < nr; i++) {
1454 		struct perf_evsel *counter;
1455 
1456 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1457 		if (!counter)
1458 			return -EINVAL;
1459 
1460 		perf_evsel__set_count(counter, cpu, thread,
1461 				      v[i].value, ena, run);
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static int
1468 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1469 {
1470 	struct perf_stat_evsel *ps = leader->stats;
1471 	u64 read_format = leader->attr.read_format;
1472 	int size = perf_evsel__read_size(leader);
1473 	u64 *data = ps->group_data;
1474 
1475 	if (!(read_format & PERF_FORMAT_ID))
1476 		return -EINVAL;
1477 
1478 	if (!perf_evsel__is_group_leader(leader))
1479 		return -EINVAL;
1480 
1481 	if (!data) {
1482 		data = zalloc(size);
1483 		if (!data)
1484 			return -ENOMEM;
1485 
1486 		ps->group_data = data;
1487 	}
1488 
1489 	if (FD(leader, cpu, thread) < 0)
1490 		return -EINVAL;
1491 
1492 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1493 		return -errno;
1494 
1495 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1496 }
1497 
1498 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1499 {
1500 	u64 read_format = evsel->attr.read_format;
1501 
1502 	if (read_format & PERF_FORMAT_GROUP)
1503 		return perf_evsel__read_group(evsel, cpu, thread);
1504 	else
1505 		return perf_evsel__read_one(evsel, cpu, thread);
1506 }
1507 
1508 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1509 			      int cpu, int thread, bool scale)
1510 {
1511 	struct perf_counts_values count;
1512 	size_t nv = scale ? 3 : 1;
1513 
1514 	if (FD(evsel, cpu, thread) < 0)
1515 		return -EINVAL;
1516 
1517 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1518 		return -ENOMEM;
1519 
1520 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1521 		return -errno;
1522 
1523 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1524 	perf_counts_values__scale(&count, scale, NULL);
1525 	*perf_counts(evsel->counts, cpu, thread) = count;
1526 	return 0;
1527 }
1528 
1529 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1530 {
1531 	struct perf_evsel *leader = evsel->leader;
1532 	int fd;
1533 
1534 	if (perf_evsel__is_group_leader(evsel))
1535 		return -1;
1536 
1537 	/*
1538 	 * Leader must be already processed/open,
1539 	 * if not it's a bug.
1540 	 */
1541 	BUG_ON(!leader->fd);
1542 
1543 	fd = FD(leader, cpu, thread);
1544 	BUG_ON(fd == -1);
1545 
1546 	return fd;
1547 }
1548 
1549 struct bit_names {
1550 	int bit;
1551 	const char *name;
1552 };
1553 
1554 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1555 {
1556 	bool first_bit = true;
1557 	int i = 0;
1558 
1559 	do {
1560 		if (value & bits[i].bit) {
1561 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1562 			first_bit = false;
1563 		}
1564 	} while (bits[++i].name != NULL);
1565 }
1566 
1567 static void __p_sample_type(char *buf, size_t size, u64 value)
1568 {
1569 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1570 	struct bit_names bits[] = {
1571 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1572 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1573 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1574 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1575 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1576 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1577 		{ .name = NULL, }
1578 	};
1579 #undef bit_name
1580 	__p_bits(buf, size, value, bits);
1581 }
1582 
1583 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1584 {
1585 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1586 	struct bit_names bits[] = {
1587 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1588 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1589 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1590 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1591 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1592 		{ .name = NULL, }
1593 	};
1594 #undef bit_name
1595 	__p_bits(buf, size, value, bits);
1596 }
1597 
1598 static void __p_read_format(char *buf, size_t size, u64 value)
1599 {
1600 #define bit_name(n) { PERF_FORMAT_##n, #n }
1601 	struct bit_names bits[] = {
1602 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1603 		bit_name(ID), bit_name(GROUP),
1604 		{ .name = NULL, }
1605 	};
1606 #undef bit_name
1607 	__p_bits(buf, size, value, bits);
1608 }
1609 
1610 #define BUF_SIZE		1024
1611 
1612 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1613 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1614 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1615 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1616 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1617 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1618 
1619 #define PRINT_ATTRn(_n, _f, _p)				\
1620 do {							\
1621 	if (attr->_f) {					\
1622 		_p(attr->_f);				\
1623 		ret += attr__fprintf(fp, _n, buf, priv);\
1624 	}						\
1625 } while (0)
1626 
1627 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1628 
1629 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1630 			     attr__fprintf_f attr__fprintf, void *priv)
1631 {
1632 	char buf[BUF_SIZE];
1633 	int ret = 0;
1634 
1635 	PRINT_ATTRf(type, p_unsigned);
1636 	PRINT_ATTRf(size, p_unsigned);
1637 	PRINT_ATTRf(config, p_hex);
1638 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1639 	PRINT_ATTRf(sample_type, p_sample_type);
1640 	PRINT_ATTRf(read_format, p_read_format);
1641 
1642 	PRINT_ATTRf(disabled, p_unsigned);
1643 	PRINT_ATTRf(inherit, p_unsigned);
1644 	PRINT_ATTRf(pinned, p_unsigned);
1645 	PRINT_ATTRf(exclusive, p_unsigned);
1646 	PRINT_ATTRf(exclude_user, p_unsigned);
1647 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1648 	PRINT_ATTRf(exclude_hv, p_unsigned);
1649 	PRINT_ATTRf(exclude_idle, p_unsigned);
1650 	PRINT_ATTRf(mmap, p_unsigned);
1651 	PRINT_ATTRf(comm, p_unsigned);
1652 	PRINT_ATTRf(freq, p_unsigned);
1653 	PRINT_ATTRf(inherit_stat, p_unsigned);
1654 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1655 	PRINT_ATTRf(task, p_unsigned);
1656 	PRINT_ATTRf(watermark, p_unsigned);
1657 	PRINT_ATTRf(precise_ip, p_unsigned);
1658 	PRINT_ATTRf(mmap_data, p_unsigned);
1659 	PRINT_ATTRf(sample_id_all, p_unsigned);
1660 	PRINT_ATTRf(exclude_host, p_unsigned);
1661 	PRINT_ATTRf(exclude_guest, p_unsigned);
1662 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1663 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1664 	PRINT_ATTRf(mmap2, p_unsigned);
1665 	PRINT_ATTRf(comm_exec, p_unsigned);
1666 	PRINT_ATTRf(use_clockid, p_unsigned);
1667 	PRINT_ATTRf(context_switch, p_unsigned);
1668 	PRINT_ATTRf(write_backward, p_unsigned);
1669 	PRINT_ATTRf(namespaces, p_unsigned);
1670 	PRINT_ATTRf(ksymbol, p_unsigned);
1671 	PRINT_ATTRf(bpf_event, p_unsigned);
1672 
1673 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1674 	PRINT_ATTRf(bp_type, p_unsigned);
1675 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1676 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1677 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1678 	PRINT_ATTRf(sample_regs_user, p_hex);
1679 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1680 	PRINT_ATTRf(clockid, p_signed);
1681 	PRINT_ATTRf(sample_regs_intr, p_hex);
1682 	PRINT_ATTRf(aux_watermark, p_unsigned);
1683 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1684 
1685 	return ret;
1686 }
1687 
1688 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1689 				void *priv __maybe_unused)
1690 {
1691 	return fprintf(fp, "  %-32s %s\n", name, val);
1692 }
1693 
1694 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1695 				  int nr_cpus, int nr_threads,
1696 				  int thread_idx)
1697 {
1698 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1699 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1700 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1701 }
1702 
1703 static int update_fds(struct perf_evsel *evsel,
1704 		      int nr_cpus, int cpu_idx,
1705 		      int nr_threads, int thread_idx)
1706 {
1707 	struct perf_evsel *pos;
1708 
1709 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1710 		return -EINVAL;
1711 
1712 	evlist__for_each_entry(evsel->evlist, pos) {
1713 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1714 
1715 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1716 
1717 		/*
1718 		 * Since fds for next evsel has not been created,
1719 		 * there is no need to iterate whole event list.
1720 		 */
1721 		if (pos == evsel)
1722 			break;
1723 	}
1724 	return 0;
1725 }
1726 
1727 static bool ignore_missing_thread(struct perf_evsel *evsel,
1728 				  int nr_cpus, int cpu,
1729 				  struct thread_map *threads,
1730 				  int thread, int err)
1731 {
1732 	pid_t ignore_pid = thread_map__pid(threads, thread);
1733 
1734 	if (!evsel->ignore_missing_thread)
1735 		return false;
1736 
1737 	/* The system wide setup does not work with threads. */
1738 	if (evsel->system_wide)
1739 		return false;
1740 
1741 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1742 	if (err != -ESRCH)
1743 		return false;
1744 
1745 	/* If there's only one thread, let it fail. */
1746 	if (threads->nr == 1)
1747 		return false;
1748 
1749 	/*
1750 	 * We should remove fd for missing_thread first
1751 	 * because thread_map__remove() will decrease threads->nr.
1752 	 */
1753 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1754 		return false;
1755 
1756 	if (thread_map__remove(threads, thread))
1757 		return false;
1758 
1759 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1760 		   ignore_pid);
1761 	return true;
1762 }
1763 
1764 static void display_attr(struct perf_event_attr *attr)
1765 {
1766 	if (verbose >= 2) {
1767 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1768 		fprintf(stderr, "perf_event_attr:\n");
1769 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1770 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1771 	}
1772 }
1773 
1774 static int perf_event_open(struct perf_evsel *evsel,
1775 			   pid_t pid, int cpu, int group_fd,
1776 			   unsigned long flags)
1777 {
1778 	int precise_ip = evsel->attr.precise_ip;
1779 	int fd;
1780 
1781 	while (1) {
1782 		pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1783 			  pid, cpu, group_fd, flags);
1784 
1785 		fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags);
1786 		if (fd >= 0)
1787 			break;
1788 
1789 		/*
1790 		 * Do quick precise_ip fallback if:
1791 		 *  - there is precise_ip set in perf_event_attr
1792 		 *  - maximum precise is requested
1793 		 *  - sys_perf_event_open failed with ENOTSUP error,
1794 		 *    which is associated with wrong precise_ip
1795 		 */
1796 		if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP))
1797 			break;
1798 
1799 		/*
1800 		 * We tried all the precise_ip values, and it's
1801 		 * still failing, so leave it to standard fallback.
1802 		 */
1803 		if (!evsel->attr.precise_ip) {
1804 			evsel->attr.precise_ip = precise_ip;
1805 			break;
1806 		}
1807 
1808 		pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1809 		evsel->attr.precise_ip--;
1810 		pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip);
1811 		display_attr(&evsel->attr);
1812 	}
1813 
1814 	return fd;
1815 }
1816 
1817 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1818 		     struct thread_map *threads)
1819 {
1820 	int cpu, thread, nthreads;
1821 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1822 	int pid = -1, err;
1823 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1824 
1825 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1826 		return -EINVAL;
1827 
1828 	if (cpus == NULL) {
1829 		static struct cpu_map *empty_cpu_map;
1830 
1831 		if (empty_cpu_map == NULL) {
1832 			empty_cpu_map = cpu_map__dummy_new();
1833 			if (empty_cpu_map == NULL)
1834 				return -ENOMEM;
1835 		}
1836 
1837 		cpus = empty_cpu_map;
1838 	}
1839 
1840 	if (threads == NULL) {
1841 		static struct thread_map *empty_thread_map;
1842 
1843 		if (empty_thread_map == NULL) {
1844 			empty_thread_map = thread_map__new_by_tid(-1);
1845 			if (empty_thread_map == NULL)
1846 				return -ENOMEM;
1847 		}
1848 
1849 		threads = empty_thread_map;
1850 	}
1851 
1852 	if (evsel->system_wide)
1853 		nthreads = 1;
1854 	else
1855 		nthreads = threads->nr;
1856 
1857 	if (evsel->fd == NULL &&
1858 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1859 		return -ENOMEM;
1860 
1861 	if (evsel->cgrp) {
1862 		flags |= PERF_FLAG_PID_CGROUP;
1863 		pid = evsel->cgrp->fd;
1864 	}
1865 
1866 fallback_missing_features:
1867 	if (perf_missing_features.clockid_wrong)
1868 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1869 	if (perf_missing_features.clockid) {
1870 		evsel->attr.use_clockid = 0;
1871 		evsel->attr.clockid = 0;
1872 	}
1873 	if (perf_missing_features.cloexec)
1874 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1875 	if (perf_missing_features.mmap2)
1876 		evsel->attr.mmap2 = 0;
1877 	if (perf_missing_features.exclude_guest)
1878 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1879 	if (perf_missing_features.lbr_flags)
1880 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1881 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1882 	if (perf_missing_features.group_read && evsel->attr.inherit)
1883 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1884 	if (perf_missing_features.ksymbol)
1885 		evsel->attr.ksymbol = 0;
1886 	if (perf_missing_features.bpf_event)
1887 		evsel->attr.bpf_event = 0;
1888 retry_sample_id:
1889 	if (perf_missing_features.sample_id_all)
1890 		evsel->attr.sample_id_all = 0;
1891 
1892 	display_attr(&evsel->attr);
1893 
1894 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1895 
1896 		for (thread = 0; thread < nthreads; thread++) {
1897 			int fd, group_fd;
1898 
1899 			if (!evsel->cgrp && !evsel->system_wide)
1900 				pid = thread_map__pid(threads, thread);
1901 
1902 			group_fd = get_group_fd(evsel, cpu, thread);
1903 retry_open:
1904 			test_attr__ready();
1905 
1906 			fd = perf_event_open(evsel, pid, cpus->map[cpu],
1907 					     group_fd, flags);
1908 
1909 			FD(evsel, cpu, thread) = fd;
1910 
1911 			if (fd < 0) {
1912 				err = -errno;
1913 
1914 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1915 					/*
1916 					 * We just removed 1 thread, so take a step
1917 					 * back on thread index and lower the upper
1918 					 * nthreads limit.
1919 					 */
1920 					nthreads--;
1921 					thread--;
1922 
1923 					/* ... and pretend like nothing have happened. */
1924 					err = 0;
1925 					continue;
1926 				}
1927 
1928 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1929 					  err);
1930 				goto try_fallback;
1931 			}
1932 
1933 			pr_debug2(" = %d\n", fd);
1934 
1935 			if (evsel->bpf_fd >= 0) {
1936 				int evt_fd = fd;
1937 				int bpf_fd = evsel->bpf_fd;
1938 
1939 				err = ioctl(evt_fd,
1940 					    PERF_EVENT_IOC_SET_BPF,
1941 					    bpf_fd);
1942 				if (err && errno != EEXIST) {
1943 					pr_err("failed to attach bpf fd %d: %s\n",
1944 					       bpf_fd, strerror(errno));
1945 					err = -EINVAL;
1946 					goto out_close;
1947 				}
1948 			}
1949 
1950 			set_rlimit = NO_CHANGE;
1951 
1952 			/*
1953 			 * If we succeeded but had to kill clockid, fail and
1954 			 * have perf_evsel__open_strerror() print us a nice
1955 			 * error.
1956 			 */
1957 			if (perf_missing_features.clockid ||
1958 			    perf_missing_features.clockid_wrong) {
1959 				err = -EINVAL;
1960 				goto out_close;
1961 			}
1962 		}
1963 	}
1964 
1965 	return 0;
1966 
1967 try_fallback:
1968 	/*
1969 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1970 	 * of them try to increase the limits.
1971 	 */
1972 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1973 		struct rlimit l;
1974 		int old_errno = errno;
1975 
1976 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1977 			if (set_rlimit == NO_CHANGE)
1978 				l.rlim_cur = l.rlim_max;
1979 			else {
1980 				l.rlim_cur = l.rlim_max + 1000;
1981 				l.rlim_max = l.rlim_cur;
1982 			}
1983 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1984 				set_rlimit++;
1985 				errno = old_errno;
1986 				goto retry_open;
1987 			}
1988 		}
1989 		errno = old_errno;
1990 	}
1991 
1992 	if (err != -EINVAL || cpu > 0 || thread > 0)
1993 		goto out_close;
1994 
1995 	/*
1996 	 * Must probe features in the order they were added to the
1997 	 * perf_event_attr interface.
1998 	 */
1999 	if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
2000 		perf_missing_features.bpf_event = true;
2001 		pr_debug2("switching off bpf_event\n");
2002 		goto fallback_missing_features;
2003 	} else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
2004 		perf_missing_features.ksymbol = true;
2005 		pr_debug2("switching off ksymbol\n");
2006 		goto fallback_missing_features;
2007 	} else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
2008 		perf_missing_features.write_backward = true;
2009 		pr_debug2("switching off write_backward\n");
2010 		goto out_close;
2011 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
2012 		perf_missing_features.clockid_wrong = true;
2013 		pr_debug2("switching off clockid\n");
2014 		goto fallback_missing_features;
2015 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
2016 		perf_missing_features.clockid = true;
2017 		pr_debug2("switching off use_clockid\n");
2018 		goto fallback_missing_features;
2019 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
2020 		perf_missing_features.cloexec = true;
2021 		pr_debug2("switching off cloexec flag\n");
2022 		goto fallback_missing_features;
2023 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
2024 		perf_missing_features.mmap2 = true;
2025 		pr_debug2("switching off mmap2\n");
2026 		goto fallback_missing_features;
2027 	} else if (!perf_missing_features.exclude_guest &&
2028 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
2029 		perf_missing_features.exclude_guest = true;
2030 		pr_debug2("switching off exclude_guest, exclude_host\n");
2031 		goto fallback_missing_features;
2032 	} else if (!perf_missing_features.sample_id_all) {
2033 		perf_missing_features.sample_id_all = true;
2034 		pr_debug2("switching off sample_id_all\n");
2035 		goto retry_sample_id;
2036 	} else if (!perf_missing_features.lbr_flags &&
2037 			(evsel->attr.branch_sample_type &
2038 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
2039 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
2040 		perf_missing_features.lbr_flags = true;
2041 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
2042 		goto fallback_missing_features;
2043 	} else if (!perf_missing_features.group_read &&
2044 		    evsel->attr.inherit &&
2045 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
2046 		   perf_evsel__is_group_leader(evsel)) {
2047 		perf_missing_features.group_read = true;
2048 		pr_debug2("switching off group read\n");
2049 		goto fallback_missing_features;
2050 	}
2051 out_close:
2052 	if (err)
2053 		threads->err_thread = thread;
2054 
2055 	do {
2056 		while (--thread >= 0) {
2057 			close(FD(evsel, cpu, thread));
2058 			FD(evsel, cpu, thread) = -1;
2059 		}
2060 		thread = nthreads;
2061 	} while (--cpu >= 0);
2062 	return err;
2063 }
2064 
2065 void perf_evsel__close(struct perf_evsel *evsel)
2066 {
2067 	if (evsel->fd == NULL)
2068 		return;
2069 
2070 	perf_evsel__close_fd(evsel);
2071 	perf_evsel__free_fd(evsel);
2072 }
2073 
2074 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2075 			     struct cpu_map *cpus)
2076 {
2077 	return perf_evsel__open(evsel, cpus, NULL);
2078 }
2079 
2080 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2081 				struct thread_map *threads)
2082 {
2083 	return perf_evsel__open(evsel, NULL, threads);
2084 }
2085 
2086 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2087 				       const union perf_event *event,
2088 				       struct perf_sample *sample)
2089 {
2090 	u64 type = evsel->attr.sample_type;
2091 	const u64 *array = event->sample.array;
2092 	bool swapped = evsel->needs_swap;
2093 	union u64_swap u;
2094 
2095 	array += ((event->header.size -
2096 		   sizeof(event->header)) / sizeof(u64)) - 1;
2097 
2098 	if (type & PERF_SAMPLE_IDENTIFIER) {
2099 		sample->id = *array;
2100 		array--;
2101 	}
2102 
2103 	if (type & PERF_SAMPLE_CPU) {
2104 		u.val64 = *array;
2105 		if (swapped) {
2106 			/* undo swap of u64, then swap on individual u32s */
2107 			u.val64 = bswap_64(u.val64);
2108 			u.val32[0] = bswap_32(u.val32[0]);
2109 		}
2110 
2111 		sample->cpu = u.val32[0];
2112 		array--;
2113 	}
2114 
2115 	if (type & PERF_SAMPLE_STREAM_ID) {
2116 		sample->stream_id = *array;
2117 		array--;
2118 	}
2119 
2120 	if (type & PERF_SAMPLE_ID) {
2121 		sample->id = *array;
2122 		array--;
2123 	}
2124 
2125 	if (type & PERF_SAMPLE_TIME) {
2126 		sample->time = *array;
2127 		array--;
2128 	}
2129 
2130 	if (type & PERF_SAMPLE_TID) {
2131 		u.val64 = *array;
2132 		if (swapped) {
2133 			/* undo swap of u64, then swap on individual u32s */
2134 			u.val64 = bswap_64(u.val64);
2135 			u.val32[0] = bswap_32(u.val32[0]);
2136 			u.val32[1] = bswap_32(u.val32[1]);
2137 		}
2138 
2139 		sample->pid = u.val32[0];
2140 		sample->tid = u.val32[1];
2141 		array--;
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2148 			    u64 size)
2149 {
2150 	return size > max_size || offset + size > endp;
2151 }
2152 
2153 #define OVERFLOW_CHECK(offset, size, max_size)				\
2154 	do {								\
2155 		if (overflow(endp, (max_size), (offset), (size)))	\
2156 			return -EFAULT;					\
2157 	} while (0)
2158 
2159 #define OVERFLOW_CHECK_u64(offset) \
2160 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2161 
2162 static int
2163 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2164 {
2165 	/*
2166 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2167 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2168 	 * check the format does not go past the end of the event.
2169 	 */
2170 	if (sample_size + sizeof(event->header) > event->header.size)
2171 		return -EFAULT;
2172 
2173 	return 0;
2174 }
2175 
2176 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2177 			     struct perf_sample *data)
2178 {
2179 	u64 type = evsel->attr.sample_type;
2180 	bool swapped = evsel->needs_swap;
2181 	const u64 *array;
2182 	u16 max_size = event->header.size;
2183 	const void *endp = (void *)event + max_size;
2184 	u64 sz;
2185 
2186 	/*
2187 	 * used for cross-endian analysis. See git commit 65014ab3
2188 	 * for why this goofiness is needed.
2189 	 */
2190 	union u64_swap u;
2191 
2192 	memset(data, 0, sizeof(*data));
2193 	data->cpu = data->pid = data->tid = -1;
2194 	data->stream_id = data->id = data->time = -1ULL;
2195 	data->period = evsel->attr.sample_period;
2196 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2197 	data->misc    = event->header.misc;
2198 	data->id = -1ULL;
2199 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2200 
2201 	if (event->header.type != PERF_RECORD_SAMPLE) {
2202 		if (!evsel->attr.sample_id_all)
2203 			return 0;
2204 		return perf_evsel__parse_id_sample(evsel, event, data);
2205 	}
2206 
2207 	array = event->sample.array;
2208 
2209 	if (perf_event__check_size(event, evsel->sample_size))
2210 		return -EFAULT;
2211 
2212 	if (type & PERF_SAMPLE_IDENTIFIER) {
2213 		data->id = *array;
2214 		array++;
2215 	}
2216 
2217 	if (type & PERF_SAMPLE_IP) {
2218 		data->ip = *array;
2219 		array++;
2220 	}
2221 
2222 	if (type & PERF_SAMPLE_TID) {
2223 		u.val64 = *array;
2224 		if (swapped) {
2225 			/* undo swap of u64, then swap on individual u32s */
2226 			u.val64 = bswap_64(u.val64);
2227 			u.val32[0] = bswap_32(u.val32[0]);
2228 			u.val32[1] = bswap_32(u.val32[1]);
2229 		}
2230 
2231 		data->pid = u.val32[0];
2232 		data->tid = u.val32[1];
2233 		array++;
2234 	}
2235 
2236 	if (type & PERF_SAMPLE_TIME) {
2237 		data->time = *array;
2238 		array++;
2239 	}
2240 
2241 	if (type & PERF_SAMPLE_ADDR) {
2242 		data->addr = *array;
2243 		array++;
2244 	}
2245 
2246 	if (type & PERF_SAMPLE_ID) {
2247 		data->id = *array;
2248 		array++;
2249 	}
2250 
2251 	if (type & PERF_SAMPLE_STREAM_ID) {
2252 		data->stream_id = *array;
2253 		array++;
2254 	}
2255 
2256 	if (type & PERF_SAMPLE_CPU) {
2257 
2258 		u.val64 = *array;
2259 		if (swapped) {
2260 			/* undo swap of u64, then swap on individual u32s */
2261 			u.val64 = bswap_64(u.val64);
2262 			u.val32[0] = bswap_32(u.val32[0]);
2263 		}
2264 
2265 		data->cpu = u.val32[0];
2266 		array++;
2267 	}
2268 
2269 	if (type & PERF_SAMPLE_PERIOD) {
2270 		data->period = *array;
2271 		array++;
2272 	}
2273 
2274 	if (type & PERF_SAMPLE_READ) {
2275 		u64 read_format = evsel->attr.read_format;
2276 
2277 		OVERFLOW_CHECK_u64(array);
2278 		if (read_format & PERF_FORMAT_GROUP)
2279 			data->read.group.nr = *array;
2280 		else
2281 			data->read.one.value = *array;
2282 
2283 		array++;
2284 
2285 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2286 			OVERFLOW_CHECK_u64(array);
2287 			data->read.time_enabled = *array;
2288 			array++;
2289 		}
2290 
2291 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2292 			OVERFLOW_CHECK_u64(array);
2293 			data->read.time_running = *array;
2294 			array++;
2295 		}
2296 
2297 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2298 		if (read_format & PERF_FORMAT_GROUP) {
2299 			const u64 max_group_nr = UINT64_MAX /
2300 					sizeof(struct sample_read_value);
2301 
2302 			if (data->read.group.nr > max_group_nr)
2303 				return -EFAULT;
2304 			sz = data->read.group.nr *
2305 			     sizeof(struct sample_read_value);
2306 			OVERFLOW_CHECK(array, sz, max_size);
2307 			data->read.group.values =
2308 					(struct sample_read_value *)array;
2309 			array = (void *)array + sz;
2310 		} else {
2311 			OVERFLOW_CHECK_u64(array);
2312 			data->read.one.id = *array;
2313 			array++;
2314 		}
2315 	}
2316 
2317 	if (evsel__has_callchain(evsel)) {
2318 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2319 
2320 		OVERFLOW_CHECK_u64(array);
2321 		data->callchain = (struct ip_callchain *)array++;
2322 		if (data->callchain->nr > max_callchain_nr)
2323 			return -EFAULT;
2324 		sz = data->callchain->nr * sizeof(u64);
2325 		OVERFLOW_CHECK(array, sz, max_size);
2326 		array = (void *)array + sz;
2327 	}
2328 
2329 	if (type & PERF_SAMPLE_RAW) {
2330 		OVERFLOW_CHECK_u64(array);
2331 		u.val64 = *array;
2332 
2333 		/*
2334 		 * Undo swap of u64, then swap on individual u32s,
2335 		 * get the size of the raw area and undo all of the
2336 		 * swap. The pevent interface handles endianity by
2337 		 * itself.
2338 		 */
2339 		if (swapped) {
2340 			u.val64 = bswap_64(u.val64);
2341 			u.val32[0] = bswap_32(u.val32[0]);
2342 			u.val32[1] = bswap_32(u.val32[1]);
2343 		}
2344 		data->raw_size = u.val32[0];
2345 
2346 		/*
2347 		 * The raw data is aligned on 64bits including the
2348 		 * u32 size, so it's safe to use mem_bswap_64.
2349 		 */
2350 		if (swapped)
2351 			mem_bswap_64((void *) array, data->raw_size);
2352 
2353 		array = (void *)array + sizeof(u32);
2354 
2355 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2356 		data->raw_data = (void *)array;
2357 		array = (void *)array + data->raw_size;
2358 	}
2359 
2360 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2361 		const u64 max_branch_nr = UINT64_MAX /
2362 					  sizeof(struct branch_entry);
2363 
2364 		OVERFLOW_CHECK_u64(array);
2365 		data->branch_stack = (struct branch_stack *)array++;
2366 
2367 		if (data->branch_stack->nr > max_branch_nr)
2368 			return -EFAULT;
2369 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2370 		OVERFLOW_CHECK(array, sz, max_size);
2371 		array = (void *)array + sz;
2372 	}
2373 
2374 	if (type & PERF_SAMPLE_REGS_USER) {
2375 		OVERFLOW_CHECK_u64(array);
2376 		data->user_regs.abi = *array;
2377 		array++;
2378 
2379 		if (data->user_regs.abi) {
2380 			u64 mask = evsel->attr.sample_regs_user;
2381 
2382 			sz = hweight64(mask) * sizeof(u64);
2383 			OVERFLOW_CHECK(array, sz, max_size);
2384 			data->user_regs.mask = mask;
2385 			data->user_regs.regs = (u64 *)array;
2386 			array = (void *)array + sz;
2387 		}
2388 	}
2389 
2390 	if (type & PERF_SAMPLE_STACK_USER) {
2391 		OVERFLOW_CHECK_u64(array);
2392 		sz = *array++;
2393 
2394 		data->user_stack.offset = ((char *)(array - 1)
2395 					  - (char *) event);
2396 
2397 		if (!sz) {
2398 			data->user_stack.size = 0;
2399 		} else {
2400 			OVERFLOW_CHECK(array, sz, max_size);
2401 			data->user_stack.data = (char *)array;
2402 			array = (void *)array + sz;
2403 			OVERFLOW_CHECK_u64(array);
2404 			data->user_stack.size = *array++;
2405 			if (WARN_ONCE(data->user_stack.size > sz,
2406 				      "user stack dump failure\n"))
2407 				return -EFAULT;
2408 		}
2409 	}
2410 
2411 	if (type & PERF_SAMPLE_WEIGHT) {
2412 		OVERFLOW_CHECK_u64(array);
2413 		data->weight = *array;
2414 		array++;
2415 	}
2416 
2417 	if (type & PERF_SAMPLE_DATA_SRC) {
2418 		OVERFLOW_CHECK_u64(array);
2419 		data->data_src = *array;
2420 		array++;
2421 	}
2422 
2423 	if (type & PERF_SAMPLE_TRANSACTION) {
2424 		OVERFLOW_CHECK_u64(array);
2425 		data->transaction = *array;
2426 		array++;
2427 	}
2428 
2429 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2430 	if (type & PERF_SAMPLE_REGS_INTR) {
2431 		OVERFLOW_CHECK_u64(array);
2432 		data->intr_regs.abi = *array;
2433 		array++;
2434 
2435 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2436 			u64 mask = evsel->attr.sample_regs_intr;
2437 
2438 			sz = hweight64(mask) * sizeof(u64);
2439 			OVERFLOW_CHECK(array, sz, max_size);
2440 			data->intr_regs.mask = mask;
2441 			data->intr_regs.regs = (u64 *)array;
2442 			array = (void *)array + sz;
2443 		}
2444 	}
2445 
2446 	data->phys_addr = 0;
2447 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2448 		data->phys_addr = *array;
2449 		array++;
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2456 				       union perf_event *event,
2457 				       u64 *timestamp)
2458 {
2459 	u64 type = evsel->attr.sample_type;
2460 	const u64 *array;
2461 
2462 	if (!(type & PERF_SAMPLE_TIME))
2463 		return -1;
2464 
2465 	if (event->header.type != PERF_RECORD_SAMPLE) {
2466 		struct perf_sample data = {
2467 			.time = -1ULL,
2468 		};
2469 
2470 		if (!evsel->attr.sample_id_all)
2471 			return -1;
2472 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2473 			return -1;
2474 
2475 		*timestamp = data.time;
2476 		return 0;
2477 	}
2478 
2479 	array = event->sample.array;
2480 
2481 	if (perf_event__check_size(event, evsel->sample_size))
2482 		return -EFAULT;
2483 
2484 	if (type & PERF_SAMPLE_IDENTIFIER)
2485 		array++;
2486 
2487 	if (type & PERF_SAMPLE_IP)
2488 		array++;
2489 
2490 	if (type & PERF_SAMPLE_TID)
2491 		array++;
2492 
2493 	if (type & PERF_SAMPLE_TIME)
2494 		*timestamp = *array;
2495 
2496 	return 0;
2497 }
2498 
2499 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2500 				     u64 read_format)
2501 {
2502 	size_t sz, result = sizeof(struct sample_event);
2503 
2504 	if (type & PERF_SAMPLE_IDENTIFIER)
2505 		result += sizeof(u64);
2506 
2507 	if (type & PERF_SAMPLE_IP)
2508 		result += sizeof(u64);
2509 
2510 	if (type & PERF_SAMPLE_TID)
2511 		result += sizeof(u64);
2512 
2513 	if (type & PERF_SAMPLE_TIME)
2514 		result += sizeof(u64);
2515 
2516 	if (type & PERF_SAMPLE_ADDR)
2517 		result += sizeof(u64);
2518 
2519 	if (type & PERF_SAMPLE_ID)
2520 		result += sizeof(u64);
2521 
2522 	if (type & PERF_SAMPLE_STREAM_ID)
2523 		result += sizeof(u64);
2524 
2525 	if (type & PERF_SAMPLE_CPU)
2526 		result += sizeof(u64);
2527 
2528 	if (type & PERF_SAMPLE_PERIOD)
2529 		result += sizeof(u64);
2530 
2531 	if (type & PERF_SAMPLE_READ) {
2532 		result += sizeof(u64);
2533 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2534 			result += sizeof(u64);
2535 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2536 			result += sizeof(u64);
2537 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2538 		if (read_format & PERF_FORMAT_GROUP) {
2539 			sz = sample->read.group.nr *
2540 			     sizeof(struct sample_read_value);
2541 			result += sz;
2542 		} else {
2543 			result += sizeof(u64);
2544 		}
2545 	}
2546 
2547 	if (type & PERF_SAMPLE_CALLCHAIN) {
2548 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2549 		result += sz;
2550 	}
2551 
2552 	if (type & PERF_SAMPLE_RAW) {
2553 		result += sizeof(u32);
2554 		result += sample->raw_size;
2555 	}
2556 
2557 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2558 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2559 		sz += sizeof(u64);
2560 		result += sz;
2561 	}
2562 
2563 	if (type & PERF_SAMPLE_REGS_USER) {
2564 		if (sample->user_regs.abi) {
2565 			result += sizeof(u64);
2566 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2567 			result += sz;
2568 		} else {
2569 			result += sizeof(u64);
2570 		}
2571 	}
2572 
2573 	if (type & PERF_SAMPLE_STACK_USER) {
2574 		sz = sample->user_stack.size;
2575 		result += sizeof(u64);
2576 		if (sz) {
2577 			result += sz;
2578 			result += sizeof(u64);
2579 		}
2580 	}
2581 
2582 	if (type & PERF_SAMPLE_WEIGHT)
2583 		result += sizeof(u64);
2584 
2585 	if (type & PERF_SAMPLE_DATA_SRC)
2586 		result += sizeof(u64);
2587 
2588 	if (type & PERF_SAMPLE_TRANSACTION)
2589 		result += sizeof(u64);
2590 
2591 	if (type & PERF_SAMPLE_REGS_INTR) {
2592 		if (sample->intr_regs.abi) {
2593 			result += sizeof(u64);
2594 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2595 			result += sz;
2596 		} else {
2597 			result += sizeof(u64);
2598 		}
2599 	}
2600 
2601 	if (type & PERF_SAMPLE_PHYS_ADDR)
2602 		result += sizeof(u64);
2603 
2604 	return result;
2605 }
2606 
2607 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2608 				  u64 read_format,
2609 				  const struct perf_sample *sample)
2610 {
2611 	u64 *array;
2612 	size_t sz;
2613 	/*
2614 	 * used for cross-endian analysis. See git commit 65014ab3
2615 	 * for why this goofiness is needed.
2616 	 */
2617 	union u64_swap u;
2618 
2619 	array = event->sample.array;
2620 
2621 	if (type & PERF_SAMPLE_IDENTIFIER) {
2622 		*array = sample->id;
2623 		array++;
2624 	}
2625 
2626 	if (type & PERF_SAMPLE_IP) {
2627 		*array = sample->ip;
2628 		array++;
2629 	}
2630 
2631 	if (type & PERF_SAMPLE_TID) {
2632 		u.val32[0] = sample->pid;
2633 		u.val32[1] = sample->tid;
2634 		*array = u.val64;
2635 		array++;
2636 	}
2637 
2638 	if (type & PERF_SAMPLE_TIME) {
2639 		*array = sample->time;
2640 		array++;
2641 	}
2642 
2643 	if (type & PERF_SAMPLE_ADDR) {
2644 		*array = sample->addr;
2645 		array++;
2646 	}
2647 
2648 	if (type & PERF_SAMPLE_ID) {
2649 		*array = sample->id;
2650 		array++;
2651 	}
2652 
2653 	if (type & PERF_SAMPLE_STREAM_ID) {
2654 		*array = sample->stream_id;
2655 		array++;
2656 	}
2657 
2658 	if (type & PERF_SAMPLE_CPU) {
2659 		u.val32[0] = sample->cpu;
2660 		u.val32[1] = 0;
2661 		*array = u.val64;
2662 		array++;
2663 	}
2664 
2665 	if (type & PERF_SAMPLE_PERIOD) {
2666 		*array = sample->period;
2667 		array++;
2668 	}
2669 
2670 	if (type & PERF_SAMPLE_READ) {
2671 		if (read_format & PERF_FORMAT_GROUP)
2672 			*array = sample->read.group.nr;
2673 		else
2674 			*array = sample->read.one.value;
2675 		array++;
2676 
2677 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2678 			*array = sample->read.time_enabled;
2679 			array++;
2680 		}
2681 
2682 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2683 			*array = sample->read.time_running;
2684 			array++;
2685 		}
2686 
2687 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2688 		if (read_format & PERF_FORMAT_GROUP) {
2689 			sz = sample->read.group.nr *
2690 			     sizeof(struct sample_read_value);
2691 			memcpy(array, sample->read.group.values, sz);
2692 			array = (void *)array + sz;
2693 		} else {
2694 			*array = sample->read.one.id;
2695 			array++;
2696 		}
2697 	}
2698 
2699 	if (type & PERF_SAMPLE_CALLCHAIN) {
2700 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2701 		memcpy(array, sample->callchain, sz);
2702 		array = (void *)array + sz;
2703 	}
2704 
2705 	if (type & PERF_SAMPLE_RAW) {
2706 		u.val32[0] = sample->raw_size;
2707 		*array = u.val64;
2708 		array = (void *)array + sizeof(u32);
2709 
2710 		memcpy(array, sample->raw_data, sample->raw_size);
2711 		array = (void *)array + sample->raw_size;
2712 	}
2713 
2714 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2715 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2716 		sz += sizeof(u64);
2717 		memcpy(array, sample->branch_stack, sz);
2718 		array = (void *)array + sz;
2719 	}
2720 
2721 	if (type & PERF_SAMPLE_REGS_USER) {
2722 		if (sample->user_regs.abi) {
2723 			*array++ = sample->user_regs.abi;
2724 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2725 			memcpy(array, sample->user_regs.regs, sz);
2726 			array = (void *)array + sz;
2727 		} else {
2728 			*array++ = 0;
2729 		}
2730 	}
2731 
2732 	if (type & PERF_SAMPLE_STACK_USER) {
2733 		sz = sample->user_stack.size;
2734 		*array++ = sz;
2735 		if (sz) {
2736 			memcpy(array, sample->user_stack.data, sz);
2737 			array = (void *)array + sz;
2738 			*array++ = sz;
2739 		}
2740 	}
2741 
2742 	if (type & PERF_SAMPLE_WEIGHT) {
2743 		*array = sample->weight;
2744 		array++;
2745 	}
2746 
2747 	if (type & PERF_SAMPLE_DATA_SRC) {
2748 		*array = sample->data_src;
2749 		array++;
2750 	}
2751 
2752 	if (type & PERF_SAMPLE_TRANSACTION) {
2753 		*array = sample->transaction;
2754 		array++;
2755 	}
2756 
2757 	if (type & PERF_SAMPLE_REGS_INTR) {
2758 		if (sample->intr_regs.abi) {
2759 			*array++ = sample->intr_regs.abi;
2760 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2761 			memcpy(array, sample->intr_regs.regs, sz);
2762 			array = (void *)array + sz;
2763 		} else {
2764 			*array++ = 0;
2765 		}
2766 	}
2767 
2768 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2769 		*array = sample->phys_addr;
2770 		array++;
2771 	}
2772 
2773 	return 0;
2774 }
2775 
2776 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2777 {
2778 	return tep_find_field(evsel->tp_format, name);
2779 }
2780 
2781 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2782 			 const char *name)
2783 {
2784 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2785 	int offset;
2786 
2787 	if (!field)
2788 		return NULL;
2789 
2790 	offset = field->offset;
2791 
2792 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2793 		offset = *(int *)(sample->raw_data + field->offset);
2794 		offset &= 0xffff;
2795 	}
2796 
2797 	return sample->raw_data + offset;
2798 }
2799 
2800 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2801 			 bool needs_swap)
2802 {
2803 	u64 value;
2804 	void *ptr = sample->raw_data + field->offset;
2805 
2806 	switch (field->size) {
2807 	case 1:
2808 		return *(u8 *)ptr;
2809 	case 2:
2810 		value = *(u16 *)ptr;
2811 		break;
2812 	case 4:
2813 		value = *(u32 *)ptr;
2814 		break;
2815 	case 8:
2816 		memcpy(&value, ptr, sizeof(u64));
2817 		break;
2818 	default:
2819 		return 0;
2820 	}
2821 
2822 	if (!needs_swap)
2823 		return value;
2824 
2825 	switch (field->size) {
2826 	case 2:
2827 		return bswap_16(value);
2828 	case 4:
2829 		return bswap_32(value);
2830 	case 8:
2831 		return bswap_64(value);
2832 	default:
2833 		return 0;
2834 	}
2835 
2836 	return 0;
2837 }
2838 
2839 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2840 		       const char *name)
2841 {
2842 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2843 
2844 	if (!field)
2845 		return 0;
2846 
2847 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2848 }
2849 
2850 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2851 			  char *msg, size_t msgsize)
2852 {
2853 	int paranoid;
2854 
2855 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2856 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2857 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2858 		/*
2859 		 * If it's cycles then fall back to hrtimer based
2860 		 * cpu-clock-tick sw counter, which is always available even if
2861 		 * no PMU support.
2862 		 *
2863 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2864 		 * b0a873e).
2865 		 */
2866 		scnprintf(msg, msgsize, "%s",
2867 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2868 
2869 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2870 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2871 
2872 		zfree(&evsel->name);
2873 		return true;
2874 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2875 		   (paranoid = perf_event_paranoid()) > 1) {
2876 		const char *name = perf_evsel__name(evsel);
2877 		char *new_name;
2878 		const char *sep = ":";
2879 
2880 		/* Is there already the separator in the name. */
2881 		if (strchr(name, '/') ||
2882 		    strchr(name, ':'))
2883 			sep = "";
2884 
2885 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2886 			return false;
2887 
2888 		if (evsel->name)
2889 			free(evsel->name);
2890 		evsel->name = new_name;
2891 		scnprintf(msg, msgsize,
2892 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2893 		evsel->attr.exclude_kernel = 1;
2894 
2895 		return true;
2896 	}
2897 
2898 	return false;
2899 }
2900 
2901 static bool find_process(const char *name)
2902 {
2903 	size_t len = strlen(name);
2904 	DIR *dir;
2905 	struct dirent *d;
2906 	int ret = -1;
2907 
2908 	dir = opendir(procfs__mountpoint());
2909 	if (!dir)
2910 		return false;
2911 
2912 	/* Walk through the directory. */
2913 	while (ret && (d = readdir(dir)) != NULL) {
2914 		char path[PATH_MAX];
2915 		char *data;
2916 		size_t size;
2917 
2918 		if ((d->d_type != DT_DIR) ||
2919 		     !strcmp(".", d->d_name) ||
2920 		     !strcmp("..", d->d_name))
2921 			continue;
2922 
2923 		scnprintf(path, sizeof(path), "%s/%s/comm",
2924 			  procfs__mountpoint(), d->d_name);
2925 
2926 		if (filename__read_str(path, &data, &size))
2927 			continue;
2928 
2929 		ret = strncmp(name, data, len);
2930 		free(data);
2931 	}
2932 
2933 	closedir(dir);
2934 	return ret ? false : true;
2935 }
2936 
2937 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2938 			      int err, char *msg, size_t size)
2939 {
2940 	char sbuf[STRERR_BUFSIZE];
2941 	int printed = 0;
2942 
2943 	switch (err) {
2944 	case EPERM:
2945 	case EACCES:
2946 		if (err == EPERM)
2947 			printed = scnprintf(msg, size,
2948 				"No permission to enable %s event.\n\n",
2949 				perf_evsel__name(evsel));
2950 
2951 		return scnprintf(msg + printed, size - printed,
2952 		 "You may not have permission to collect %sstats.\n\n"
2953 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2954 		 "which controls use of the performance events system by\n"
2955 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2956 		 "The current value is %d:\n\n"
2957 		 "  -1: Allow use of (almost) all events by all users\n"
2958 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2959 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2960 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2961 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2962 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2963 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2964 		 "	kernel.perf_event_paranoid = -1\n" ,
2965 				 target->system_wide ? "system-wide " : "",
2966 				 perf_event_paranoid());
2967 	case ENOENT:
2968 		return scnprintf(msg, size, "The %s event is not supported.",
2969 				 perf_evsel__name(evsel));
2970 	case EMFILE:
2971 		return scnprintf(msg, size, "%s",
2972 			 "Too many events are opened.\n"
2973 			 "Probably the maximum number of open file descriptors has been reached.\n"
2974 			 "Hint: Try again after reducing the number of events.\n"
2975 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2976 	case ENOMEM:
2977 		if (evsel__has_callchain(evsel) &&
2978 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2979 			return scnprintf(msg, size,
2980 					 "Not enough memory to setup event with callchain.\n"
2981 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2982 					 "Hint: Current value: %d", sysctl__max_stack());
2983 		break;
2984 	case ENODEV:
2985 		if (target->cpu_list)
2986 			return scnprintf(msg, size, "%s",
2987 	 "No such device - did you specify an out-of-range profile CPU?");
2988 		break;
2989 	case EOPNOTSUPP:
2990 		if (evsel->attr.sample_period != 0)
2991 			return scnprintf(msg, size,
2992 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2993 					 perf_evsel__name(evsel));
2994 		if (evsel->attr.precise_ip)
2995 			return scnprintf(msg, size, "%s",
2996 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2997 #if defined(__i386__) || defined(__x86_64__)
2998 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2999 			return scnprintf(msg, size, "%s",
3000 	"No hardware sampling interrupt available.\n");
3001 #endif
3002 		break;
3003 	case EBUSY:
3004 		if (find_process("oprofiled"))
3005 			return scnprintf(msg, size,
3006 	"The PMU counters are busy/taken by another profiler.\n"
3007 	"We found oprofile daemon running, please stop it and try again.");
3008 		break;
3009 	case EINVAL:
3010 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
3011 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
3012 		if (perf_missing_features.clockid)
3013 			return scnprintf(msg, size, "clockid feature not supported.");
3014 		if (perf_missing_features.clockid_wrong)
3015 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
3016 		break;
3017 	default:
3018 		break;
3019 	}
3020 
3021 	return scnprintf(msg, size,
3022 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
3023 	"/bin/dmesg | grep -i perf may provide additional information.\n",
3024 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
3025 			 perf_evsel__name(evsel));
3026 }
3027 
3028 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
3029 {
3030 	if (evsel && evsel->evlist)
3031 		return evsel->evlist->env;
3032 	return NULL;
3033 }
3034 
3035 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3036 {
3037 	int cpu, thread;
3038 
3039 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
3040 		for (thread = 0; thread < xyarray__max_y(evsel->fd);
3041 		     thread++) {
3042 			int fd = FD(evsel, cpu, thread);
3043 
3044 			if (perf_evlist__id_add_fd(evlist, evsel,
3045 						   cpu, thread, fd) < 0)
3046 				return -1;
3047 		}
3048 	}
3049 
3050 	return 0;
3051 }
3052 
3053 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3054 {
3055 	struct cpu_map *cpus = evsel->cpus;
3056 	struct thread_map *threads = evsel->threads;
3057 
3058 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
3059 		return -ENOMEM;
3060 
3061 	return store_evsel_ids(evsel, evlist);
3062 }
3063