1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "util/parse-branch-options.h" 40 41 #include "sane_ctype.h" 42 43 static struct { 44 bool sample_id_all; 45 bool exclude_guest; 46 bool mmap2; 47 bool cloexec; 48 bool clockid; 49 bool clockid_wrong; 50 bool lbr_flags; 51 bool write_backward; 52 } perf_missing_features; 53 54 static clockid_t clockid; 55 56 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 57 { 58 return 0; 59 } 60 61 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 62 { 63 } 64 65 static struct { 66 size_t size; 67 int (*init)(struct perf_evsel *evsel); 68 void (*fini)(struct perf_evsel *evsel); 69 } perf_evsel__object = { 70 .size = sizeof(struct perf_evsel), 71 .init = perf_evsel__no_extra_init, 72 .fini = perf_evsel__no_extra_fini, 73 }; 74 75 int perf_evsel__object_config(size_t object_size, 76 int (*init)(struct perf_evsel *evsel), 77 void (*fini)(struct perf_evsel *evsel)) 78 { 79 80 if (object_size == 0) 81 goto set_methods; 82 83 if (perf_evsel__object.size > object_size) 84 return -EINVAL; 85 86 perf_evsel__object.size = object_size; 87 88 set_methods: 89 if (init != NULL) 90 perf_evsel__object.init = init; 91 92 if (fini != NULL) 93 perf_evsel__object.fini = fini; 94 95 return 0; 96 } 97 98 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 99 100 int __perf_evsel__sample_size(u64 sample_type) 101 { 102 u64 mask = sample_type & PERF_SAMPLE_MASK; 103 int size = 0; 104 int i; 105 106 for (i = 0; i < 64; i++) { 107 if (mask & (1ULL << i)) 108 size++; 109 } 110 111 size *= sizeof(u64); 112 113 return size; 114 } 115 116 /** 117 * __perf_evsel__calc_id_pos - calculate id_pos. 118 * @sample_type: sample type 119 * 120 * This function returns the position of the event id (PERF_SAMPLE_ID or 121 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 122 * sample_event. 123 */ 124 static int __perf_evsel__calc_id_pos(u64 sample_type) 125 { 126 int idx = 0; 127 128 if (sample_type & PERF_SAMPLE_IDENTIFIER) 129 return 0; 130 131 if (!(sample_type & PERF_SAMPLE_ID)) 132 return -1; 133 134 if (sample_type & PERF_SAMPLE_IP) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_TID) 138 idx += 1; 139 140 if (sample_type & PERF_SAMPLE_TIME) 141 idx += 1; 142 143 if (sample_type & PERF_SAMPLE_ADDR) 144 idx += 1; 145 146 return idx; 147 } 148 149 /** 150 * __perf_evsel__calc_is_pos - calculate is_pos. 151 * @sample_type: sample type 152 * 153 * This function returns the position (counting backwards) of the event id 154 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 155 * sample_id_all is used there is an id sample appended to non-sample events. 156 */ 157 static int __perf_evsel__calc_is_pos(u64 sample_type) 158 { 159 int idx = 1; 160 161 if (sample_type & PERF_SAMPLE_IDENTIFIER) 162 return 1; 163 164 if (!(sample_type & PERF_SAMPLE_ID)) 165 return -1; 166 167 if (sample_type & PERF_SAMPLE_CPU) 168 idx += 1; 169 170 if (sample_type & PERF_SAMPLE_STREAM_ID) 171 idx += 1; 172 173 return idx; 174 } 175 176 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 177 { 178 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 179 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 180 } 181 182 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 183 enum perf_event_sample_format bit) 184 { 185 if (!(evsel->attr.sample_type & bit)) { 186 evsel->attr.sample_type |= bit; 187 evsel->sample_size += sizeof(u64); 188 perf_evsel__calc_id_pos(evsel); 189 } 190 } 191 192 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 193 enum perf_event_sample_format bit) 194 { 195 if (evsel->attr.sample_type & bit) { 196 evsel->attr.sample_type &= ~bit; 197 evsel->sample_size -= sizeof(u64); 198 perf_evsel__calc_id_pos(evsel); 199 } 200 } 201 202 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 203 bool can_sample_identifier) 204 { 205 if (can_sample_identifier) { 206 perf_evsel__reset_sample_bit(evsel, ID); 207 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 208 } else { 209 perf_evsel__set_sample_bit(evsel, ID); 210 } 211 evsel->attr.read_format |= PERF_FORMAT_ID; 212 } 213 214 /** 215 * perf_evsel__is_function_event - Return whether given evsel is a function 216 * trace event 217 * 218 * @evsel - evsel selector to be tested 219 * 220 * Return %true if event is function trace event 221 */ 222 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 223 { 224 #define FUNCTION_EVENT "ftrace:function" 225 226 return evsel->name && 227 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 228 229 #undef FUNCTION_EVENT 230 } 231 232 void perf_evsel__init(struct perf_evsel *evsel, 233 struct perf_event_attr *attr, int idx) 234 { 235 evsel->idx = idx; 236 evsel->tracking = !idx; 237 evsel->attr = *attr; 238 evsel->leader = evsel; 239 evsel->unit = ""; 240 evsel->scale = 1.0; 241 evsel->evlist = NULL; 242 evsel->bpf_fd = -1; 243 INIT_LIST_HEAD(&evsel->node); 244 INIT_LIST_HEAD(&evsel->config_terms); 245 perf_evsel__object.init(evsel); 246 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 247 perf_evsel__calc_id_pos(evsel); 248 evsel->cmdline_group_boundary = false; 249 evsel->metric_expr = NULL; 250 evsel->metric_name = NULL; 251 evsel->metric_events = NULL; 252 evsel->collect_stat = false; 253 } 254 255 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 256 { 257 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 258 259 if (evsel != NULL) 260 perf_evsel__init(evsel, attr, idx); 261 262 if (perf_evsel__is_bpf_output(evsel)) { 263 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 264 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 265 evsel->attr.sample_period = 1; 266 } 267 268 return evsel; 269 } 270 271 struct perf_evsel *perf_evsel__new_cycles(void) 272 { 273 struct perf_event_attr attr = { 274 .type = PERF_TYPE_HARDWARE, 275 .config = PERF_COUNT_HW_CPU_CYCLES, 276 .exclude_kernel = 1, 277 }; 278 struct perf_evsel *evsel; 279 280 event_attr_init(&attr); 281 /* 282 * Unnamed union member, not supported as struct member named 283 * initializer in older compilers such as gcc 4.4.7 284 * 285 * Just for probing the precise_ip: 286 */ 287 attr.sample_period = 1; 288 289 perf_event_attr__set_max_precise_ip(&attr); 290 /* 291 * Now let the usual logic to set up the perf_event_attr defaults 292 * to kick in when we return and before perf_evsel__open() is called. 293 */ 294 attr.sample_period = 0; 295 296 evsel = perf_evsel__new(&attr); 297 if (evsel == NULL) 298 goto out; 299 300 /* use asprintf() because free(evsel) assumes name is allocated */ 301 if (asprintf(&evsel->name, "cycles%.*s", 302 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0) 303 goto error_free; 304 out: 305 return evsel; 306 error_free: 307 perf_evsel__delete(evsel); 308 evsel = NULL; 309 goto out; 310 } 311 312 /* 313 * Returns pointer with encoded error via <linux/err.h> interface. 314 */ 315 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 316 { 317 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 318 int err = -ENOMEM; 319 320 if (evsel == NULL) { 321 goto out_err; 322 } else { 323 struct perf_event_attr attr = { 324 .type = PERF_TYPE_TRACEPOINT, 325 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 326 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 327 }; 328 329 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 330 goto out_free; 331 332 evsel->tp_format = trace_event__tp_format(sys, name); 333 if (IS_ERR(evsel->tp_format)) { 334 err = PTR_ERR(evsel->tp_format); 335 goto out_free; 336 } 337 338 event_attr_init(&attr); 339 attr.config = evsel->tp_format->id; 340 attr.sample_period = 1; 341 perf_evsel__init(evsel, &attr, idx); 342 } 343 344 return evsel; 345 346 out_free: 347 zfree(&evsel->name); 348 free(evsel); 349 out_err: 350 return ERR_PTR(err); 351 } 352 353 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 354 "cycles", 355 "instructions", 356 "cache-references", 357 "cache-misses", 358 "branches", 359 "branch-misses", 360 "bus-cycles", 361 "stalled-cycles-frontend", 362 "stalled-cycles-backend", 363 "ref-cycles", 364 }; 365 366 static const char *__perf_evsel__hw_name(u64 config) 367 { 368 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 369 return perf_evsel__hw_names[config]; 370 371 return "unknown-hardware"; 372 } 373 374 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 375 { 376 int colon = 0, r = 0; 377 struct perf_event_attr *attr = &evsel->attr; 378 bool exclude_guest_default = false; 379 380 #define MOD_PRINT(context, mod) do { \ 381 if (!attr->exclude_##context) { \ 382 if (!colon) colon = ++r; \ 383 r += scnprintf(bf + r, size - r, "%c", mod); \ 384 } } while(0) 385 386 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 387 MOD_PRINT(kernel, 'k'); 388 MOD_PRINT(user, 'u'); 389 MOD_PRINT(hv, 'h'); 390 exclude_guest_default = true; 391 } 392 393 if (attr->precise_ip) { 394 if (!colon) 395 colon = ++r; 396 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 397 exclude_guest_default = true; 398 } 399 400 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 401 MOD_PRINT(host, 'H'); 402 MOD_PRINT(guest, 'G'); 403 } 404 #undef MOD_PRINT 405 if (colon) 406 bf[colon - 1] = ':'; 407 return r; 408 } 409 410 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 411 { 412 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 413 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 414 } 415 416 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 417 "cpu-clock", 418 "task-clock", 419 "page-faults", 420 "context-switches", 421 "cpu-migrations", 422 "minor-faults", 423 "major-faults", 424 "alignment-faults", 425 "emulation-faults", 426 "dummy", 427 }; 428 429 static const char *__perf_evsel__sw_name(u64 config) 430 { 431 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 432 return perf_evsel__sw_names[config]; 433 return "unknown-software"; 434 } 435 436 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 437 { 438 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 439 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 440 } 441 442 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 443 { 444 int r; 445 446 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 447 448 if (type & HW_BREAKPOINT_R) 449 r += scnprintf(bf + r, size - r, "r"); 450 451 if (type & HW_BREAKPOINT_W) 452 r += scnprintf(bf + r, size - r, "w"); 453 454 if (type & HW_BREAKPOINT_X) 455 r += scnprintf(bf + r, size - r, "x"); 456 457 return r; 458 } 459 460 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 461 { 462 struct perf_event_attr *attr = &evsel->attr; 463 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 464 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 465 } 466 467 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 468 [PERF_EVSEL__MAX_ALIASES] = { 469 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 470 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 471 { "LLC", "L2", }, 472 { "dTLB", "d-tlb", "Data-TLB", }, 473 { "iTLB", "i-tlb", "Instruction-TLB", }, 474 { "branch", "branches", "bpu", "btb", "bpc", }, 475 { "node", }, 476 }; 477 478 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 479 [PERF_EVSEL__MAX_ALIASES] = { 480 { "load", "loads", "read", }, 481 { "store", "stores", "write", }, 482 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 483 }; 484 485 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 486 [PERF_EVSEL__MAX_ALIASES] = { 487 { "refs", "Reference", "ops", "access", }, 488 { "misses", "miss", }, 489 }; 490 491 #define C(x) PERF_COUNT_HW_CACHE_##x 492 #define CACHE_READ (1 << C(OP_READ)) 493 #define CACHE_WRITE (1 << C(OP_WRITE)) 494 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 495 #define COP(x) (1 << x) 496 497 /* 498 * cache operartion stat 499 * L1I : Read and prefetch only 500 * ITLB and BPU : Read-only 501 */ 502 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 503 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 504 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 505 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 506 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 507 [C(ITLB)] = (CACHE_READ), 508 [C(BPU)] = (CACHE_READ), 509 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 510 }; 511 512 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 513 { 514 if (perf_evsel__hw_cache_stat[type] & COP(op)) 515 return true; /* valid */ 516 else 517 return false; /* invalid */ 518 } 519 520 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 521 char *bf, size_t size) 522 { 523 if (result) { 524 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 525 perf_evsel__hw_cache_op[op][0], 526 perf_evsel__hw_cache_result[result][0]); 527 } 528 529 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 530 perf_evsel__hw_cache_op[op][1]); 531 } 532 533 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 534 { 535 u8 op, result, type = (config >> 0) & 0xff; 536 const char *err = "unknown-ext-hardware-cache-type"; 537 538 if (type >= PERF_COUNT_HW_CACHE_MAX) 539 goto out_err; 540 541 op = (config >> 8) & 0xff; 542 err = "unknown-ext-hardware-cache-op"; 543 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 544 goto out_err; 545 546 result = (config >> 16) & 0xff; 547 err = "unknown-ext-hardware-cache-result"; 548 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 549 goto out_err; 550 551 err = "invalid-cache"; 552 if (!perf_evsel__is_cache_op_valid(type, op)) 553 goto out_err; 554 555 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 556 out_err: 557 return scnprintf(bf, size, "%s", err); 558 } 559 560 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 561 { 562 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 563 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 564 } 565 566 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 567 { 568 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 569 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 570 } 571 572 const char *perf_evsel__name(struct perf_evsel *evsel) 573 { 574 char bf[128]; 575 576 if (evsel->name) 577 return evsel->name; 578 579 switch (evsel->attr.type) { 580 case PERF_TYPE_RAW: 581 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 582 break; 583 584 case PERF_TYPE_HARDWARE: 585 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 586 break; 587 588 case PERF_TYPE_HW_CACHE: 589 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 590 break; 591 592 case PERF_TYPE_SOFTWARE: 593 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 594 break; 595 596 case PERF_TYPE_TRACEPOINT: 597 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 598 break; 599 600 case PERF_TYPE_BREAKPOINT: 601 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 602 break; 603 604 default: 605 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 606 evsel->attr.type); 607 break; 608 } 609 610 evsel->name = strdup(bf); 611 612 return evsel->name ?: "unknown"; 613 } 614 615 const char *perf_evsel__group_name(struct perf_evsel *evsel) 616 { 617 return evsel->group_name ?: "anon group"; 618 } 619 620 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 621 { 622 int ret; 623 struct perf_evsel *pos; 624 const char *group_name = perf_evsel__group_name(evsel); 625 626 ret = scnprintf(buf, size, "%s", group_name); 627 628 ret += scnprintf(buf + ret, size - ret, " { %s", 629 perf_evsel__name(evsel)); 630 631 for_each_group_member(pos, evsel) 632 ret += scnprintf(buf + ret, size - ret, ", %s", 633 perf_evsel__name(pos)); 634 635 ret += scnprintf(buf + ret, size - ret, " }"); 636 637 return ret; 638 } 639 640 void perf_evsel__config_callchain(struct perf_evsel *evsel, 641 struct record_opts *opts, 642 struct callchain_param *param) 643 { 644 bool function = perf_evsel__is_function_event(evsel); 645 struct perf_event_attr *attr = &evsel->attr; 646 647 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 648 649 attr->sample_max_stack = param->max_stack; 650 651 if (param->record_mode == CALLCHAIN_LBR) { 652 if (!opts->branch_stack) { 653 if (attr->exclude_user) { 654 pr_warning("LBR callstack option is only available " 655 "to get user callchain information. " 656 "Falling back to framepointers.\n"); 657 } else { 658 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 659 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 660 PERF_SAMPLE_BRANCH_CALL_STACK | 661 PERF_SAMPLE_BRANCH_NO_CYCLES | 662 PERF_SAMPLE_BRANCH_NO_FLAGS; 663 } 664 } else 665 pr_warning("Cannot use LBR callstack with branch stack. " 666 "Falling back to framepointers.\n"); 667 } 668 669 if (param->record_mode == CALLCHAIN_DWARF) { 670 if (!function) { 671 perf_evsel__set_sample_bit(evsel, REGS_USER); 672 perf_evsel__set_sample_bit(evsel, STACK_USER); 673 attr->sample_regs_user = PERF_REGS_MASK; 674 attr->sample_stack_user = param->dump_size; 675 attr->exclude_callchain_user = 1; 676 } else { 677 pr_info("Cannot use DWARF unwind for function trace event," 678 " falling back to framepointers.\n"); 679 } 680 } 681 682 if (function) { 683 pr_info("Disabling user space callchains for function trace event.\n"); 684 attr->exclude_callchain_user = 1; 685 } 686 } 687 688 static void 689 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 690 struct callchain_param *param) 691 { 692 struct perf_event_attr *attr = &evsel->attr; 693 694 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 695 if (param->record_mode == CALLCHAIN_LBR) { 696 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 697 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 698 PERF_SAMPLE_BRANCH_CALL_STACK); 699 } 700 if (param->record_mode == CALLCHAIN_DWARF) { 701 perf_evsel__reset_sample_bit(evsel, REGS_USER); 702 perf_evsel__reset_sample_bit(evsel, STACK_USER); 703 } 704 } 705 706 static void apply_config_terms(struct perf_evsel *evsel, 707 struct record_opts *opts) 708 { 709 struct perf_evsel_config_term *term; 710 struct list_head *config_terms = &evsel->config_terms; 711 struct perf_event_attr *attr = &evsel->attr; 712 struct callchain_param param; 713 u32 dump_size = 0; 714 int max_stack = 0; 715 const char *callgraph_buf = NULL; 716 717 /* callgraph default */ 718 param.record_mode = callchain_param.record_mode; 719 720 list_for_each_entry(term, config_terms, list) { 721 switch (term->type) { 722 case PERF_EVSEL__CONFIG_TERM_PERIOD: 723 attr->sample_period = term->val.period; 724 attr->freq = 0; 725 break; 726 case PERF_EVSEL__CONFIG_TERM_FREQ: 727 attr->sample_freq = term->val.freq; 728 attr->freq = 1; 729 break; 730 case PERF_EVSEL__CONFIG_TERM_TIME: 731 if (term->val.time) 732 perf_evsel__set_sample_bit(evsel, TIME); 733 else 734 perf_evsel__reset_sample_bit(evsel, TIME); 735 break; 736 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 737 callgraph_buf = term->val.callgraph; 738 break; 739 case PERF_EVSEL__CONFIG_TERM_BRANCH: 740 if (term->val.branch && strcmp(term->val.branch, "no")) { 741 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 742 parse_branch_str(term->val.branch, 743 &attr->branch_sample_type); 744 } else 745 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 746 break; 747 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 748 dump_size = term->val.stack_user; 749 break; 750 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 751 max_stack = term->val.max_stack; 752 break; 753 case PERF_EVSEL__CONFIG_TERM_INHERIT: 754 /* 755 * attr->inherit should has already been set by 756 * perf_evsel__config. If user explicitly set 757 * inherit using config terms, override global 758 * opt->no_inherit setting. 759 */ 760 attr->inherit = term->val.inherit ? 1 : 0; 761 break; 762 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 763 attr->write_backward = term->val.overwrite ? 1 : 0; 764 break; 765 default: 766 break; 767 } 768 } 769 770 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 771 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 772 if (max_stack) { 773 param.max_stack = max_stack; 774 if (callgraph_buf == NULL) 775 callgraph_buf = "fp"; 776 } 777 778 /* parse callgraph parameters */ 779 if (callgraph_buf != NULL) { 780 if (!strcmp(callgraph_buf, "no")) { 781 param.enabled = false; 782 param.record_mode = CALLCHAIN_NONE; 783 } else { 784 param.enabled = true; 785 if (parse_callchain_record(callgraph_buf, ¶m)) { 786 pr_err("per-event callgraph setting for %s failed. " 787 "Apply callgraph global setting for it\n", 788 evsel->name); 789 return; 790 } 791 } 792 } 793 if (dump_size > 0) { 794 dump_size = round_up(dump_size, sizeof(u64)); 795 param.dump_size = dump_size; 796 } 797 798 /* If global callgraph set, clear it */ 799 if (callchain_param.enabled) 800 perf_evsel__reset_callgraph(evsel, &callchain_param); 801 802 /* set perf-event callgraph */ 803 if (param.enabled) 804 perf_evsel__config_callchain(evsel, opts, ¶m); 805 } 806 } 807 808 /* 809 * The enable_on_exec/disabled value strategy: 810 * 811 * 1) For any type of traced program: 812 * - all independent events and group leaders are disabled 813 * - all group members are enabled 814 * 815 * Group members are ruled by group leaders. They need to 816 * be enabled, because the group scheduling relies on that. 817 * 818 * 2) For traced programs executed by perf: 819 * - all independent events and group leaders have 820 * enable_on_exec set 821 * - we don't specifically enable or disable any event during 822 * the record command 823 * 824 * Independent events and group leaders are initially disabled 825 * and get enabled by exec. Group members are ruled by group 826 * leaders as stated in 1). 827 * 828 * 3) For traced programs attached by perf (pid/tid): 829 * - we specifically enable or disable all events during 830 * the record command 831 * 832 * When attaching events to already running traced we 833 * enable/disable events specifically, as there's no 834 * initial traced exec call. 835 */ 836 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 837 struct callchain_param *callchain) 838 { 839 struct perf_evsel *leader = evsel->leader; 840 struct perf_event_attr *attr = &evsel->attr; 841 int track = evsel->tracking; 842 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 843 844 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 845 attr->inherit = !opts->no_inherit; 846 attr->write_backward = opts->overwrite ? 1 : 0; 847 848 perf_evsel__set_sample_bit(evsel, IP); 849 perf_evsel__set_sample_bit(evsel, TID); 850 851 if (evsel->sample_read) { 852 perf_evsel__set_sample_bit(evsel, READ); 853 854 /* 855 * We need ID even in case of single event, because 856 * PERF_SAMPLE_READ process ID specific data. 857 */ 858 perf_evsel__set_sample_id(evsel, false); 859 860 /* 861 * Apply group format only if we belong to group 862 * with more than one members. 863 */ 864 if (leader->nr_members > 1) { 865 attr->read_format |= PERF_FORMAT_GROUP; 866 attr->inherit = 0; 867 } 868 } 869 870 /* 871 * We default some events to have a default interval. But keep 872 * it a weak assumption overridable by the user. 873 */ 874 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 875 opts->user_interval != ULLONG_MAX)) { 876 if (opts->freq) { 877 perf_evsel__set_sample_bit(evsel, PERIOD); 878 attr->freq = 1; 879 attr->sample_freq = opts->freq; 880 } else { 881 attr->sample_period = opts->default_interval; 882 } 883 } 884 885 /* 886 * Disable sampling for all group members other 887 * than leader in case leader 'leads' the sampling. 888 */ 889 if ((leader != evsel) && leader->sample_read) { 890 attr->sample_freq = 0; 891 attr->sample_period = 0; 892 } 893 894 if (opts->no_samples) 895 attr->sample_freq = 0; 896 897 if (opts->inherit_stat) 898 attr->inherit_stat = 1; 899 900 if (opts->sample_address) { 901 perf_evsel__set_sample_bit(evsel, ADDR); 902 attr->mmap_data = track; 903 } 904 905 /* 906 * We don't allow user space callchains for function trace 907 * event, due to issues with page faults while tracing page 908 * fault handler and its overall trickiness nature. 909 */ 910 if (perf_evsel__is_function_event(evsel)) 911 evsel->attr.exclude_callchain_user = 1; 912 913 if (callchain && callchain->enabled && !evsel->no_aux_samples) 914 perf_evsel__config_callchain(evsel, opts, callchain); 915 916 if (opts->sample_intr_regs) { 917 attr->sample_regs_intr = opts->sample_intr_regs; 918 perf_evsel__set_sample_bit(evsel, REGS_INTR); 919 } 920 921 if (target__has_cpu(&opts->target) || opts->sample_cpu) 922 perf_evsel__set_sample_bit(evsel, CPU); 923 924 if (opts->period) 925 perf_evsel__set_sample_bit(evsel, PERIOD); 926 927 /* 928 * When the user explicitly disabled time don't force it here. 929 */ 930 if (opts->sample_time && 931 (!perf_missing_features.sample_id_all && 932 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 933 opts->sample_time_set))) 934 perf_evsel__set_sample_bit(evsel, TIME); 935 936 if (opts->raw_samples && !evsel->no_aux_samples) { 937 perf_evsel__set_sample_bit(evsel, TIME); 938 perf_evsel__set_sample_bit(evsel, RAW); 939 perf_evsel__set_sample_bit(evsel, CPU); 940 } 941 942 if (opts->sample_address) 943 perf_evsel__set_sample_bit(evsel, DATA_SRC); 944 945 if (opts->no_buffering) { 946 attr->watermark = 0; 947 attr->wakeup_events = 1; 948 } 949 if (opts->branch_stack && !evsel->no_aux_samples) { 950 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 951 attr->branch_sample_type = opts->branch_stack; 952 } 953 954 if (opts->sample_weight) 955 perf_evsel__set_sample_bit(evsel, WEIGHT); 956 957 attr->task = track; 958 attr->mmap = track; 959 attr->mmap2 = track && !perf_missing_features.mmap2; 960 attr->comm = track; 961 962 if (opts->record_namespaces) 963 attr->namespaces = track; 964 965 if (opts->record_switch_events) 966 attr->context_switch = track; 967 968 if (opts->sample_transaction) 969 perf_evsel__set_sample_bit(evsel, TRANSACTION); 970 971 if (opts->running_time) { 972 evsel->attr.read_format |= 973 PERF_FORMAT_TOTAL_TIME_ENABLED | 974 PERF_FORMAT_TOTAL_TIME_RUNNING; 975 } 976 977 /* 978 * XXX see the function comment above 979 * 980 * Disabling only independent events or group leaders, 981 * keeping group members enabled. 982 */ 983 if (perf_evsel__is_group_leader(evsel)) 984 attr->disabled = 1; 985 986 /* 987 * Setting enable_on_exec for independent events and 988 * group leaders for traced executed by perf. 989 */ 990 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 991 !opts->initial_delay) 992 attr->enable_on_exec = 1; 993 994 if (evsel->immediate) { 995 attr->disabled = 0; 996 attr->enable_on_exec = 0; 997 } 998 999 clockid = opts->clockid; 1000 if (opts->use_clockid) { 1001 attr->use_clockid = 1; 1002 attr->clockid = opts->clockid; 1003 } 1004 1005 if (evsel->precise_max) 1006 perf_event_attr__set_max_precise_ip(attr); 1007 1008 if (opts->all_user) { 1009 attr->exclude_kernel = 1; 1010 attr->exclude_user = 0; 1011 } 1012 1013 if (opts->all_kernel) { 1014 attr->exclude_kernel = 0; 1015 attr->exclude_user = 1; 1016 } 1017 1018 /* 1019 * Apply event specific term settings, 1020 * it overloads any global configuration. 1021 */ 1022 apply_config_terms(evsel, opts); 1023 1024 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1025 } 1026 1027 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1028 { 1029 if (evsel->system_wide) 1030 nthreads = 1; 1031 1032 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1033 1034 if (evsel->fd) { 1035 int cpu, thread; 1036 for (cpu = 0; cpu < ncpus; cpu++) { 1037 for (thread = 0; thread < nthreads; thread++) { 1038 FD(evsel, cpu, thread) = -1; 1039 } 1040 } 1041 } 1042 1043 return evsel->fd != NULL ? 0 : -ENOMEM; 1044 } 1045 1046 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 1047 int ioc, void *arg) 1048 { 1049 int cpu, thread; 1050 1051 if (evsel->system_wide) 1052 nthreads = 1; 1053 1054 for (cpu = 0; cpu < ncpus; cpu++) { 1055 for (thread = 0; thread < nthreads; thread++) { 1056 int fd = FD(evsel, cpu, thread), 1057 err = ioctl(fd, ioc, arg); 1058 1059 if (err) 1060 return err; 1061 } 1062 } 1063 1064 return 0; 1065 } 1066 1067 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 1068 const char *filter) 1069 { 1070 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1071 PERF_EVENT_IOC_SET_FILTER, 1072 (void *)filter); 1073 } 1074 1075 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1076 { 1077 char *new_filter = strdup(filter); 1078 1079 if (new_filter != NULL) { 1080 free(evsel->filter); 1081 evsel->filter = new_filter; 1082 return 0; 1083 } 1084 1085 return -1; 1086 } 1087 1088 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1089 const char *fmt, const char *filter) 1090 { 1091 char *new_filter; 1092 1093 if (evsel->filter == NULL) 1094 return perf_evsel__set_filter(evsel, filter); 1095 1096 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1097 free(evsel->filter); 1098 evsel->filter = new_filter; 1099 return 0; 1100 } 1101 1102 return -1; 1103 } 1104 1105 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1106 { 1107 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1108 } 1109 1110 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1111 { 1112 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1113 } 1114 1115 int perf_evsel__enable(struct perf_evsel *evsel) 1116 { 1117 int nthreads = thread_map__nr(evsel->threads); 1118 int ncpus = cpu_map__nr(evsel->cpus); 1119 1120 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1121 PERF_EVENT_IOC_ENABLE, 1122 0); 1123 } 1124 1125 int perf_evsel__disable(struct perf_evsel *evsel) 1126 { 1127 int nthreads = thread_map__nr(evsel->threads); 1128 int ncpus = cpu_map__nr(evsel->cpus); 1129 1130 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1131 PERF_EVENT_IOC_DISABLE, 1132 0); 1133 } 1134 1135 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1136 { 1137 if (ncpus == 0 || nthreads == 0) 1138 return 0; 1139 1140 if (evsel->system_wide) 1141 nthreads = 1; 1142 1143 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1144 if (evsel->sample_id == NULL) 1145 return -ENOMEM; 1146 1147 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1148 if (evsel->id == NULL) { 1149 xyarray__delete(evsel->sample_id); 1150 evsel->sample_id = NULL; 1151 return -ENOMEM; 1152 } 1153 1154 return 0; 1155 } 1156 1157 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1158 { 1159 xyarray__delete(evsel->fd); 1160 evsel->fd = NULL; 1161 } 1162 1163 static void perf_evsel__free_id(struct perf_evsel *evsel) 1164 { 1165 xyarray__delete(evsel->sample_id); 1166 evsel->sample_id = NULL; 1167 zfree(&evsel->id); 1168 } 1169 1170 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1171 { 1172 struct perf_evsel_config_term *term, *h; 1173 1174 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1175 list_del(&term->list); 1176 free(term); 1177 } 1178 } 1179 1180 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1181 { 1182 int cpu, thread; 1183 1184 if (evsel->system_wide) 1185 nthreads = 1; 1186 1187 for (cpu = 0; cpu < ncpus; cpu++) 1188 for (thread = 0; thread < nthreads; ++thread) { 1189 close(FD(evsel, cpu, thread)); 1190 FD(evsel, cpu, thread) = -1; 1191 } 1192 } 1193 1194 void perf_evsel__exit(struct perf_evsel *evsel) 1195 { 1196 assert(list_empty(&evsel->node)); 1197 assert(evsel->evlist == NULL); 1198 perf_evsel__free_fd(evsel); 1199 perf_evsel__free_id(evsel); 1200 perf_evsel__free_config_terms(evsel); 1201 close_cgroup(evsel->cgrp); 1202 cpu_map__put(evsel->cpus); 1203 cpu_map__put(evsel->own_cpus); 1204 thread_map__put(evsel->threads); 1205 zfree(&evsel->group_name); 1206 zfree(&evsel->name); 1207 perf_evsel__object.fini(evsel); 1208 } 1209 1210 void perf_evsel__delete(struct perf_evsel *evsel) 1211 { 1212 perf_evsel__exit(evsel); 1213 free(evsel); 1214 } 1215 1216 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1217 struct perf_counts_values *count) 1218 { 1219 struct perf_counts_values tmp; 1220 1221 if (!evsel->prev_raw_counts) 1222 return; 1223 1224 if (cpu == -1) { 1225 tmp = evsel->prev_raw_counts->aggr; 1226 evsel->prev_raw_counts->aggr = *count; 1227 } else { 1228 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1229 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1230 } 1231 1232 count->val = count->val - tmp.val; 1233 count->ena = count->ena - tmp.ena; 1234 count->run = count->run - tmp.run; 1235 } 1236 1237 void perf_counts_values__scale(struct perf_counts_values *count, 1238 bool scale, s8 *pscaled) 1239 { 1240 s8 scaled = 0; 1241 1242 if (scale) { 1243 if (count->run == 0) { 1244 scaled = -1; 1245 count->val = 0; 1246 } else if (count->run < count->ena) { 1247 scaled = 1; 1248 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1249 } 1250 } else 1251 count->ena = count->run = 0; 1252 1253 if (pscaled) 1254 *pscaled = scaled; 1255 } 1256 1257 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1258 struct perf_counts_values *count) 1259 { 1260 memset(count, 0, sizeof(*count)); 1261 1262 if (FD(evsel, cpu, thread) < 0) 1263 return -EINVAL; 1264 1265 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0) 1266 return -errno; 1267 1268 return 0; 1269 } 1270 1271 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1272 int cpu, int thread, bool scale) 1273 { 1274 struct perf_counts_values count; 1275 size_t nv = scale ? 3 : 1; 1276 1277 if (FD(evsel, cpu, thread) < 0) 1278 return -EINVAL; 1279 1280 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1281 return -ENOMEM; 1282 1283 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1284 return -errno; 1285 1286 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1287 perf_counts_values__scale(&count, scale, NULL); 1288 *perf_counts(evsel->counts, cpu, thread) = count; 1289 return 0; 1290 } 1291 1292 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1293 { 1294 struct perf_evsel *leader = evsel->leader; 1295 int fd; 1296 1297 if (perf_evsel__is_group_leader(evsel)) 1298 return -1; 1299 1300 /* 1301 * Leader must be already processed/open, 1302 * if not it's a bug. 1303 */ 1304 BUG_ON(!leader->fd); 1305 1306 fd = FD(leader, cpu, thread); 1307 BUG_ON(fd == -1); 1308 1309 return fd; 1310 } 1311 1312 struct bit_names { 1313 int bit; 1314 const char *name; 1315 }; 1316 1317 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1318 { 1319 bool first_bit = true; 1320 int i = 0; 1321 1322 do { 1323 if (value & bits[i].bit) { 1324 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1325 first_bit = false; 1326 } 1327 } while (bits[++i].name != NULL); 1328 } 1329 1330 static void __p_sample_type(char *buf, size_t size, u64 value) 1331 { 1332 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1333 struct bit_names bits[] = { 1334 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1335 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1336 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1337 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1338 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1339 bit_name(WEIGHT), 1340 { .name = NULL, } 1341 }; 1342 #undef bit_name 1343 __p_bits(buf, size, value, bits); 1344 } 1345 1346 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1347 { 1348 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1349 struct bit_names bits[] = { 1350 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1351 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1352 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1353 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1354 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1355 { .name = NULL, } 1356 }; 1357 #undef bit_name 1358 __p_bits(buf, size, value, bits); 1359 } 1360 1361 static void __p_read_format(char *buf, size_t size, u64 value) 1362 { 1363 #define bit_name(n) { PERF_FORMAT_##n, #n } 1364 struct bit_names bits[] = { 1365 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1366 bit_name(ID), bit_name(GROUP), 1367 { .name = NULL, } 1368 }; 1369 #undef bit_name 1370 __p_bits(buf, size, value, bits); 1371 } 1372 1373 #define BUF_SIZE 1024 1374 1375 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1376 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1377 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1378 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1379 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1380 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1381 1382 #define PRINT_ATTRn(_n, _f, _p) \ 1383 do { \ 1384 if (attr->_f) { \ 1385 _p(attr->_f); \ 1386 ret += attr__fprintf(fp, _n, buf, priv);\ 1387 } \ 1388 } while (0) 1389 1390 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1391 1392 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1393 attr__fprintf_f attr__fprintf, void *priv) 1394 { 1395 char buf[BUF_SIZE]; 1396 int ret = 0; 1397 1398 PRINT_ATTRf(type, p_unsigned); 1399 PRINT_ATTRf(size, p_unsigned); 1400 PRINT_ATTRf(config, p_hex); 1401 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1402 PRINT_ATTRf(sample_type, p_sample_type); 1403 PRINT_ATTRf(read_format, p_read_format); 1404 1405 PRINT_ATTRf(disabled, p_unsigned); 1406 PRINT_ATTRf(inherit, p_unsigned); 1407 PRINT_ATTRf(pinned, p_unsigned); 1408 PRINT_ATTRf(exclusive, p_unsigned); 1409 PRINT_ATTRf(exclude_user, p_unsigned); 1410 PRINT_ATTRf(exclude_kernel, p_unsigned); 1411 PRINT_ATTRf(exclude_hv, p_unsigned); 1412 PRINT_ATTRf(exclude_idle, p_unsigned); 1413 PRINT_ATTRf(mmap, p_unsigned); 1414 PRINT_ATTRf(comm, p_unsigned); 1415 PRINT_ATTRf(freq, p_unsigned); 1416 PRINT_ATTRf(inherit_stat, p_unsigned); 1417 PRINT_ATTRf(enable_on_exec, p_unsigned); 1418 PRINT_ATTRf(task, p_unsigned); 1419 PRINT_ATTRf(watermark, p_unsigned); 1420 PRINT_ATTRf(precise_ip, p_unsigned); 1421 PRINT_ATTRf(mmap_data, p_unsigned); 1422 PRINT_ATTRf(sample_id_all, p_unsigned); 1423 PRINT_ATTRf(exclude_host, p_unsigned); 1424 PRINT_ATTRf(exclude_guest, p_unsigned); 1425 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1426 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1427 PRINT_ATTRf(mmap2, p_unsigned); 1428 PRINT_ATTRf(comm_exec, p_unsigned); 1429 PRINT_ATTRf(use_clockid, p_unsigned); 1430 PRINT_ATTRf(context_switch, p_unsigned); 1431 PRINT_ATTRf(write_backward, p_unsigned); 1432 1433 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1434 PRINT_ATTRf(bp_type, p_unsigned); 1435 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1436 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1437 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1438 PRINT_ATTRf(sample_regs_user, p_hex); 1439 PRINT_ATTRf(sample_stack_user, p_unsigned); 1440 PRINT_ATTRf(clockid, p_signed); 1441 PRINT_ATTRf(sample_regs_intr, p_hex); 1442 PRINT_ATTRf(aux_watermark, p_unsigned); 1443 PRINT_ATTRf(sample_max_stack, p_unsigned); 1444 1445 return ret; 1446 } 1447 1448 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1449 void *priv __maybe_unused) 1450 { 1451 return fprintf(fp, " %-32s %s\n", name, val); 1452 } 1453 1454 static bool ignore_missing_thread(struct perf_evsel *evsel, 1455 struct thread_map *threads, 1456 int thread, int err) 1457 { 1458 if (!evsel->ignore_missing_thread) 1459 return false; 1460 1461 /* The system wide setup does not work with threads. */ 1462 if (evsel->system_wide) 1463 return false; 1464 1465 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1466 if (err != -ESRCH) 1467 return false; 1468 1469 /* If there's only one thread, let it fail. */ 1470 if (threads->nr == 1) 1471 return false; 1472 1473 if (thread_map__remove(threads, thread)) 1474 return false; 1475 1476 pr_warning("WARNING: Ignored open failure for pid %d\n", 1477 thread_map__pid(threads, thread)); 1478 return true; 1479 } 1480 1481 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1482 struct thread_map *threads) 1483 { 1484 int cpu, thread, nthreads; 1485 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1486 int pid = -1, err; 1487 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1488 1489 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1490 return -EINVAL; 1491 1492 if (cpus == NULL) { 1493 static struct cpu_map *empty_cpu_map; 1494 1495 if (empty_cpu_map == NULL) { 1496 empty_cpu_map = cpu_map__dummy_new(); 1497 if (empty_cpu_map == NULL) 1498 return -ENOMEM; 1499 } 1500 1501 cpus = empty_cpu_map; 1502 } 1503 1504 if (threads == NULL) { 1505 static struct thread_map *empty_thread_map; 1506 1507 if (empty_thread_map == NULL) { 1508 empty_thread_map = thread_map__new_by_tid(-1); 1509 if (empty_thread_map == NULL) 1510 return -ENOMEM; 1511 } 1512 1513 threads = empty_thread_map; 1514 } 1515 1516 if (evsel->system_wide) 1517 nthreads = 1; 1518 else 1519 nthreads = threads->nr; 1520 1521 if (evsel->fd == NULL && 1522 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1523 return -ENOMEM; 1524 1525 if (evsel->cgrp) { 1526 flags |= PERF_FLAG_PID_CGROUP; 1527 pid = evsel->cgrp->fd; 1528 } 1529 1530 fallback_missing_features: 1531 if (perf_missing_features.clockid_wrong) 1532 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1533 if (perf_missing_features.clockid) { 1534 evsel->attr.use_clockid = 0; 1535 evsel->attr.clockid = 0; 1536 } 1537 if (perf_missing_features.cloexec) 1538 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1539 if (perf_missing_features.mmap2) 1540 evsel->attr.mmap2 = 0; 1541 if (perf_missing_features.exclude_guest) 1542 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1543 if (perf_missing_features.lbr_flags) 1544 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1545 PERF_SAMPLE_BRANCH_NO_CYCLES); 1546 retry_sample_id: 1547 if (perf_missing_features.sample_id_all) 1548 evsel->attr.sample_id_all = 0; 1549 1550 if (verbose >= 2) { 1551 fprintf(stderr, "%.60s\n", graph_dotted_line); 1552 fprintf(stderr, "perf_event_attr:\n"); 1553 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1554 fprintf(stderr, "%.60s\n", graph_dotted_line); 1555 } 1556 1557 for (cpu = 0; cpu < cpus->nr; cpu++) { 1558 1559 for (thread = 0; thread < nthreads; thread++) { 1560 int fd, group_fd; 1561 1562 if (!evsel->cgrp && !evsel->system_wide) 1563 pid = thread_map__pid(threads, thread); 1564 1565 group_fd = get_group_fd(evsel, cpu, thread); 1566 retry_open: 1567 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1568 pid, cpus->map[cpu], group_fd, flags); 1569 1570 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1571 group_fd, flags); 1572 1573 FD(evsel, cpu, thread) = fd; 1574 1575 if (fd < 0) { 1576 err = -errno; 1577 1578 if (ignore_missing_thread(evsel, threads, thread, err)) { 1579 /* 1580 * We just removed 1 thread, so take a step 1581 * back on thread index and lower the upper 1582 * nthreads limit. 1583 */ 1584 nthreads--; 1585 thread--; 1586 1587 /* ... and pretend like nothing have happened. */ 1588 err = 0; 1589 continue; 1590 } 1591 1592 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1593 err); 1594 goto try_fallback; 1595 } 1596 1597 pr_debug2(" = %d\n", fd); 1598 1599 if (evsel->bpf_fd >= 0) { 1600 int evt_fd = fd; 1601 int bpf_fd = evsel->bpf_fd; 1602 1603 err = ioctl(evt_fd, 1604 PERF_EVENT_IOC_SET_BPF, 1605 bpf_fd); 1606 if (err && errno != EEXIST) { 1607 pr_err("failed to attach bpf fd %d: %s\n", 1608 bpf_fd, strerror(errno)); 1609 err = -EINVAL; 1610 goto out_close; 1611 } 1612 } 1613 1614 set_rlimit = NO_CHANGE; 1615 1616 /* 1617 * If we succeeded but had to kill clockid, fail and 1618 * have perf_evsel__open_strerror() print us a nice 1619 * error. 1620 */ 1621 if (perf_missing_features.clockid || 1622 perf_missing_features.clockid_wrong) { 1623 err = -EINVAL; 1624 goto out_close; 1625 } 1626 } 1627 } 1628 1629 return 0; 1630 1631 try_fallback: 1632 /* 1633 * perf stat needs between 5 and 22 fds per CPU. When we run out 1634 * of them try to increase the limits. 1635 */ 1636 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1637 struct rlimit l; 1638 int old_errno = errno; 1639 1640 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1641 if (set_rlimit == NO_CHANGE) 1642 l.rlim_cur = l.rlim_max; 1643 else { 1644 l.rlim_cur = l.rlim_max + 1000; 1645 l.rlim_max = l.rlim_cur; 1646 } 1647 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1648 set_rlimit++; 1649 errno = old_errno; 1650 goto retry_open; 1651 } 1652 } 1653 errno = old_errno; 1654 } 1655 1656 if (err != -EINVAL || cpu > 0 || thread > 0) 1657 goto out_close; 1658 1659 /* 1660 * Must probe features in the order they were added to the 1661 * perf_event_attr interface. 1662 */ 1663 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1664 perf_missing_features.write_backward = true; 1665 goto out_close; 1666 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1667 perf_missing_features.clockid_wrong = true; 1668 goto fallback_missing_features; 1669 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1670 perf_missing_features.clockid = true; 1671 goto fallback_missing_features; 1672 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1673 perf_missing_features.cloexec = true; 1674 goto fallback_missing_features; 1675 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1676 perf_missing_features.mmap2 = true; 1677 goto fallback_missing_features; 1678 } else if (!perf_missing_features.exclude_guest && 1679 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1680 perf_missing_features.exclude_guest = true; 1681 goto fallback_missing_features; 1682 } else if (!perf_missing_features.sample_id_all) { 1683 perf_missing_features.sample_id_all = true; 1684 goto retry_sample_id; 1685 } else if (!perf_missing_features.lbr_flags && 1686 (evsel->attr.branch_sample_type & 1687 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1688 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1689 perf_missing_features.lbr_flags = true; 1690 goto fallback_missing_features; 1691 } 1692 out_close: 1693 do { 1694 while (--thread >= 0) { 1695 close(FD(evsel, cpu, thread)); 1696 FD(evsel, cpu, thread) = -1; 1697 } 1698 thread = nthreads; 1699 } while (--cpu >= 0); 1700 return err; 1701 } 1702 1703 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1704 { 1705 if (evsel->fd == NULL) 1706 return; 1707 1708 perf_evsel__close_fd(evsel, ncpus, nthreads); 1709 perf_evsel__free_fd(evsel); 1710 } 1711 1712 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1713 struct cpu_map *cpus) 1714 { 1715 return perf_evsel__open(evsel, cpus, NULL); 1716 } 1717 1718 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1719 struct thread_map *threads) 1720 { 1721 return perf_evsel__open(evsel, NULL, threads); 1722 } 1723 1724 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1725 const union perf_event *event, 1726 struct perf_sample *sample) 1727 { 1728 u64 type = evsel->attr.sample_type; 1729 const u64 *array = event->sample.array; 1730 bool swapped = evsel->needs_swap; 1731 union u64_swap u; 1732 1733 array += ((event->header.size - 1734 sizeof(event->header)) / sizeof(u64)) - 1; 1735 1736 if (type & PERF_SAMPLE_IDENTIFIER) { 1737 sample->id = *array; 1738 array--; 1739 } 1740 1741 if (type & PERF_SAMPLE_CPU) { 1742 u.val64 = *array; 1743 if (swapped) { 1744 /* undo swap of u64, then swap on individual u32s */ 1745 u.val64 = bswap_64(u.val64); 1746 u.val32[0] = bswap_32(u.val32[0]); 1747 } 1748 1749 sample->cpu = u.val32[0]; 1750 array--; 1751 } 1752 1753 if (type & PERF_SAMPLE_STREAM_ID) { 1754 sample->stream_id = *array; 1755 array--; 1756 } 1757 1758 if (type & PERF_SAMPLE_ID) { 1759 sample->id = *array; 1760 array--; 1761 } 1762 1763 if (type & PERF_SAMPLE_TIME) { 1764 sample->time = *array; 1765 array--; 1766 } 1767 1768 if (type & PERF_SAMPLE_TID) { 1769 u.val64 = *array; 1770 if (swapped) { 1771 /* undo swap of u64, then swap on individual u32s */ 1772 u.val64 = bswap_64(u.val64); 1773 u.val32[0] = bswap_32(u.val32[0]); 1774 u.val32[1] = bswap_32(u.val32[1]); 1775 } 1776 1777 sample->pid = u.val32[0]; 1778 sample->tid = u.val32[1]; 1779 array--; 1780 } 1781 1782 return 0; 1783 } 1784 1785 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1786 u64 size) 1787 { 1788 return size > max_size || offset + size > endp; 1789 } 1790 1791 #define OVERFLOW_CHECK(offset, size, max_size) \ 1792 do { \ 1793 if (overflow(endp, (max_size), (offset), (size))) \ 1794 return -EFAULT; \ 1795 } while (0) 1796 1797 #define OVERFLOW_CHECK_u64(offset) \ 1798 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1799 1800 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1801 struct perf_sample *data) 1802 { 1803 u64 type = evsel->attr.sample_type; 1804 bool swapped = evsel->needs_swap; 1805 const u64 *array; 1806 u16 max_size = event->header.size; 1807 const void *endp = (void *)event + max_size; 1808 u64 sz; 1809 1810 /* 1811 * used for cross-endian analysis. See git commit 65014ab3 1812 * for why this goofiness is needed. 1813 */ 1814 union u64_swap u; 1815 1816 memset(data, 0, sizeof(*data)); 1817 data->cpu = data->pid = data->tid = -1; 1818 data->stream_id = data->id = data->time = -1ULL; 1819 data->period = evsel->attr.sample_period; 1820 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1821 1822 if (event->header.type != PERF_RECORD_SAMPLE) { 1823 if (!evsel->attr.sample_id_all) 1824 return 0; 1825 return perf_evsel__parse_id_sample(evsel, event, data); 1826 } 1827 1828 array = event->sample.array; 1829 1830 /* 1831 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1832 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1833 * check the format does not go past the end of the event. 1834 */ 1835 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1836 return -EFAULT; 1837 1838 data->id = -1ULL; 1839 if (type & PERF_SAMPLE_IDENTIFIER) { 1840 data->id = *array; 1841 array++; 1842 } 1843 1844 if (type & PERF_SAMPLE_IP) { 1845 data->ip = *array; 1846 array++; 1847 } 1848 1849 if (type & PERF_SAMPLE_TID) { 1850 u.val64 = *array; 1851 if (swapped) { 1852 /* undo swap of u64, then swap on individual u32s */ 1853 u.val64 = bswap_64(u.val64); 1854 u.val32[0] = bswap_32(u.val32[0]); 1855 u.val32[1] = bswap_32(u.val32[1]); 1856 } 1857 1858 data->pid = u.val32[0]; 1859 data->tid = u.val32[1]; 1860 array++; 1861 } 1862 1863 if (type & PERF_SAMPLE_TIME) { 1864 data->time = *array; 1865 array++; 1866 } 1867 1868 data->addr = 0; 1869 if (type & PERF_SAMPLE_ADDR) { 1870 data->addr = *array; 1871 array++; 1872 } 1873 1874 if (type & PERF_SAMPLE_ID) { 1875 data->id = *array; 1876 array++; 1877 } 1878 1879 if (type & PERF_SAMPLE_STREAM_ID) { 1880 data->stream_id = *array; 1881 array++; 1882 } 1883 1884 if (type & PERF_SAMPLE_CPU) { 1885 1886 u.val64 = *array; 1887 if (swapped) { 1888 /* undo swap of u64, then swap on individual u32s */ 1889 u.val64 = bswap_64(u.val64); 1890 u.val32[0] = bswap_32(u.val32[0]); 1891 } 1892 1893 data->cpu = u.val32[0]; 1894 array++; 1895 } 1896 1897 if (type & PERF_SAMPLE_PERIOD) { 1898 data->period = *array; 1899 array++; 1900 } 1901 1902 if (type & PERF_SAMPLE_READ) { 1903 u64 read_format = evsel->attr.read_format; 1904 1905 OVERFLOW_CHECK_u64(array); 1906 if (read_format & PERF_FORMAT_GROUP) 1907 data->read.group.nr = *array; 1908 else 1909 data->read.one.value = *array; 1910 1911 array++; 1912 1913 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1914 OVERFLOW_CHECK_u64(array); 1915 data->read.time_enabled = *array; 1916 array++; 1917 } 1918 1919 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1920 OVERFLOW_CHECK_u64(array); 1921 data->read.time_running = *array; 1922 array++; 1923 } 1924 1925 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1926 if (read_format & PERF_FORMAT_GROUP) { 1927 const u64 max_group_nr = UINT64_MAX / 1928 sizeof(struct sample_read_value); 1929 1930 if (data->read.group.nr > max_group_nr) 1931 return -EFAULT; 1932 sz = data->read.group.nr * 1933 sizeof(struct sample_read_value); 1934 OVERFLOW_CHECK(array, sz, max_size); 1935 data->read.group.values = 1936 (struct sample_read_value *)array; 1937 array = (void *)array + sz; 1938 } else { 1939 OVERFLOW_CHECK_u64(array); 1940 data->read.one.id = *array; 1941 array++; 1942 } 1943 } 1944 1945 if (type & PERF_SAMPLE_CALLCHAIN) { 1946 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1947 1948 OVERFLOW_CHECK_u64(array); 1949 data->callchain = (struct ip_callchain *)array++; 1950 if (data->callchain->nr > max_callchain_nr) 1951 return -EFAULT; 1952 sz = data->callchain->nr * sizeof(u64); 1953 OVERFLOW_CHECK(array, sz, max_size); 1954 array = (void *)array + sz; 1955 } 1956 1957 if (type & PERF_SAMPLE_RAW) { 1958 OVERFLOW_CHECK_u64(array); 1959 u.val64 = *array; 1960 if (WARN_ONCE(swapped, 1961 "Endianness of raw data not corrected!\n")) { 1962 /* undo swap of u64, then swap on individual u32s */ 1963 u.val64 = bswap_64(u.val64); 1964 u.val32[0] = bswap_32(u.val32[0]); 1965 u.val32[1] = bswap_32(u.val32[1]); 1966 } 1967 data->raw_size = u.val32[0]; 1968 array = (void *)array + sizeof(u32); 1969 1970 OVERFLOW_CHECK(array, data->raw_size, max_size); 1971 data->raw_data = (void *)array; 1972 array = (void *)array + data->raw_size; 1973 } 1974 1975 if (type & PERF_SAMPLE_BRANCH_STACK) { 1976 const u64 max_branch_nr = UINT64_MAX / 1977 sizeof(struct branch_entry); 1978 1979 OVERFLOW_CHECK_u64(array); 1980 data->branch_stack = (struct branch_stack *)array++; 1981 1982 if (data->branch_stack->nr > max_branch_nr) 1983 return -EFAULT; 1984 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1985 OVERFLOW_CHECK(array, sz, max_size); 1986 array = (void *)array + sz; 1987 } 1988 1989 if (type & PERF_SAMPLE_REGS_USER) { 1990 OVERFLOW_CHECK_u64(array); 1991 data->user_regs.abi = *array; 1992 array++; 1993 1994 if (data->user_regs.abi) { 1995 u64 mask = evsel->attr.sample_regs_user; 1996 1997 sz = hweight_long(mask) * sizeof(u64); 1998 OVERFLOW_CHECK(array, sz, max_size); 1999 data->user_regs.mask = mask; 2000 data->user_regs.regs = (u64 *)array; 2001 array = (void *)array + sz; 2002 } 2003 } 2004 2005 if (type & PERF_SAMPLE_STACK_USER) { 2006 OVERFLOW_CHECK_u64(array); 2007 sz = *array++; 2008 2009 data->user_stack.offset = ((char *)(array - 1) 2010 - (char *) event); 2011 2012 if (!sz) { 2013 data->user_stack.size = 0; 2014 } else { 2015 OVERFLOW_CHECK(array, sz, max_size); 2016 data->user_stack.data = (char *)array; 2017 array = (void *)array + sz; 2018 OVERFLOW_CHECK_u64(array); 2019 data->user_stack.size = *array++; 2020 if (WARN_ONCE(data->user_stack.size > sz, 2021 "user stack dump failure\n")) 2022 return -EFAULT; 2023 } 2024 } 2025 2026 if (type & PERF_SAMPLE_WEIGHT) { 2027 OVERFLOW_CHECK_u64(array); 2028 data->weight = *array; 2029 array++; 2030 } 2031 2032 data->data_src = PERF_MEM_DATA_SRC_NONE; 2033 if (type & PERF_SAMPLE_DATA_SRC) { 2034 OVERFLOW_CHECK_u64(array); 2035 data->data_src = *array; 2036 array++; 2037 } 2038 2039 data->transaction = 0; 2040 if (type & PERF_SAMPLE_TRANSACTION) { 2041 OVERFLOW_CHECK_u64(array); 2042 data->transaction = *array; 2043 array++; 2044 } 2045 2046 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2047 if (type & PERF_SAMPLE_REGS_INTR) { 2048 OVERFLOW_CHECK_u64(array); 2049 data->intr_regs.abi = *array; 2050 array++; 2051 2052 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2053 u64 mask = evsel->attr.sample_regs_intr; 2054 2055 sz = hweight_long(mask) * sizeof(u64); 2056 OVERFLOW_CHECK(array, sz, max_size); 2057 data->intr_regs.mask = mask; 2058 data->intr_regs.regs = (u64 *)array; 2059 array = (void *)array + sz; 2060 } 2061 } 2062 2063 return 0; 2064 } 2065 2066 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2067 u64 read_format) 2068 { 2069 size_t sz, result = sizeof(struct sample_event); 2070 2071 if (type & PERF_SAMPLE_IDENTIFIER) 2072 result += sizeof(u64); 2073 2074 if (type & PERF_SAMPLE_IP) 2075 result += sizeof(u64); 2076 2077 if (type & PERF_SAMPLE_TID) 2078 result += sizeof(u64); 2079 2080 if (type & PERF_SAMPLE_TIME) 2081 result += sizeof(u64); 2082 2083 if (type & PERF_SAMPLE_ADDR) 2084 result += sizeof(u64); 2085 2086 if (type & PERF_SAMPLE_ID) 2087 result += sizeof(u64); 2088 2089 if (type & PERF_SAMPLE_STREAM_ID) 2090 result += sizeof(u64); 2091 2092 if (type & PERF_SAMPLE_CPU) 2093 result += sizeof(u64); 2094 2095 if (type & PERF_SAMPLE_PERIOD) 2096 result += sizeof(u64); 2097 2098 if (type & PERF_SAMPLE_READ) { 2099 result += sizeof(u64); 2100 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2101 result += sizeof(u64); 2102 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2103 result += sizeof(u64); 2104 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2105 if (read_format & PERF_FORMAT_GROUP) { 2106 sz = sample->read.group.nr * 2107 sizeof(struct sample_read_value); 2108 result += sz; 2109 } else { 2110 result += sizeof(u64); 2111 } 2112 } 2113 2114 if (type & PERF_SAMPLE_CALLCHAIN) { 2115 sz = (sample->callchain->nr + 1) * sizeof(u64); 2116 result += sz; 2117 } 2118 2119 if (type & PERF_SAMPLE_RAW) { 2120 result += sizeof(u32); 2121 result += sample->raw_size; 2122 } 2123 2124 if (type & PERF_SAMPLE_BRANCH_STACK) { 2125 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2126 sz += sizeof(u64); 2127 result += sz; 2128 } 2129 2130 if (type & PERF_SAMPLE_REGS_USER) { 2131 if (sample->user_regs.abi) { 2132 result += sizeof(u64); 2133 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2134 result += sz; 2135 } else { 2136 result += sizeof(u64); 2137 } 2138 } 2139 2140 if (type & PERF_SAMPLE_STACK_USER) { 2141 sz = sample->user_stack.size; 2142 result += sizeof(u64); 2143 if (sz) { 2144 result += sz; 2145 result += sizeof(u64); 2146 } 2147 } 2148 2149 if (type & PERF_SAMPLE_WEIGHT) 2150 result += sizeof(u64); 2151 2152 if (type & PERF_SAMPLE_DATA_SRC) 2153 result += sizeof(u64); 2154 2155 if (type & PERF_SAMPLE_TRANSACTION) 2156 result += sizeof(u64); 2157 2158 if (type & PERF_SAMPLE_REGS_INTR) { 2159 if (sample->intr_regs.abi) { 2160 result += sizeof(u64); 2161 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2162 result += sz; 2163 } else { 2164 result += sizeof(u64); 2165 } 2166 } 2167 2168 return result; 2169 } 2170 2171 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2172 u64 read_format, 2173 const struct perf_sample *sample, 2174 bool swapped) 2175 { 2176 u64 *array; 2177 size_t sz; 2178 /* 2179 * used for cross-endian analysis. See git commit 65014ab3 2180 * for why this goofiness is needed. 2181 */ 2182 union u64_swap u; 2183 2184 array = event->sample.array; 2185 2186 if (type & PERF_SAMPLE_IDENTIFIER) { 2187 *array = sample->id; 2188 array++; 2189 } 2190 2191 if (type & PERF_SAMPLE_IP) { 2192 *array = sample->ip; 2193 array++; 2194 } 2195 2196 if (type & PERF_SAMPLE_TID) { 2197 u.val32[0] = sample->pid; 2198 u.val32[1] = sample->tid; 2199 if (swapped) { 2200 /* 2201 * Inverse of what is done in perf_evsel__parse_sample 2202 */ 2203 u.val32[0] = bswap_32(u.val32[0]); 2204 u.val32[1] = bswap_32(u.val32[1]); 2205 u.val64 = bswap_64(u.val64); 2206 } 2207 2208 *array = u.val64; 2209 array++; 2210 } 2211 2212 if (type & PERF_SAMPLE_TIME) { 2213 *array = sample->time; 2214 array++; 2215 } 2216 2217 if (type & PERF_SAMPLE_ADDR) { 2218 *array = sample->addr; 2219 array++; 2220 } 2221 2222 if (type & PERF_SAMPLE_ID) { 2223 *array = sample->id; 2224 array++; 2225 } 2226 2227 if (type & PERF_SAMPLE_STREAM_ID) { 2228 *array = sample->stream_id; 2229 array++; 2230 } 2231 2232 if (type & PERF_SAMPLE_CPU) { 2233 u.val32[0] = sample->cpu; 2234 if (swapped) { 2235 /* 2236 * Inverse of what is done in perf_evsel__parse_sample 2237 */ 2238 u.val32[0] = bswap_32(u.val32[0]); 2239 u.val64 = bswap_64(u.val64); 2240 } 2241 *array = u.val64; 2242 array++; 2243 } 2244 2245 if (type & PERF_SAMPLE_PERIOD) { 2246 *array = sample->period; 2247 array++; 2248 } 2249 2250 if (type & PERF_SAMPLE_READ) { 2251 if (read_format & PERF_FORMAT_GROUP) 2252 *array = sample->read.group.nr; 2253 else 2254 *array = sample->read.one.value; 2255 array++; 2256 2257 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2258 *array = sample->read.time_enabled; 2259 array++; 2260 } 2261 2262 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2263 *array = sample->read.time_running; 2264 array++; 2265 } 2266 2267 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2268 if (read_format & PERF_FORMAT_GROUP) { 2269 sz = sample->read.group.nr * 2270 sizeof(struct sample_read_value); 2271 memcpy(array, sample->read.group.values, sz); 2272 array = (void *)array + sz; 2273 } else { 2274 *array = sample->read.one.id; 2275 array++; 2276 } 2277 } 2278 2279 if (type & PERF_SAMPLE_CALLCHAIN) { 2280 sz = (sample->callchain->nr + 1) * sizeof(u64); 2281 memcpy(array, sample->callchain, sz); 2282 array = (void *)array + sz; 2283 } 2284 2285 if (type & PERF_SAMPLE_RAW) { 2286 u.val32[0] = sample->raw_size; 2287 if (WARN_ONCE(swapped, 2288 "Endianness of raw data not corrected!\n")) { 2289 /* 2290 * Inverse of what is done in perf_evsel__parse_sample 2291 */ 2292 u.val32[0] = bswap_32(u.val32[0]); 2293 u.val32[1] = bswap_32(u.val32[1]); 2294 u.val64 = bswap_64(u.val64); 2295 } 2296 *array = u.val64; 2297 array = (void *)array + sizeof(u32); 2298 2299 memcpy(array, sample->raw_data, sample->raw_size); 2300 array = (void *)array + sample->raw_size; 2301 } 2302 2303 if (type & PERF_SAMPLE_BRANCH_STACK) { 2304 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2305 sz += sizeof(u64); 2306 memcpy(array, sample->branch_stack, sz); 2307 array = (void *)array + sz; 2308 } 2309 2310 if (type & PERF_SAMPLE_REGS_USER) { 2311 if (sample->user_regs.abi) { 2312 *array++ = sample->user_regs.abi; 2313 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2314 memcpy(array, sample->user_regs.regs, sz); 2315 array = (void *)array + sz; 2316 } else { 2317 *array++ = 0; 2318 } 2319 } 2320 2321 if (type & PERF_SAMPLE_STACK_USER) { 2322 sz = sample->user_stack.size; 2323 *array++ = sz; 2324 if (sz) { 2325 memcpy(array, sample->user_stack.data, sz); 2326 array = (void *)array + sz; 2327 *array++ = sz; 2328 } 2329 } 2330 2331 if (type & PERF_SAMPLE_WEIGHT) { 2332 *array = sample->weight; 2333 array++; 2334 } 2335 2336 if (type & PERF_SAMPLE_DATA_SRC) { 2337 *array = sample->data_src; 2338 array++; 2339 } 2340 2341 if (type & PERF_SAMPLE_TRANSACTION) { 2342 *array = sample->transaction; 2343 array++; 2344 } 2345 2346 if (type & PERF_SAMPLE_REGS_INTR) { 2347 if (sample->intr_regs.abi) { 2348 *array++ = sample->intr_regs.abi; 2349 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2350 memcpy(array, sample->intr_regs.regs, sz); 2351 array = (void *)array + sz; 2352 } else { 2353 *array++ = 0; 2354 } 2355 } 2356 2357 return 0; 2358 } 2359 2360 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2361 { 2362 return pevent_find_field(evsel->tp_format, name); 2363 } 2364 2365 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2366 const char *name) 2367 { 2368 struct format_field *field = perf_evsel__field(evsel, name); 2369 int offset; 2370 2371 if (!field) 2372 return NULL; 2373 2374 offset = field->offset; 2375 2376 if (field->flags & FIELD_IS_DYNAMIC) { 2377 offset = *(int *)(sample->raw_data + field->offset); 2378 offset &= 0xffff; 2379 } 2380 2381 return sample->raw_data + offset; 2382 } 2383 2384 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2385 bool needs_swap) 2386 { 2387 u64 value; 2388 void *ptr = sample->raw_data + field->offset; 2389 2390 switch (field->size) { 2391 case 1: 2392 return *(u8 *)ptr; 2393 case 2: 2394 value = *(u16 *)ptr; 2395 break; 2396 case 4: 2397 value = *(u32 *)ptr; 2398 break; 2399 case 8: 2400 memcpy(&value, ptr, sizeof(u64)); 2401 break; 2402 default: 2403 return 0; 2404 } 2405 2406 if (!needs_swap) 2407 return value; 2408 2409 switch (field->size) { 2410 case 2: 2411 return bswap_16(value); 2412 case 4: 2413 return bswap_32(value); 2414 case 8: 2415 return bswap_64(value); 2416 default: 2417 return 0; 2418 } 2419 2420 return 0; 2421 } 2422 2423 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2424 const char *name) 2425 { 2426 struct format_field *field = perf_evsel__field(evsel, name); 2427 2428 if (!field) 2429 return 0; 2430 2431 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2432 } 2433 2434 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2435 char *msg, size_t msgsize) 2436 { 2437 int paranoid; 2438 2439 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2440 evsel->attr.type == PERF_TYPE_HARDWARE && 2441 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2442 /* 2443 * If it's cycles then fall back to hrtimer based 2444 * cpu-clock-tick sw counter, which is always available even if 2445 * no PMU support. 2446 * 2447 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2448 * b0a873e). 2449 */ 2450 scnprintf(msg, msgsize, "%s", 2451 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2452 2453 evsel->attr.type = PERF_TYPE_SOFTWARE; 2454 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2455 2456 zfree(&evsel->name); 2457 return true; 2458 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2459 (paranoid = perf_event_paranoid()) > 1) { 2460 const char *name = perf_evsel__name(evsel); 2461 char *new_name; 2462 2463 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2464 return false; 2465 2466 if (evsel->name) 2467 free(evsel->name); 2468 evsel->name = new_name; 2469 scnprintf(msg, msgsize, 2470 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2471 evsel->attr.exclude_kernel = 1; 2472 2473 return true; 2474 } 2475 2476 return false; 2477 } 2478 2479 static bool find_process(const char *name) 2480 { 2481 size_t len = strlen(name); 2482 DIR *dir; 2483 struct dirent *d; 2484 int ret = -1; 2485 2486 dir = opendir(procfs__mountpoint()); 2487 if (!dir) 2488 return false; 2489 2490 /* Walk through the directory. */ 2491 while (ret && (d = readdir(dir)) != NULL) { 2492 char path[PATH_MAX]; 2493 char *data; 2494 size_t size; 2495 2496 if ((d->d_type != DT_DIR) || 2497 !strcmp(".", d->d_name) || 2498 !strcmp("..", d->d_name)) 2499 continue; 2500 2501 scnprintf(path, sizeof(path), "%s/%s/comm", 2502 procfs__mountpoint(), d->d_name); 2503 2504 if (filename__read_str(path, &data, &size)) 2505 continue; 2506 2507 ret = strncmp(name, data, len); 2508 free(data); 2509 } 2510 2511 closedir(dir); 2512 return ret ? false : true; 2513 } 2514 2515 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2516 int err, char *msg, size_t size) 2517 { 2518 char sbuf[STRERR_BUFSIZE]; 2519 int printed = 0; 2520 2521 switch (err) { 2522 case EPERM: 2523 case EACCES: 2524 if (err == EPERM) 2525 printed = scnprintf(msg, size, 2526 "No permission to enable %s event.\n\n", 2527 perf_evsel__name(evsel)); 2528 2529 return scnprintf(msg + printed, size - printed, 2530 "You may not have permission to collect %sstats.\n\n" 2531 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2532 "which controls use of the performance events system by\n" 2533 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2534 "The current value is %d:\n\n" 2535 " -1: Allow use of (almost) all events by all users\n" 2536 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2537 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2538 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2539 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2540 " kernel.perf_event_paranoid = -1\n" , 2541 target->system_wide ? "system-wide " : "", 2542 perf_event_paranoid()); 2543 case ENOENT: 2544 return scnprintf(msg, size, "The %s event is not supported.", 2545 perf_evsel__name(evsel)); 2546 case EMFILE: 2547 return scnprintf(msg, size, "%s", 2548 "Too many events are opened.\n" 2549 "Probably the maximum number of open file descriptors has been reached.\n" 2550 "Hint: Try again after reducing the number of events.\n" 2551 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2552 case ENOMEM: 2553 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2554 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2555 return scnprintf(msg, size, 2556 "Not enough memory to setup event with callchain.\n" 2557 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2558 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2559 break; 2560 case ENODEV: 2561 if (target->cpu_list) 2562 return scnprintf(msg, size, "%s", 2563 "No such device - did you specify an out-of-range profile CPU?"); 2564 break; 2565 case EOPNOTSUPP: 2566 if (evsel->attr.sample_period != 0) 2567 return scnprintf(msg, size, "%s", 2568 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2569 if (evsel->attr.precise_ip) 2570 return scnprintf(msg, size, "%s", 2571 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2572 #if defined(__i386__) || defined(__x86_64__) 2573 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2574 return scnprintf(msg, size, "%s", 2575 "No hardware sampling interrupt available.\n" 2576 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2577 #endif 2578 break; 2579 case EBUSY: 2580 if (find_process("oprofiled")) 2581 return scnprintf(msg, size, 2582 "The PMU counters are busy/taken by another profiler.\n" 2583 "We found oprofile daemon running, please stop it and try again."); 2584 break; 2585 case EINVAL: 2586 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2587 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2588 if (perf_missing_features.clockid) 2589 return scnprintf(msg, size, "clockid feature not supported."); 2590 if (perf_missing_features.clockid_wrong) 2591 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2592 break; 2593 default: 2594 break; 2595 } 2596 2597 return scnprintf(msg, size, 2598 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2599 "/bin/dmesg may provide additional information.\n" 2600 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2601 err, str_error_r(err, sbuf, sizeof(sbuf)), 2602 perf_evsel__name(evsel)); 2603 } 2604 2605 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2606 { 2607 if (evsel && evsel->evlist && evsel->evlist->env) 2608 return evsel->evlist->env->arch; 2609 return NULL; 2610 } 2611