1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->max_events = ULONG_MAX; 236 evsel->evlist = NULL; 237 evsel->bpf_fd = -1; 238 INIT_LIST_HEAD(&evsel->node); 239 INIT_LIST_HEAD(&evsel->config_terms); 240 perf_evsel__object.init(evsel); 241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 242 perf_evsel__calc_id_pos(evsel); 243 evsel->cmdline_group_boundary = false; 244 evsel->metric_expr = NULL; 245 evsel->metric_name = NULL; 246 evsel->metric_events = NULL; 247 evsel->collect_stat = false; 248 evsel->pmu_name = NULL; 249 } 250 251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 252 { 253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 254 255 if (!evsel) 256 return NULL; 257 perf_evsel__init(evsel, attr, idx); 258 259 if (perf_evsel__is_bpf_output(evsel)) { 260 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 261 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 262 evsel->attr.sample_period = 1; 263 } 264 265 if (perf_evsel__is_clock(evsel)) { 266 /* 267 * The evsel->unit points to static alias->unit 268 * so it's ok to use static string in here. 269 */ 270 static const char *unit = "msec"; 271 272 evsel->unit = unit; 273 evsel->scale = 1e-6; 274 } 275 276 return evsel; 277 } 278 279 static bool perf_event_can_profile_kernel(void) 280 { 281 return geteuid() == 0 || perf_event_paranoid() == -1; 282 } 283 284 struct perf_evsel *perf_evsel__new_cycles(bool precise) 285 { 286 struct perf_event_attr attr = { 287 .type = PERF_TYPE_HARDWARE, 288 .config = PERF_COUNT_HW_CPU_CYCLES, 289 .exclude_kernel = !perf_event_can_profile_kernel(), 290 }; 291 struct perf_evsel *evsel; 292 293 event_attr_init(&attr); 294 295 if (!precise) 296 goto new_event; 297 298 /* 299 * Now let the usual logic to set up the perf_event_attr defaults 300 * to kick in when we return and before perf_evsel__open() is called. 301 */ 302 new_event: 303 evsel = perf_evsel__new(&attr); 304 if (evsel == NULL) 305 goto out; 306 307 evsel->precise_max = true; 308 309 /* use asprintf() because free(evsel) assumes name is allocated */ 310 if (asprintf(&evsel->name, "cycles%s%s%.*s", 311 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 312 attr.exclude_kernel ? "u" : "", 313 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 314 goto error_free; 315 out: 316 return evsel; 317 error_free: 318 perf_evsel__delete(evsel); 319 evsel = NULL; 320 goto out; 321 } 322 323 /* 324 * Returns pointer with encoded error via <linux/err.h> interface. 325 */ 326 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 327 { 328 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 329 int err = -ENOMEM; 330 331 if (evsel == NULL) { 332 goto out_err; 333 } else { 334 struct perf_event_attr attr = { 335 .type = PERF_TYPE_TRACEPOINT, 336 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 337 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 338 }; 339 340 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 341 goto out_free; 342 343 evsel->tp_format = trace_event__tp_format(sys, name); 344 if (IS_ERR(evsel->tp_format)) { 345 err = PTR_ERR(evsel->tp_format); 346 goto out_free; 347 } 348 349 event_attr_init(&attr); 350 attr.config = evsel->tp_format->id; 351 attr.sample_period = 1; 352 perf_evsel__init(evsel, &attr, idx); 353 } 354 355 return evsel; 356 357 out_free: 358 zfree(&evsel->name); 359 free(evsel); 360 out_err: 361 return ERR_PTR(err); 362 } 363 364 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 365 "cycles", 366 "instructions", 367 "cache-references", 368 "cache-misses", 369 "branches", 370 "branch-misses", 371 "bus-cycles", 372 "stalled-cycles-frontend", 373 "stalled-cycles-backend", 374 "ref-cycles", 375 }; 376 377 static const char *__perf_evsel__hw_name(u64 config) 378 { 379 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 380 return perf_evsel__hw_names[config]; 381 382 return "unknown-hardware"; 383 } 384 385 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 386 { 387 int colon = 0, r = 0; 388 struct perf_event_attr *attr = &evsel->attr; 389 bool exclude_guest_default = false; 390 391 #define MOD_PRINT(context, mod) do { \ 392 if (!attr->exclude_##context) { \ 393 if (!colon) colon = ++r; \ 394 r += scnprintf(bf + r, size - r, "%c", mod); \ 395 } } while(0) 396 397 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 398 MOD_PRINT(kernel, 'k'); 399 MOD_PRINT(user, 'u'); 400 MOD_PRINT(hv, 'h'); 401 exclude_guest_default = true; 402 } 403 404 if (attr->precise_ip) { 405 if (!colon) 406 colon = ++r; 407 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 408 exclude_guest_default = true; 409 } 410 411 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 412 MOD_PRINT(host, 'H'); 413 MOD_PRINT(guest, 'G'); 414 } 415 #undef MOD_PRINT 416 if (colon) 417 bf[colon - 1] = ':'; 418 return r; 419 } 420 421 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 422 { 423 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 424 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 425 } 426 427 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 428 "cpu-clock", 429 "task-clock", 430 "page-faults", 431 "context-switches", 432 "cpu-migrations", 433 "minor-faults", 434 "major-faults", 435 "alignment-faults", 436 "emulation-faults", 437 "dummy", 438 }; 439 440 static const char *__perf_evsel__sw_name(u64 config) 441 { 442 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 443 return perf_evsel__sw_names[config]; 444 return "unknown-software"; 445 } 446 447 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 448 { 449 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 450 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 451 } 452 453 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 454 { 455 int r; 456 457 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 458 459 if (type & HW_BREAKPOINT_R) 460 r += scnprintf(bf + r, size - r, "r"); 461 462 if (type & HW_BREAKPOINT_W) 463 r += scnprintf(bf + r, size - r, "w"); 464 465 if (type & HW_BREAKPOINT_X) 466 r += scnprintf(bf + r, size - r, "x"); 467 468 return r; 469 } 470 471 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 472 { 473 struct perf_event_attr *attr = &evsel->attr; 474 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 475 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 476 } 477 478 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 479 [PERF_EVSEL__MAX_ALIASES] = { 480 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 481 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 482 { "LLC", "L2", }, 483 { "dTLB", "d-tlb", "Data-TLB", }, 484 { "iTLB", "i-tlb", "Instruction-TLB", }, 485 { "branch", "branches", "bpu", "btb", "bpc", }, 486 { "node", }, 487 }; 488 489 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 490 [PERF_EVSEL__MAX_ALIASES] = { 491 { "load", "loads", "read", }, 492 { "store", "stores", "write", }, 493 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 494 }; 495 496 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 497 [PERF_EVSEL__MAX_ALIASES] = { 498 { "refs", "Reference", "ops", "access", }, 499 { "misses", "miss", }, 500 }; 501 502 #define C(x) PERF_COUNT_HW_CACHE_##x 503 #define CACHE_READ (1 << C(OP_READ)) 504 #define CACHE_WRITE (1 << C(OP_WRITE)) 505 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 506 #define COP(x) (1 << x) 507 508 /* 509 * cache operartion stat 510 * L1I : Read and prefetch only 511 * ITLB and BPU : Read-only 512 */ 513 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 514 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 515 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 516 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 517 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 518 [C(ITLB)] = (CACHE_READ), 519 [C(BPU)] = (CACHE_READ), 520 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 521 }; 522 523 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 524 { 525 if (perf_evsel__hw_cache_stat[type] & COP(op)) 526 return true; /* valid */ 527 else 528 return false; /* invalid */ 529 } 530 531 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 532 char *bf, size_t size) 533 { 534 if (result) { 535 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 536 perf_evsel__hw_cache_op[op][0], 537 perf_evsel__hw_cache_result[result][0]); 538 } 539 540 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 541 perf_evsel__hw_cache_op[op][1]); 542 } 543 544 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 545 { 546 u8 op, result, type = (config >> 0) & 0xff; 547 const char *err = "unknown-ext-hardware-cache-type"; 548 549 if (type >= PERF_COUNT_HW_CACHE_MAX) 550 goto out_err; 551 552 op = (config >> 8) & 0xff; 553 err = "unknown-ext-hardware-cache-op"; 554 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 555 goto out_err; 556 557 result = (config >> 16) & 0xff; 558 err = "unknown-ext-hardware-cache-result"; 559 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 560 goto out_err; 561 562 err = "invalid-cache"; 563 if (!perf_evsel__is_cache_op_valid(type, op)) 564 goto out_err; 565 566 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 567 out_err: 568 return scnprintf(bf, size, "%s", err); 569 } 570 571 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 572 { 573 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 574 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 575 } 576 577 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 578 { 579 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 581 } 582 583 static int perf_evsel__tool_name(char *bf, size_t size) 584 { 585 int ret = scnprintf(bf, size, "duration_time"); 586 return ret; 587 } 588 589 const char *perf_evsel__name(struct perf_evsel *evsel) 590 { 591 char bf[128]; 592 593 if (evsel->name) 594 return evsel->name; 595 596 switch (evsel->attr.type) { 597 case PERF_TYPE_RAW: 598 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 599 break; 600 601 case PERF_TYPE_HARDWARE: 602 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 603 break; 604 605 case PERF_TYPE_HW_CACHE: 606 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 607 break; 608 609 case PERF_TYPE_SOFTWARE: 610 if (evsel->tool_event) 611 perf_evsel__tool_name(bf, sizeof(bf)); 612 else 613 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 614 break; 615 616 case PERF_TYPE_TRACEPOINT: 617 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 618 break; 619 620 case PERF_TYPE_BREAKPOINT: 621 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 622 break; 623 624 default: 625 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 626 evsel->attr.type); 627 break; 628 } 629 630 evsel->name = strdup(bf); 631 632 return evsel->name ?: "unknown"; 633 } 634 635 const char *perf_evsel__group_name(struct perf_evsel *evsel) 636 { 637 return evsel->group_name ?: "anon group"; 638 } 639 640 /* 641 * Returns the group details for the specified leader, 642 * with following rules. 643 * 644 * For record -e '{cycles,instructions}' 645 * 'anon group { cycles:u, instructions:u }' 646 * 647 * For record -e 'cycles,instructions' and report --group 648 * 'cycles:u, instructions:u' 649 */ 650 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 651 { 652 int ret = 0; 653 struct perf_evsel *pos; 654 const char *group_name = perf_evsel__group_name(evsel); 655 656 if (!evsel->forced_leader) 657 ret = scnprintf(buf, size, "%s { ", group_name); 658 659 ret += scnprintf(buf + ret, size - ret, "%s", 660 perf_evsel__name(evsel)); 661 662 for_each_group_member(pos, evsel) 663 ret += scnprintf(buf + ret, size - ret, ", %s", 664 perf_evsel__name(pos)); 665 666 if (!evsel->forced_leader) 667 ret += scnprintf(buf + ret, size - ret, " }"); 668 669 return ret; 670 } 671 672 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 673 struct record_opts *opts, 674 struct callchain_param *param) 675 { 676 bool function = perf_evsel__is_function_event(evsel); 677 struct perf_event_attr *attr = &evsel->attr; 678 679 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 680 681 attr->sample_max_stack = param->max_stack; 682 683 if (param->record_mode == CALLCHAIN_LBR) { 684 if (!opts->branch_stack) { 685 if (attr->exclude_user) { 686 pr_warning("LBR callstack option is only available " 687 "to get user callchain information. " 688 "Falling back to framepointers.\n"); 689 } else { 690 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 691 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 692 PERF_SAMPLE_BRANCH_CALL_STACK | 693 PERF_SAMPLE_BRANCH_NO_CYCLES | 694 PERF_SAMPLE_BRANCH_NO_FLAGS; 695 } 696 } else 697 pr_warning("Cannot use LBR callstack with branch stack. " 698 "Falling back to framepointers.\n"); 699 } 700 701 if (param->record_mode == CALLCHAIN_DWARF) { 702 if (!function) { 703 perf_evsel__set_sample_bit(evsel, REGS_USER); 704 perf_evsel__set_sample_bit(evsel, STACK_USER); 705 attr->sample_regs_user |= PERF_REGS_MASK; 706 attr->sample_stack_user = param->dump_size; 707 attr->exclude_callchain_user = 1; 708 } else { 709 pr_info("Cannot use DWARF unwind for function trace event," 710 " falling back to framepointers.\n"); 711 } 712 } 713 714 if (function) { 715 pr_info("Disabling user space callchains for function trace event.\n"); 716 attr->exclude_callchain_user = 1; 717 } 718 } 719 720 void perf_evsel__config_callchain(struct perf_evsel *evsel, 721 struct record_opts *opts, 722 struct callchain_param *param) 723 { 724 if (param->enabled) 725 return __perf_evsel__config_callchain(evsel, opts, param); 726 } 727 728 static void 729 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 730 struct callchain_param *param) 731 { 732 struct perf_event_attr *attr = &evsel->attr; 733 734 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 735 if (param->record_mode == CALLCHAIN_LBR) { 736 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 737 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 738 PERF_SAMPLE_BRANCH_CALL_STACK); 739 } 740 if (param->record_mode == CALLCHAIN_DWARF) { 741 perf_evsel__reset_sample_bit(evsel, REGS_USER); 742 perf_evsel__reset_sample_bit(evsel, STACK_USER); 743 } 744 } 745 746 static void apply_config_terms(struct perf_evsel *evsel, 747 struct record_opts *opts, bool track) 748 { 749 struct perf_evsel_config_term *term; 750 struct list_head *config_terms = &evsel->config_terms; 751 struct perf_event_attr *attr = &evsel->attr; 752 /* callgraph default */ 753 struct callchain_param param = { 754 .record_mode = callchain_param.record_mode, 755 }; 756 u32 dump_size = 0; 757 int max_stack = 0; 758 const char *callgraph_buf = NULL; 759 760 list_for_each_entry(term, config_terms, list) { 761 switch (term->type) { 762 case PERF_EVSEL__CONFIG_TERM_PERIOD: 763 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 764 attr->sample_period = term->val.period; 765 attr->freq = 0; 766 perf_evsel__reset_sample_bit(evsel, PERIOD); 767 } 768 break; 769 case PERF_EVSEL__CONFIG_TERM_FREQ: 770 if (!(term->weak && opts->user_freq != UINT_MAX)) { 771 attr->sample_freq = term->val.freq; 772 attr->freq = 1; 773 perf_evsel__set_sample_bit(evsel, PERIOD); 774 } 775 break; 776 case PERF_EVSEL__CONFIG_TERM_TIME: 777 if (term->val.time) 778 perf_evsel__set_sample_bit(evsel, TIME); 779 else 780 perf_evsel__reset_sample_bit(evsel, TIME); 781 break; 782 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 783 callgraph_buf = term->val.callgraph; 784 break; 785 case PERF_EVSEL__CONFIG_TERM_BRANCH: 786 if (term->val.branch && strcmp(term->val.branch, "no")) { 787 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 788 parse_branch_str(term->val.branch, 789 &attr->branch_sample_type); 790 } else 791 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 792 break; 793 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 794 dump_size = term->val.stack_user; 795 break; 796 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 797 max_stack = term->val.max_stack; 798 break; 799 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 800 evsel->max_events = term->val.max_events; 801 break; 802 case PERF_EVSEL__CONFIG_TERM_INHERIT: 803 /* 804 * attr->inherit should has already been set by 805 * perf_evsel__config. If user explicitly set 806 * inherit using config terms, override global 807 * opt->no_inherit setting. 808 */ 809 attr->inherit = term->val.inherit ? 1 : 0; 810 break; 811 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 812 attr->write_backward = term->val.overwrite ? 1 : 0; 813 break; 814 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 815 break; 816 default: 817 break; 818 } 819 } 820 821 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 822 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 823 bool sample_address = false; 824 825 if (max_stack) { 826 param.max_stack = max_stack; 827 if (callgraph_buf == NULL) 828 callgraph_buf = "fp"; 829 } 830 831 /* parse callgraph parameters */ 832 if (callgraph_buf != NULL) { 833 if (!strcmp(callgraph_buf, "no")) { 834 param.enabled = false; 835 param.record_mode = CALLCHAIN_NONE; 836 } else { 837 param.enabled = true; 838 if (parse_callchain_record(callgraph_buf, ¶m)) { 839 pr_err("per-event callgraph setting for %s failed. " 840 "Apply callgraph global setting for it\n", 841 evsel->name); 842 return; 843 } 844 if (param.record_mode == CALLCHAIN_DWARF) 845 sample_address = true; 846 } 847 } 848 if (dump_size > 0) { 849 dump_size = round_up(dump_size, sizeof(u64)); 850 param.dump_size = dump_size; 851 } 852 853 /* If global callgraph set, clear it */ 854 if (callchain_param.enabled) 855 perf_evsel__reset_callgraph(evsel, &callchain_param); 856 857 /* set perf-event callgraph */ 858 if (param.enabled) { 859 if (sample_address) { 860 perf_evsel__set_sample_bit(evsel, ADDR); 861 perf_evsel__set_sample_bit(evsel, DATA_SRC); 862 evsel->attr.mmap_data = track; 863 } 864 perf_evsel__config_callchain(evsel, opts, ¶m); 865 } 866 } 867 } 868 869 static bool is_dummy_event(struct perf_evsel *evsel) 870 { 871 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 872 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 873 } 874 875 /* 876 * The enable_on_exec/disabled value strategy: 877 * 878 * 1) For any type of traced program: 879 * - all independent events and group leaders are disabled 880 * - all group members are enabled 881 * 882 * Group members are ruled by group leaders. They need to 883 * be enabled, because the group scheduling relies on that. 884 * 885 * 2) For traced programs executed by perf: 886 * - all independent events and group leaders have 887 * enable_on_exec set 888 * - we don't specifically enable or disable any event during 889 * the record command 890 * 891 * Independent events and group leaders are initially disabled 892 * and get enabled by exec. Group members are ruled by group 893 * leaders as stated in 1). 894 * 895 * 3) For traced programs attached by perf (pid/tid): 896 * - we specifically enable or disable all events during 897 * the record command 898 * 899 * When attaching events to already running traced we 900 * enable/disable events specifically, as there's no 901 * initial traced exec call. 902 */ 903 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 904 struct callchain_param *callchain) 905 { 906 struct perf_evsel *leader = evsel->leader; 907 struct perf_event_attr *attr = &evsel->attr; 908 int track = evsel->tracking; 909 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 910 911 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 912 attr->inherit = !opts->no_inherit; 913 attr->write_backward = opts->overwrite ? 1 : 0; 914 915 perf_evsel__set_sample_bit(evsel, IP); 916 perf_evsel__set_sample_bit(evsel, TID); 917 918 if (evsel->sample_read) { 919 perf_evsel__set_sample_bit(evsel, READ); 920 921 /* 922 * We need ID even in case of single event, because 923 * PERF_SAMPLE_READ process ID specific data. 924 */ 925 perf_evsel__set_sample_id(evsel, false); 926 927 /* 928 * Apply group format only if we belong to group 929 * with more than one members. 930 */ 931 if (leader->nr_members > 1) { 932 attr->read_format |= PERF_FORMAT_GROUP; 933 attr->inherit = 0; 934 } 935 } 936 937 /* 938 * We default some events to have a default interval. But keep 939 * it a weak assumption overridable by the user. 940 */ 941 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 942 opts->user_interval != ULLONG_MAX)) { 943 if (opts->freq) { 944 perf_evsel__set_sample_bit(evsel, PERIOD); 945 attr->freq = 1; 946 attr->sample_freq = opts->freq; 947 } else { 948 attr->sample_period = opts->default_interval; 949 } 950 } 951 952 /* 953 * Disable sampling for all group members other 954 * than leader in case leader 'leads' the sampling. 955 */ 956 if ((leader != evsel) && leader->sample_read) { 957 attr->freq = 0; 958 attr->sample_freq = 0; 959 attr->sample_period = 0; 960 attr->write_backward = 0; 961 962 /* 963 * We don't get sample for slave events, we make them 964 * when delivering group leader sample. Set the slave 965 * event to follow the master sample_type to ease up 966 * report. 967 */ 968 attr->sample_type = leader->attr.sample_type; 969 } 970 971 if (opts->no_samples) 972 attr->sample_freq = 0; 973 974 if (opts->inherit_stat) { 975 evsel->attr.read_format |= 976 PERF_FORMAT_TOTAL_TIME_ENABLED | 977 PERF_FORMAT_TOTAL_TIME_RUNNING | 978 PERF_FORMAT_ID; 979 attr->inherit_stat = 1; 980 } 981 982 if (opts->sample_address) { 983 perf_evsel__set_sample_bit(evsel, ADDR); 984 attr->mmap_data = track; 985 } 986 987 /* 988 * We don't allow user space callchains for function trace 989 * event, due to issues with page faults while tracing page 990 * fault handler and its overall trickiness nature. 991 */ 992 if (perf_evsel__is_function_event(evsel)) 993 evsel->attr.exclude_callchain_user = 1; 994 995 if (callchain && callchain->enabled && !evsel->no_aux_samples) 996 perf_evsel__config_callchain(evsel, opts, callchain); 997 998 if (opts->sample_intr_regs) { 999 attr->sample_regs_intr = opts->sample_intr_regs; 1000 perf_evsel__set_sample_bit(evsel, REGS_INTR); 1001 } 1002 1003 if (opts->sample_user_regs) { 1004 attr->sample_regs_user |= opts->sample_user_regs; 1005 perf_evsel__set_sample_bit(evsel, REGS_USER); 1006 } 1007 1008 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1009 perf_evsel__set_sample_bit(evsel, CPU); 1010 1011 /* 1012 * When the user explicitly disabled time don't force it here. 1013 */ 1014 if (opts->sample_time && 1015 (!perf_missing_features.sample_id_all && 1016 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1017 opts->sample_time_set))) 1018 perf_evsel__set_sample_bit(evsel, TIME); 1019 1020 if (opts->raw_samples && !evsel->no_aux_samples) { 1021 perf_evsel__set_sample_bit(evsel, TIME); 1022 perf_evsel__set_sample_bit(evsel, RAW); 1023 perf_evsel__set_sample_bit(evsel, CPU); 1024 } 1025 1026 if (opts->sample_address) 1027 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1028 1029 if (opts->sample_phys_addr) 1030 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1031 1032 if (opts->no_buffering) { 1033 attr->watermark = 0; 1034 attr->wakeup_events = 1; 1035 } 1036 if (opts->branch_stack && !evsel->no_aux_samples) { 1037 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1038 attr->branch_sample_type = opts->branch_stack; 1039 } 1040 1041 if (opts->sample_weight) 1042 perf_evsel__set_sample_bit(evsel, WEIGHT); 1043 1044 attr->task = track; 1045 attr->mmap = track; 1046 attr->mmap2 = track && !perf_missing_features.mmap2; 1047 attr->comm = track; 1048 attr->ksymbol = track && !perf_missing_features.ksymbol; 1049 attr->bpf_event = track && !opts->no_bpf_event && 1050 !perf_missing_features.bpf_event; 1051 1052 if (opts->record_namespaces) 1053 attr->namespaces = track; 1054 1055 if (opts->record_switch_events) 1056 attr->context_switch = track; 1057 1058 if (opts->sample_transaction) 1059 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1060 1061 if (opts->running_time) { 1062 evsel->attr.read_format |= 1063 PERF_FORMAT_TOTAL_TIME_ENABLED | 1064 PERF_FORMAT_TOTAL_TIME_RUNNING; 1065 } 1066 1067 /* 1068 * XXX see the function comment above 1069 * 1070 * Disabling only independent events or group leaders, 1071 * keeping group members enabled. 1072 */ 1073 if (perf_evsel__is_group_leader(evsel)) 1074 attr->disabled = 1; 1075 1076 /* 1077 * Setting enable_on_exec for independent events and 1078 * group leaders for traced executed by perf. 1079 */ 1080 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1081 !opts->initial_delay) 1082 attr->enable_on_exec = 1; 1083 1084 if (evsel->immediate) { 1085 attr->disabled = 0; 1086 attr->enable_on_exec = 0; 1087 } 1088 1089 clockid = opts->clockid; 1090 if (opts->use_clockid) { 1091 attr->use_clockid = 1; 1092 attr->clockid = opts->clockid; 1093 } 1094 1095 if (evsel->precise_max) 1096 attr->precise_ip = 3; 1097 1098 if (opts->all_user) { 1099 attr->exclude_kernel = 1; 1100 attr->exclude_user = 0; 1101 } 1102 1103 if (opts->all_kernel) { 1104 attr->exclude_kernel = 0; 1105 attr->exclude_user = 1; 1106 } 1107 1108 if (evsel->own_cpus || evsel->unit) 1109 evsel->attr.read_format |= PERF_FORMAT_ID; 1110 1111 /* 1112 * Apply event specific term settings, 1113 * it overloads any global configuration. 1114 */ 1115 apply_config_terms(evsel, opts, track); 1116 1117 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1118 1119 /* The --period option takes the precedence. */ 1120 if (opts->period_set) { 1121 if (opts->period) 1122 perf_evsel__set_sample_bit(evsel, PERIOD); 1123 else 1124 perf_evsel__reset_sample_bit(evsel, PERIOD); 1125 } 1126 1127 /* 1128 * For initial_delay, a dummy event is added implicitly. 1129 * The software event will trigger -EOPNOTSUPP error out, 1130 * if BRANCH_STACK bit is set. 1131 */ 1132 if (opts->initial_delay && is_dummy_event(evsel)) 1133 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1134 } 1135 1136 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1137 { 1138 if (evsel->system_wide) 1139 nthreads = 1; 1140 1141 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1142 1143 if (evsel->fd) { 1144 int cpu, thread; 1145 for (cpu = 0; cpu < ncpus; cpu++) { 1146 for (thread = 0; thread < nthreads; thread++) { 1147 FD(evsel, cpu, thread) = -1; 1148 } 1149 } 1150 } 1151 1152 return evsel->fd != NULL ? 0 : -ENOMEM; 1153 } 1154 1155 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1156 int ioc, void *arg) 1157 { 1158 int cpu, thread; 1159 1160 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1161 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1162 int fd = FD(evsel, cpu, thread), 1163 err = ioctl(fd, ioc, arg); 1164 1165 if (err) 1166 return err; 1167 } 1168 } 1169 1170 return 0; 1171 } 1172 1173 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1174 { 1175 return perf_evsel__run_ioctl(evsel, 1176 PERF_EVENT_IOC_SET_FILTER, 1177 (void *)filter); 1178 } 1179 1180 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1181 { 1182 char *new_filter = strdup(filter); 1183 1184 if (new_filter != NULL) { 1185 free(evsel->filter); 1186 evsel->filter = new_filter; 1187 return 0; 1188 } 1189 1190 return -1; 1191 } 1192 1193 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1194 const char *fmt, const char *filter) 1195 { 1196 char *new_filter; 1197 1198 if (evsel->filter == NULL) 1199 return perf_evsel__set_filter(evsel, filter); 1200 1201 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1202 free(evsel->filter); 1203 evsel->filter = new_filter; 1204 return 0; 1205 } 1206 1207 return -1; 1208 } 1209 1210 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1211 { 1212 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1213 } 1214 1215 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1216 { 1217 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1218 } 1219 1220 int perf_evsel__enable(struct perf_evsel *evsel) 1221 { 1222 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0); 1223 1224 if (!err) 1225 evsel->disabled = false; 1226 1227 return err; 1228 } 1229 1230 int perf_evsel__disable(struct perf_evsel *evsel) 1231 { 1232 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0); 1233 /* 1234 * We mark it disabled here so that tools that disable a event can 1235 * ignore events after they disable it. I.e. the ring buffer may have 1236 * already a few more events queued up before the kernel got the stop 1237 * request. 1238 */ 1239 if (!err) 1240 evsel->disabled = true; 1241 1242 return err; 1243 } 1244 1245 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1246 { 1247 if (ncpus == 0 || nthreads == 0) 1248 return 0; 1249 1250 if (evsel->system_wide) 1251 nthreads = 1; 1252 1253 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1254 if (evsel->sample_id == NULL) 1255 return -ENOMEM; 1256 1257 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1258 if (evsel->id == NULL) { 1259 xyarray__delete(evsel->sample_id); 1260 evsel->sample_id = NULL; 1261 return -ENOMEM; 1262 } 1263 1264 return 0; 1265 } 1266 1267 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1268 { 1269 xyarray__delete(evsel->fd); 1270 evsel->fd = NULL; 1271 } 1272 1273 static void perf_evsel__free_id(struct perf_evsel *evsel) 1274 { 1275 xyarray__delete(evsel->sample_id); 1276 evsel->sample_id = NULL; 1277 zfree(&evsel->id); 1278 } 1279 1280 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1281 { 1282 struct perf_evsel_config_term *term, *h; 1283 1284 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1285 list_del(&term->list); 1286 free(term); 1287 } 1288 } 1289 1290 void perf_evsel__close_fd(struct perf_evsel *evsel) 1291 { 1292 int cpu, thread; 1293 1294 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1295 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1296 close(FD(evsel, cpu, thread)); 1297 FD(evsel, cpu, thread) = -1; 1298 } 1299 } 1300 1301 void perf_evsel__exit(struct perf_evsel *evsel) 1302 { 1303 assert(list_empty(&evsel->node)); 1304 assert(evsel->evlist == NULL); 1305 perf_evsel__free_counts(evsel); 1306 perf_evsel__free_fd(evsel); 1307 perf_evsel__free_id(evsel); 1308 perf_evsel__free_config_terms(evsel); 1309 cgroup__put(evsel->cgrp); 1310 cpu_map__put(evsel->cpus); 1311 cpu_map__put(evsel->own_cpus); 1312 thread_map__put(evsel->threads); 1313 zfree(&evsel->group_name); 1314 zfree(&evsel->name); 1315 perf_evsel__object.fini(evsel); 1316 } 1317 1318 void perf_evsel__delete(struct perf_evsel *evsel) 1319 { 1320 perf_evsel__exit(evsel); 1321 free(evsel); 1322 } 1323 1324 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1325 struct perf_counts_values *count) 1326 { 1327 struct perf_counts_values tmp; 1328 1329 if (!evsel->prev_raw_counts) 1330 return; 1331 1332 if (cpu == -1) { 1333 tmp = evsel->prev_raw_counts->aggr; 1334 evsel->prev_raw_counts->aggr = *count; 1335 } else { 1336 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1337 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1338 } 1339 1340 count->val = count->val - tmp.val; 1341 count->ena = count->ena - tmp.ena; 1342 count->run = count->run - tmp.run; 1343 } 1344 1345 void perf_counts_values__scale(struct perf_counts_values *count, 1346 bool scale, s8 *pscaled) 1347 { 1348 s8 scaled = 0; 1349 1350 if (scale) { 1351 if (count->run == 0) { 1352 scaled = -1; 1353 count->val = 0; 1354 } else if (count->run < count->ena) { 1355 scaled = 1; 1356 count->val = (u64)((double) count->val * count->ena / count->run); 1357 } 1358 } 1359 1360 if (pscaled) 1361 *pscaled = scaled; 1362 } 1363 1364 static int perf_evsel__read_size(struct perf_evsel *evsel) 1365 { 1366 u64 read_format = evsel->attr.read_format; 1367 int entry = sizeof(u64); /* value */ 1368 int size = 0; 1369 int nr = 1; 1370 1371 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1372 size += sizeof(u64); 1373 1374 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1375 size += sizeof(u64); 1376 1377 if (read_format & PERF_FORMAT_ID) 1378 entry += sizeof(u64); 1379 1380 if (read_format & PERF_FORMAT_GROUP) { 1381 nr = evsel->nr_members; 1382 size += sizeof(u64); 1383 } 1384 1385 size += entry * nr; 1386 return size; 1387 } 1388 1389 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1390 struct perf_counts_values *count) 1391 { 1392 size_t size = perf_evsel__read_size(evsel); 1393 1394 memset(count, 0, sizeof(*count)); 1395 1396 if (FD(evsel, cpu, thread) < 0) 1397 return -EINVAL; 1398 1399 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1400 return -errno; 1401 1402 return 0; 1403 } 1404 1405 static int 1406 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1407 { 1408 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1409 1410 return perf_evsel__read(evsel, cpu, thread, count); 1411 } 1412 1413 static void 1414 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1415 u64 val, u64 ena, u64 run) 1416 { 1417 struct perf_counts_values *count; 1418 1419 count = perf_counts(counter->counts, cpu, thread); 1420 1421 count->val = val; 1422 count->ena = ena; 1423 count->run = run; 1424 count->loaded = true; 1425 } 1426 1427 static int 1428 perf_evsel__process_group_data(struct perf_evsel *leader, 1429 int cpu, int thread, u64 *data) 1430 { 1431 u64 read_format = leader->attr.read_format; 1432 struct sample_read_value *v; 1433 u64 nr, ena = 0, run = 0, i; 1434 1435 nr = *data++; 1436 1437 if (nr != (u64) leader->nr_members) 1438 return -EINVAL; 1439 1440 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1441 ena = *data++; 1442 1443 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1444 run = *data++; 1445 1446 v = (struct sample_read_value *) data; 1447 1448 perf_evsel__set_count(leader, cpu, thread, 1449 v[0].value, ena, run); 1450 1451 for (i = 1; i < nr; i++) { 1452 struct perf_evsel *counter; 1453 1454 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1455 if (!counter) 1456 return -EINVAL; 1457 1458 perf_evsel__set_count(counter, cpu, thread, 1459 v[i].value, ena, run); 1460 } 1461 1462 return 0; 1463 } 1464 1465 static int 1466 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1467 { 1468 struct perf_stat_evsel *ps = leader->stats; 1469 u64 read_format = leader->attr.read_format; 1470 int size = perf_evsel__read_size(leader); 1471 u64 *data = ps->group_data; 1472 1473 if (!(read_format & PERF_FORMAT_ID)) 1474 return -EINVAL; 1475 1476 if (!perf_evsel__is_group_leader(leader)) 1477 return -EINVAL; 1478 1479 if (!data) { 1480 data = zalloc(size); 1481 if (!data) 1482 return -ENOMEM; 1483 1484 ps->group_data = data; 1485 } 1486 1487 if (FD(leader, cpu, thread) < 0) 1488 return -EINVAL; 1489 1490 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1491 return -errno; 1492 1493 return perf_evsel__process_group_data(leader, cpu, thread, data); 1494 } 1495 1496 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1497 { 1498 u64 read_format = evsel->attr.read_format; 1499 1500 if (read_format & PERF_FORMAT_GROUP) 1501 return perf_evsel__read_group(evsel, cpu, thread); 1502 else 1503 return perf_evsel__read_one(evsel, cpu, thread); 1504 } 1505 1506 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1507 int cpu, int thread, bool scale) 1508 { 1509 struct perf_counts_values count; 1510 size_t nv = scale ? 3 : 1; 1511 1512 if (FD(evsel, cpu, thread) < 0) 1513 return -EINVAL; 1514 1515 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1516 return -ENOMEM; 1517 1518 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1519 return -errno; 1520 1521 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1522 perf_counts_values__scale(&count, scale, NULL); 1523 *perf_counts(evsel->counts, cpu, thread) = count; 1524 return 0; 1525 } 1526 1527 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1528 { 1529 struct perf_evsel *leader = evsel->leader; 1530 int fd; 1531 1532 if (perf_evsel__is_group_leader(evsel)) 1533 return -1; 1534 1535 /* 1536 * Leader must be already processed/open, 1537 * if not it's a bug. 1538 */ 1539 BUG_ON(!leader->fd); 1540 1541 fd = FD(leader, cpu, thread); 1542 BUG_ON(fd == -1); 1543 1544 return fd; 1545 } 1546 1547 struct bit_names { 1548 int bit; 1549 const char *name; 1550 }; 1551 1552 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1553 { 1554 bool first_bit = true; 1555 int i = 0; 1556 1557 do { 1558 if (value & bits[i].bit) { 1559 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1560 first_bit = false; 1561 } 1562 } while (bits[++i].name != NULL); 1563 } 1564 1565 static void __p_sample_type(char *buf, size_t size, u64 value) 1566 { 1567 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1568 struct bit_names bits[] = { 1569 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1570 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1571 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1572 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1573 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1574 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1575 { .name = NULL, } 1576 }; 1577 #undef bit_name 1578 __p_bits(buf, size, value, bits); 1579 } 1580 1581 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1582 { 1583 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1584 struct bit_names bits[] = { 1585 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1586 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1587 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1588 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1589 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1590 { .name = NULL, } 1591 }; 1592 #undef bit_name 1593 __p_bits(buf, size, value, bits); 1594 } 1595 1596 static void __p_read_format(char *buf, size_t size, u64 value) 1597 { 1598 #define bit_name(n) { PERF_FORMAT_##n, #n } 1599 struct bit_names bits[] = { 1600 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1601 bit_name(ID), bit_name(GROUP), 1602 { .name = NULL, } 1603 }; 1604 #undef bit_name 1605 __p_bits(buf, size, value, bits); 1606 } 1607 1608 #define BUF_SIZE 1024 1609 1610 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1611 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1612 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1613 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1614 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1615 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1616 1617 #define PRINT_ATTRn(_n, _f, _p) \ 1618 do { \ 1619 if (attr->_f) { \ 1620 _p(attr->_f); \ 1621 ret += attr__fprintf(fp, _n, buf, priv);\ 1622 } \ 1623 } while (0) 1624 1625 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1626 1627 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1628 attr__fprintf_f attr__fprintf, void *priv) 1629 { 1630 char buf[BUF_SIZE]; 1631 int ret = 0; 1632 1633 PRINT_ATTRf(type, p_unsigned); 1634 PRINT_ATTRf(size, p_unsigned); 1635 PRINT_ATTRf(config, p_hex); 1636 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1637 PRINT_ATTRf(sample_type, p_sample_type); 1638 PRINT_ATTRf(read_format, p_read_format); 1639 1640 PRINT_ATTRf(disabled, p_unsigned); 1641 PRINT_ATTRf(inherit, p_unsigned); 1642 PRINT_ATTRf(pinned, p_unsigned); 1643 PRINT_ATTRf(exclusive, p_unsigned); 1644 PRINT_ATTRf(exclude_user, p_unsigned); 1645 PRINT_ATTRf(exclude_kernel, p_unsigned); 1646 PRINT_ATTRf(exclude_hv, p_unsigned); 1647 PRINT_ATTRf(exclude_idle, p_unsigned); 1648 PRINT_ATTRf(mmap, p_unsigned); 1649 PRINT_ATTRf(comm, p_unsigned); 1650 PRINT_ATTRf(freq, p_unsigned); 1651 PRINT_ATTRf(inherit_stat, p_unsigned); 1652 PRINT_ATTRf(enable_on_exec, p_unsigned); 1653 PRINT_ATTRf(task, p_unsigned); 1654 PRINT_ATTRf(watermark, p_unsigned); 1655 PRINT_ATTRf(precise_ip, p_unsigned); 1656 PRINT_ATTRf(mmap_data, p_unsigned); 1657 PRINT_ATTRf(sample_id_all, p_unsigned); 1658 PRINT_ATTRf(exclude_host, p_unsigned); 1659 PRINT_ATTRf(exclude_guest, p_unsigned); 1660 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1661 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1662 PRINT_ATTRf(mmap2, p_unsigned); 1663 PRINT_ATTRf(comm_exec, p_unsigned); 1664 PRINT_ATTRf(use_clockid, p_unsigned); 1665 PRINT_ATTRf(context_switch, p_unsigned); 1666 PRINT_ATTRf(write_backward, p_unsigned); 1667 PRINT_ATTRf(namespaces, p_unsigned); 1668 PRINT_ATTRf(ksymbol, p_unsigned); 1669 PRINT_ATTRf(bpf_event, p_unsigned); 1670 1671 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1672 PRINT_ATTRf(bp_type, p_unsigned); 1673 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1674 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1675 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1676 PRINT_ATTRf(sample_regs_user, p_hex); 1677 PRINT_ATTRf(sample_stack_user, p_unsigned); 1678 PRINT_ATTRf(clockid, p_signed); 1679 PRINT_ATTRf(sample_regs_intr, p_hex); 1680 PRINT_ATTRf(aux_watermark, p_unsigned); 1681 PRINT_ATTRf(sample_max_stack, p_unsigned); 1682 1683 return ret; 1684 } 1685 1686 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1687 void *priv __maybe_unused) 1688 { 1689 return fprintf(fp, " %-32s %s\n", name, val); 1690 } 1691 1692 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1693 int nr_cpus, int nr_threads, 1694 int thread_idx) 1695 { 1696 for (int cpu = 0; cpu < nr_cpus; cpu++) 1697 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1698 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1699 } 1700 1701 static int update_fds(struct perf_evsel *evsel, 1702 int nr_cpus, int cpu_idx, 1703 int nr_threads, int thread_idx) 1704 { 1705 struct perf_evsel *pos; 1706 1707 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1708 return -EINVAL; 1709 1710 evlist__for_each_entry(evsel->evlist, pos) { 1711 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1712 1713 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1714 1715 /* 1716 * Since fds for next evsel has not been created, 1717 * there is no need to iterate whole event list. 1718 */ 1719 if (pos == evsel) 1720 break; 1721 } 1722 return 0; 1723 } 1724 1725 static bool ignore_missing_thread(struct perf_evsel *evsel, 1726 int nr_cpus, int cpu, 1727 struct thread_map *threads, 1728 int thread, int err) 1729 { 1730 pid_t ignore_pid = thread_map__pid(threads, thread); 1731 1732 if (!evsel->ignore_missing_thread) 1733 return false; 1734 1735 /* The system wide setup does not work with threads. */ 1736 if (evsel->system_wide) 1737 return false; 1738 1739 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1740 if (err != -ESRCH) 1741 return false; 1742 1743 /* If there's only one thread, let it fail. */ 1744 if (threads->nr == 1) 1745 return false; 1746 1747 /* 1748 * We should remove fd for missing_thread first 1749 * because thread_map__remove() will decrease threads->nr. 1750 */ 1751 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1752 return false; 1753 1754 if (thread_map__remove(threads, thread)) 1755 return false; 1756 1757 pr_warning("WARNING: Ignored open failure for pid %d\n", 1758 ignore_pid); 1759 return true; 1760 } 1761 1762 static void display_attr(struct perf_event_attr *attr) 1763 { 1764 if (verbose >= 2) { 1765 fprintf(stderr, "%.60s\n", graph_dotted_line); 1766 fprintf(stderr, "perf_event_attr:\n"); 1767 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1768 fprintf(stderr, "%.60s\n", graph_dotted_line); 1769 } 1770 } 1771 1772 static int perf_event_open(struct perf_evsel *evsel, 1773 pid_t pid, int cpu, int group_fd, 1774 unsigned long flags) 1775 { 1776 int precise_ip = evsel->attr.precise_ip; 1777 int fd; 1778 1779 while (1) { 1780 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1781 pid, cpu, group_fd, flags); 1782 1783 fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags); 1784 if (fd >= 0) 1785 break; 1786 1787 /* 1788 * Do quick precise_ip fallback if: 1789 * - there is precise_ip set in perf_event_attr 1790 * - maximum precise is requested 1791 * - sys_perf_event_open failed with ENOTSUP error, 1792 * which is associated with wrong precise_ip 1793 */ 1794 if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP)) 1795 break; 1796 1797 /* 1798 * We tried all the precise_ip values, and it's 1799 * still failing, so leave it to standard fallback. 1800 */ 1801 if (!evsel->attr.precise_ip) { 1802 evsel->attr.precise_ip = precise_ip; 1803 break; 1804 } 1805 1806 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP); 1807 evsel->attr.precise_ip--; 1808 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip); 1809 display_attr(&evsel->attr); 1810 } 1811 1812 return fd; 1813 } 1814 1815 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1816 struct thread_map *threads) 1817 { 1818 int cpu, thread, nthreads; 1819 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1820 int pid = -1, err; 1821 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1822 1823 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1824 return -EINVAL; 1825 1826 if (cpus == NULL) { 1827 static struct cpu_map *empty_cpu_map; 1828 1829 if (empty_cpu_map == NULL) { 1830 empty_cpu_map = cpu_map__dummy_new(); 1831 if (empty_cpu_map == NULL) 1832 return -ENOMEM; 1833 } 1834 1835 cpus = empty_cpu_map; 1836 } 1837 1838 if (threads == NULL) { 1839 static struct thread_map *empty_thread_map; 1840 1841 if (empty_thread_map == NULL) { 1842 empty_thread_map = thread_map__new_by_tid(-1); 1843 if (empty_thread_map == NULL) 1844 return -ENOMEM; 1845 } 1846 1847 threads = empty_thread_map; 1848 } 1849 1850 if (evsel->system_wide) 1851 nthreads = 1; 1852 else 1853 nthreads = threads->nr; 1854 1855 if (evsel->fd == NULL && 1856 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1857 return -ENOMEM; 1858 1859 if (evsel->cgrp) { 1860 flags |= PERF_FLAG_PID_CGROUP; 1861 pid = evsel->cgrp->fd; 1862 } 1863 1864 fallback_missing_features: 1865 if (perf_missing_features.clockid_wrong) 1866 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1867 if (perf_missing_features.clockid) { 1868 evsel->attr.use_clockid = 0; 1869 evsel->attr.clockid = 0; 1870 } 1871 if (perf_missing_features.cloexec) 1872 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1873 if (perf_missing_features.mmap2) 1874 evsel->attr.mmap2 = 0; 1875 if (perf_missing_features.exclude_guest) 1876 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1877 if (perf_missing_features.lbr_flags) 1878 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1879 PERF_SAMPLE_BRANCH_NO_CYCLES); 1880 if (perf_missing_features.group_read && evsel->attr.inherit) 1881 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1882 if (perf_missing_features.ksymbol) 1883 evsel->attr.ksymbol = 0; 1884 if (perf_missing_features.bpf_event) 1885 evsel->attr.bpf_event = 0; 1886 retry_sample_id: 1887 if (perf_missing_features.sample_id_all) 1888 evsel->attr.sample_id_all = 0; 1889 1890 display_attr(&evsel->attr); 1891 1892 for (cpu = 0; cpu < cpus->nr; cpu++) { 1893 1894 for (thread = 0; thread < nthreads; thread++) { 1895 int fd, group_fd; 1896 1897 if (!evsel->cgrp && !evsel->system_wide) 1898 pid = thread_map__pid(threads, thread); 1899 1900 group_fd = get_group_fd(evsel, cpu, thread); 1901 retry_open: 1902 test_attr__ready(); 1903 1904 fd = perf_event_open(evsel, pid, cpus->map[cpu], 1905 group_fd, flags); 1906 1907 FD(evsel, cpu, thread) = fd; 1908 1909 if (fd < 0) { 1910 err = -errno; 1911 1912 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1913 /* 1914 * We just removed 1 thread, so take a step 1915 * back on thread index and lower the upper 1916 * nthreads limit. 1917 */ 1918 nthreads--; 1919 thread--; 1920 1921 /* ... and pretend like nothing have happened. */ 1922 err = 0; 1923 continue; 1924 } 1925 1926 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1927 err); 1928 goto try_fallback; 1929 } 1930 1931 pr_debug2(" = %d\n", fd); 1932 1933 if (evsel->bpf_fd >= 0) { 1934 int evt_fd = fd; 1935 int bpf_fd = evsel->bpf_fd; 1936 1937 err = ioctl(evt_fd, 1938 PERF_EVENT_IOC_SET_BPF, 1939 bpf_fd); 1940 if (err && errno != EEXIST) { 1941 pr_err("failed to attach bpf fd %d: %s\n", 1942 bpf_fd, strerror(errno)); 1943 err = -EINVAL; 1944 goto out_close; 1945 } 1946 } 1947 1948 set_rlimit = NO_CHANGE; 1949 1950 /* 1951 * If we succeeded but had to kill clockid, fail and 1952 * have perf_evsel__open_strerror() print us a nice 1953 * error. 1954 */ 1955 if (perf_missing_features.clockid || 1956 perf_missing_features.clockid_wrong) { 1957 err = -EINVAL; 1958 goto out_close; 1959 } 1960 } 1961 } 1962 1963 return 0; 1964 1965 try_fallback: 1966 /* 1967 * perf stat needs between 5 and 22 fds per CPU. When we run out 1968 * of them try to increase the limits. 1969 */ 1970 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1971 struct rlimit l; 1972 int old_errno = errno; 1973 1974 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1975 if (set_rlimit == NO_CHANGE) 1976 l.rlim_cur = l.rlim_max; 1977 else { 1978 l.rlim_cur = l.rlim_max + 1000; 1979 l.rlim_max = l.rlim_cur; 1980 } 1981 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1982 set_rlimit++; 1983 errno = old_errno; 1984 goto retry_open; 1985 } 1986 } 1987 errno = old_errno; 1988 } 1989 1990 if (err != -EINVAL || cpu > 0 || thread > 0) 1991 goto out_close; 1992 1993 /* 1994 * Must probe features in the order they were added to the 1995 * perf_event_attr interface. 1996 */ 1997 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) { 1998 perf_missing_features.bpf_event = true; 1999 pr_debug2("switching off bpf_event\n"); 2000 goto fallback_missing_features; 2001 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) { 2002 perf_missing_features.ksymbol = true; 2003 pr_debug2("switching off ksymbol\n"); 2004 goto fallback_missing_features; 2005 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 2006 perf_missing_features.write_backward = true; 2007 pr_debug2("switching off write_backward\n"); 2008 goto out_close; 2009 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 2010 perf_missing_features.clockid_wrong = true; 2011 pr_debug2("switching off clockid\n"); 2012 goto fallback_missing_features; 2013 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 2014 perf_missing_features.clockid = true; 2015 pr_debug2("switching off use_clockid\n"); 2016 goto fallback_missing_features; 2017 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 2018 perf_missing_features.cloexec = true; 2019 pr_debug2("switching off cloexec flag\n"); 2020 goto fallback_missing_features; 2021 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 2022 perf_missing_features.mmap2 = true; 2023 pr_debug2("switching off mmap2\n"); 2024 goto fallback_missing_features; 2025 } else if (!perf_missing_features.exclude_guest && 2026 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 2027 perf_missing_features.exclude_guest = true; 2028 pr_debug2("switching off exclude_guest, exclude_host\n"); 2029 goto fallback_missing_features; 2030 } else if (!perf_missing_features.sample_id_all) { 2031 perf_missing_features.sample_id_all = true; 2032 pr_debug2("switching off sample_id_all\n"); 2033 goto retry_sample_id; 2034 } else if (!perf_missing_features.lbr_flags && 2035 (evsel->attr.branch_sample_type & 2036 (PERF_SAMPLE_BRANCH_NO_CYCLES | 2037 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 2038 perf_missing_features.lbr_flags = true; 2039 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 2040 goto fallback_missing_features; 2041 } else if (!perf_missing_features.group_read && 2042 evsel->attr.inherit && 2043 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 2044 perf_evsel__is_group_leader(evsel)) { 2045 perf_missing_features.group_read = true; 2046 pr_debug2("switching off group read\n"); 2047 goto fallback_missing_features; 2048 } 2049 out_close: 2050 if (err) 2051 threads->err_thread = thread; 2052 2053 do { 2054 while (--thread >= 0) { 2055 close(FD(evsel, cpu, thread)); 2056 FD(evsel, cpu, thread) = -1; 2057 } 2058 thread = nthreads; 2059 } while (--cpu >= 0); 2060 return err; 2061 } 2062 2063 void perf_evsel__close(struct perf_evsel *evsel) 2064 { 2065 if (evsel->fd == NULL) 2066 return; 2067 2068 perf_evsel__close_fd(evsel); 2069 perf_evsel__free_fd(evsel); 2070 } 2071 2072 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 2073 struct cpu_map *cpus) 2074 { 2075 return perf_evsel__open(evsel, cpus, NULL); 2076 } 2077 2078 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 2079 struct thread_map *threads) 2080 { 2081 return perf_evsel__open(evsel, NULL, threads); 2082 } 2083 2084 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 2085 const union perf_event *event, 2086 struct perf_sample *sample) 2087 { 2088 u64 type = evsel->attr.sample_type; 2089 const u64 *array = event->sample.array; 2090 bool swapped = evsel->needs_swap; 2091 union u64_swap u; 2092 2093 array += ((event->header.size - 2094 sizeof(event->header)) / sizeof(u64)) - 1; 2095 2096 if (type & PERF_SAMPLE_IDENTIFIER) { 2097 sample->id = *array; 2098 array--; 2099 } 2100 2101 if (type & PERF_SAMPLE_CPU) { 2102 u.val64 = *array; 2103 if (swapped) { 2104 /* undo swap of u64, then swap on individual u32s */ 2105 u.val64 = bswap_64(u.val64); 2106 u.val32[0] = bswap_32(u.val32[0]); 2107 } 2108 2109 sample->cpu = u.val32[0]; 2110 array--; 2111 } 2112 2113 if (type & PERF_SAMPLE_STREAM_ID) { 2114 sample->stream_id = *array; 2115 array--; 2116 } 2117 2118 if (type & PERF_SAMPLE_ID) { 2119 sample->id = *array; 2120 array--; 2121 } 2122 2123 if (type & PERF_SAMPLE_TIME) { 2124 sample->time = *array; 2125 array--; 2126 } 2127 2128 if (type & PERF_SAMPLE_TID) { 2129 u.val64 = *array; 2130 if (swapped) { 2131 /* undo swap of u64, then swap on individual u32s */ 2132 u.val64 = bswap_64(u.val64); 2133 u.val32[0] = bswap_32(u.val32[0]); 2134 u.val32[1] = bswap_32(u.val32[1]); 2135 } 2136 2137 sample->pid = u.val32[0]; 2138 sample->tid = u.val32[1]; 2139 array--; 2140 } 2141 2142 return 0; 2143 } 2144 2145 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2146 u64 size) 2147 { 2148 return size > max_size || offset + size > endp; 2149 } 2150 2151 #define OVERFLOW_CHECK(offset, size, max_size) \ 2152 do { \ 2153 if (overflow(endp, (max_size), (offset), (size))) \ 2154 return -EFAULT; \ 2155 } while (0) 2156 2157 #define OVERFLOW_CHECK_u64(offset) \ 2158 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2159 2160 static int 2161 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2162 { 2163 /* 2164 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2165 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2166 * check the format does not go past the end of the event. 2167 */ 2168 if (sample_size + sizeof(event->header) > event->header.size) 2169 return -EFAULT; 2170 2171 return 0; 2172 } 2173 2174 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2175 struct perf_sample *data) 2176 { 2177 u64 type = evsel->attr.sample_type; 2178 bool swapped = evsel->needs_swap; 2179 const u64 *array; 2180 u16 max_size = event->header.size; 2181 const void *endp = (void *)event + max_size; 2182 u64 sz; 2183 2184 /* 2185 * used for cross-endian analysis. See git commit 65014ab3 2186 * for why this goofiness is needed. 2187 */ 2188 union u64_swap u; 2189 2190 memset(data, 0, sizeof(*data)); 2191 data->cpu = data->pid = data->tid = -1; 2192 data->stream_id = data->id = data->time = -1ULL; 2193 data->period = evsel->attr.sample_period; 2194 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2195 data->misc = event->header.misc; 2196 data->id = -1ULL; 2197 data->data_src = PERF_MEM_DATA_SRC_NONE; 2198 2199 if (event->header.type != PERF_RECORD_SAMPLE) { 2200 if (!evsel->attr.sample_id_all) 2201 return 0; 2202 return perf_evsel__parse_id_sample(evsel, event, data); 2203 } 2204 2205 array = event->sample.array; 2206 2207 if (perf_event__check_size(event, evsel->sample_size)) 2208 return -EFAULT; 2209 2210 if (type & PERF_SAMPLE_IDENTIFIER) { 2211 data->id = *array; 2212 array++; 2213 } 2214 2215 if (type & PERF_SAMPLE_IP) { 2216 data->ip = *array; 2217 array++; 2218 } 2219 2220 if (type & PERF_SAMPLE_TID) { 2221 u.val64 = *array; 2222 if (swapped) { 2223 /* undo swap of u64, then swap on individual u32s */ 2224 u.val64 = bswap_64(u.val64); 2225 u.val32[0] = bswap_32(u.val32[0]); 2226 u.val32[1] = bswap_32(u.val32[1]); 2227 } 2228 2229 data->pid = u.val32[0]; 2230 data->tid = u.val32[1]; 2231 array++; 2232 } 2233 2234 if (type & PERF_SAMPLE_TIME) { 2235 data->time = *array; 2236 array++; 2237 } 2238 2239 if (type & PERF_SAMPLE_ADDR) { 2240 data->addr = *array; 2241 array++; 2242 } 2243 2244 if (type & PERF_SAMPLE_ID) { 2245 data->id = *array; 2246 array++; 2247 } 2248 2249 if (type & PERF_SAMPLE_STREAM_ID) { 2250 data->stream_id = *array; 2251 array++; 2252 } 2253 2254 if (type & PERF_SAMPLE_CPU) { 2255 2256 u.val64 = *array; 2257 if (swapped) { 2258 /* undo swap of u64, then swap on individual u32s */ 2259 u.val64 = bswap_64(u.val64); 2260 u.val32[0] = bswap_32(u.val32[0]); 2261 } 2262 2263 data->cpu = u.val32[0]; 2264 array++; 2265 } 2266 2267 if (type & PERF_SAMPLE_PERIOD) { 2268 data->period = *array; 2269 array++; 2270 } 2271 2272 if (type & PERF_SAMPLE_READ) { 2273 u64 read_format = evsel->attr.read_format; 2274 2275 OVERFLOW_CHECK_u64(array); 2276 if (read_format & PERF_FORMAT_GROUP) 2277 data->read.group.nr = *array; 2278 else 2279 data->read.one.value = *array; 2280 2281 array++; 2282 2283 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2284 OVERFLOW_CHECK_u64(array); 2285 data->read.time_enabled = *array; 2286 array++; 2287 } 2288 2289 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2290 OVERFLOW_CHECK_u64(array); 2291 data->read.time_running = *array; 2292 array++; 2293 } 2294 2295 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2296 if (read_format & PERF_FORMAT_GROUP) { 2297 const u64 max_group_nr = UINT64_MAX / 2298 sizeof(struct sample_read_value); 2299 2300 if (data->read.group.nr > max_group_nr) 2301 return -EFAULT; 2302 sz = data->read.group.nr * 2303 sizeof(struct sample_read_value); 2304 OVERFLOW_CHECK(array, sz, max_size); 2305 data->read.group.values = 2306 (struct sample_read_value *)array; 2307 array = (void *)array + sz; 2308 } else { 2309 OVERFLOW_CHECK_u64(array); 2310 data->read.one.id = *array; 2311 array++; 2312 } 2313 } 2314 2315 if (evsel__has_callchain(evsel)) { 2316 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2317 2318 OVERFLOW_CHECK_u64(array); 2319 data->callchain = (struct ip_callchain *)array++; 2320 if (data->callchain->nr > max_callchain_nr) 2321 return -EFAULT; 2322 sz = data->callchain->nr * sizeof(u64); 2323 OVERFLOW_CHECK(array, sz, max_size); 2324 array = (void *)array + sz; 2325 } 2326 2327 if (type & PERF_SAMPLE_RAW) { 2328 OVERFLOW_CHECK_u64(array); 2329 u.val64 = *array; 2330 2331 /* 2332 * Undo swap of u64, then swap on individual u32s, 2333 * get the size of the raw area and undo all of the 2334 * swap. The pevent interface handles endianity by 2335 * itself. 2336 */ 2337 if (swapped) { 2338 u.val64 = bswap_64(u.val64); 2339 u.val32[0] = bswap_32(u.val32[0]); 2340 u.val32[1] = bswap_32(u.val32[1]); 2341 } 2342 data->raw_size = u.val32[0]; 2343 2344 /* 2345 * The raw data is aligned on 64bits including the 2346 * u32 size, so it's safe to use mem_bswap_64. 2347 */ 2348 if (swapped) 2349 mem_bswap_64((void *) array, data->raw_size); 2350 2351 array = (void *)array + sizeof(u32); 2352 2353 OVERFLOW_CHECK(array, data->raw_size, max_size); 2354 data->raw_data = (void *)array; 2355 array = (void *)array + data->raw_size; 2356 } 2357 2358 if (type & PERF_SAMPLE_BRANCH_STACK) { 2359 const u64 max_branch_nr = UINT64_MAX / 2360 sizeof(struct branch_entry); 2361 2362 OVERFLOW_CHECK_u64(array); 2363 data->branch_stack = (struct branch_stack *)array++; 2364 2365 if (data->branch_stack->nr > max_branch_nr) 2366 return -EFAULT; 2367 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2368 OVERFLOW_CHECK(array, sz, max_size); 2369 array = (void *)array + sz; 2370 } 2371 2372 if (type & PERF_SAMPLE_REGS_USER) { 2373 OVERFLOW_CHECK_u64(array); 2374 data->user_regs.abi = *array; 2375 array++; 2376 2377 if (data->user_regs.abi) { 2378 u64 mask = evsel->attr.sample_regs_user; 2379 2380 sz = hweight64(mask) * sizeof(u64); 2381 OVERFLOW_CHECK(array, sz, max_size); 2382 data->user_regs.mask = mask; 2383 data->user_regs.regs = (u64 *)array; 2384 array = (void *)array + sz; 2385 } 2386 } 2387 2388 if (type & PERF_SAMPLE_STACK_USER) { 2389 OVERFLOW_CHECK_u64(array); 2390 sz = *array++; 2391 2392 data->user_stack.offset = ((char *)(array - 1) 2393 - (char *) event); 2394 2395 if (!sz) { 2396 data->user_stack.size = 0; 2397 } else { 2398 OVERFLOW_CHECK(array, sz, max_size); 2399 data->user_stack.data = (char *)array; 2400 array = (void *)array + sz; 2401 OVERFLOW_CHECK_u64(array); 2402 data->user_stack.size = *array++; 2403 if (WARN_ONCE(data->user_stack.size > sz, 2404 "user stack dump failure\n")) 2405 return -EFAULT; 2406 } 2407 } 2408 2409 if (type & PERF_SAMPLE_WEIGHT) { 2410 OVERFLOW_CHECK_u64(array); 2411 data->weight = *array; 2412 array++; 2413 } 2414 2415 if (type & PERF_SAMPLE_DATA_SRC) { 2416 OVERFLOW_CHECK_u64(array); 2417 data->data_src = *array; 2418 array++; 2419 } 2420 2421 if (type & PERF_SAMPLE_TRANSACTION) { 2422 OVERFLOW_CHECK_u64(array); 2423 data->transaction = *array; 2424 array++; 2425 } 2426 2427 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2428 if (type & PERF_SAMPLE_REGS_INTR) { 2429 OVERFLOW_CHECK_u64(array); 2430 data->intr_regs.abi = *array; 2431 array++; 2432 2433 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2434 u64 mask = evsel->attr.sample_regs_intr; 2435 2436 sz = hweight64(mask) * sizeof(u64); 2437 OVERFLOW_CHECK(array, sz, max_size); 2438 data->intr_regs.mask = mask; 2439 data->intr_regs.regs = (u64 *)array; 2440 array = (void *)array + sz; 2441 } 2442 } 2443 2444 data->phys_addr = 0; 2445 if (type & PERF_SAMPLE_PHYS_ADDR) { 2446 data->phys_addr = *array; 2447 array++; 2448 } 2449 2450 return 0; 2451 } 2452 2453 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2454 union perf_event *event, 2455 u64 *timestamp) 2456 { 2457 u64 type = evsel->attr.sample_type; 2458 const u64 *array; 2459 2460 if (!(type & PERF_SAMPLE_TIME)) 2461 return -1; 2462 2463 if (event->header.type != PERF_RECORD_SAMPLE) { 2464 struct perf_sample data = { 2465 .time = -1ULL, 2466 }; 2467 2468 if (!evsel->attr.sample_id_all) 2469 return -1; 2470 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2471 return -1; 2472 2473 *timestamp = data.time; 2474 return 0; 2475 } 2476 2477 array = event->sample.array; 2478 2479 if (perf_event__check_size(event, evsel->sample_size)) 2480 return -EFAULT; 2481 2482 if (type & PERF_SAMPLE_IDENTIFIER) 2483 array++; 2484 2485 if (type & PERF_SAMPLE_IP) 2486 array++; 2487 2488 if (type & PERF_SAMPLE_TID) 2489 array++; 2490 2491 if (type & PERF_SAMPLE_TIME) 2492 *timestamp = *array; 2493 2494 return 0; 2495 } 2496 2497 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2498 u64 read_format) 2499 { 2500 size_t sz, result = sizeof(struct sample_event); 2501 2502 if (type & PERF_SAMPLE_IDENTIFIER) 2503 result += sizeof(u64); 2504 2505 if (type & PERF_SAMPLE_IP) 2506 result += sizeof(u64); 2507 2508 if (type & PERF_SAMPLE_TID) 2509 result += sizeof(u64); 2510 2511 if (type & PERF_SAMPLE_TIME) 2512 result += sizeof(u64); 2513 2514 if (type & PERF_SAMPLE_ADDR) 2515 result += sizeof(u64); 2516 2517 if (type & PERF_SAMPLE_ID) 2518 result += sizeof(u64); 2519 2520 if (type & PERF_SAMPLE_STREAM_ID) 2521 result += sizeof(u64); 2522 2523 if (type & PERF_SAMPLE_CPU) 2524 result += sizeof(u64); 2525 2526 if (type & PERF_SAMPLE_PERIOD) 2527 result += sizeof(u64); 2528 2529 if (type & PERF_SAMPLE_READ) { 2530 result += sizeof(u64); 2531 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2532 result += sizeof(u64); 2533 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2534 result += sizeof(u64); 2535 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2536 if (read_format & PERF_FORMAT_GROUP) { 2537 sz = sample->read.group.nr * 2538 sizeof(struct sample_read_value); 2539 result += sz; 2540 } else { 2541 result += sizeof(u64); 2542 } 2543 } 2544 2545 if (type & PERF_SAMPLE_CALLCHAIN) { 2546 sz = (sample->callchain->nr + 1) * sizeof(u64); 2547 result += sz; 2548 } 2549 2550 if (type & PERF_SAMPLE_RAW) { 2551 result += sizeof(u32); 2552 result += sample->raw_size; 2553 } 2554 2555 if (type & PERF_SAMPLE_BRANCH_STACK) { 2556 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2557 sz += sizeof(u64); 2558 result += sz; 2559 } 2560 2561 if (type & PERF_SAMPLE_REGS_USER) { 2562 if (sample->user_regs.abi) { 2563 result += sizeof(u64); 2564 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2565 result += sz; 2566 } else { 2567 result += sizeof(u64); 2568 } 2569 } 2570 2571 if (type & PERF_SAMPLE_STACK_USER) { 2572 sz = sample->user_stack.size; 2573 result += sizeof(u64); 2574 if (sz) { 2575 result += sz; 2576 result += sizeof(u64); 2577 } 2578 } 2579 2580 if (type & PERF_SAMPLE_WEIGHT) 2581 result += sizeof(u64); 2582 2583 if (type & PERF_SAMPLE_DATA_SRC) 2584 result += sizeof(u64); 2585 2586 if (type & PERF_SAMPLE_TRANSACTION) 2587 result += sizeof(u64); 2588 2589 if (type & PERF_SAMPLE_REGS_INTR) { 2590 if (sample->intr_regs.abi) { 2591 result += sizeof(u64); 2592 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2593 result += sz; 2594 } else { 2595 result += sizeof(u64); 2596 } 2597 } 2598 2599 if (type & PERF_SAMPLE_PHYS_ADDR) 2600 result += sizeof(u64); 2601 2602 return result; 2603 } 2604 2605 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2606 u64 read_format, 2607 const struct perf_sample *sample) 2608 { 2609 u64 *array; 2610 size_t sz; 2611 /* 2612 * used for cross-endian analysis. See git commit 65014ab3 2613 * for why this goofiness is needed. 2614 */ 2615 union u64_swap u; 2616 2617 array = event->sample.array; 2618 2619 if (type & PERF_SAMPLE_IDENTIFIER) { 2620 *array = sample->id; 2621 array++; 2622 } 2623 2624 if (type & PERF_SAMPLE_IP) { 2625 *array = sample->ip; 2626 array++; 2627 } 2628 2629 if (type & PERF_SAMPLE_TID) { 2630 u.val32[0] = sample->pid; 2631 u.val32[1] = sample->tid; 2632 *array = u.val64; 2633 array++; 2634 } 2635 2636 if (type & PERF_SAMPLE_TIME) { 2637 *array = sample->time; 2638 array++; 2639 } 2640 2641 if (type & PERF_SAMPLE_ADDR) { 2642 *array = sample->addr; 2643 array++; 2644 } 2645 2646 if (type & PERF_SAMPLE_ID) { 2647 *array = sample->id; 2648 array++; 2649 } 2650 2651 if (type & PERF_SAMPLE_STREAM_ID) { 2652 *array = sample->stream_id; 2653 array++; 2654 } 2655 2656 if (type & PERF_SAMPLE_CPU) { 2657 u.val32[0] = sample->cpu; 2658 u.val32[1] = 0; 2659 *array = u.val64; 2660 array++; 2661 } 2662 2663 if (type & PERF_SAMPLE_PERIOD) { 2664 *array = sample->period; 2665 array++; 2666 } 2667 2668 if (type & PERF_SAMPLE_READ) { 2669 if (read_format & PERF_FORMAT_GROUP) 2670 *array = sample->read.group.nr; 2671 else 2672 *array = sample->read.one.value; 2673 array++; 2674 2675 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2676 *array = sample->read.time_enabled; 2677 array++; 2678 } 2679 2680 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2681 *array = sample->read.time_running; 2682 array++; 2683 } 2684 2685 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2686 if (read_format & PERF_FORMAT_GROUP) { 2687 sz = sample->read.group.nr * 2688 sizeof(struct sample_read_value); 2689 memcpy(array, sample->read.group.values, sz); 2690 array = (void *)array + sz; 2691 } else { 2692 *array = sample->read.one.id; 2693 array++; 2694 } 2695 } 2696 2697 if (type & PERF_SAMPLE_CALLCHAIN) { 2698 sz = (sample->callchain->nr + 1) * sizeof(u64); 2699 memcpy(array, sample->callchain, sz); 2700 array = (void *)array + sz; 2701 } 2702 2703 if (type & PERF_SAMPLE_RAW) { 2704 u.val32[0] = sample->raw_size; 2705 *array = u.val64; 2706 array = (void *)array + sizeof(u32); 2707 2708 memcpy(array, sample->raw_data, sample->raw_size); 2709 array = (void *)array + sample->raw_size; 2710 } 2711 2712 if (type & PERF_SAMPLE_BRANCH_STACK) { 2713 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2714 sz += sizeof(u64); 2715 memcpy(array, sample->branch_stack, sz); 2716 array = (void *)array + sz; 2717 } 2718 2719 if (type & PERF_SAMPLE_REGS_USER) { 2720 if (sample->user_regs.abi) { 2721 *array++ = sample->user_regs.abi; 2722 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2723 memcpy(array, sample->user_regs.regs, sz); 2724 array = (void *)array + sz; 2725 } else { 2726 *array++ = 0; 2727 } 2728 } 2729 2730 if (type & PERF_SAMPLE_STACK_USER) { 2731 sz = sample->user_stack.size; 2732 *array++ = sz; 2733 if (sz) { 2734 memcpy(array, sample->user_stack.data, sz); 2735 array = (void *)array + sz; 2736 *array++ = sz; 2737 } 2738 } 2739 2740 if (type & PERF_SAMPLE_WEIGHT) { 2741 *array = sample->weight; 2742 array++; 2743 } 2744 2745 if (type & PERF_SAMPLE_DATA_SRC) { 2746 *array = sample->data_src; 2747 array++; 2748 } 2749 2750 if (type & PERF_SAMPLE_TRANSACTION) { 2751 *array = sample->transaction; 2752 array++; 2753 } 2754 2755 if (type & PERF_SAMPLE_REGS_INTR) { 2756 if (sample->intr_regs.abi) { 2757 *array++ = sample->intr_regs.abi; 2758 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2759 memcpy(array, sample->intr_regs.regs, sz); 2760 array = (void *)array + sz; 2761 } else { 2762 *array++ = 0; 2763 } 2764 } 2765 2766 if (type & PERF_SAMPLE_PHYS_ADDR) { 2767 *array = sample->phys_addr; 2768 array++; 2769 } 2770 2771 return 0; 2772 } 2773 2774 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2775 { 2776 return tep_find_field(evsel->tp_format, name); 2777 } 2778 2779 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2780 const char *name) 2781 { 2782 struct tep_format_field *field = perf_evsel__field(evsel, name); 2783 int offset; 2784 2785 if (!field) 2786 return NULL; 2787 2788 offset = field->offset; 2789 2790 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2791 offset = *(int *)(sample->raw_data + field->offset); 2792 offset &= 0xffff; 2793 } 2794 2795 return sample->raw_data + offset; 2796 } 2797 2798 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2799 bool needs_swap) 2800 { 2801 u64 value; 2802 void *ptr = sample->raw_data + field->offset; 2803 2804 switch (field->size) { 2805 case 1: 2806 return *(u8 *)ptr; 2807 case 2: 2808 value = *(u16 *)ptr; 2809 break; 2810 case 4: 2811 value = *(u32 *)ptr; 2812 break; 2813 case 8: 2814 memcpy(&value, ptr, sizeof(u64)); 2815 break; 2816 default: 2817 return 0; 2818 } 2819 2820 if (!needs_swap) 2821 return value; 2822 2823 switch (field->size) { 2824 case 2: 2825 return bswap_16(value); 2826 case 4: 2827 return bswap_32(value); 2828 case 8: 2829 return bswap_64(value); 2830 default: 2831 return 0; 2832 } 2833 2834 return 0; 2835 } 2836 2837 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2838 const char *name) 2839 { 2840 struct tep_format_field *field = perf_evsel__field(evsel, name); 2841 2842 if (!field) 2843 return 0; 2844 2845 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2846 } 2847 2848 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2849 char *msg, size_t msgsize) 2850 { 2851 int paranoid; 2852 2853 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2854 evsel->attr.type == PERF_TYPE_HARDWARE && 2855 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2856 /* 2857 * If it's cycles then fall back to hrtimer based 2858 * cpu-clock-tick sw counter, which is always available even if 2859 * no PMU support. 2860 * 2861 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2862 * b0a873e). 2863 */ 2864 scnprintf(msg, msgsize, "%s", 2865 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2866 2867 evsel->attr.type = PERF_TYPE_SOFTWARE; 2868 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2869 2870 zfree(&evsel->name); 2871 return true; 2872 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2873 (paranoid = perf_event_paranoid()) > 1) { 2874 const char *name = perf_evsel__name(evsel); 2875 char *new_name; 2876 const char *sep = ":"; 2877 2878 /* Is there already the separator in the name. */ 2879 if (strchr(name, '/') || 2880 strchr(name, ':')) 2881 sep = ""; 2882 2883 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2884 return false; 2885 2886 if (evsel->name) 2887 free(evsel->name); 2888 evsel->name = new_name; 2889 scnprintf(msg, msgsize, 2890 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2891 evsel->attr.exclude_kernel = 1; 2892 2893 return true; 2894 } 2895 2896 return false; 2897 } 2898 2899 static bool find_process(const char *name) 2900 { 2901 size_t len = strlen(name); 2902 DIR *dir; 2903 struct dirent *d; 2904 int ret = -1; 2905 2906 dir = opendir(procfs__mountpoint()); 2907 if (!dir) 2908 return false; 2909 2910 /* Walk through the directory. */ 2911 while (ret && (d = readdir(dir)) != NULL) { 2912 char path[PATH_MAX]; 2913 char *data; 2914 size_t size; 2915 2916 if ((d->d_type != DT_DIR) || 2917 !strcmp(".", d->d_name) || 2918 !strcmp("..", d->d_name)) 2919 continue; 2920 2921 scnprintf(path, sizeof(path), "%s/%s/comm", 2922 procfs__mountpoint(), d->d_name); 2923 2924 if (filename__read_str(path, &data, &size)) 2925 continue; 2926 2927 ret = strncmp(name, data, len); 2928 free(data); 2929 } 2930 2931 closedir(dir); 2932 return ret ? false : true; 2933 } 2934 2935 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2936 int err, char *msg, size_t size) 2937 { 2938 char sbuf[STRERR_BUFSIZE]; 2939 int printed = 0; 2940 2941 switch (err) { 2942 case EPERM: 2943 case EACCES: 2944 if (err == EPERM) 2945 printed = scnprintf(msg, size, 2946 "No permission to enable %s event.\n\n", 2947 perf_evsel__name(evsel)); 2948 2949 return scnprintf(msg + printed, size - printed, 2950 "You may not have permission to collect %sstats.\n\n" 2951 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2952 "which controls use of the performance events system by\n" 2953 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2954 "The current value is %d:\n\n" 2955 " -1: Allow use of (almost) all events by all users\n" 2956 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2957 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2958 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2959 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2960 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2961 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2962 " kernel.perf_event_paranoid = -1\n" , 2963 target->system_wide ? "system-wide " : "", 2964 perf_event_paranoid()); 2965 case ENOENT: 2966 return scnprintf(msg, size, "The %s event is not supported.", 2967 perf_evsel__name(evsel)); 2968 case EMFILE: 2969 return scnprintf(msg, size, "%s", 2970 "Too many events are opened.\n" 2971 "Probably the maximum number of open file descriptors has been reached.\n" 2972 "Hint: Try again after reducing the number of events.\n" 2973 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2974 case ENOMEM: 2975 if (evsel__has_callchain(evsel) && 2976 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2977 return scnprintf(msg, size, 2978 "Not enough memory to setup event with callchain.\n" 2979 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2980 "Hint: Current value: %d", sysctl__max_stack()); 2981 break; 2982 case ENODEV: 2983 if (target->cpu_list) 2984 return scnprintf(msg, size, "%s", 2985 "No such device - did you specify an out-of-range profile CPU?"); 2986 break; 2987 case EOPNOTSUPP: 2988 if (evsel->attr.sample_period != 0) 2989 return scnprintf(msg, size, 2990 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2991 perf_evsel__name(evsel)); 2992 if (evsel->attr.precise_ip) 2993 return scnprintf(msg, size, "%s", 2994 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2995 #if defined(__i386__) || defined(__x86_64__) 2996 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2997 return scnprintf(msg, size, "%s", 2998 "No hardware sampling interrupt available.\n"); 2999 #endif 3000 break; 3001 case EBUSY: 3002 if (find_process("oprofiled")) 3003 return scnprintf(msg, size, 3004 "The PMU counters are busy/taken by another profiler.\n" 3005 "We found oprofile daemon running, please stop it and try again."); 3006 break; 3007 case EINVAL: 3008 if (evsel->attr.write_backward && perf_missing_features.write_backward) 3009 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 3010 if (perf_missing_features.clockid) 3011 return scnprintf(msg, size, "clockid feature not supported."); 3012 if (perf_missing_features.clockid_wrong) 3013 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 3014 break; 3015 default: 3016 break; 3017 } 3018 3019 return scnprintf(msg, size, 3020 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 3021 "/bin/dmesg | grep -i perf may provide additional information.\n", 3022 err, str_error_r(err, sbuf, sizeof(sbuf)), 3023 perf_evsel__name(evsel)); 3024 } 3025 3026 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 3027 { 3028 if (evsel && evsel->evlist) 3029 return evsel->evlist->env; 3030 return NULL; 3031 } 3032 3033 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3034 { 3035 int cpu, thread; 3036 3037 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 3038 for (thread = 0; thread < xyarray__max_y(evsel->fd); 3039 thread++) { 3040 int fd = FD(evsel, cpu, thread); 3041 3042 if (perf_evlist__id_add_fd(evlist, evsel, 3043 cpu, thread, fd) < 0) 3044 return -1; 3045 } 3046 } 3047 3048 return 0; 3049 } 3050 3051 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3052 { 3053 struct cpu_map *cpus = evsel->cpus; 3054 struct thread_map *threads = evsel->threads; 3055 3056 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 3057 return -ENOMEM; 3058 3059 return store_evsel_ids(evsel, evlist); 3060 } 3061