xref: /openbmc/linux/tools/perf/util/evsel.c (revision 3d3337de)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "callchain.h"
19 #include "cgroup.h"
20 #include "evsel.h"
21 #include "evlist.h"
22 #include "util.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 #include "target.h"
26 #include "perf_regs.h"
27 #include "debug.h"
28 #include "trace-event.h"
29 
30 static struct {
31 	bool sample_id_all;
32 	bool exclude_guest;
33 	bool mmap2;
34 	bool cloexec;
35 	bool clockid;
36 	bool clockid_wrong;
37 } perf_missing_features;
38 
39 static clockid_t clockid;
40 
41 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
42 {
43 	return 0;
44 }
45 
46 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
47 {
48 }
49 
50 static struct {
51 	size_t	size;
52 	int	(*init)(struct perf_evsel *evsel);
53 	void	(*fini)(struct perf_evsel *evsel);
54 } perf_evsel__object = {
55 	.size = sizeof(struct perf_evsel),
56 	.init = perf_evsel__no_extra_init,
57 	.fini = perf_evsel__no_extra_fini,
58 };
59 
60 int perf_evsel__object_config(size_t object_size,
61 			      int (*init)(struct perf_evsel *evsel),
62 			      void (*fini)(struct perf_evsel *evsel))
63 {
64 
65 	if (object_size == 0)
66 		goto set_methods;
67 
68 	if (perf_evsel__object.size > object_size)
69 		return -EINVAL;
70 
71 	perf_evsel__object.size = object_size;
72 
73 set_methods:
74 	if (init != NULL)
75 		perf_evsel__object.init = init;
76 
77 	if (fini != NULL)
78 		perf_evsel__object.fini = fini;
79 
80 	return 0;
81 }
82 
83 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
84 
85 int __perf_evsel__sample_size(u64 sample_type)
86 {
87 	u64 mask = sample_type & PERF_SAMPLE_MASK;
88 	int size = 0;
89 	int i;
90 
91 	for (i = 0; i < 64; i++) {
92 		if (mask & (1ULL << i))
93 			size++;
94 	}
95 
96 	size *= sizeof(u64);
97 
98 	return size;
99 }
100 
101 /**
102  * __perf_evsel__calc_id_pos - calculate id_pos.
103  * @sample_type: sample type
104  *
105  * This function returns the position of the event id (PERF_SAMPLE_ID or
106  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
107  * sample_event.
108  */
109 static int __perf_evsel__calc_id_pos(u64 sample_type)
110 {
111 	int idx = 0;
112 
113 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
114 		return 0;
115 
116 	if (!(sample_type & PERF_SAMPLE_ID))
117 		return -1;
118 
119 	if (sample_type & PERF_SAMPLE_IP)
120 		idx += 1;
121 
122 	if (sample_type & PERF_SAMPLE_TID)
123 		idx += 1;
124 
125 	if (sample_type & PERF_SAMPLE_TIME)
126 		idx += 1;
127 
128 	if (sample_type & PERF_SAMPLE_ADDR)
129 		idx += 1;
130 
131 	return idx;
132 }
133 
134 /**
135  * __perf_evsel__calc_is_pos - calculate is_pos.
136  * @sample_type: sample type
137  *
138  * This function returns the position (counting backwards) of the event id
139  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
140  * sample_id_all is used there is an id sample appended to non-sample events.
141  */
142 static int __perf_evsel__calc_is_pos(u64 sample_type)
143 {
144 	int idx = 1;
145 
146 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
147 		return 1;
148 
149 	if (!(sample_type & PERF_SAMPLE_ID))
150 		return -1;
151 
152 	if (sample_type & PERF_SAMPLE_CPU)
153 		idx += 1;
154 
155 	if (sample_type & PERF_SAMPLE_STREAM_ID)
156 		idx += 1;
157 
158 	return idx;
159 }
160 
161 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
162 {
163 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
164 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
165 }
166 
167 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
168 				  enum perf_event_sample_format bit)
169 {
170 	if (!(evsel->attr.sample_type & bit)) {
171 		evsel->attr.sample_type |= bit;
172 		evsel->sample_size += sizeof(u64);
173 		perf_evsel__calc_id_pos(evsel);
174 	}
175 }
176 
177 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
178 				    enum perf_event_sample_format bit)
179 {
180 	if (evsel->attr.sample_type & bit) {
181 		evsel->attr.sample_type &= ~bit;
182 		evsel->sample_size -= sizeof(u64);
183 		perf_evsel__calc_id_pos(evsel);
184 	}
185 }
186 
187 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
188 			       bool can_sample_identifier)
189 {
190 	if (can_sample_identifier) {
191 		perf_evsel__reset_sample_bit(evsel, ID);
192 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
193 	} else {
194 		perf_evsel__set_sample_bit(evsel, ID);
195 	}
196 	evsel->attr.read_format |= PERF_FORMAT_ID;
197 }
198 
199 void perf_evsel__init(struct perf_evsel *evsel,
200 		      struct perf_event_attr *attr, int idx)
201 {
202 	evsel->idx	   = idx;
203 	evsel->tracking	   = !idx;
204 	evsel->attr	   = *attr;
205 	evsel->leader	   = evsel;
206 	evsel->unit	   = "";
207 	evsel->scale	   = 1.0;
208 	INIT_LIST_HEAD(&evsel->node);
209 	perf_evsel__object.init(evsel);
210 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
211 	perf_evsel__calc_id_pos(evsel);
212 }
213 
214 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
215 {
216 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
217 
218 	if (evsel != NULL)
219 		perf_evsel__init(evsel, attr, idx);
220 
221 	return evsel;
222 }
223 
224 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
225 {
226 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
227 
228 	if (evsel != NULL) {
229 		struct perf_event_attr attr = {
230 			.type	       = PERF_TYPE_TRACEPOINT,
231 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
232 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
233 		};
234 
235 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
236 			goto out_free;
237 
238 		evsel->tp_format = trace_event__tp_format(sys, name);
239 		if (evsel->tp_format == NULL)
240 			goto out_free;
241 
242 		event_attr_init(&attr);
243 		attr.config = evsel->tp_format->id;
244 		attr.sample_period = 1;
245 		perf_evsel__init(evsel, &attr, idx);
246 	}
247 
248 	return evsel;
249 
250 out_free:
251 	zfree(&evsel->name);
252 	free(evsel);
253 	return NULL;
254 }
255 
256 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
257 	"cycles",
258 	"instructions",
259 	"cache-references",
260 	"cache-misses",
261 	"branches",
262 	"branch-misses",
263 	"bus-cycles",
264 	"stalled-cycles-frontend",
265 	"stalled-cycles-backend",
266 	"ref-cycles",
267 };
268 
269 static const char *__perf_evsel__hw_name(u64 config)
270 {
271 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
272 		return perf_evsel__hw_names[config];
273 
274 	return "unknown-hardware";
275 }
276 
277 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
278 {
279 	int colon = 0, r = 0;
280 	struct perf_event_attr *attr = &evsel->attr;
281 	bool exclude_guest_default = false;
282 
283 #define MOD_PRINT(context, mod)	do {					\
284 		if (!attr->exclude_##context) {				\
285 			if (!colon) colon = ++r;			\
286 			r += scnprintf(bf + r, size - r, "%c", mod);	\
287 		} } while(0)
288 
289 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
290 		MOD_PRINT(kernel, 'k');
291 		MOD_PRINT(user, 'u');
292 		MOD_PRINT(hv, 'h');
293 		exclude_guest_default = true;
294 	}
295 
296 	if (attr->precise_ip) {
297 		if (!colon)
298 			colon = ++r;
299 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
300 		exclude_guest_default = true;
301 	}
302 
303 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
304 		MOD_PRINT(host, 'H');
305 		MOD_PRINT(guest, 'G');
306 	}
307 #undef MOD_PRINT
308 	if (colon)
309 		bf[colon - 1] = ':';
310 	return r;
311 }
312 
313 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
314 {
315 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
316 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
317 }
318 
319 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
320 	"cpu-clock",
321 	"task-clock",
322 	"page-faults",
323 	"context-switches",
324 	"cpu-migrations",
325 	"minor-faults",
326 	"major-faults",
327 	"alignment-faults",
328 	"emulation-faults",
329 	"dummy",
330 };
331 
332 static const char *__perf_evsel__sw_name(u64 config)
333 {
334 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
335 		return perf_evsel__sw_names[config];
336 	return "unknown-software";
337 }
338 
339 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
340 {
341 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
342 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
343 }
344 
345 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
346 {
347 	int r;
348 
349 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
350 
351 	if (type & HW_BREAKPOINT_R)
352 		r += scnprintf(bf + r, size - r, "r");
353 
354 	if (type & HW_BREAKPOINT_W)
355 		r += scnprintf(bf + r, size - r, "w");
356 
357 	if (type & HW_BREAKPOINT_X)
358 		r += scnprintf(bf + r, size - r, "x");
359 
360 	return r;
361 }
362 
363 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
364 {
365 	struct perf_event_attr *attr = &evsel->attr;
366 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
367 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
368 }
369 
370 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
371 				[PERF_EVSEL__MAX_ALIASES] = {
372  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
373  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
374  { "LLC",	"L2",							},
375  { "dTLB",	"d-tlb",	"Data-TLB",				},
376  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
377  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
378  { "node",								},
379 };
380 
381 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
382 				   [PERF_EVSEL__MAX_ALIASES] = {
383  { "load",	"loads",	"read",					},
384  { "store",	"stores",	"write",				},
385  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
386 };
387 
388 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
389 				       [PERF_EVSEL__MAX_ALIASES] = {
390  { "refs",	"Reference",	"ops",		"access",		},
391  { "misses",	"miss",							},
392 };
393 
394 #define C(x)		PERF_COUNT_HW_CACHE_##x
395 #define CACHE_READ	(1 << C(OP_READ))
396 #define CACHE_WRITE	(1 << C(OP_WRITE))
397 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
398 #define COP(x)		(1 << x)
399 
400 /*
401  * cache operartion stat
402  * L1I : Read and prefetch only
403  * ITLB and BPU : Read-only
404  */
405 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
406  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
408  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
410  [C(ITLB)]	= (CACHE_READ),
411  [C(BPU)]	= (CACHE_READ),
412  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
413 };
414 
415 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
416 {
417 	if (perf_evsel__hw_cache_stat[type] & COP(op))
418 		return true;	/* valid */
419 	else
420 		return false;	/* invalid */
421 }
422 
423 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
424 					    char *bf, size_t size)
425 {
426 	if (result) {
427 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
428 				 perf_evsel__hw_cache_op[op][0],
429 				 perf_evsel__hw_cache_result[result][0]);
430 	}
431 
432 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
433 			 perf_evsel__hw_cache_op[op][1]);
434 }
435 
436 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
437 {
438 	u8 op, result, type = (config >>  0) & 0xff;
439 	const char *err = "unknown-ext-hardware-cache-type";
440 
441 	if (type > PERF_COUNT_HW_CACHE_MAX)
442 		goto out_err;
443 
444 	op = (config >>  8) & 0xff;
445 	err = "unknown-ext-hardware-cache-op";
446 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
447 		goto out_err;
448 
449 	result = (config >> 16) & 0xff;
450 	err = "unknown-ext-hardware-cache-result";
451 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
452 		goto out_err;
453 
454 	err = "invalid-cache";
455 	if (!perf_evsel__is_cache_op_valid(type, op))
456 		goto out_err;
457 
458 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
459 out_err:
460 	return scnprintf(bf, size, "%s", err);
461 }
462 
463 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
464 {
465 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
466 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
467 }
468 
469 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
470 {
471 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
472 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
473 }
474 
475 const char *perf_evsel__name(struct perf_evsel *evsel)
476 {
477 	char bf[128];
478 
479 	if (evsel->name)
480 		return evsel->name;
481 
482 	switch (evsel->attr.type) {
483 	case PERF_TYPE_RAW:
484 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
485 		break;
486 
487 	case PERF_TYPE_HARDWARE:
488 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
489 		break;
490 
491 	case PERF_TYPE_HW_CACHE:
492 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
493 		break;
494 
495 	case PERF_TYPE_SOFTWARE:
496 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
497 		break;
498 
499 	case PERF_TYPE_TRACEPOINT:
500 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
501 		break;
502 
503 	case PERF_TYPE_BREAKPOINT:
504 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
505 		break;
506 
507 	default:
508 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
509 			  evsel->attr.type);
510 		break;
511 	}
512 
513 	evsel->name = strdup(bf);
514 
515 	return evsel->name ?: "unknown";
516 }
517 
518 const char *perf_evsel__group_name(struct perf_evsel *evsel)
519 {
520 	return evsel->group_name ?: "anon group";
521 }
522 
523 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
524 {
525 	int ret;
526 	struct perf_evsel *pos;
527 	const char *group_name = perf_evsel__group_name(evsel);
528 
529 	ret = scnprintf(buf, size, "%s", group_name);
530 
531 	ret += scnprintf(buf + ret, size - ret, " { %s",
532 			 perf_evsel__name(evsel));
533 
534 	for_each_group_member(pos, evsel)
535 		ret += scnprintf(buf + ret, size - ret, ", %s",
536 				 perf_evsel__name(pos));
537 
538 	ret += scnprintf(buf + ret, size - ret, " }");
539 
540 	return ret;
541 }
542 
543 static void
544 perf_evsel__config_callgraph(struct perf_evsel *evsel,
545 			     struct record_opts *opts)
546 {
547 	bool function = perf_evsel__is_function_event(evsel);
548 	struct perf_event_attr *attr = &evsel->attr;
549 
550 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
551 
552 	if (callchain_param.record_mode == CALLCHAIN_LBR) {
553 		if (!opts->branch_stack) {
554 			if (attr->exclude_user) {
555 				pr_warning("LBR callstack option is only available "
556 					   "to get user callchain information. "
557 					   "Falling back to framepointers.\n");
558 			} else {
559 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
560 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
561 							PERF_SAMPLE_BRANCH_CALL_STACK;
562 			}
563 		} else
564 			 pr_warning("Cannot use LBR callstack with branch stack. "
565 				    "Falling back to framepointers.\n");
566 	}
567 
568 	if (callchain_param.record_mode == CALLCHAIN_DWARF) {
569 		if (!function) {
570 			perf_evsel__set_sample_bit(evsel, REGS_USER);
571 			perf_evsel__set_sample_bit(evsel, STACK_USER);
572 			attr->sample_regs_user = PERF_REGS_MASK;
573 			attr->sample_stack_user = callchain_param.dump_size;
574 			attr->exclude_callchain_user = 1;
575 		} else {
576 			pr_info("Cannot use DWARF unwind for function trace event,"
577 				" falling back to framepointers.\n");
578 		}
579 	}
580 
581 	if (function) {
582 		pr_info("Disabling user space callchains for function trace event.\n");
583 		attr->exclude_callchain_user = 1;
584 	}
585 }
586 
587 /*
588  * The enable_on_exec/disabled value strategy:
589  *
590  *  1) For any type of traced program:
591  *    - all independent events and group leaders are disabled
592  *    - all group members are enabled
593  *
594  *     Group members are ruled by group leaders. They need to
595  *     be enabled, because the group scheduling relies on that.
596  *
597  *  2) For traced programs executed by perf:
598  *     - all independent events and group leaders have
599  *       enable_on_exec set
600  *     - we don't specifically enable or disable any event during
601  *       the record command
602  *
603  *     Independent events and group leaders are initially disabled
604  *     and get enabled by exec. Group members are ruled by group
605  *     leaders as stated in 1).
606  *
607  *  3) For traced programs attached by perf (pid/tid):
608  *     - we specifically enable or disable all events during
609  *       the record command
610  *
611  *     When attaching events to already running traced we
612  *     enable/disable events specifically, as there's no
613  *     initial traced exec call.
614  */
615 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
616 {
617 	struct perf_evsel *leader = evsel->leader;
618 	struct perf_event_attr *attr = &evsel->attr;
619 	int track = evsel->tracking;
620 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
621 
622 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
623 	attr->inherit	    = !opts->no_inherit;
624 
625 	perf_evsel__set_sample_bit(evsel, IP);
626 	perf_evsel__set_sample_bit(evsel, TID);
627 
628 	if (evsel->sample_read) {
629 		perf_evsel__set_sample_bit(evsel, READ);
630 
631 		/*
632 		 * We need ID even in case of single event, because
633 		 * PERF_SAMPLE_READ process ID specific data.
634 		 */
635 		perf_evsel__set_sample_id(evsel, false);
636 
637 		/*
638 		 * Apply group format only if we belong to group
639 		 * with more than one members.
640 		 */
641 		if (leader->nr_members > 1) {
642 			attr->read_format |= PERF_FORMAT_GROUP;
643 			attr->inherit = 0;
644 		}
645 	}
646 
647 	/*
648 	 * We default some events to have a default interval. But keep
649 	 * it a weak assumption overridable by the user.
650 	 */
651 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
652 				     opts->user_interval != ULLONG_MAX)) {
653 		if (opts->freq) {
654 			perf_evsel__set_sample_bit(evsel, PERIOD);
655 			attr->freq		= 1;
656 			attr->sample_freq	= opts->freq;
657 		} else {
658 			attr->sample_period = opts->default_interval;
659 		}
660 	}
661 
662 	/*
663 	 * Disable sampling for all group members other
664 	 * than leader in case leader 'leads' the sampling.
665 	 */
666 	if ((leader != evsel) && leader->sample_read) {
667 		attr->sample_freq   = 0;
668 		attr->sample_period = 0;
669 	}
670 
671 	if (opts->no_samples)
672 		attr->sample_freq = 0;
673 
674 	if (opts->inherit_stat)
675 		attr->inherit_stat = 1;
676 
677 	if (opts->sample_address) {
678 		perf_evsel__set_sample_bit(evsel, ADDR);
679 		attr->mmap_data = track;
680 	}
681 
682 	/*
683 	 * We don't allow user space callchains for  function trace
684 	 * event, due to issues with page faults while tracing page
685 	 * fault handler and its overall trickiness nature.
686 	 */
687 	if (perf_evsel__is_function_event(evsel))
688 		evsel->attr.exclude_callchain_user = 1;
689 
690 	if (callchain_param.enabled && !evsel->no_aux_samples)
691 		perf_evsel__config_callgraph(evsel, opts);
692 
693 	if (opts->sample_intr_regs) {
694 		attr->sample_regs_intr = PERF_REGS_MASK;
695 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
696 	}
697 
698 	if (target__has_cpu(&opts->target))
699 		perf_evsel__set_sample_bit(evsel, CPU);
700 
701 	if (opts->period)
702 		perf_evsel__set_sample_bit(evsel, PERIOD);
703 
704 	/*
705 	 * When the user explicitely disabled time don't force it here.
706 	 */
707 	if (opts->sample_time &&
708 	    (!perf_missing_features.sample_id_all &&
709 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
710 		perf_evsel__set_sample_bit(evsel, TIME);
711 
712 	if (opts->raw_samples && !evsel->no_aux_samples) {
713 		perf_evsel__set_sample_bit(evsel, TIME);
714 		perf_evsel__set_sample_bit(evsel, RAW);
715 		perf_evsel__set_sample_bit(evsel, CPU);
716 	}
717 
718 	if (opts->sample_address)
719 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
720 
721 	if (opts->no_buffering) {
722 		attr->watermark = 0;
723 		attr->wakeup_events = 1;
724 	}
725 	if (opts->branch_stack && !evsel->no_aux_samples) {
726 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
727 		attr->branch_sample_type = opts->branch_stack;
728 	}
729 
730 	if (opts->sample_weight)
731 		perf_evsel__set_sample_bit(evsel, WEIGHT);
732 
733 	attr->task  = track;
734 	attr->mmap  = track;
735 	attr->mmap2 = track && !perf_missing_features.mmap2;
736 	attr->comm  = track;
737 
738 	if (opts->sample_transaction)
739 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
740 
741 	if (opts->running_time) {
742 		evsel->attr.read_format |=
743 			PERF_FORMAT_TOTAL_TIME_ENABLED |
744 			PERF_FORMAT_TOTAL_TIME_RUNNING;
745 	}
746 
747 	/*
748 	 * XXX see the function comment above
749 	 *
750 	 * Disabling only independent events or group leaders,
751 	 * keeping group members enabled.
752 	 */
753 	if (perf_evsel__is_group_leader(evsel))
754 		attr->disabled = 1;
755 
756 	/*
757 	 * Setting enable_on_exec for independent events and
758 	 * group leaders for traced executed by perf.
759 	 */
760 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
761 		!opts->initial_delay)
762 		attr->enable_on_exec = 1;
763 
764 	if (evsel->immediate) {
765 		attr->disabled = 0;
766 		attr->enable_on_exec = 0;
767 	}
768 
769 	clockid = opts->clockid;
770 	if (opts->use_clockid) {
771 		attr->use_clockid = 1;
772 		attr->clockid = opts->clockid;
773 	}
774 }
775 
776 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
777 {
778 	int cpu, thread;
779 
780 	if (evsel->system_wide)
781 		nthreads = 1;
782 
783 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
784 
785 	if (evsel->fd) {
786 		for (cpu = 0; cpu < ncpus; cpu++) {
787 			for (thread = 0; thread < nthreads; thread++) {
788 				FD(evsel, cpu, thread) = -1;
789 			}
790 		}
791 	}
792 
793 	return evsel->fd != NULL ? 0 : -ENOMEM;
794 }
795 
796 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
797 			  int ioc,  void *arg)
798 {
799 	int cpu, thread;
800 
801 	if (evsel->system_wide)
802 		nthreads = 1;
803 
804 	for (cpu = 0; cpu < ncpus; cpu++) {
805 		for (thread = 0; thread < nthreads; thread++) {
806 			int fd = FD(evsel, cpu, thread),
807 			    err = ioctl(fd, ioc, arg);
808 
809 			if (err)
810 				return err;
811 		}
812 	}
813 
814 	return 0;
815 }
816 
817 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
818 			   const char *filter)
819 {
820 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
821 				     PERF_EVENT_IOC_SET_FILTER,
822 				     (void *)filter);
823 }
824 
825 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
826 {
827 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
828 				     PERF_EVENT_IOC_ENABLE,
829 				     0);
830 }
831 
832 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
833 {
834 	if (ncpus == 0 || nthreads == 0)
835 		return 0;
836 
837 	if (evsel->system_wide)
838 		nthreads = 1;
839 
840 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
841 	if (evsel->sample_id == NULL)
842 		return -ENOMEM;
843 
844 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
845 	if (evsel->id == NULL) {
846 		xyarray__delete(evsel->sample_id);
847 		evsel->sample_id = NULL;
848 		return -ENOMEM;
849 	}
850 
851 	return 0;
852 }
853 
854 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
855 {
856 	memset(evsel->counts, 0, (sizeof(*evsel->counts) +
857 				 (ncpus * sizeof(struct perf_counts_values))));
858 }
859 
860 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
861 {
862 	evsel->counts = zalloc((sizeof(*evsel->counts) +
863 				(ncpus * sizeof(struct perf_counts_values))));
864 	return evsel->counts != NULL ? 0 : -ENOMEM;
865 }
866 
867 static void perf_evsel__free_fd(struct perf_evsel *evsel)
868 {
869 	xyarray__delete(evsel->fd);
870 	evsel->fd = NULL;
871 }
872 
873 static void perf_evsel__free_id(struct perf_evsel *evsel)
874 {
875 	xyarray__delete(evsel->sample_id);
876 	evsel->sample_id = NULL;
877 	zfree(&evsel->id);
878 }
879 
880 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
881 {
882 	int cpu, thread;
883 
884 	if (evsel->system_wide)
885 		nthreads = 1;
886 
887 	for (cpu = 0; cpu < ncpus; cpu++)
888 		for (thread = 0; thread < nthreads; ++thread) {
889 			close(FD(evsel, cpu, thread));
890 			FD(evsel, cpu, thread) = -1;
891 		}
892 }
893 
894 void perf_evsel__free_counts(struct perf_evsel *evsel)
895 {
896 	zfree(&evsel->counts);
897 }
898 
899 void perf_evsel__exit(struct perf_evsel *evsel)
900 {
901 	assert(list_empty(&evsel->node));
902 	perf_evsel__free_fd(evsel);
903 	perf_evsel__free_id(evsel);
904 	close_cgroup(evsel->cgrp);
905 	zfree(&evsel->group_name);
906 	zfree(&evsel->name);
907 	perf_evsel__object.fini(evsel);
908 }
909 
910 void perf_evsel__delete(struct perf_evsel *evsel)
911 {
912 	perf_evsel__exit(evsel);
913 	free(evsel);
914 }
915 
916 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu,
917 				struct perf_counts_values *count)
918 {
919 	struct perf_counts_values tmp;
920 
921 	if (!evsel->prev_raw_counts)
922 		return;
923 
924 	if (cpu == -1) {
925 		tmp = evsel->prev_raw_counts->aggr;
926 		evsel->prev_raw_counts->aggr = *count;
927 	} else {
928 		tmp = evsel->prev_raw_counts->cpu[cpu];
929 		evsel->prev_raw_counts->cpu[cpu] = *count;
930 	}
931 
932 	count->val = count->val - tmp.val;
933 	count->ena = count->ena - tmp.ena;
934 	count->run = count->run - tmp.run;
935 }
936 
937 void perf_counts_values__scale(struct perf_counts_values *count,
938 			       bool scale, s8 *pscaled)
939 {
940 	s8 scaled = 0;
941 
942 	if (scale) {
943 		if (count->run == 0) {
944 			scaled = -1;
945 			count->val = 0;
946 		} else if (count->run < count->ena) {
947 			scaled = 1;
948 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
949 		}
950 	} else
951 		count->ena = count->run = 0;
952 
953 	if (pscaled)
954 		*pscaled = scaled;
955 }
956 
957 int perf_evsel__read_cb(struct perf_evsel *evsel, int cpu, int thread,
958 			perf_evsel__read_cb_t cb)
959 {
960 	struct perf_counts_values count;
961 
962 	memset(&count, 0, sizeof(count));
963 
964 	if (FD(evsel, cpu, thread) < 0)
965 		return -EINVAL;
966 
967 	if (readn(FD(evsel, cpu, thread), &count, sizeof(count)) < 0)
968 		return -errno;
969 
970 	return cb(evsel, cpu, thread, &count);
971 }
972 
973 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
974 			      int cpu, int thread, bool scale)
975 {
976 	struct perf_counts_values count;
977 	size_t nv = scale ? 3 : 1;
978 
979 	if (FD(evsel, cpu, thread) < 0)
980 		return -EINVAL;
981 
982 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
983 		return -ENOMEM;
984 
985 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
986 		return -errno;
987 
988 	perf_evsel__compute_deltas(evsel, cpu, &count);
989 	perf_counts_values__scale(&count, scale, NULL);
990 	evsel->counts->cpu[cpu] = count;
991 	return 0;
992 }
993 
994 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
995 {
996 	struct perf_evsel *leader = evsel->leader;
997 	int fd;
998 
999 	if (perf_evsel__is_group_leader(evsel))
1000 		return -1;
1001 
1002 	/*
1003 	 * Leader must be already processed/open,
1004 	 * if not it's a bug.
1005 	 */
1006 	BUG_ON(!leader->fd);
1007 
1008 	fd = FD(leader, cpu, thread);
1009 	BUG_ON(fd == -1);
1010 
1011 	return fd;
1012 }
1013 
1014 struct bit_names {
1015 	int bit;
1016 	const char *name;
1017 };
1018 
1019 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1020 {
1021 	bool first_bit = true;
1022 	int i = 0;
1023 
1024 	do {
1025 		if (value & bits[i].bit) {
1026 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1027 			first_bit = false;
1028 		}
1029 	} while (bits[++i].name != NULL);
1030 }
1031 
1032 static void __p_sample_type(char *buf, size_t size, u64 value)
1033 {
1034 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1035 	struct bit_names bits[] = {
1036 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1037 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1038 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1039 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1040 		bit_name(IDENTIFIER), bit_name(REGS_INTR),
1041 		{ .name = NULL, }
1042 	};
1043 #undef bit_name
1044 	__p_bits(buf, size, value, bits);
1045 }
1046 
1047 static void __p_read_format(char *buf, size_t size, u64 value)
1048 {
1049 #define bit_name(n) { PERF_FORMAT_##n, #n }
1050 	struct bit_names bits[] = {
1051 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1052 		bit_name(ID), bit_name(GROUP),
1053 		{ .name = NULL, }
1054 	};
1055 #undef bit_name
1056 	__p_bits(buf, size, value, bits);
1057 }
1058 
1059 #define BUF_SIZE		1024
1060 
1061 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%"PRIx64, (uint64_t)(val))
1062 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1063 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1064 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1065 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1066 
1067 #define PRINT_ATTRn(_n, _f, _p)				\
1068 do {							\
1069 	if (attr->_f) {					\
1070 		_p(attr->_f);				\
1071 		ret += attr__fprintf(fp, _n, buf, priv);\
1072 	}						\
1073 } while (0)
1074 
1075 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1076 
1077 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1078 			     attr__fprintf_f attr__fprintf, void *priv)
1079 {
1080 	char buf[BUF_SIZE];
1081 	int ret = 0;
1082 
1083 	PRINT_ATTRf(type, p_unsigned);
1084 	PRINT_ATTRf(size, p_unsigned);
1085 	PRINT_ATTRf(config, p_hex);
1086 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1087 	PRINT_ATTRf(sample_type, p_sample_type);
1088 	PRINT_ATTRf(read_format, p_read_format);
1089 
1090 	PRINT_ATTRf(disabled, p_unsigned);
1091 	PRINT_ATTRf(inherit, p_unsigned);
1092 	PRINT_ATTRf(pinned, p_unsigned);
1093 	PRINT_ATTRf(exclusive, p_unsigned);
1094 	PRINT_ATTRf(exclude_user, p_unsigned);
1095 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1096 	PRINT_ATTRf(exclude_hv, p_unsigned);
1097 	PRINT_ATTRf(exclude_idle, p_unsigned);
1098 	PRINT_ATTRf(mmap, p_unsigned);
1099 	PRINT_ATTRf(comm, p_unsigned);
1100 	PRINT_ATTRf(freq, p_unsigned);
1101 	PRINT_ATTRf(inherit_stat, p_unsigned);
1102 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1103 	PRINT_ATTRf(task, p_unsigned);
1104 	PRINT_ATTRf(watermark, p_unsigned);
1105 	PRINT_ATTRf(precise_ip, p_unsigned);
1106 	PRINT_ATTRf(mmap_data, p_unsigned);
1107 	PRINT_ATTRf(sample_id_all, p_unsigned);
1108 	PRINT_ATTRf(exclude_host, p_unsigned);
1109 	PRINT_ATTRf(exclude_guest, p_unsigned);
1110 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1111 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1112 	PRINT_ATTRf(mmap2, p_unsigned);
1113 	PRINT_ATTRf(comm_exec, p_unsigned);
1114 	PRINT_ATTRf(use_clockid, p_unsigned);
1115 
1116 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1117 	PRINT_ATTRf(bp_type, p_unsigned);
1118 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1119 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1120 	PRINT_ATTRf(sample_regs_user, p_hex);
1121 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1122 	PRINT_ATTRf(clockid, p_signed);
1123 	PRINT_ATTRf(sample_regs_intr, p_hex);
1124 	PRINT_ATTRf(aux_watermark, p_unsigned);
1125 
1126 	return ret;
1127 }
1128 
1129 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1130 				void *priv __attribute__((unused)))
1131 {
1132 	return fprintf(fp, "  %-32s %s\n", name, val);
1133 }
1134 
1135 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1136 			      struct thread_map *threads)
1137 {
1138 	int cpu, thread, nthreads;
1139 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1140 	int pid = -1, err;
1141 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1142 
1143 	if (evsel->system_wide)
1144 		nthreads = 1;
1145 	else
1146 		nthreads = threads->nr;
1147 
1148 	if (evsel->fd == NULL &&
1149 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1150 		return -ENOMEM;
1151 
1152 	if (evsel->cgrp) {
1153 		flags |= PERF_FLAG_PID_CGROUP;
1154 		pid = evsel->cgrp->fd;
1155 	}
1156 
1157 fallback_missing_features:
1158 	if (perf_missing_features.clockid_wrong)
1159 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1160 	if (perf_missing_features.clockid) {
1161 		evsel->attr.use_clockid = 0;
1162 		evsel->attr.clockid = 0;
1163 	}
1164 	if (perf_missing_features.cloexec)
1165 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1166 	if (perf_missing_features.mmap2)
1167 		evsel->attr.mmap2 = 0;
1168 	if (perf_missing_features.exclude_guest)
1169 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1170 retry_sample_id:
1171 	if (perf_missing_features.sample_id_all)
1172 		evsel->attr.sample_id_all = 0;
1173 
1174 	if (verbose >= 2) {
1175 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1176 		fprintf(stderr, "perf_event_attr:\n");
1177 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1178 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1179 	}
1180 
1181 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1182 
1183 		for (thread = 0; thread < nthreads; thread++) {
1184 			int group_fd;
1185 
1186 			if (!evsel->cgrp && !evsel->system_wide)
1187 				pid = threads->map[thread];
1188 
1189 			group_fd = get_group_fd(evsel, cpu, thread);
1190 retry_open:
1191 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1192 				  pid, cpus->map[cpu], group_fd, flags);
1193 
1194 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1195 								     pid,
1196 								     cpus->map[cpu],
1197 								     group_fd, flags);
1198 			if (FD(evsel, cpu, thread) < 0) {
1199 				err = -errno;
1200 				pr_debug2("sys_perf_event_open failed, error %d\n",
1201 					  err);
1202 				goto try_fallback;
1203 			}
1204 			set_rlimit = NO_CHANGE;
1205 
1206 			/*
1207 			 * If we succeeded but had to kill clockid, fail and
1208 			 * have perf_evsel__open_strerror() print us a nice
1209 			 * error.
1210 			 */
1211 			if (perf_missing_features.clockid ||
1212 			    perf_missing_features.clockid_wrong) {
1213 				err = -EINVAL;
1214 				goto out_close;
1215 			}
1216 		}
1217 	}
1218 
1219 	return 0;
1220 
1221 try_fallback:
1222 	/*
1223 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1224 	 * of them try to increase the limits.
1225 	 */
1226 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1227 		struct rlimit l;
1228 		int old_errno = errno;
1229 
1230 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1231 			if (set_rlimit == NO_CHANGE)
1232 				l.rlim_cur = l.rlim_max;
1233 			else {
1234 				l.rlim_cur = l.rlim_max + 1000;
1235 				l.rlim_max = l.rlim_cur;
1236 			}
1237 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1238 				set_rlimit++;
1239 				errno = old_errno;
1240 				goto retry_open;
1241 			}
1242 		}
1243 		errno = old_errno;
1244 	}
1245 
1246 	if (err != -EINVAL || cpu > 0 || thread > 0)
1247 		goto out_close;
1248 
1249 	/*
1250 	 * Must probe features in the order they were added to the
1251 	 * perf_event_attr interface.
1252 	 */
1253 	if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1254 		perf_missing_features.clockid_wrong = true;
1255 		goto fallback_missing_features;
1256 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1257 		perf_missing_features.clockid = true;
1258 		goto fallback_missing_features;
1259 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1260 		perf_missing_features.cloexec = true;
1261 		goto fallback_missing_features;
1262 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1263 		perf_missing_features.mmap2 = true;
1264 		goto fallback_missing_features;
1265 	} else if (!perf_missing_features.exclude_guest &&
1266 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1267 		perf_missing_features.exclude_guest = true;
1268 		goto fallback_missing_features;
1269 	} else if (!perf_missing_features.sample_id_all) {
1270 		perf_missing_features.sample_id_all = true;
1271 		goto retry_sample_id;
1272 	}
1273 
1274 out_close:
1275 	do {
1276 		while (--thread >= 0) {
1277 			close(FD(evsel, cpu, thread));
1278 			FD(evsel, cpu, thread) = -1;
1279 		}
1280 		thread = nthreads;
1281 	} while (--cpu >= 0);
1282 	return err;
1283 }
1284 
1285 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1286 {
1287 	if (evsel->fd == NULL)
1288 		return;
1289 
1290 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1291 	perf_evsel__free_fd(evsel);
1292 }
1293 
1294 static struct {
1295 	struct cpu_map map;
1296 	int cpus[1];
1297 } empty_cpu_map = {
1298 	.map.nr	= 1,
1299 	.cpus	= { -1, },
1300 };
1301 
1302 static struct {
1303 	struct thread_map map;
1304 	int threads[1];
1305 } empty_thread_map = {
1306 	.map.nr	 = 1,
1307 	.threads = { -1, },
1308 };
1309 
1310 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1311 		     struct thread_map *threads)
1312 {
1313 	if (cpus == NULL) {
1314 		/* Work around old compiler warnings about strict aliasing */
1315 		cpus = &empty_cpu_map.map;
1316 	}
1317 
1318 	if (threads == NULL)
1319 		threads = &empty_thread_map.map;
1320 
1321 	return __perf_evsel__open(evsel, cpus, threads);
1322 }
1323 
1324 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1325 			     struct cpu_map *cpus)
1326 {
1327 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1328 }
1329 
1330 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1331 				struct thread_map *threads)
1332 {
1333 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1334 }
1335 
1336 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1337 				       const union perf_event *event,
1338 				       struct perf_sample *sample)
1339 {
1340 	u64 type = evsel->attr.sample_type;
1341 	const u64 *array = event->sample.array;
1342 	bool swapped = evsel->needs_swap;
1343 	union u64_swap u;
1344 
1345 	array += ((event->header.size -
1346 		   sizeof(event->header)) / sizeof(u64)) - 1;
1347 
1348 	if (type & PERF_SAMPLE_IDENTIFIER) {
1349 		sample->id = *array;
1350 		array--;
1351 	}
1352 
1353 	if (type & PERF_SAMPLE_CPU) {
1354 		u.val64 = *array;
1355 		if (swapped) {
1356 			/* undo swap of u64, then swap on individual u32s */
1357 			u.val64 = bswap_64(u.val64);
1358 			u.val32[0] = bswap_32(u.val32[0]);
1359 		}
1360 
1361 		sample->cpu = u.val32[0];
1362 		array--;
1363 	}
1364 
1365 	if (type & PERF_SAMPLE_STREAM_ID) {
1366 		sample->stream_id = *array;
1367 		array--;
1368 	}
1369 
1370 	if (type & PERF_SAMPLE_ID) {
1371 		sample->id = *array;
1372 		array--;
1373 	}
1374 
1375 	if (type & PERF_SAMPLE_TIME) {
1376 		sample->time = *array;
1377 		array--;
1378 	}
1379 
1380 	if (type & PERF_SAMPLE_TID) {
1381 		u.val64 = *array;
1382 		if (swapped) {
1383 			/* undo swap of u64, then swap on individual u32s */
1384 			u.val64 = bswap_64(u.val64);
1385 			u.val32[0] = bswap_32(u.val32[0]);
1386 			u.val32[1] = bswap_32(u.val32[1]);
1387 		}
1388 
1389 		sample->pid = u.val32[0];
1390 		sample->tid = u.val32[1];
1391 		array--;
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1398 			    u64 size)
1399 {
1400 	return size > max_size || offset + size > endp;
1401 }
1402 
1403 #define OVERFLOW_CHECK(offset, size, max_size)				\
1404 	do {								\
1405 		if (overflow(endp, (max_size), (offset), (size)))	\
1406 			return -EFAULT;					\
1407 	} while (0)
1408 
1409 #define OVERFLOW_CHECK_u64(offset) \
1410 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1411 
1412 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1413 			     struct perf_sample *data)
1414 {
1415 	u64 type = evsel->attr.sample_type;
1416 	bool swapped = evsel->needs_swap;
1417 	const u64 *array;
1418 	u16 max_size = event->header.size;
1419 	const void *endp = (void *)event + max_size;
1420 	u64 sz;
1421 
1422 	/*
1423 	 * used for cross-endian analysis. See git commit 65014ab3
1424 	 * for why this goofiness is needed.
1425 	 */
1426 	union u64_swap u;
1427 
1428 	memset(data, 0, sizeof(*data));
1429 	data->cpu = data->pid = data->tid = -1;
1430 	data->stream_id = data->id = data->time = -1ULL;
1431 	data->period = evsel->attr.sample_period;
1432 	data->weight = 0;
1433 
1434 	if (event->header.type != PERF_RECORD_SAMPLE) {
1435 		if (!evsel->attr.sample_id_all)
1436 			return 0;
1437 		return perf_evsel__parse_id_sample(evsel, event, data);
1438 	}
1439 
1440 	array = event->sample.array;
1441 
1442 	/*
1443 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1444 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1445 	 * check the format does not go past the end of the event.
1446 	 */
1447 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1448 		return -EFAULT;
1449 
1450 	data->id = -1ULL;
1451 	if (type & PERF_SAMPLE_IDENTIFIER) {
1452 		data->id = *array;
1453 		array++;
1454 	}
1455 
1456 	if (type & PERF_SAMPLE_IP) {
1457 		data->ip = *array;
1458 		array++;
1459 	}
1460 
1461 	if (type & PERF_SAMPLE_TID) {
1462 		u.val64 = *array;
1463 		if (swapped) {
1464 			/* undo swap of u64, then swap on individual u32s */
1465 			u.val64 = bswap_64(u.val64);
1466 			u.val32[0] = bswap_32(u.val32[0]);
1467 			u.val32[1] = bswap_32(u.val32[1]);
1468 		}
1469 
1470 		data->pid = u.val32[0];
1471 		data->tid = u.val32[1];
1472 		array++;
1473 	}
1474 
1475 	if (type & PERF_SAMPLE_TIME) {
1476 		data->time = *array;
1477 		array++;
1478 	}
1479 
1480 	data->addr = 0;
1481 	if (type & PERF_SAMPLE_ADDR) {
1482 		data->addr = *array;
1483 		array++;
1484 	}
1485 
1486 	if (type & PERF_SAMPLE_ID) {
1487 		data->id = *array;
1488 		array++;
1489 	}
1490 
1491 	if (type & PERF_SAMPLE_STREAM_ID) {
1492 		data->stream_id = *array;
1493 		array++;
1494 	}
1495 
1496 	if (type & PERF_SAMPLE_CPU) {
1497 
1498 		u.val64 = *array;
1499 		if (swapped) {
1500 			/* undo swap of u64, then swap on individual u32s */
1501 			u.val64 = bswap_64(u.val64);
1502 			u.val32[0] = bswap_32(u.val32[0]);
1503 		}
1504 
1505 		data->cpu = u.val32[0];
1506 		array++;
1507 	}
1508 
1509 	if (type & PERF_SAMPLE_PERIOD) {
1510 		data->period = *array;
1511 		array++;
1512 	}
1513 
1514 	if (type & PERF_SAMPLE_READ) {
1515 		u64 read_format = evsel->attr.read_format;
1516 
1517 		OVERFLOW_CHECK_u64(array);
1518 		if (read_format & PERF_FORMAT_GROUP)
1519 			data->read.group.nr = *array;
1520 		else
1521 			data->read.one.value = *array;
1522 
1523 		array++;
1524 
1525 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1526 			OVERFLOW_CHECK_u64(array);
1527 			data->read.time_enabled = *array;
1528 			array++;
1529 		}
1530 
1531 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1532 			OVERFLOW_CHECK_u64(array);
1533 			data->read.time_running = *array;
1534 			array++;
1535 		}
1536 
1537 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1538 		if (read_format & PERF_FORMAT_GROUP) {
1539 			const u64 max_group_nr = UINT64_MAX /
1540 					sizeof(struct sample_read_value);
1541 
1542 			if (data->read.group.nr > max_group_nr)
1543 				return -EFAULT;
1544 			sz = data->read.group.nr *
1545 			     sizeof(struct sample_read_value);
1546 			OVERFLOW_CHECK(array, sz, max_size);
1547 			data->read.group.values =
1548 					(struct sample_read_value *)array;
1549 			array = (void *)array + sz;
1550 		} else {
1551 			OVERFLOW_CHECK_u64(array);
1552 			data->read.one.id = *array;
1553 			array++;
1554 		}
1555 	}
1556 
1557 	if (type & PERF_SAMPLE_CALLCHAIN) {
1558 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1559 
1560 		OVERFLOW_CHECK_u64(array);
1561 		data->callchain = (struct ip_callchain *)array++;
1562 		if (data->callchain->nr > max_callchain_nr)
1563 			return -EFAULT;
1564 		sz = data->callchain->nr * sizeof(u64);
1565 		OVERFLOW_CHECK(array, sz, max_size);
1566 		array = (void *)array + sz;
1567 	}
1568 
1569 	if (type & PERF_SAMPLE_RAW) {
1570 		OVERFLOW_CHECK_u64(array);
1571 		u.val64 = *array;
1572 		if (WARN_ONCE(swapped,
1573 			      "Endianness of raw data not corrected!\n")) {
1574 			/* undo swap of u64, then swap on individual u32s */
1575 			u.val64 = bswap_64(u.val64);
1576 			u.val32[0] = bswap_32(u.val32[0]);
1577 			u.val32[1] = bswap_32(u.val32[1]);
1578 		}
1579 		data->raw_size = u.val32[0];
1580 		array = (void *)array + sizeof(u32);
1581 
1582 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1583 		data->raw_data = (void *)array;
1584 		array = (void *)array + data->raw_size;
1585 	}
1586 
1587 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1588 		const u64 max_branch_nr = UINT64_MAX /
1589 					  sizeof(struct branch_entry);
1590 
1591 		OVERFLOW_CHECK_u64(array);
1592 		data->branch_stack = (struct branch_stack *)array++;
1593 
1594 		if (data->branch_stack->nr > max_branch_nr)
1595 			return -EFAULT;
1596 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1597 		OVERFLOW_CHECK(array, sz, max_size);
1598 		array = (void *)array + sz;
1599 	}
1600 
1601 	if (type & PERF_SAMPLE_REGS_USER) {
1602 		OVERFLOW_CHECK_u64(array);
1603 		data->user_regs.abi = *array;
1604 		array++;
1605 
1606 		if (data->user_regs.abi) {
1607 			u64 mask = evsel->attr.sample_regs_user;
1608 
1609 			sz = hweight_long(mask) * sizeof(u64);
1610 			OVERFLOW_CHECK(array, sz, max_size);
1611 			data->user_regs.mask = mask;
1612 			data->user_regs.regs = (u64 *)array;
1613 			array = (void *)array + sz;
1614 		}
1615 	}
1616 
1617 	if (type & PERF_SAMPLE_STACK_USER) {
1618 		OVERFLOW_CHECK_u64(array);
1619 		sz = *array++;
1620 
1621 		data->user_stack.offset = ((char *)(array - 1)
1622 					  - (char *) event);
1623 
1624 		if (!sz) {
1625 			data->user_stack.size = 0;
1626 		} else {
1627 			OVERFLOW_CHECK(array, sz, max_size);
1628 			data->user_stack.data = (char *)array;
1629 			array = (void *)array + sz;
1630 			OVERFLOW_CHECK_u64(array);
1631 			data->user_stack.size = *array++;
1632 			if (WARN_ONCE(data->user_stack.size > sz,
1633 				      "user stack dump failure\n"))
1634 				return -EFAULT;
1635 		}
1636 	}
1637 
1638 	data->weight = 0;
1639 	if (type & PERF_SAMPLE_WEIGHT) {
1640 		OVERFLOW_CHECK_u64(array);
1641 		data->weight = *array;
1642 		array++;
1643 	}
1644 
1645 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1646 	if (type & PERF_SAMPLE_DATA_SRC) {
1647 		OVERFLOW_CHECK_u64(array);
1648 		data->data_src = *array;
1649 		array++;
1650 	}
1651 
1652 	data->transaction = 0;
1653 	if (type & PERF_SAMPLE_TRANSACTION) {
1654 		OVERFLOW_CHECK_u64(array);
1655 		data->transaction = *array;
1656 		array++;
1657 	}
1658 
1659 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1660 	if (type & PERF_SAMPLE_REGS_INTR) {
1661 		OVERFLOW_CHECK_u64(array);
1662 		data->intr_regs.abi = *array;
1663 		array++;
1664 
1665 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1666 			u64 mask = evsel->attr.sample_regs_intr;
1667 
1668 			sz = hweight_long(mask) * sizeof(u64);
1669 			OVERFLOW_CHECK(array, sz, max_size);
1670 			data->intr_regs.mask = mask;
1671 			data->intr_regs.regs = (u64 *)array;
1672 			array = (void *)array + sz;
1673 		}
1674 	}
1675 
1676 	return 0;
1677 }
1678 
1679 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1680 				     u64 read_format)
1681 {
1682 	size_t sz, result = sizeof(struct sample_event);
1683 
1684 	if (type & PERF_SAMPLE_IDENTIFIER)
1685 		result += sizeof(u64);
1686 
1687 	if (type & PERF_SAMPLE_IP)
1688 		result += sizeof(u64);
1689 
1690 	if (type & PERF_SAMPLE_TID)
1691 		result += sizeof(u64);
1692 
1693 	if (type & PERF_SAMPLE_TIME)
1694 		result += sizeof(u64);
1695 
1696 	if (type & PERF_SAMPLE_ADDR)
1697 		result += sizeof(u64);
1698 
1699 	if (type & PERF_SAMPLE_ID)
1700 		result += sizeof(u64);
1701 
1702 	if (type & PERF_SAMPLE_STREAM_ID)
1703 		result += sizeof(u64);
1704 
1705 	if (type & PERF_SAMPLE_CPU)
1706 		result += sizeof(u64);
1707 
1708 	if (type & PERF_SAMPLE_PERIOD)
1709 		result += sizeof(u64);
1710 
1711 	if (type & PERF_SAMPLE_READ) {
1712 		result += sizeof(u64);
1713 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1714 			result += sizeof(u64);
1715 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1716 			result += sizeof(u64);
1717 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1718 		if (read_format & PERF_FORMAT_GROUP) {
1719 			sz = sample->read.group.nr *
1720 			     sizeof(struct sample_read_value);
1721 			result += sz;
1722 		} else {
1723 			result += sizeof(u64);
1724 		}
1725 	}
1726 
1727 	if (type & PERF_SAMPLE_CALLCHAIN) {
1728 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1729 		result += sz;
1730 	}
1731 
1732 	if (type & PERF_SAMPLE_RAW) {
1733 		result += sizeof(u32);
1734 		result += sample->raw_size;
1735 	}
1736 
1737 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1738 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1739 		sz += sizeof(u64);
1740 		result += sz;
1741 	}
1742 
1743 	if (type & PERF_SAMPLE_REGS_USER) {
1744 		if (sample->user_regs.abi) {
1745 			result += sizeof(u64);
1746 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1747 			result += sz;
1748 		} else {
1749 			result += sizeof(u64);
1750 		}
1751 	}
1752 
1753 	if (type & PERF_SAMPLE_STACK_USER) {
1754 		sz = sample->user_stack.size;
1755 		result += sizeof(u64);
1756 		if (sz) {
1757 			result += sz;
1758 			result += sizeof(u64);
1759 		}
1760 	}
1761 
1762 	if (type & PERF_SAMPLE_WEIGHT)
1763 		result += sizeof(u64);
1764 
1765 	if (type & PERF_SAMPLE_DATA_SRC)
1766 		result += sizeof(u64);
1767 
1768 	if (type & PERF_SAMPLE_TRANSACTION)
1769 		result += sizeof(u64);
1770 
1771 	if (type & PERF_SAMPLE_REGS_INTR) {
1772 		if (sample->intr_regs.abi) {
1773 			result += sizeof(u64);
1774 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1775 			result += sz;
1776 		} else {
1777 			result += sizeof(u64);
1778 		}
1779 	}
1780 
1781 	return result;
1782 }
1783 
1784 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1785 				  u64 read_format,
1786 				  const struct perf_sample *sample,
1787 				  bool swapped)
1788 {
1789 	u64 *array;
1790 	size_t sz;
1791 	/*
1792 	 * used for cross-endian analysis. See git commit 65014ab3
1793 	 * for why this goofiness is needed.
1794 	 */
1795 	union u64_swap u;
1796 
1797 	array = event->sample.array;
1798 
1799 	if (type & PERF_SAMPLE_IDENTIFIER) {
1800 		*array = sample->id;
1801 		array++;
1802 	}
1803 
1804 	if (type & PERF_SAMPLE_IP) {
1805 		*array = sample->ip;
1806 		array++;
1807 	}
1808 
1809 	if (type & PERF_SAMPLE_TID) {
1810 		u.val32[0] = sample->pid;
1811 		u.val32[1] = sample->tid;
1812 		if (swapped) {
1813 			/*
1814 			 * Inverse of what is done in perf_evsel__parse_sample
1815 			 */
1816 			u.val32[0] = bswap_32(u.val32[0]);
1817 			u.val32[1] = bswap_32(u.val32[1]);
1818 			u.val64 = bswap_64(u.val64);
1819 		}
1820 
1821 		*array = u.val64;
1822 		array++;
1823 	}
1824 
1825 	if (type & PERF_SAMPLE_TIME) {
1826 		*array = sample->time;
1827 		array++;
1828 	}
1829 
1830 	if (type & PERF_SAMPLE_ADDR) {
1831 		*array = sample->addr;
1832 		array++;
1833 	}
1834 
1835 	if (type & PERF_SAMPLE_ID) {
1836 		*array = sample->id;
1837 		array++;
1838 	}
1839 
1840 	if (type & PERF_SAMPLE_STREAM_ID) {
1841 		*array = sample->stream_id;
1842 		array++;
1843 	}
1844 
1845 	if (type & PERF_SAMPLE_CPU) {
1846 		u.val32[0] = sample->cpu;
1847 		if (swapped) {
1848 			/*
1849 			 * Inverse of what is done in perf_evsel__parse_sample
1850 			 */
1851 			u.val32[0] = bswap_32(u.val32[0]);
1852 			u.val64 = bswap_64(u.val64);
1853 		}
1854 		*array = u.val64;
1855 		array++;
1856 	}
1857 
1858 	if (type & PERF_SAMPLE_PERIOD) {
1859 		*array = sample->period;
1860 		array++;
1861 	}
1862 
1863 	if (type & PERF_SAMPLE_READ) {
1864 		if (read_format & PERF_FORMAT_GROUP)
1865 			*array = sample->read.group.nr;
1866 		else
1867 			*array = sample->read.one.value;
1868 		array++;
1869 
1870 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1871 			*array = sample->read.time_enabled;
1872 			array++;
1873 		}
1874 
1875 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1876 			*array = sample->read.time_running;
1877 			array++;
1878 		}
1879 
1880 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1881 		if (read_format & PERF_FORMAT_GROUP) {
1882 			sz = sample->read.group.nr *
1883 			     sizeof(struct sample_read_value);
1884 			memcpy(array, sample->read.group.values, sz);
1885 			array = (void *)array + sz;
1886 		} else {
1887 			*array = sample->read.one.id;
1888 			array++;
1889 		}
1890 	}
1891 
1892 	if (type & PERF_SAMPLE_CALLCHAIN) {
1893 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1894 		memcpy(array, sample->callchain, sz);
1895 		array = (void *)array + sz;
1896 	}
1897 
1898 	if (type & PERF_SAMPLE_RAW) {
1899 		u.val32[0] = sample->raw_size;
1900 		if (WARN_ONCE(swapped,
1901 			      "Endianness of raw data not corrected!\n")) {
1902 			/*
1903 			 * Inverse of what is done in perf_evsel__parse_sample
1904 			 */
1905 			u.val32[0] = bswap_32(u.val32[0]);
1906 			u.val32[1] = bswap_32(u.val32[1]);
1907 			u.val64 = bswap_64(u.val64);
1908 		}
1909 		*array = u.val64;
1910 		array = (void *)array + sizeof(u32);
1911 
1912 		memcpy(array, sample->raw_data, sample->raw_size);
1913 		array = (void *)array + sample->raw_size;
1914 	}
1915 
1916 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1917 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1918 		sz += sizeof(u64);
1919 		memcpy(array, sample->branch_stack, sz);
1920 		array = (void *)array + sz;
1921 	}
1922 
1923 	if (type & PERF_SAMPLE_REGS_USER) {
1924 		if (sample->user_regs.abi) {
1925 			*array++ = sample->user_regs.abi;
1926 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1927 			memcpy(array, sample->user_regs.regs, sz);
1928 			array = (void *)array + sz;
1929 		} else {
1930 			*array++ = 0;
1931 		}
1932 	}
1933 
1934 	if (type & PERF_SAMPLE_STACK_USER) {
1935 		sz = sample->user_stack.size;
1936 		*array++ = sz;
1937 		if (sz) {
1938 			memcpy(array, sample->user_stack.data, sz);
1939 			array = (void *)array + sz;
1940 			*array++ = sz;
1941 		}
1942 	}
1943 
1944 	if (type & PERF_SAMPLE_WEIGHT) {
1945 		*array = sample->weight;
1946 		array++;
1947 	}
1948 
1949 	if (type & PERF_SAMPLE_DATA_SRC) {
1950 		*array = sample->data_src;
1951 		array++;
1952 	}
1953 
1954 	if (type & PERF_SAMPLE_TRANSACTION) {
1955 		*array = sample->transaction;
1956 		array++;
1957 	}
1958 
1959 	if (type & PERF_SAMPLE_REGS_INTR) {
1960 		if (sample->intr_regs.abi) {
1961 			*array++ = sample->intr_regs.abi;
1962 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1963 			memcpy(array, sample->intr_regs.regs, sz);
1964 			array = (void *)array + sz;
1965 		} else {
1966 			*array++ = 0;
1967 		}
1968 	}
1969 
1970 	return 0;
1971 }
1972 
1973 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1974 {
1975 	return pevent_find_field(evsel->tp_format, name);
1976 }
1977 
1978 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1979 			 const char *name)
1980 {
1981 	struct format_field *field = perf_evsel__field(evsel, name);
1982 	int offset;
1983 
1984 	if (!field)
1985 		return NULL;
1986 
1987 	offset = field->offset;
1988 
1989 	if (field->flags & FIELD_IS_DYNAMIC) {
1990 		offset = *(int *)(sample->raw_data + field->offset);
1991 		offset &= 0xffff;
1992 	}
1993 
1994 	return sample->raw_data + offset;
1995 }
1996 
1997 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1998 		       const char *name)
1999 {
2000 	struct format_field *field = perf_evsel__field(evsel, name);
2001 	void *ptr;
2002 	u64 value;
2003 
2004 	if (!field)
2005 		return 0;
2006 
2007 	ptr = sample->raw_data + field->offset;
2008 
2009 	switch (field->size) {
2010 	case 1:
2011 		return *(u8 *)ptr;
2012 	case 2:
2013 		value = *(u16 *)ptr;
2014 		break;
2015 	case 4:
2016 		value = *(u32 *)ptr;
2017 		break;
2018 	case 8:
2019 		memcpy(&value, ptr, sizeof(u64));
2020 		break;
2021 	default:
2022 		return 0;
2023 	}
2024 
2025 	if (!evsel->needs_swap)
2026 		return value;
2027 
2028 	switch (field->size) {
2029 	case 2:
2030 		return bswap_16(value);
2031 	case 4:
2032 		return bswap_32(value);
2033 	case 8:
2034 		return bswap_64(value);
2035 	default:
2036 		return 0;
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2043 {
2044 	va_list args;
2045 	int ret = 0;
2046 
2047 	if (!*first) {
2048 		ret += fprintf(fp, ",");
2049 	} else {
2050 		ret += fprintf(fp, ":");
2051 		*first = false;
2052 	}
2053 
2054 	va_start(args, fmt);
2055 	ret += vfprintf(fp, fmt, args);
2056 	va_end(args);
2057 	return ret;
2058 }
2059 
2060 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2061 {
2062 	return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2063 }
2064 
2065 int perf_evsel__fprintf(struct perf_evsel *evsel,
2066 			struct perf_attr_details *details, FILE *fp)
2067 {
2068 	bool first = true;
2069 	int printed = 0;
2070 
2071 	if (details->event_group) {
2072 		struct perf_evsel *pos;
2073 
2074 		if (!perf_evsel__is_group_leader(evsel))
2075 			return 0;
2076 
2077 		if (evsel->nr_members > 1)
2078 			printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2079 
2080 		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2081 		for_each_group_member(pos, evsel)
2082 			printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2083 
2084 		if (evsel->nr_members > 1)
2085 			printed += fprintf(fp, "}");
2086 		goto out;
2087 	}
2088 
2089 	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2090 
2091 	if (details->verbose) {
2092 		printed += perf_event_attr__fprintf(fp, &evsel->attr,
2093 						    __print_attr__fprintf, &first);
2094 	} else if (details->freq) {
2095 		printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
2096 					 (u64)evsel->attr.sample_freq);
2097 	}
2098 out:
2099 	fputc('\n', fp);
2100 	return ++printed;
2101 }
2102 
2103 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2104 			  char *msg, size_t msgsize)
2105 {
2106 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2107 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2108 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2109 		/*
2110 		 * If it's cycles then fall back to hrtimer based
2111 		 * cpu-clock-tick sw counter, which is always available even if
2112 		 * no PMU support.
2113 		 *
2114 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2115 		 * b0a873e).
2116 		 */
2117 		scnprintf(msg, msgsize, "%s",
2118 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2119 
2120 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2121 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2122 
2123 		zfree(&evsel->name);
2124 		return true;
2125 	}
2126 
2127 	return false;
2128 }
2129 
2130 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2131 			      int err, char *msg, size_t size)
2132 {
2133 	char sbuf[STRERR_BUFSIZE];
2134 
2135 	switch (err) {
2136 	case EPERM:
2137 	case EACCES:
2138 		return scnprintf(msg, size,
2139 		 "You may not have permission to collect %sstats.\n"
2140 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2141 		 " -1 - Not paranoid at all\n"
2142 		 "  0 - Disallow raw tracepoint access for unpriv\n"
2143 		 "  1 - Disallow cpu events for unpriv\n"
2144 		 "  2 - Disallow kernel profiling for unpriv",
2145 				 target->system_wide ? "system-wide " : "");
2146 	case ENOENT:
2147 		return scnprintf(msg, size, "The %s event is not supported.",
2148 				 perf_evsel__name(evsel));
2149 	case EMFILE:
2150 		return scnprintf(msg, size, "%s",
2151 			 "Too many events are opened.\n"
2152 			 "Try again after reducing the number of events.");
2153 	case ENODEV:
2154 		if (target->cpu_list)
2155 			return scnprintf(msg, size, "%s",
2156 	 "No such device - did you specify an out-of-range profile CPU?\n");
2157 		break;
2158 	case EOPNOTSUPP:
2159 		if (evsel->attr.precise_ip)
2160 			return scnprintf(msg, size, "%s",
2161 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2162 #if defined(__i386__) || defined(__x86_64__)
2163 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2164 			return scnprintf(msg, size, "%s",
2165 	"No hardware sampling interrupt available.\n"
2166 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2167 #endif
2168 		break;
2169 	case EBUSY:
2170 		if (find_process("oprofiled"))
2171 			return scnprintf(msg, size,
2172 	"The PMU counters are busy/taken by another profiler.\n"
2173 	"We found oprofile daemon running, please stop it and try again.");
2174 		break;
2175 	case EINVAL:
2176 		if (perf_missing_features.clockid)
2177 			return scnprintf(msg, size, "clockid feature not supported.");
2178 		if (perf_missing_features.clockid_wrong)
2179 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2180 		break;
2181 	default:
2182 		break;
2183 	}
2184 
2185 	return scnprintf(msg, size,
2186 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2187 	"/bin/dmesg may provide additional information.\n"
2188 	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2189 			 err, strerror_r(err, sbuf, sizeof(sbuf)),
2190 			 perf_evsel__name(evsel));
2191 }
2192