1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/debugfs.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <sys/resource.h> 17 #include "asm/bug.h" 18 #include "evsel.h" 19 #include "evlist.h" 20 #include "util.h" 21 #include "cpumap.h" 22 #include "thread_map.h" 23 #include "target.h" 24 #include "perf_regs.h" 25 #include "debug.h" 26 #include "trace-event.h" 27 28 static struct { 29 bool sample_id_all; 30 bool exclude_guest; 31 bool mmap2; 32 } perf_missing_features; 33 34 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 35 36 int __perf_evsel__sample_size(u64 sample_type) 37 { 38 u64 mask = sample_type & PERF_SAMPLE_MASK; 39 int size = 0; 40 int i; 41 42 for (i = 0; i < 64; i++) { 43 if (mask & (1ULL << i)) 44 size++; 45 } 46 47 size *= sizeof(u64); 48 49 return size; 50 } 51 52 /** 53 * __perf_evsel__calc_id_pos - calculate id_pos. 54 * @sample_type: sample type 55 * 56 * This function returns the position of the event id (PERF_SAMPLE_ID or 57 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 58 * sample_event. 59 */ 60 static int __perf_evsel__calc_id_pos(u64 sample_type) 61 { 62 int idx = 0; 63 64 if (sample_type & PERF_SAMPLE_IDENTIFIER) 65 return 0; 66 67 if (!(sample_type & PERF_SAMPLE_ID)) 68 return -1; 69 70 if (sample_type & PERF_SAMPLE_IP) 71 idx += 1; 72 73 if (sample_type & PERF_SAMPLE_TID) 74 idx += 1; 75 76 if (sample_type & PERF_SAMPLE_TIME) 77 idx += 1; 78 79 if (sample_type & PERF_SAMPLE_ADDR) 80 idx += 1; 81 82 return idx; 83 } 84 85 /** 86 * __perf_evsel__calc_is_pos - calculate is_pos. 87 * @sample_type: sample type 88 * 89 * This function returns the position (counting backwards) of the event id 90 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 91 * sample_id_all is used there is an id sample appended to non-sample events. 92 */ 93 static int __perf_evsel__calc_is_pos(u64 sample_type) 94 { 95 int idx = 1; 96 97 if (sample_type & PERF_SAMPLE_IDENTIFIER) 98 return 1; 99 100 if (!(sample_type & PERF_SAMPLE_ID)) 101 return -1; 102 103 if (sample_type & PERF_SAMPLE_CPU) 104 idx += 1; 105 106 if (sample_type & PERF_SAMPLE_STREAM_ID) 107 idx += 1; 108 109 return idx; 110 } 111 112 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 113 { 114 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 115 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 116 } 117 118 void hists__init(struct hists *hists) 119 { 120 memset(hists, 0, sizeof(*hists)); 121 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 122 hists->entries_in = &hists->entries_in_array[0]; 123 hists->entries_collapsed = RB_ROOT; 124 hists->entries = RB_ROOT; 125 pthread_mutex_init(&hists->lock, NULL); 126 } 127 128 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 129 enum perf_event_sample_format bit) 130 { 131 if (!(evsel->attr.sample_type & bit)) { 132 evsel->attr.sample_type |= bit; 133 evsel->sample_size += sizeof(u64); 134 perf_evsel__calc_id_pos(evsel); 135 } 136 } 137 138 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 139 enum perf_event_sample_format bit) 140 { 141 if (evsel->attr.sample_type & bit) { 142 evsel->attr.sample_type &= ~bit; 143 evsel->sample_size -= sizeof(u64); 144 perf_evsel__calc_id_pos(evsel); 145 } 146 } 147 148 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 149 bool can_sample_identifier) 150 { 151 if (can_sample_identifier) { 152 perf_evsel__reset_sample_bit(evsel, ID); 153 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 154 } else { 155 perf_evsel__set_sample_bit(evsel, ID); 156 } 157 evsel->attr.read_format |= PERF_FORMAT_ID; 158 } 159 160 void perf_evsel__init(struct perf_evsel *evsel, 161 struct perf_event_attr *attr, int idx) 162 { 163 evsel->idx = idx; 164 evsel->attr = *attr; 165 evsel->leader = evsel; 166 evsel->unit = ""; 167 evsel->scale = 1.0; 168 INIT_LIST_HEAD(&evsel->node); 169 hists__init(&evsel->hists); 170 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 171 perf_evsel__calc_id_pos(evsel); 172 } 173 174 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 175 { 176 struct perf_evsel *evsel = zalloc(sizeof(*evsel)); 177 178 if (evsel != NULL) 179 perf_evsel__init(evsel, attr, idx); 180 181 return evsel; 182 } 183 184 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 185 { 186 struct perf_evsel *evsel = zalloc(sizeof(*evsel)); 187 188 if (evsel != NULL) { 189 struct perf_event_attr attr = { 190 .type = PERF_TYPE_TRACEPOINT, 191 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 192 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 193 }; 194 195 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 196 goto out_free; 197 198 evsel->tp_format = trace_event__tp_format(sys, name); 199 if (evsel->tp_format == NULL) 200 goto out_free; 201 202 event_attr_init(&attr); 203 attr.config = evsel->tp_format->id; 204 attr.sample_period = 1; 205 perf_evsel__init(evsel, &attr, idx); 206 } 207 208 return evsel; 209 210 out_free: 211 zfree(&evsel->name); 212 free(evsel); 213 return NULL; 214 } 215 216 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 217 "cycles", 218 "instructions", 219 "cache-references", 220 "cache-misses", 221 "branches", 222 "branch-misses", 223 "bus-cycles", 224 "stalled-cycles-frontend", 225 "stalled-cycles-backend", 226 "ref-cycles", 227 }; 228 229 static const char *__perf_evsel__hw_name(u64 config) 230 { 231 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 232 return perf_evsel__hw_names[config]; 233 234 return "unknown-hardware"; 235 } 236 237 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 238 { 239 int colon = 0, r = 0; 240 struct perf_event_attr *attr = &evsel->attr; 241 bool exclude_guest_default = false; 242 243 #define MOD_PRINT(context, mod) do { \ 244 if (!attr->exclude_##context) { \ 245 if (!colon) colon = ++r; \ 246 r += scnprintf(bf + r, size - r, "%c", mod); \ 247 } } while(0) 248 249 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 250 MOD_PRINT(kernel, 'k'); 251 MOD_PRINT(user, 'u'); 252 MOD_PRINT(hv, 'h'); 253 exclude_guest_default = true; 254 } 255 256 if (attr->precise_ip) { 257 if (!colon) 258 colon = ++r; 259 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 260 exclude_guest_default = true; 261 } 262 263 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 264 MOD_PRINT(host, 'H'); 265 MOD_PRINT(guest, 'G'); 266 } 267 #undef MOD_PRINT 268 if (colon) 269 bf[colon - 1] = ':'; 270 return r; 271 } 272 273 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 274 { 275 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 276 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 277 } 278 279 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 280 "cpu-clock", 281 "task-clock", 282 "page-faults", 283 "context-switches", 284 "cpu-migrations", 285 "minor-faults", 286 "major-faults", 287 "alignment-faults", 288 "emulation-faults", 289 "dummy", 290 }; 291 292 static const char *__perf_evsel__sw_name(u64 config) 293 { 294 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 295 return perf_evsel__sw_names[config]; 296 return "unknown-software"; 297 } 298 299 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 300 { 301 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 302 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 303 } 304 305 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 306 { 307 int r; 308 309 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 310 311 if (type & HW_BREAKPOINT_R) 312 r += scnprintf(bf + r, size - r, "r"); 313 314 if (type & HW_BREAKPOINT_W) 315 r += scnprintf(bf + r, size - r, "w"); 316 317 if (type & HW_BREAKPOINT_X) 318 r += scnprintf(bf + r, size - r, "x"); 319 320 return r; 321 } 322 323 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 324 { 325 struct perf_event_attr *attr = &evsel->attr; 326 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 327 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 328 } 329 330 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 331 [PERF_EVSEL__MAX_ALIASES] = { 332 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 333 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 334 { "LLC", "L2", }, 335 { "dTLB", "d-tlb", "Data-TLB", }, 336 { "iTLB", "i-tlb", "Instruction-TLB", }, 337 { "branch", "branches", "bpu", "btb", "bpc", }, 338 { "node", }, 339 }; 340 341 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 342 [PERF_EVSEL__MAX_ALIASES] = { 343 { "load", "loads", "read", }, 344 { "store", "stores", "write", }, 345 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 346 }; 347 348 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 349 [PERF_EVSEL__MAX_ALIASES] = { 350 { "refs", "Reference", "ops", "access", }, 351 { "misses", "miss", }, 352 }; 353 354 #define C(x) PERF_COUNT_HW_CACHE_##x 355 #define CACHE_READ (1 << C(OP_READ)) 356 #define CACHE_WRITE (1 << C(OP_WRITE)) 357 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 358 #define COP(x) (1 << x) 359 360 /* 361 * cache operartion stat 362 * L1I : Read and prefetch only 363 * ITLB and BPU : Read-only 364 */ 365 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 366 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 367 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 368 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 369 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 370 [C(ITLB)] = (CACHE_READ), 371 [C(BPU)] = (CACHE_READ), 372 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 373 }; 374 375 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 376 { 377 if (perf_evsel__hw_cache_stat[type] & COP(op)) 378 return true; /* valid */ 379 else 380 return false; /* invalid */ 381 } 382 383 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 384 char *bf, size_t size) 385 { 386 if (result) { 387 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 388 perf_evsel__hw_cache_op[op][0], 389 perf_evsel__hw_cache_result[result][0]); 390 } 391 392 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 393 perf_evsel__hw_cache_op[op][1]); 394 } 395 396 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 397 { 398 u8 op, result, type = (config >> 0) & 0xff; 399 const char *err = "unknown-ext-hardware-cache-type"; 400 401 if (type > PERF_COUNT_HW_CACHE_MAX) 402 goto out_err; 403 404 op = (config >> 8) & 0xff; 405 err = "unknown-ext-hardware-cache-op"; 406 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 407 goto out_err; 408 409 result = (config >> 16) & 0xff; 410 err = "unknown-ext-hardware-cache-result"; 411 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 412 goto out_err; 413 414 err = "invalid-cache"; 415 if (!perf_evsel__is_cache_op_valid(type, op)) 416 goto out_err; 417 418 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 419 out_err: 420 return scnprintf(bf, size, "%s", err); 421 } 422 423 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 424 { 425 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 426 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 427 } 428 429 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 430 { 431 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 432 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 433 } 434 435 const char *perf_evsel__name(struct perf_evsel *evsel) 436 { 437 char bf[128]; 438 439 if (evsel->name) 440 return evsel->name; 441 442 switch (evsel->attr.type) { 443 case PERF_TYPE_RAW: 444 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 445 break; 446 447 case PERF_TYPE_HARDWARE: 448 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 449 break; 450 451 case PERF_TYPE_HW_CACHE: 452 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 453 break; 454 455 case PERF_TYPE_SOFTWARE: 456 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 457 break; 458 459 case PERF_TYPE_TRACEPOINT: 460 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 461 break; 462 463 case PERF_TYPE_BREAKPOINT: 464 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 465 break; 466 467 default: 468 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 469 evsel->attr.type); 470 break; 471 } 472 473 evsel->name = strdup(bf); 474 475 return evsel->name ?: "unknown"; 476 } 477 478 const char *perf_evsel__group_name(struct perf_evsel *evsel) 479 { 480 return evsel->group_name ?: "anon group"; 481 } 482 483 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 484 { 485 int ret; 486 struct perf_evsel *pos; 487 const char *group_name = perf_evsel__group_name(evsel); 488 489 ret = scnprintf(buf, size, "%s", group_name); 490 491 ret += scnprintf(buf + ret, size - ret, " { %s", 492 perf_evsel__name(evsel)); 493 494 for_each_group_member(pos, evsel) 495 ret += scnprintf(buf + ret, size - ret, ", %s", 496 perf_evsel__name(pos)); 497 498 ret += scnprintf(buf + ret, size - ret, " }"); 499 500 return ret; 501 } 502 503 /* 504 * The enable_on_exec/disabled value strategy: 505 * 506 * 1) For any type of traced program: 507 * - all independent events and group leaders are disabled 508 * - all group members are enabled 509 * 510 * Group members are ruled by group leaders. They need to 511 * be enabled, because the group scheduling relies on that. 512 * 513 * 2) For traced programs executed by perf: 514 * - all independent events and group leaders have 515 * enable_on_exec set 516 * - we don't specifically enable or disable any event during 517 * the record command 518 * 519 * Independent events and group leaders are initially disabled 520 * and get enabled by exec. Group members are ruled by group 521 * leaders as stated in 1). 522 * 523 * 3) For traced programs attached by perf (pid/tid): 524 * - we specifically enable or disable all events during 525 * the record command 526 * 527 * When attaching events to already running traced we 528 * enable/disable events specifically, as there's no 529 * initial traced exec call. 530 */ 531 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts) 532 { 533 struct perf_evsel *leader = evsel->leader; 534 struct perf_event_attr *attr = &evsel->attr; 535 int track = !evsel->idx; /* only the first counter needs these */ 536 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 537 538 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 539 attr->inherit = !opts->no_inherit; 540 541 perf_evsel__set_sample_bit(evsel, IP); 542 perf_evsel__set_sample_bit(evsel, TID); 543 544 if (evsel->sample_read) { 545 perf_evsel__set_sample_bit(evsel, READ); 546 547 /* 548 * We need ID even in case of single event, because 549 * PERF_SAMPLE_READ process ID specific data. 550 */ 551 perf_evsel__set_sample_id(evsel, false); 552 553 /* 554 * Apply group format only if we belong to group 555 * with more than one members. 556 */ 557 if (leader->nr_members > 1) { 558 attr->read_format |= PERF_FORMAT_GROUP; 559 attr->inherit = 0; 560 } 561 } 562 563 /* 564 * We default some events to a 1 default interval. But keep 565 * it a weak assumption overridable by the user. 566 */ 567 if (!attr->sample_period || (opts->user_freq != UINT_MAX && 568 opts->user_interval != ULLONG_MAX)) { 569 if (opts->freq) { 570 perf_evsel__set_sample_bit(evsel, PERIOD); 571 attr->freq = 1; 572 attr->sample_freq = opts->freq; 573 } else { 574 attr->sample_period = opts->default_interval; 575 } 576 } 577 578 /* 579 * Disable sampling for all group members other 580 * than leader in case leader 'leads' the sampling. 581 */ 582 if ((leader != evsel) && leader->sample_read) { 583 attr->sample_freq = 0; 584 attr->sample_period = 0; 585 } 586 587 if (opts->no_samples) 588 attr->sample_freq = 0; 589 590 if (opts->inherit_stat) 591 attr->inherit_stat = 1; 592 593 if (opts->sample_address) { 594 perf_evsel__set_sample_bit(evsel, ADDR); 595 attr->mmap_data = track; 596 } 597 598 if (opts->call_graph) { 599 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 600 601 if (opts->call_graph == CALLCHAIN_DWARF) { 602 perf_evsel__set_sample_bit(evsel, REGS_USER); 603 perf_evsel__set_sample_bit(evsel, STACK_USER); 604 attr->sample_regs_user = PERF_REGS_MASK; 605 attr->sample_stack_user = opts->stack_dump_size; 606 attr->exclude_callchain_user = 1; 607 } 608 } 609 610 if (target__has_cpu(&opts->target)) 611 perf_evsel__set_sample_bit(evsel, CPU); 612 613 if (opts->period) 614 perf_evsel__set_sample_bit(evsel, PERIOD); 615 616 if (!perf_missing_features.sample_id_all && 617 (opts->sample_time || !opts->no_inherit || 618 target__has_cpu(&opts->target) || per_cpu)) 619 perf_evsel__set_sample_bit(evsel, TIME); 620 621 if (opts->raw_samples) { 622 perf_evsel__set_sample_bit(evsel, TIME); 623 perf_evsel__set_sample_bit(evsel, RAW); 624 perf_evsel__set_sample_bit(evsel, CPU); 625 } 626 627 if (opts->sample_address) 628 perf_evsel__set_sample_bit(evsel, DATA_SRC); 629 630 if (opts->no_buffering) { 631 attr->watermark = 0; 632 attr->wakeup_events = 1; 633 } 634 if (opts->branch_stack) { 635 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 636 attr->branch_sample_type = opts->branch_stack; 637 } 638 639 if (opts->sample_weight) 640 perf_evsel__set_sample_bit(evsel, WEIGHT); 641 642 attr->mmap = track; 643 attr->comm = track; 644 645 if (opts->sample_transaction) 646 perf_evsel__set_sample_bit(evsel, TRANSACTION); 647 648 /* 649 * XXX see the function comment above 650 * 651 * Disabling only independent events or group leaders, 652 * keeping group members enabled. 653 */ 654 if (perf_evsel__is_group_leader(evsel)) 655 attr->disabled = 1; 656 657 /* 658 * Setting enable_on_exec for independent events and 659 * group leaders for traced executed by perf. 660 */ 661 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 662 !opts->initial_delay) 663 attr->enable_on_exec = 1; 664 } 665 666 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 667 { 668 int cpu, thread; 669 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 670 671 if (evsel->fd) { 672 for (cpu = 0; cpu < ncpus; cpu++) { 673 for (thread = 0; thread < nthreads; thread++) { 674 FD(evsel, cpu, thread) = -1; 675 } 676 } 677 } 678 679 return evsel->fd != NULL ? 0 : -ENOMEM; 680 } 681 682 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 683 int ioc, void *arg) 684 { 685 int cpu, thread; 686 687 for (cpu = 0; cpu < ncpus; cpu++) { 688 for (thread = 0; thread < nthreads; thread++) { 689 int fd = FD(evsel, cpu, thread), 690 err = ioctl(fd, ioc, arg); 691 692 if (err) 693 return err; 694 } 695 } 696 697 return 0; 698 } 699 700 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 701 const char *filter) 702 { 703 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 704 PERF_EVENT_IOC_SET_FILTER, 705 (void *)filter); 706 } 707 708 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads) 709 { 710 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 711 PERF_EVENT_IOC_ENABLE, 712 0); 713 } 714 715 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 716 { 717 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 718 if (evsel->sample_id == NULL) 719 return -ENOMEM; 720 721 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 722 if (evsel->id == NULL) { 723 xyarray__delete(evsel->sample_id); 724 evsel->sample_id = NULL; 725 return -ENOMEM; 726 } 727 728 return 0; 729 } 730 731 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus) 732 { 733 memset(evsel->counts, 0, (sizeof(*evsel->counts) + 734 (ncpus * sizeof(struct perf_counts_values)))); 735 } 736 737 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus) 738 { 739 evsel->counts = zalloc((sizeof(*evsel->counts) + 740 (ncpus * sizeof(struct perf_counts_values)))); 741 return evsel->counts != NULL ? 0 : -ENOMEM; 742 } 743 744 void perf_evsel__free_fd(struct perf_evsel *evsel) 745 { 746 xyarray__delete(evsel->fd); 747 evsel->fd = NULL; 748 } 749 750 void perf_evsel__free_id(struct perf_evsel *evsel) 751 { 752 xyarray__delete(evsel->sample_id); 753 evsel->sample_id = NULL; 754 zfree(&evsel->id); 755 } 756 757 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 758 { 759 int cpu, thread; 760 761 for (cpu = 0; cpu < ncpus; cpu++) 762 for (thread = 0; thread < nthreads; ++thread) { 763 close(FD(evsel, cpu, thread)); 764 FD(evsel, cpu, thread) = -1; 765 } 766 } 767 768 void perf_evsel__free_counts(struct perf_evsel *evsel) 769 { 770 zfree(&evsel->counts); 771 } 772 773 void perf_evsel__exit(struct perf_evsel *evsel) 774 { 775 assert(list_empty(&evsel->node)); 776 perf_evsel__free_fd(evsel); 777 perf_evsel__free_id(evsel); 778 } 779 780 void perf_evsel__delete(struct perf_evsel *evsel) 781 { 782 perf_evsel__exit(evsel); 783 close_cgroup(evsel->cgrp); 784 zfree(&evsel->group_name); 785 if (evsel->tp_format) 786 pevent_free_format(evsel->tp_format); 787 zfree(&evsel->name); 788 free(evsel); 789 } 790 791 static inline void compute_deltas(struct perf_evsel *evsel, 792 int cpu, 793 struct perf_counts_values *count) 794 { 795 struct perf_counts_values tmp; 796 797 if (!evsel->prev_raw_counts) 798 return; 799 800 if (cpu == -1) { 801 tmp = evsel->prev_raw_counts->aggr; 802 evsel->prev_raw_counts->aggr = *count; 803 } else { 804 tmp = evsel->prev_raw_counts->cpu[cpu]; 805 evsel->prev_raw_counts->cpu[cpu] = *count; 806 } 807 808 count->val = count->val - tmp.val; 809 count->ena = count->ena - tmp.ena; 810 count->run = count->run - tmp.run; 811 } 812 813 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 814 int cpu, int thread, bool scale) 815 { 816 struct perf_counts_values count; 817 size_t nv = scale ? 3 : 1; 818 819 if (FD(evsel, cpu, thread) < 0) 820 return -EINVAL; 821 822 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0) 823 return -ENOMEM; 824 825 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 826 return -errno; 827 828 compute_deltas(evsel, cpu, &count); 829 830 if (scale) { 831 if (count.run == 0) 832 count.val = 0; 833 else if (count.run < count.ena) 834 count.val = (u64)((double)count.val * count.ena / count.run + 0.5); 835 } else 836 count.ena = count.run = 0; 837 838 evsel->counts->cpu[cpu] = count; 839 return 0; 840 } 841 842 int __perf_evsel__read(struct perf_evsel *evsel, 843 int ncpus, int nthreads, bool scale) 844 { 845 size_t nv = scale ? 3 : 1; 846 int cpu, thread; 847 struct perf_counts_values *aggr = &evsel->counts->aggr, count; 848 849 aggr->val = aggr->ena = aggr->run = 0; 850 851 for (cpu = 0; cpu < ncpus; cpu++) { 852 for (thread = 0; thread < nthreads; thread++) { 853 if (FD(evsel, cpu, thread) < 0) 854 continue; 855 856 if (readn(FD(evsel, cpu, thread), 857 &count, nv * sizeof(u64)) < 0) 858 return -errno; 859 860 aggr->val += count.val; 861 if (scale) { 862 aggr->ena += count.ena; 863 aggr->run += count.run; 864 } 865 } 866 } 867 868 compute_deltas(evsel, -1, aggr); 869 870 evsel->counts->scaled = 0; 871 if (scale) { 872 if (aggr->run == 0) { 873 evsel->counts->scaled = -1; 874 aggr->val = 0; 875 return 0; 876 } 877 878 if (aggr->run < aggr->ena) { 879 evsel->counts->scaled = 1; 880 aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5); 881 } 882 } else 883 aggr->ena = aggr->run = 0; 884 885 return 0; 886 } 887 888 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 889 { 890 struct perf_evsel *leader = evsel->leader; 891 int fd; 892 893 if (perf_evsel__is_group_leader(evsel)) 894 return -1; 895 896 /* 897 * Leader must be already processed/open, 898 * if not it's a bug. 899 */ 900 BUG_ON(!leader->fd); 901 902 fd = FD(leader, cpu, thread); 903 BUG_ON(fd == -1); 904 905 return fd; 906 } 907 908 #define __PRINT_ATTR(fmt, cast, field) \ 909 fprintf(fp, " %-19s "fmt"\n", #field, cast attr->field) 910 911 #define PRINT_ATTR_U32(field) __PRINT_ATTR("%u" , , field) 912 #define PRINT_ATTR_X32(field) __PRINT_ATTR("%#x", , field) 913 #define PRINT_ATTR_U64(field) __PRINT_ATTR("%" PRIu64, (uint64_t), field) 914 #define PRINT_ATTR_X64(field) __PRINT_ATTR("%#"PRIx64, (uint64_t), field) 915 916 #define PRINT_ATTR2N(name1, field1, name2, field2) \ 917 fprintf(fp, " %-19s %u %-19s %u\n", \ 918 name1, attr->field1, name2, attr->field2) 919 920 #define PRINT_ATTR2(field1, field2) \ 921 PRINT_ATTR2N(#field1, field1, #field2, field2) 922 923 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp) 924 { 925 size_t ret = 0; 926 927 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 928 ret += fprintf(fp, "perf_event_attr:\n"); 929 930 ret += PRINT_ATTR_U32(type); 931 ret += PRINT_ATTR_U32(size); 932 ret += PRINT_ATTR_X64(config); 933 ret += PRINT_ATTR_U64(sample_period); 934 ret += PRINT_ATTR_U64(sample_freq); 935 ret += PRINT_ATTR_X64(sample_type); 936 ret += PRINT_ATTR_X64(read_format); 937 938 ret += PRINT_ATTR2(disabled, inherit); 939 ret += PRINT_ATTR2(pinned, exclusive); 940 ret += PRINT_ATTR2(exclude_user, exclude_kernel); 941 ret += PRINT_ATTR2(exclude_hv, exclude_idle); 942 ret += PRINT_ATTR2(mmap, comm); 943 ret += PRINT_ATTR2(freq, inherit_stat); 944 ret += PRINT_ATTR2(enable_on_exec, task); 945 ret += PRINT_ATTR2(watermark, precise_ip); 946 ret += PRINT_ATTR2(mmap_data, sample_id_all); 947 ret += PRINT_ATTR2(exclude_host, exclude_guest); 948 ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel, 949 "excl.callchain_user", exclude_callchain_user); 950 ret += PRINT_ATTR_U32(mmap2); 951 952 ret += PRINT_ATTR_U32(wakeup_events); 953 ret += PRINT_ATTR_U32(wakeup_watermark); 954 ret += PRINT_ATTR_X32(bp_type); 955 ret += PRINT_ATTR_X64(bp_addr); 956 ret += PRINT_ATTR_X64(config1); 957 ret += PRINT_ATTR_U64(bp_len); 958 ret += PRINT_ATTR_X64(config2); 959 ret += PRINT_ATTR_X64(branch_sample_type); 960 ret += PRINT_ATTR_X64(sample_regs_user); 961 ret += PRINT_ATTR_U32(sample_stack_user); 962 963 ret += fprintf(fp, "%.60s\n", graph_dotted_line); 964 965 return ret; 966 } 967 968 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 969 struct thread_map *threads) 970 { 971 int cpu, thread; 972 unsigned long flags = 0; 973 int pid = -1, err; 974 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 975 976 if (evsel->fd == NULL && 977 perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0) 978 return -ENOMEM; 979 980 if (evsel->cgrp) { 981 flags = PERF_FLAG_PID_CGROUP; 982 pid = evsel->cgrp->fd; 983 } 984 985 fallback_missing_features: 986 if (perf_missing_features.mmap2) 987 evsel->attr.mmap2 = 0; 988 if (perf_missing_features.exclude_guest) 989 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 990 retry_sample_id: 991 if (perf_missing_features.sample_id_all) 992 evsel->attr.sample_id_all = 0; 993 994 if (verbose >= 2) 995 perf_event_attr__fprintf(&evsel->attr, stderr); 996 997 for (cpu = 0; cpu < cpus->nr; cpu++) { 998 999 for (thread = 0; thread < threads->nr; thread++) { 1000 int group_fd; 1001 1002 if (!evsel->cgrp) 1003 pid = threads->map[thread]; 1004 1005 group_fd = get_group_fd(evsel, cpu, thread); 1006 retry_open: 1007 pr_debug2("perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1008 pid, cpus->map[cpu], group_fd, flags); 1009 1010 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1011 pid, 1012 cpus->map[cpu], 1013 group_fd, flags); 1014 if (FD(evsel, cpu, thread) < 0) { 1015 err = -errno; 1016 pr_debug2("perf_event_open failed, error %d\n", 1017 err); 1018 goto try_fallback; 1019 } 1020 set_rlimit = NO_CHANGE; 1021 } 1022 } 1023 1024 return 0; 1025 1026 try_fallback: 1027 /* 1028 * perf stat needs between 5 and 22 fds per CPU. When we run out 1029 * of them try to increase the limits. 1030 */ 1031 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1032 struct rlimit l; 1033 int old_errno = errno; 1034 1035 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1036 if (set_rlimit == NO_CHANGE) 1037 l.rlim_cur = l.rlim_max; 1038 else { 1039 l.rlim_cur = l.rlim_max + 1000; 1040 l.rlim_max = l.rlim_cur; 1041 } 1042 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1043 set_rlimit++; 1044 errno = old_errno; 1045 goto retry_open; 1046 } 1047 } 1048 errno = old_errno; 1049 } 1050 1051 if (err != -EINVAL || cpu > 0 || thread > 0) 1052 goto out_close; 1053 1054 if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1055 perf_missing_features.mmap2 = true; 1056 goto fallback_missing_features; 1057 } else if (!perf_missing_features.exclude_guest && 1058 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1059 perf_missing_features.exclude_guest = true; 1060 goto fallback_missing_features; 1061 } else if (!perf_missing_features.sample_id_all) { 1062 perf_missing_features.sample_id_all = true; 1063 goto retry_sample_id; 1064 } 1065 1066 out_close: 1067 do { 1068 while (--thread >= 0) { 1069 close(FD(evsel, cpu, thread)); 1070 FD(evsel, cpu, thread) = -1; 1071 } 1072 thread = threads->nr; 1073 } while (--cpu >= 0); 1074 return err; 1075 } 1076 1077 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1078 { 1079 if (evsel->fd == NULL) 1080 return; 1081 1082 perf_evsel__close_fd(evsel, ncpus, nthreads); 1083 perf_evsel__free_fd(evsel); 1084 } 1085 1086 static struct { 1087 struct cpu_map map; 1088 int cpus[1]; 1089 } empty_cpu_map = { 1090 .map.nr = 1, 1091 .cpus = { -1, }, 1092 }; 1093 1094 static struct { 1095 struct thread_map map; 1096 int threads[1]; 1097 } empty_thread_map = { 1098 .map.nr = 1, 1099 .threads = { -1, }, 1100 }; 1101 1102 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1103 struct thread_map *threads) 1104 { 1105 if (cpus == NULL) { 1106 /* Work around old compiler warnings about strict aliasing */ 1107 cpus = &empty_cpu_map.map; 1108 } 1109 1110 if (threads == NULL) 1111 threads = &empty_thread_map.map; 1112 1113 return __perf_evsel__open(evsel, cpus, threads); 1114 } 1115 1116 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1117 struct cpu_map *cpus) 1118 { 1119 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1120 } 1121 1122 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1123 struct thread_map *threads) 1124 { 1125 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1126 } 1127 1128 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1129 const union perf_event *event, 1130 struct perf_sample *sample) 1131 { 1132 u64 type = evsel->attr.sample_type; 1133 const u64 *array = event->sample.array; 1134 bool swapped = evsel->needs_swap; 1135 union u64_swap u; 1136 1137 array += ((event->header.size - 1138 sizeof(event->header)) / sizeof(u64)) - 1; 1139 1140 if (type & PERF_SAMPLE_IDENTIFIER) { 1141 sample->id = *array; 1142 array--; 1143 } 1144 1145 if (type & PERF_SAMPLE_CPU) { 1146 u.val64 = *array; 1147 if (swapped) { 1148 /* undo swap of u64, then swap on individual u32s */ 1149 u.val64 = bswap_64(u.val64); 1150 u.val32[0] = bswap_32(u.val32[0]); 1151 } 1152 1153 sample->cpu = u.val32[0]; 1154 array--; 1155 } 1156 1157 if (type & PERF_SAMPLE_STREAM_ID) { 1158 sample->stream_id = *array; 1159 array--; 1160 } 1161 1162 if (type & PERF_SAMPLE_ID) { 1163 sample->id = *array; 1164 array--; 1165 } 1166 1167 if (type & PERF_SAMPLE_TIME) { 1168 sample->time = *array; 1169 array--; 1170 } 1171 1172 if (type & PERF_SAMPLE_TID) { 1173 u.val64 = *array; 1174 if (swapped) { 1175 /* undo swap of u64, then swap on individual u32s */ 1176 u.val64 = bswap_64(u.val64); 1177 u.val32[0] = bswap_32(u.val32[0]); 1178 u.val32[1] = bswap_32(u.val32[1]); 1179 } 1180 1181 sample->pid = u.val32[0]; 1182 sample->tid = u.val32[1]; 1183 array--; 1184 } 1185 1186 return 0; 1187 } 1188 1189 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1190 u64 size) 1191 { 1192 return size > max_size || offset + size > endp; 1193 } 1194 1195 #define OVERFLOW_CHECK(offset, size, max_size) \ 1196 do { \ 1197 if (overflow(endp, (max_size), (offset), (size))) \ 1198 return -EFAULT; \ 1199 } while (0) 1200 1201 #define OVERFLOW_CHECK_u64(offset) \ 1202 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1203 1204 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1205 struct perf_sample *data) 1206 { 1207 u64 type = evsel->attr.sample_type; 1208 bool swapped = evsel->needs_swap; 1209 const u64 *array; 1210 u16 max_size = event->header.size; 1211 const void *endp = (void *)event + max_size; 1212 u64 sz; 1213 1214 /* 1215 * used for cross-endian analysis. See git commit 65014ab3 1216 * for why this goofiness is needed. 1217 */ 1218 union u64_swap u; 1219 1220 memset(data, 0, sizeof(*data)); 1221 data->cpu = data->pid = data->tid = -1; 1222 data->stream_id = data->id = data->time = -1ULL; 1223 data->period = 1; 1224 data->weight = 0; 1225 1226 if (event->header.type != PERF_RECORD_SAMPLE) { 1227 if (!evsel->attr.sample_id_all) 1228 return 0; 1229 return perf_evsel__parse_id_sample(evsel, event, data); 1230 } 1231 1232 array = event->sample.array; 1233 1234 /* 1235 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1236 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1237 * check the format does not go past the end of the event. 1238 */ 1239 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1240 return -EFAULT; 1241 1242 data->id = -1ULL; 1243 if (type & PERF_SAMPLE_IDENTIFIER) { 1244 data->id = *array; 1245 array++; 1246 } 1247 1248 if (type & PERF_SAMPLE_IP) { 1249 data->ip = *array; 1250 array++; 1251 } 1252 1253 if (type & PERF_SAMPLE_TID) { 1254 u.val64 = *array; 1255 if (swapped) { 1256 /* undo swap of u64, then swap on individual u32s */ 1257 u.val64 = bswap_64(u.val64); 1258 u.val32[0] = bswap_32(u.val32[0]); 1259 u.val32[1] = bswap_32(u.val32[1]); 1260 } 1261 1262 data->pid = u.val32[0]; 1263 data->tid = u.val32[1]; 1264 array++; 1265 } 1266 1267 if (type & PERF_SAMPLE_TIME) { 1268 data->time = *array; 1269 array++; 1270 } 1271 1272 data->addr = 0; 1273 if (type & PERF_SAMPLE_ADDR) { 1274 data->addr = *array; 1275 array++; 1276 } 1277 1278 if (type & PERF_SAMPLE_ID) { 1279 data->id = *array; 1280 array++; 1281 } 1282 1283 if (type & PERF_SAMPLE_STREAM_ID) { 1284 data->stream_id = *array; 1285 array++; 1286 } 1287 1288 if (type & PERF_SAMPLE_CPU) { 1289 1290 u.val64 = *array; 1291 if (swapped) { 1292 /* undo swap of u64, then swap on individual u32s */ 1293 u.val64 = bswap_64(u.val64); 1294 u.val32[0] = bswap_32(u.val32[0]); 1295 } 1296 1297 data->cpu = u.val32[0]; 1298 array++; 1299 } 1300 1301 if (type & PERF_SAMPLE_PERIOD) { 1302 data->period = *array; 1303 array++; 1304 } 1305 1306 if (type & PERF_SAMPLE_READ) { 1307 u64 read_format = evsel->attr.read_format; 1308 1309 OVERFLOW_CHECK_u64(array); 1310 if (read_format & PERF_FORMAT_GROUP) 1311 data->read.group.nr = *array; 1312 else 1313 data->read.one.value = *array; 1314 1315 array++; 1316 1317 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1318 OVERFLOW_CHECK_u64(array); 1319 data->read.time_enabled = *array; 1320 array++; 1321 } 1322 1323 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1324 OVERFLOW_CHECK_u64(array); 1325 data->read.time_running = *array; 1326 array++; 1327 } 1328 1329 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1330 if (read_format & PERF_FORMAT_GROUP) { 1331 const u64 max_group_nr = UINT64_MAX / 1332 sizeof(struct sample_read_value); 1333 1334 if (data->read.group.nr > max_group_nr) 1335 return -EFAULT; 1336 sz = data->read.group.nr * 1337 sizeof(struct sample_read_value); 1338 OVERFLOW_CHECK(array, sz, max_size); 1339 data->read.group.values = 1340 (struct sample_read_value *)array; 1341 array = (void *)array + sz; 1342 } else { 1343 OVERFLOW_CHECK_u64(array); 1344 data->read.one.id = *array; 1345 array++; 1346 } 1347 } 1348 1349 if (type & PERF_SAMPLE_CALLCHAIN) { 1350 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1351 1352 OVERFLOW_CHECK_u64(array); 1353 data->callchain = (struct ip_callchain *)array++; 1354 if (data->callchain->nr > max_callchain_nr) 1355 return -EFAULT; 1356 sz = data->callchain->nr * sizeof(u64); 1357 OVERFLOW_CHECK(array, sz, max_size); 1358 array = (void *)array + sz; 1359 } 1360 1361 if (type & PERF_SAMPLE_RAW) { 1362 OVERFLOW_CHECK_u64(array); 1363 u.val64 = *array; 1364 if (WARN_ONCE(swapped, 1365 "Endianness of raw data not corrected!\n")) { 1366 /* undo swap of u64, then swap on individual u32s */ 1367 u.val64 = bswap_64(u.val64); 1368 u.val32[0] = bswap_32(u.val32[0]); 1369 u.val32[1] = bswap_32(u.val32[1]); 1370 } 1371 data->raw_size = u.val32[0]; 1372 array = (void *)array + sizeof(u32); 1373 1374 OVERFLOW_CHECK(array, data->raw_size, max_size); 1375 data->raw_data = (void *)array; 1376 array = (void *)array + data->raw_size; 1377 } 1378 1379 if (type & PERF_SAMPLE_BRANCH_STACK) { 1380 const u64 max_branch_nr = UINT64_MAX / 1381 sizeof(struct branch_entry); 1382 1383 OVERFLOW_CHECK_u64(array); 1384 data->branch_stack = (struct branch_stack *)array++; 1385 1386 if (data->branch_stack->nr > max_branch_nr) 1387 return -EFAULT; 1388 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1389 OVERFLOW_CHECK(array, sz, max_size); 1390 array = (void *)array + sz; 1391 } 1392 1393 if (type & PERF_SAMPLE_REGS_USER) { 1394 OVERFLOW_CHECK_u64(array); 1395 data->user_regs.abi = *array; 1396 array++; 1397 1398 if (data->user_regs.abi) { 1399 u64 regs_user = evsel->attr.sample_regs_user; 1400 1401 sz = hweight_long(regs_user) * sizeof(u64); 1402 OVERFLOW_CHECK(array, sz, max_size); 1403 data->user_regs.regs = (u64 *)array; 1404 array = (void *)array + sz; 1405 } 1406 } 1407 1408 if (type & PERF_SAMPLE_STACK_USER) { 1409 OVERFLOW_CHECK_u64(array); 1410 sz = *array++; 1411 1412 data->user_stack.offset = ((char *)(array - 1) 1413 - (char *) event); 1414 1415 if (!sz) { 1416 data->user_stack.size = 0; 1417 } else { 1418 OVERFLOW_CHECK(array, sz, max_size); 1419 data->user_stack.data = (char *)array; 1420 array = (void *)array + sz; 1421 OVERFLOW_CHECK_u64(array); 1422 data->user_stack.size = *array++; 1423 if (WARN_ONCE(data->user_stack.size > sz, 1424 "user stack dump failure\n")) 1425 return -EFAULT; 1426 } 1427 } 1428 1429 data->weight = 0; 1430 if (type & PERF_SAMPLE_WEIGHT) { 1431 OVERFLOW_CHECK_u64(array); 1432 data->weight = *array; 1433 array++; 1434 } 1435 1436 data->data_src = PERF_MEM_DATA_SRC_NONE; 1437 if (type & PERF_SAMPLE_DATA_SRC) { 1438 OVERFLOW_CHECK_u64(array); 1439 data->data_src = *array; 1440 array++; 1441 } 1442 1443 data->transaction = 0; 1444 if (type & PERF_SAMPLE_TRANSACTION) { 1445 OVERFLOW_CHECK_u64(array); 1446 data->transaction = *array; 1447 array++; 1448 } 1449 1450 return 0; 1451 } 1452 1453 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1454 u64 sample_regs_user, u64 read_format) 1455 { 1456 size_t sz, result = sizeof(struct sample_event); 1457 1458 if (type & PERF_SAMPLE_IDENTIFIER) 1459 result += sizeof(u64); 1460 1461 if (type & PERF_SAMPLE_IP) 1462 result += sizeof(u64); 1463 1464 if (type & PERF_SAMPLE_TID) 1465 result += sizeof(u64); 1466 1467 if (type & PERF_SAMPLE_TIME) 1468 result += sizeof(u64); 1469 1470 if (type & PERF_SAMPLE_ADDR) 1471 result += sizeof(u64); 1472 1473 if (type & PERF_SAMPLE_ID) 1474 result += sizeof(u64); 1475 1476 if (type & PERF_SAMPLE_STREAM_ID) 1477 result += sizeof(u64); 1478 1479 if (type & PERF_SAMPLE_CPU) 1480 result += sizeof(u64); 1481 1482 if (type & PERF_SAMPLE_PERIOD) 1483 result += sizeof(u64); 1484 1485 if (type & PERF_SAMPLE_READ) { 1486 result += sizeof(u64); 1487 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1488 result += sizeof(u64); 1489 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1490 result += sizeof(u64); 1491 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1492 if (read_format & PERF_FORMAT_GROUP) { 1493 sz = sample->read.group.nr * 1494 sizeof(struct sample_read_value); 1495 result += sz; 1496 } else { 1497 result += sizeof(u64); 1498 } 1499 } 1500 1501 if (type & PERF_SAMPLE_CALLCHAIN) { 1502 sz = (sample->callchain->nr + 1) * sizeof(u64); 1503 result += sz; 1504 } 1505 1506 if (type & PERF_SAMPLE_RAW) { 1507 result += sizeof(u32); 1508 result += sample->raw_size; 1509 } 1510 1511 if (type & PERF_SAMPLE_BRANCH_STACK) { 1512 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1513 sz += sizeof(u64); 1514 result += sz; 1515 } 1516 1517 if (type & PERF_SAMPLE_REGS_USER) { 1518 if (sample->user_regs.abi) { 1519 result += sizeof(u64); 1520 sz = hweight_long(sample_regs_user) * sizeof(u64); 1521 result += sz; 1522 } else { 1523 result += sizeof(u64); 1524 } 1525 } 1526 1527 if (type & PERF_SAMPLE_STACK_USER) { 1528 sz = sample->user_stack.size; 1529 result += sizeof(u64); 1530 if (sz) { 1531 result += sz; 1532 result += sizeof(u64); 1533 } 1534 } 1535 1536 if (type & PERF_SAMPLE_WEIGHT) 1537 result += sizeof(u64); 1538 1539 if (type & PERF_SAMPLE_DATA_SRC) 1540 result += sizeof(u64); 1541 1542 if (type & PERF_SAMPLE_TRANSACTION) 1543 result += sizeof(u64); 1544 1545 return result; 1546 } 1547 1548 int perf_event__synthesize_sample(union perf_event *event, u64 type, 1549 u64 sample_regs_user, u64 read_format, 1550 const struct perf_sample *sample, 1551 bool swapped) 1552 { 1553 u64 *array; 1554 size_t sz; 1555 /* 1556 * used for cross-endian analysis. See git commit 65014ab3 1557 * for why this goofiness is needed. 1558 */ 1559 union u64_swap u; 1560 1561 array = event->sample.array; 1562 1563 if (type & PERF_SAMPLE_IDENTIFIER) { 1564 *array = sample->id; 1565 array++; 1566 } 1567 1568 if (type & PERF_SAMPLE_IP) { 1569 *array = sample->ip; 1570 array++; 1571 } 1572 1573 if (type & PERF_SAMPLE_TID) { 1574 u.val32[0] = sample->pid; 1575 u.val32[1] = sample->tid; 1576 if (swapped) { 1577 /* 1578 * Inverse of what is done in perf_evsel__parse_sample 1579 */ 1580 u.val32[0] = bswap_32(u.val32[0]); 1581 u.val32[1] = bswap_32(u.val32[1]); 1582 u.val64 = bswap_64(u.val64); 1583 } 1584 1585 *array = u.val64; 1586 array++; 1587 } 1588 1589 if (type & PERF_SAMPLE_TIME) { 1590 *array = sample->time; 1591 array++; 1592 } 1593 1594 if (type & PERF_SAMPLE_ADDR) { 1595 *array = sample->addr; 1596 array++; 1597 } 1598 1599 if (type & PERF_SAMPLE_ID) { 1600 *array = sample->id; 1601 array++; 1602 } 1603 1604 if (type & PERF_SAMPLE_STREAM_ID) { 1605 *array = sample->stream_id; 1606 array++; 1607 } 1608 1609 if (type & PERF_SAMPLE_CPU) { 1610 u.val32[0] = sample->cpu; 1611 if (swapped) { 1612 /* 1613 * Inverse of what is done in perf_evsel__parse_sample 1614 */ 1615 u.val32[0] = bswap_32(u.val32[0]); 1616 u.val64 = bswap_64(u.val64); 1617 } 1618 *array = u.val64; 1619 array++; 1620 } 1621 1622 if (type & PERF_SAMPLE_PERIOD) { 1623 *array = sample->period; 1624 array++; 1625 } 1626 1627 if (type & PERF_SAMPLE_READ) { 1628 if (read_format & PERF_FORMAT_GROUP) 1629 *array = sample->read.group.nr; 1630 else 1631 *array = sample->read.one.value; 1632 array++; 1633 1634 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1635 *array = sample->read.time_enabled; 1636 array++; 1637 } 1638 1639 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1640 *array = sample->read.time_running; 1641 array++; 1642 } 1643 1644 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1645 if (read_format & PERF_FORMAT_GROUP) { 1646 sz = sample->read.group.nr * 1647 sizeof(struct sample_read_value); 1648 memcpy(array, sample->read.group.values, sz); 1649 array = (void *)array + sz; 1650 } else { 1651 *array = sample->read.one.id; 1652 array++; 1653 } 1654 } 1655 1656 if (type & PERF_SAMPLE_CALLCHAIN) { 1657 sz = (sample->callchain->nr + 1) * sizeof(u64); 1658 memcpy(array, sample->callchain, sz); 1659 array = (void *)array + sz; 1660 } 1661 1662 if (type & PERF_SAMPLE_RAW) { 1663 u.val32[0] = sample->raw_size; 1664 if (WARN_ONCE(swapped, 1665 "Endianness of raw data not corrected!\n")) { 1666 /* 1667 * Inverse of what is done in perf_evsel__parse_sample 1668 */ 1669 u.val32[0] = bswap_32(u.val32[0]); 1670 u.val32[1] = bswap_32(u.val32[1]); 1671 u.val64 = bswap_64(u.val64); 1672 } 1673 *array = u.val64; 1674 array = (void *)array + sizeof(u32); 1675 1676 memcpy(array, sample->raw_data, sample->raw_size); 1677 array = (void *)array + sample->raw_size; 1678 } 1679 1680 if (type & PERF_SAMPLE_BRANCH_STACK) { 1681 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1682 sz += sizeof(u64); 1683 memcpy(array, sample->branch_stack, sz); 1684 array = (void *)array + sz; 1685 } 1686 1687 if (type & PERF_SAMPLE_REGS_USER) { 1688 if (sample->user_regs.abi) { 1689 *array++ = sample->user_regs.abi; 1690 sz = hweight_long(sample_regs_user) * sizeof(u64); 1691 memcpy(array, sample->user_regs.regs, sz); 1692 array = (void *)array + sz; 1693 } else { 1694 *array++ = 0; 1695 } 1696 } 1697 1698 if (type & PERF_SAMPLE_STACK_USER) { 1699 sz = sample->user_stack.size; 1700 *array++ = sz; 1701 if (sz) { 1702 memcpy(array, sample->user_stack.data, sz); 1703 array = (void *)array + sz; 1704 *array++ = sz; 1705 } 1706 } 1707 1708 if (type & PERF_SAMPLE_WEIGHT) { 1709 *array = sample->weight; 1710 array++; 1711 } 1712 1713 if (type & PERF_SAMPLE_DATA_SRC) { 1714 *array = sample->data_src; 1715 array++; 1716 } 1717 1718 if (type & PERF_SAMPLE_TRANSACTION) { 1719 *array = sample->transaction; 1720 array++; 1721 } 1722 1723 return 0; 1724 } 1725 1726 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 1727 { 1728 return pevent_find_field(evsel->tp_format, name); 1729 } 1730 1731 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 1732 const char *name) 1733 { 1734 struct format_field *field = perf_evsel__field(evsel, name); 1735 int offset; 1736 1737 if (!field) 1738 return NULL; 1739 1740 offset = field->offset; 1741 1742 if (field->flags & FIELD_IS_DYNAMIC) { 1743 offset = *(int *)(sample->raw_data + field->offset); 1744 offset &= 0xffff; 1745 } 1746 1747 return sample->raw_data + offset; 1748 } 1749 1750 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 1751 const char *name) 1752 { 1753 struct format_field *field = perf_evsel__field(evsel, name); 1754 void *ptr; 1755 u64 value; 1756 1757 if (!field) 1758 return 0; 1759 1760 ptr = sample->raw_data + field->offset; 1761 1762 switch (field->size) { 1763 case 1: 1764 return *(u8 *)ptr; 1765 case 2: 1766 value = *(u16 *)ptr; 1767 break; 1768 case 4: 1769 value = *(u32 *)ptr; 1770 break; 1771 case 8: 1772 value = *(u64 *)ptr; 1773 break; 1774 default: 1775 return 0; 1776 } 1777 1778 if (!evsel->needs_swap) 1779 return value; 1780 1781 switch (field->size) { 1782 case 2: 1783 return bswap_16(value); 1784 case 4: 1785 return bswap_32(value); 1786 case 8: 1787 return bswap_64(value); 1788 default: 1789 return 0; 1790 } 1791 1792 return 0; 1793 } 1794 1795 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...) 1796 { 1797 va_list args; 1798 int ret = 0; 1799 1800 if (!*first) { 1801 ret += fprintf(fp, ","); 1802 } else { 1803 ret += fprintf(fp, ":"); 1804 *first = false; 1805 } 1806 1807 va_start(args, fmt); 1808 ret += vfprintf(fp, fmt, args); 1809 va_end(args); 1810 return ret; 1811 } 1812 1813 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value) 1814 { 1815 if (value == 0) 1816 return 0; 1817 1818 return comma_fprintf(fp, first, " %s: %" PRIu64, field, value); 1819 } 1820 1821 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field) 1822 1823 struct bit_names { 1824 int bit; 1825 const char *name; 1826 }; 1827 1828 static int bits__fprintf(FILE *fp, const char *field, u64 value, 1829 struct bit_names *bits, bool *first) 1830 { 1831 int i = 0, printed = comma_fprintf(fp, first, " %s: ", field); 1832 bool first_bit = true; 1833 1834 do { 1835 if (value & bits[i].bit) { 1836 printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name); 1837 first_bit = false; 1838 } 1839 } while (bits[++i].name != NULL); 1840 1841 return printed; 1842 } 1843 1844 static int sample_type__fprintf(FILE *fp, bool *first, u64 value) 1845 { 1846 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1847 struct bit_names bits[] = { 1848 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1849 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1850 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1851 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1852 bit_name(IDENTIFIER), 1853 { .name = NULL, } 1854 }; 1855 #undef bit_name 1856 return bits__fprintf(fp, "sample_type", value, bits, first); 1857 } 1858 1859 static int read_format__fprintf(FILE *fp, bool *first, u64 value) 1860 { 1861 #define bit_name(n) { PERF_FORMAT_##n, #n } 1862 struct bit_names bits[] = { 1863 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1864 bit_name(ID), bit_name(GROUP), 1865 { .name = NULL, } 1866 }; 1867 #undef bit_name 1868 return bits__fprintf(fp, "read_format", value, bits, first); 1869 } 1870 1871 int perf_evsel__fprintf(struct perf_evsel *evsel, 1872 struct perf_attr_details *details, FILE *fp) 1873 { 1874 bool first = true; 1875 int printed = 0; 1876 1877 if (details->event_group) { 1878 struct perf_evsel *pos; 1879 1880 if (!perf_evsel__is_group_leader(evsel)) 1881 return 0; 1882 1883 if (evsel->nr_members > 1) 1884 printed += fprintf(fp, "%s{", evsel->group_name ?: ""); 1885 1886 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 1887 for_each_group_member(pos, evsel) 1888 printed += fprintf(fp, ",%s", perf_evsel__name(pos)); 1889 1890 if (evsel->nr_members > 1) 1891 printed += fprintf(fp, "}"); 1892 goto out; 1893 } 1894 1895 printed += fprintf(fp, "%s", perf_evsel__name(evsel)); 1896 1897 if (details->verbose || details->freq) { 1898 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64, 1899 (u64)evsel->attr.sample_freq); 1900 } 1901 1902 if (details->verbose) { 1903 if_print(type); 1904 if_print(config); 1905 if_print(config1); 1906 if_print(config2); 1907 if_print(size); 1908 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type); 1909 if (evsel->attr.read_format) 1910 printed += read_format__fprintf(fp, &first, evsel->attr.read_format); 1911 if_print(disabled); 1912 if_print(inherit); 1913 if_print(pinned); 1914 if_print(exclusive); 1915 if_print(exclude_user); 1916 if_print(exclude_kernel); 1917 if_print(exclude_hv); 1918 if_print(exclude_idle); 1919 if_print(mmap); 1920 if_print(mmap2); 1921 if_print(comm); 1922 if_print(freq); 1923 if_print(inherit_stat); 1924 if_print(enable_on_exec); 1925 if_print(task); 1926 if_print(watermark); 1927 if_print(precise_ip); 1928 if_print(mmap_data); 1929 if_print(sample_id_all); 1930 if_print(exclude_host); 1931 if_print(exclude_guest); 1932 if_print(__reserved_1); 1933 if_print(wakeup_events); 1934 if_print(bp_type); 1935 if_print(branch_sample_type); 1936 } 1937 out: 1938 fputc('\n', fp); 1939 return ++printed; 1940 } 1941 1942 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 1943 char *msg, size_t msgsize) 1944 { 1945 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 1946 evsel->attr.type == PERF_TYPE_HARDWARE && 1947 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 1948 /* 1949 * If it's cycles then fall back to hrtimer based 1950 * cpu-clock-tick sw counter, which is always available even if 1951 * no PMU support. 1952 * 1953 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 1954 * b0a873e). 1955 */ 1956 scnprintf(msg, msgsize, "%s", 1957 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 1958 1959 evsel->attr.type = PERF_TYPE_SOFTWARE; 1960 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 1961 1962 zfree(&evsel->name); 1963 return true; 1964 } 1965 1966 return false; 1967 } 1968 1969 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 1970 int err, char *msg, size_t size) 1971 { 1972 switch (err) { 1973 case EPERM: 1974 case EACCES: 1975 return scnprintf(msg, size, 1976 "You may not have permission to collect %sstats.\n" 1977 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n" 1978 " -1 - Not paranoid at all\n" 1979 " 0 - Disallow raw tracepoint access for unpriv\n" 1980 " 1 - Disallow cpu events for unpriv\n" 1981 " 2 - Disallow kernel profiling for unpriv", 1982 target->system_wide ? "system-wide " : ""); 1983 case ENOENT: 1984 return scnprintf(msg, size, "The %s event is not supported.", 1985 perf_evsel__name(evsel)); 1986 case EMFILE: 1987 return scnprintf(msg, size, "%s", 1988 "Too many events are opened.\n" 1989 "Try again after reducing the number of events."); 1990 case ENODEV: 1991 if (target->cpu_list) 1992 return scnprintf(msg, size, "%s", 1993 "No such device - did you specify an out-of-range profile CPU?\n"); 1994 break; 1995 case EOPNOTSUPP: 1996 if (evsel->attr.precise_ip) 1997 return scnprintf(msg, size, "%s", 1998 "\'precise\' request may not be supported. Try removing 'p' modifier."); 1999 #if defined(__i386__) || defined(__x86_64__) 2000 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2001 return scnprintf(msg, size, "%s", 2002 "No hardware sampling interrupt available.\n" 2003 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2004 #endif 2005 break; 2006 default: 2007 break; 2008 } 2009 2010 return scnprintf(msg, size, 2011 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s). \n" 2012 "/bin/dmesg may provide additional information.\n" 2013 "No CONFIG_PERF_EVENTS=y kernel support configured?\n", 2014 err, strerror(err), perf_evsel__name(evsel)); 2015 } 2016