1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/tracing_path.h> 15 #include <traceevent/event-parse.h> 16 #include <linux/hw_breakpoint.h> 17 #include <linux/perf_event.h> 18 #include <linux/err.h> 19 #include <sys/ioctl.h> 20 #include <sys/resource.h> 21 #include "asm/bug.h" 22 #include "callchain.h" 23 #include "cgroup.h" 24 #include "event.h" 25 #include "evsel.h" 26 #include "evlist.h" 27 #include "util.h" 28 #include "cpumap.h" 29 #include "thread_map.h" 30 #include "target.h" 31 #include "perf_regs.h" 32 #include "debug.h" 33 #include "trace-event.h" 34 #include "stat.h" 35 #include "util/parse-branch-options.h" 36 37 #include "sane_ctype.h" 38 39 static struct { 40 bool sample_id_all; 41 bool exclude_guest; 42 bool mmap2; 43 bool cloexec; 44 bool clockid; 45 bool clockid_wrong; 46 bool lbr_flags; 47 bool write_backward; 48 } perf_missing_features; 49 50 static clockid_t clockid; 51 52 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 53 { 54 return 0; 55 } 56 57 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 58 { 59 } 60 61 static struct { 62 size_t size; 63 int (*init)(struct perf_evsel *evsel); 64 void (*fini)(struct perf_evsel *evsel); 65 } perf_evsel__object = { 66 .size = sizeof(struct perf_evsel), 67 .init = perf_evsel__no_extra_init, 68 .fini = perf_evsel__no_extra_fini, 69 }; 70 71 int perf_evsel__object_config(size_t object_size, 72 int (*init)(struct perf_evsel *evsel), 73 void (*fini)(struct perf_evsel *evsel)) 74 { 75 76 if (object_size == 0) 77 goto set_methods; 78 79 if (perf_evsel__object.size > object_size) 80 return -EINVAL; 81 82 perf_evsel__object.size = object_size; 83 84 set_methods: 85 if (init != NULL) 86 perf_evsel__object.init = init; 87 88 if (fini != NULL) 89 perf_evsel__object.fini = fini; 90 91 return 0; 92 } 93 94 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 95 96 int __perf_evsel__sample_size(u64 sample_type) 97 { 98 u64 mask = sample_type & PERF_SAMPLE_MASK; 99 int size = 0; 100 int i; 101 102 for (i = 0; i < 64; i++) { 103 if (mask & (1ULL << i)) 104 size++; 105 } 106 107 size *= sizeof(u64); 108 109 return size; 110 } 111 112 /** 113 * __perf_evsel__calc_id_pos - calculate id_pos. 114 * @sample_type: sample type 115 * 116 * This function returns the position of the event id (PERF_SAMPLE_ID or 117 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 118 * sample_event. 119 */ 120 static int __perf_evsel__calc_id_pos(u64 sample_type) 121 { 122 int idx = 0; 123 124 if (sample_type & PERF_SAMPLE_IDENTIFIER) 125 return 0; 126 127 if (!(sample_type & PERF_SAMPLE_ID)) 128 return -1; 129 130 if (sample_type & PERF_SAMPLE_IP) 131 idx += 1; 132 133 if (sample_type & PERF_SAMPLE_TID) 134 idx += 1; 135 136 if (sample_type & PERF_SAMPLE_TIME) 137 idx += 1; 138 139 if (sample_type & PERF_SAMPLE_ADDR) 140 idx += 1; 141 142 return idx; 143 } 144 145 /** 146 * __perf_evsel__calc_is_pos - calculate is_pos. 147 * @sample_type: sample type 148 * 149 * This function returns the position (counting backwards) of the event id 150 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 151 * sample_id_all is used there is an id sample appended to non-sample events. 152 */ 153 static int __perf_evsel__calc_is_pos(u64 sample_type) 154 { 155 int idx = 1; 156 157 if (sample_type & PERF_SAMPLE_IDENTIFIER) 158 return 1; 159 160 if (!(sample_type & PERF_SAMPLE_ID)) 161 return -1; 162 163 if (sample_type & PERF_SAMPLE_CPU) 164 idx += 1; 165 166 if (sample_type & PERF_SAMPLE_STREAM_ID) 167 idx += 1; 168 169 return idx; 170 } 171 172 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 173 { 174 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 175 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 176 } 177 178 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 179 enum perf_event_sample_format bit) 180 { 181 if (!(evsel->attr.sample_type & bit)) { 182 evsel->attr.sample_type |= bit; 183 evsel->sample_size += sizeof(u64); 184 perf_evsel__calc_id_pos(evsel); 185 } 186 } 187 188 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 189 enum perf_event_sample_format bit) 190 { 191 if (evsel->attr.sample_type & bit) { 192 evsel->attr.sample_type &= ~bit; 193 evsel->sample_size -= sizeof(u64); 194 perf_evsel__calc_id_pos(evsel); 195 } 196 } 197 198 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 199 bool can_sample_identifier) 200 { 201 if (can_sample_identifier) { 202 perf_evsel__reset_sample_bit(evsel, ID); 203 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 204 } else { 205 perf_evsel__set_sample_bit(evsel, ID); 206 } 207 evsel->attr.read_format |= PERF_FORMAT_ID; 208 } 209 210 /** 211 * perf_evsel__is_function_event - Return whether given evsel is a function 212 * trace event 213 * 214 * @evsel - evsel selector to be tested 215 * 216 * Return %true if event is function trace event 217 */ 218 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 219 { 220 #define FUNCTION_EVENT "ftrace:function" 221 222 return evsel->name && 223 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 224 225 #undef FUNCTION_EVENT 226 } 227 228 void perf_evsel__init(struct perf_evsel *evsel, 229 struct perf_event_attr *attr, int idx) 230 { 231 evsel->idx = idx; 232 evsel->tracking = !idx; 233 evsel->attr = *attr; 234 evsel->leader = evsel; 235 evsel->unit = ""; 236 evsel->scale = 1.0; 237 evsel->evlist = NULL; 238 evsel->bpf_fd = -1; 239 INIT_LIST_HEAD(&evsel->node); 240 INIT_LIST_HEAD(&evsel->config_terms); 241 perf_evsel__object.init(evsel); 242 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 243 perf_evsel__calc_id_pos(evsel); 244 evsel->cmdline_group_boundary = false; 245 evsel->metric_expr = NULL; 246 evsel->metric_name = NULL; 247 evsel->metric_events = NULL; 248 evsel->collect_stat = false; 249 } 250 251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 252 { 253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 254 255 if (evsel != NULL) 256 perf_evsel__init(evsel, attr, idx); 257 258 if (perf_evsel__is_bpf_output(evsel)) { 259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 261 evsel->attr.sample_period = 1; 262 } 263 264 return evsel; 265 } 266 267 struct perf_evsel *perf_evsel__new_cycles(void) 268 { 269 struct perf_event_attr attr = { 270 .type = PERF_TYPE_HARDWARE, 271 .config = PERF_COUNT_HW_CPU_CYCLES, 272 }; 273 struct perf_evsel *evsel; 274 275 event_attr_init(&attr); 276 277 perf_event_attr__set_max_precise_ip(&attr); 278 279 evsel = perf_evsel__new(&attr); 280 if (evsel == NULL) 281 goto out; 282 283 /* use asprintf() because free(evsel) assumes name is allocated */ 284 if (asprintf(&evsel->name, "cycles%.*s", 285 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0) 286 goto error_free; 287 out: 288 return evsel; 289 error_free: 290 perf_evsel__delete(evsel); 291 evsel = NULL; 292 goto out; 293 } 294 295 /* 296 * Returns pointer with encoded error via <linux/err.h> interface. 297 */ 298 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 299 { 300 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 301 int err = -ENOMEM; 302 303 if (evsel == NULL) { 304 goto out_err; 305 } else { 306 struct perf_event_attr attr = { 307 .type = PERF_TYPE_TRACEPOINT, 308 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 309 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 310 }; 311 312 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 313 goto out_free; 314 315 evsel->tp_format = trace_event__tp_format(sys, name); 316 if (IS_ERR(evsel->tp_format)) { 317 err = PTR_ERR(evsel->tp_format); 318 goto out_free; 319 } 320 321 event_attr_init(&attr); 322 attr.config = evsel->tp_format->id; 323 attr.sample_period = 1; 324 perf_evsel__init(evsel, &attr, idx); 325 } 326 327 return evsel; 328 329 out_free: 330 zfree(&evsel->name); 331 free(evsel); 332 out_err: 333 return ERR_PTR(err); 334 } 335 336 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 337 "cycles", 338 "instructions", 339 "cache-references", 340 "cache-misses", 341 "branches", 342 "branch-misses", 343 "bus-cycles", 344 "stalled-cycles-frontend", 345 "stalled-cycles-backend", 346 "ref-cycles", 347 }; 348 349 static const char *__perf_evsel__hw_name(u64 config) 350 { 351 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 352 return perf_evsel__hw_names[config]; 353 354 return "unknown-hardware"; 355 } 356 357 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 358 { 359 int colon = 0, r = 0; 360 struct perf_event_attr *attr = &evsel->attr; 361 bool exclude_guest_default = false; 362 363 #define MOD_PRINT(context, mod) do { \ 364 if (!attr->exclude_##context) { \ 365 if (!colon) colon = ++r; \ 366 r += scnprintf(bf + r, size - r, "%c", mod); \ 367 } } while(0) 368 369 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 370 MOD_PRINT(kernel, 'k'); 371 MOD_PRINT(user, 'u'); 372 MOD_PRINT(hv, 'h'); 373 exclude_guest_default = true; 374 } 375 376 if (attr->precise_ip) { 377 if (!colon) 378 colon = ++r; 379 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 380 exclude_guest_default = true; 381 } 382 383 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 384 MOD_PRINT(host, 'H'); 385 MOD_PRINT(guest, 'G'); 386 } 387 #undef MOD_PRINT 388 if (colon) 389 bf[colon - 1] = ':'; 390 return r; 391 } 392 393 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 394 { 395 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 396 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 397 } 398 399 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 400 "cpu-clock", 401 "task-clock", 402 "page-faults", 403 "context-switches", 404 "cpu-migrations", 405 "minor-faults", 406 "major-faults", 407 "alignment-faults", 408 "emulation-faults", 409 "dummy", 410 }; 411 412 static const char *__perf_evsel__sw_name(u64 config) 413 { 414 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 415 return perf_evsel__sw_names[config]; 416 return "unknown-software"; 417 } 418 419 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 420 { 421 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 422 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 423 } 424 425 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 426 { 427 int r; 428 429 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 430 431 if (type & HW_BREAKPOINT_R) 432 r += scnprintf(bf + r, size - r, "r"); 433 434 if (type & HW_BREAKPOINT_W) 435 r += scnprintf(bf + r, size - r, "w"); 436 437 if (type & HW_BREAKPOINT_X) 438 r += scnprintf(bf + r, size - r, "x"); 439 440 return r; 441 } 442 443 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 444 { 445 struct perf_event_attr *attr = &evsel->attr; 446 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 447 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 448 } 449 450 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 451 [PERF_EVSEL__MAX_ALIASES] = { 452 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 453 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 454 { "LLC", "L2", }, 455 { "dTLB", "d-tlb", "Data-TLB", }, 456 { "iTLB", "i-tlb", "Instruction-TLB", }, 457 { "branch", "branches", "bpu", "btb", "bpc", }, 458 { "node", }, 459 }; 460 461 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 462 [PERF_EVSEL__MAX_ALIASES] = { 463 { "load", "loads", "read", }, 464 { "store", "stores", "write", }, 465 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 466 }; 467 468 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 469 [PERF_EVSEL__MAX_ALIASES] = { 470 { "refs", "Reference", "ops", "access", }, 471 { "misses", "miss", }, 472 }; 473 474 #define C(x) PERF_COUNT_HW_CACHE_##x 475 #define CACHE_READ (1 << C(OP_READ)) 476 #define CACHE_WRITE (1 << C(OP_WRITE)) 477 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 478 #define COP(x) (1 << x) 479 480 /* 481 * cache operartion stat 482 * L1I : Read and prefetch only 483 * ITLB and BPU : Read-only 484 */ 485 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 486 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 487 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 488 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 489 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 490 [C(ITLB)] = (CACHE_READ), 491 [C(BPU)] = (CACHE_READ), 492 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 493 }; 494 495 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 496 { 497 if (perf_evsel__hw_cache_stat[type] & COP(op)) 498 return true; /* valid */ 499 else 500 return false; /* invalid */ 501 } 502 503 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 504 char *bf, size_t size) 505 { 506 if (result) { 507 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 508 perf_evsel__hw_cache_op[op][0], 509 perf_evsel__hw_cache_result[result][0]); 510 } 511 512 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 513 perf_evsel__hw_cache_op[op][1]); 514 } 515 516 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 517 { 518 u8 op, result, type = (config >> 0) & 0xff; 519 const char *err = "unknown-ext-hardware-cache-type"; 520 521 if (type >= PERF_COUNT_HW_CACHE_MAX) 522 goto out_err; 523 524 op = (config >> 8) & 0xff; 525 err = "unknown-ext-hardware-cache-op"; 526 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 527 goto out_err; 528 529 result = (config >> 16) & 0xff; 530 err = "unknown-ext-hardware-cache-result"; 531 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 532 goto out_err; 533 534 err = "invalid-cache"; 535 if (!perf_evsel__is_cache_op_valid(type, op)) 536 goto out_err; 537 538 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 539 out_err: 540 return scnprintf(bf, size, "%s", err); 541 } 542 543 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 544 { 545 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 546 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 547 } 548 549 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 550 { 551 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 552 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 553 } 554 555 const char *perf_evsel__name(struct perf_evsel *evsel) 556 { 557 char bf[128]; 558 559 if (evsel->name) 560 return evsel->name; 561 562 switch (evsel->attr.type) { 563 case PERF_TYPE_RAW: 564 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 565 break; 566 567 case PERF_TYPE_HARDWARE: 568 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 569 break; 570 571 case PERF_TYPE_HW_CACHE: 572 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 573 break; 574 575 case PERF_TYPE_SOFTWARE: 576 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 577 break; 578 579 case PERF_TYPE_TRACEPOINT: 580 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 581 break; 582 583 case PERF_TYPE_BREAKPOINT: 584 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 585 break; 586 587 default: 588 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 589 evsel->attr.type); 590 break; 591 } 592 593 evsel->name = strdup(bf); 594 595 return evsel->name ?: "unknown"; 596 } 597 598 const char *perf_evsel__group_name(struct perf_evsel *evsel) 599 { 600 return evsel->group_name ?: "anon group"; 601 } 602 603 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 604 { 605 int ret; 606 struct perf_evsel *pos; 607 const char *group_name = perf_evsel__group_name(evsel); 608 609 ret = scnprintf(buf, size, "%s", group_name); 610 611 ret += scnprintf(buf + ret, size - ret, " { %s", 612 perf_evsel__name(evsel)); 613 614 for_each_group_member(pos, evsel) 615 ret += scnprintf(buf + ret, size - ret, ", %s", 616 perf_evsel__name(pos)); 617 618 ret += scnprintf(buf + ret, size - ret, " }"); 619 620 return ret; 621 } 622 623 void perf_evsel__config_callchain(struct perf_evsel *evsel, 624 struct record_opts *opts, 625 struct callchain_param *param) 626 { 627 bool function = perf_evsel__is_function_event(evsel); 628 struct perf_event_attr *attr = &evsel->attr; 629 630 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 631 632 attr->sample_max_stack = param->max_stack; 633 634 if (param->record_mode == CALLCHAIN_LBR) { 635 if (!opts->branch_stack) { 636 if (attr->exclude_user) { 637 pr_warning("LBR callstack option is only available " 638 "to get user callchain information. " 639 "Falling back to framepointers.\n"); 640 } else { 641 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 642 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 643 PERF_SAMPLE_BRANCH_CALL_STACK | 644 PERF_SAMPLE_BRANCH_NO_CYCLES | 645 PERF_SAMPLE_BRANCH_NO_FLAGS; 646 } 647 } else 648 pr_warning("Cannot use LBR callstack with branch stack. " 649 "Falling back to framepointers.\n"); 650 } 651 652 if (param->record_mode == CALLCHAIN_DWARF) { 653 if (!function) { 654 perf_evsel__set_sample_bit(evsel, REGS_USER); 655 perf_evsel__set_sample_bit(evsel, STACK_USER); 656 attr->sample_regs_user = PERF_REGS_MASK; 657 attr->sample_stack_user = param->dump_size; 658 attr->exclude_callchain_user = 1; 659 } else { 660 pr_info("Cannot use DWARF unwind for function trace event," 661 " falling back to framepointers.\n"); 662 } 663 } 664 665 if (function) { 666 pr_info("Disabling user space callchains for function trace event.\n"); 667 attr->exclude_callchain_user = 1; 668 } 669 } 670 671 static void 672 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 673 struct callchain_param *param) 674 { 675 struct perf_event_attr *attr = &evsel->attr; 676 677 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 678 if (param->record_mode == CALLCHAIN_LBR) { 679 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 680 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 681 PERF_SAMPLE_BRANCH_CALL_STACK); 682 } 683 if (param->record_mode == CALLCHAIN_DWARF) { 684 perf_evsel__reset_sample_bit(evsel, REGS_USER); 685 perf_evsel__reset_sample_bit(evsel, STACK_USER); 686 } 687 } 688 689 static void apply_config_terms(struct perf_evsel *evsel, 690 struct record_opts *opts) 691 { 692 struct perf_evsel_config_term *term; 693 struct list_head *config_terms = &evsel->config_terms; 694 struct perf_event_attr *attr = &evsel->attr; 695 struct callchain_param param; 696 u32 dump_size = 0; 697 int max_stack = 0; 698 const char *callgraph_buf = NULL; 699 700 /* callgraph default */ 701 param.record_mode = callchain_param.record_mode; 702 703 list_for_each_entry(term, config_terms, list) { 704 switch (term->type) { 705 case PERF_EVSEL__CONFIG_TERM_PERIOD: 706 attr->sample_period = term->val.period; 707 attr->freq = 0; 708 break; 709 case PERF_EVSEL__CONFIG_TERM_FREQ: 710 attr->sample_freq = term->val.freq; 711 attr->freq = 1; 712 break; 713 case PERF_EVSEL__CONFIG_TERM_TIME: 714 if (term->val.time) 715 perf_evsel__set_sample_bit(evsel, TIME); 716 else 717 perf_evsel__reset_sample_bit(evsel, TIME); 718 break; 719 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 720 callgraph_buf = term->val.callgraph; 721 break; 722 case PERF_EVSEL__CONFIG_TERM_BRANCH: 723 if (term->val.branch && strcmp(term->val.branch, "no")) { 724 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 725 parse_branch_str(term->val.branch, 726 &attr->branch_sample_type); 727 } else 728 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 729 break; 730 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 731 dump_size = term->val.stack_user; 732 break; 733 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 734 max_stack = term->val.max_stack; 735 break; 736 case PERF_EVSEL__CONFIG_TERM_INHERIT: 737 /* 738 * attr->inherit should has already been set by 739 * perf_evsel__config. If user explicitly set 740 * inherit using config terms, override global 741 * opt->no_inherit setting. 742 */ 743 attr->inherit = term->val.inherit ? 1 : 0; 744 break; 745 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 746 attr->write_backward = term->val.overwrite ? 1 : 0; 747 break; 748 default: 749 break; 750 } 751 } 752 753 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 754 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 755 if (max_stack) { 756 param.max_stack = max_stack; 757 if (callgraph_buf == NULL) 758 callgraph_buf = "fp"; 759 } 760 761 /* parse callgraph parameters */ 762 if (callgraph_buf != NULL) { 763 if (!strcmp(callgraph_buf, "no")) { 764 param.enabled = false; 765 param.record_mode = CALLCHAIN_NONE; 766 } else { 767 param.enabled = true; 768 if (parse_callchain_record(callgraph_buf, ¶m)) { 769 pr_err("per-event callgraph setting for %s failed. " 770 "Apply callgraph global setting for it\n", 771 evsel->name); 772 return; 773 } 774 } 775 } 776 if (dump_size > 0) { 777 dump_size = round_up(dump_size, sizeof(u64)); 778 param.dump_size = dump_size; 779 } 780 781 /* If global callgraph set, clear it */ 782 if (callchain_param.enabled) 783 perf_evsel__reset_callgraph(evsel, &callchain_param); 784 785 /* set perf-event callgraph */ 786 if (param.enabled) 787 perf_evsel__config_callchain(evsel, opts, ¶m); 788 } 789 } 790 791 /* 792 * The enable_on_exec/disabled value strategy: 793 * 794 * 1) For any type of traced program: 795 * - all independent events and group leaders are disabled 796 * - all group members are enabled 797 * 798 * Group members are ruled by group leaders. They need to 799 * be enabled, because the group scheduling relies on that. 800 * 801 * 2) For traced programs executed by perf: 802 * - all independent events and group leaders have 803 * enable_on_exec set 804 * - we don't specifically enable or disable any event during 805 * the record command 806 * 807 * Independent events and group leaders are initially disabled 808 * and get enabled by exec. Group members are ruled by group 809 * leaders as stated in 1). 810 * 811 * 3) For traced programs attached by perf (pid/tid): 812 * - we specifically enable or disable all events during 813 * the record command 814 * 815 * When attaching events to already running traced we 816 * enable/disable events specifically, as there's no 817 * initial traced exec call. 818 */ 819 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 820 struct callchain_param *callchain) 821 { 822 struct perf_evsel *leader = evsel->leader; 823 struct perf_event_attr *attr = &evsel->attr; 824 int track = evsel->tracking; 825 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 826 827 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 828 attr->inherit = !opts->no_inherit; 829 attr->write_backward = opts->overwrite ? 1 : 0; 830 831 perf_evsel__set_sample_bit(evsel, IP); 832 perf_evsel__set_sample_bit(evsel, TID); 833 834 if (evsel->sample_read) { 835 perf_evsel__set_sample_bit(evsel, READ); 836 837 /* 838 * We need ID even in case of single event, because 839 * PERF_SAMPLE_READ process ID specific data. 840 */ 841 perf_evsel__set_sample_id(evsel, false); 842 843 /* 844 * Apply group format only if we belong to group 845 * with more than one members. 846 */ 847 if (leader->nr_members > 1) { 848 attr->read_format |= PERF_FORMAT_GROUP; 849 attr->inherit = 0; 850 } 851 } 852 853 /* 854 * We default some events to have a default interval. But keep 855 * it a weak assumption overridable by the user. 856 */ 857 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 858 opts->user_interval != ULLONG_MAX)) { 859 if (opts->freq) { 860 perf_evsel__set_sample_bit(evsel, PERIOD); 861 attr->freq = 1; 862 attr->sample_freq = opts->freq; 863 } else { 864 attr->sample_period = opts->default_interval; 865 } 866 } 867 868 /* 869 * Disable sampling for all group members other 870 * than leader in case leader 'leads' the sampling. 871 */ 872 if ((leader != evsel) && leader->sample_read) { 873 attr->sample_freq = 0; 874 attr->sample_period = 0; 875 } 876 877 if (opts->no_samples) 878 attr->sample_freq = 0; 879 880 if (opts->inherit_stat) 881 attr->inherit_stat = 1; 882 883 if (opts->sample_address) { 884 perf_evsel__set_sample_bit(evsel, ADDR); 885 attr->mmap_data = track; 886 } 887 888 /* 889 * We don't allow user space callchains for function trace 890 * event, due to issues with page faults while tracing page 891 * fault handler and its overall trickiness nature. 892 */ 893 if (perf_evsel__is_function_event(evsel)) 894 evsel->attr.exclude_callchain_user = 1; 895 896 if (callchain && callchain->enabled && !evsel->no_aux_samples) 897 perf_evsel__config_callchain(evsel, opts, callchain); 898 899 if (opts->sample_intr_regs) { 900 attr->sample_regs_intr = opts->sample_intr_regs; 901 perf_evsel__set_sample_bit(evsel, REGS_INTR); 902 } 903 904 if (target__has_cpu(&opts->target) || opts->sample_cpu) 905 perf_evsel__set_sample_bit(evsel, CPU); 906 907 if (opts->period) 908 perf_evsel__set_sample_bit(evsel, PERIOD); 909 910 /* 911 * When the user explicitly disabled time don't force it here. 912 */ 913 if (opts->sample_time && 914 (!perf_missing_features.sample_id_all && 915 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 916 opts->sample_time_set))) 917 perf_evsel__set_sample_bit(evsel, TIME); 918 919 if (opts->raw_samples && !evsel->no_aux_samples) { 920 perf_evsel__set_sample_bit(evsel, TIME); 921 perf_evsel__set_sample_bit(evsel, RAW); 922 perf_evsel__set_sample_bit(evsel, CPU); 923 } 924 925 if (opts->sample_address) 926 perf_evsel__set_sample_bit(evsel, DATA_SRC); 927 928 if (opts->no_buffering) { 929 attr->watermark = 0; 930 attr->wakeup_events = 1; 931 } 932 if (opts->branch_stack && !evsel->no_aux_samples) { 933 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 934 attr->branch_sample_type = opts->branch_stack; 935 } 936 937 if (opts->sample_weight) 938 perf_evsel__set_sample_bit(evsel, WEIGHT); 939 940 attr->task = track; 941 attr->mmap = track; 942 attr->mmap2 = track && !perf_missing_features.mmap2; 943 attr->comm = track; 944 945 if (opts->record_namespaces) 946 attr->namespaces = track; 947 948 if (opts->record_switch_events) 949 attr->context_switch = track; 950 951 if (opts->sample_transaction) 952 perf_evsel__set_sample_bit(evsel, TRANSACTION); 953 954 if (opts->running_time) { 955 evsel->attr.read_format |= 956 PERF_FORMAT_TOTAL_TIME_ENABLED | 957 PERF_FORMAT_TOTAL_TIME_RUNNING; 958 } 959 960 /* 961 * XXX see the function comment above 962 * 963 * Disabling only independent events or group leaders, 964 * keeping group members enabled. 965 */ 966 if (perf_evsel__is_group_leader(evsel)) 967 attr->disabled = 1; 968 969 /* 970 * Setting enable_on_exec for independent events and 971 * group leaders for traced executed by perf. 972 */ 973 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 974 !opts->initial_delay) 975 attr->enable_on_exec = 1; 976 977 if (evsel->immediate) { 978 attr->disabled = 0; 979 attr->enable_on_exec = 0; 980 } 981 982 clockid = opts->clockid; 983 if (opts->use_clockid) { 984 attr->use_clockid = 1; 985 attr->clockid = opts->clockid; 986 } 987 988 if (evsel->precise_max) 989 perf_event_attr__set_max_precise_ip(attr); 990 991 if (opts->all_user) { 992 attr->exclude_kernel = 1; 993 attr->exclude_user = 0; 994 } 995 996 if (opts->all_kernel) { 997 attr->exclude_kernel = 0; 998 attr->exclude_user = 1; 999 } 1000 1001 /* 1002 * Apply event specific term settings, 1003 * it overloads any global configuration. 1004 */ 1005 apply_config_terms(evsel, opts); 1006 1007 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1008 } 1009 1010 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1011 { 1012 if (evsel->system_wide) 1013 nthreads = 1; 1014 1015 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1016 1017 if (evsel->fd) { 1018 int cpu, thread; 1019 for (cpu = 0; cpu < ncpus; cpu++) { 1020 for (thread = 0; thread < nthreads; thread++) { 1021 FD(evsel, cpu, thread) = -1; 1022 } 1023 } 1024 } 1025 1026 return evsel->fd != NULL ? 0 : -ENOMEM; 1027 } 1028 1029 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 1030 int ioc, void *arg) 1031 { 1032 int cpu, thread; 1033 1034 if (evsel->system_wide) 1035 nthreads = 1; 1036 1037 for (cpu = 0; cpu < ncpus; cpu++) { 1038 for (thread = 0; thread < nthreads; thread++) { 1039 int fd = FD(evsel, cpu, thread), 1040 err = ioctl(fd, ioc, arg); 1041 1042 if (err) 1043 return err; 1044 } 1045 } 1046 1047 return 0; 1048 } 1049 1050 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 1051 const char *filter) 1052 { 1053 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1054 PERF_EVENT_IOC_SET_FILTER, 1055 (void *)filter); 1056 } 1057 1058 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1059 { 1060 char *new_filter = strdup(filter); 1061 1062 if (new_filter != NULL) { 1063 free(evsel->filter); 1064 evsel->filter = new_filter; 1065 return 0; 1066 } 1067 1068 return -1; 1069 } 1070 1071 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1072 const char *fmt, const char *filter) 1073 { 1074 char *new_filter; 1075 1076 if (evsel->filter == NULL) 1077 return perf_evsel__set_filter(evsel, filter); 1078 1079 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1080 free(evsel->filter); 1081 evsel->filter = new_filter; 1082 return 0; 1083 } 1084 1085 return -1; 1086 } 1087 1088 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1089 { 1090 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1091 } 1092 1093 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1094 { 1095 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1096 } 1097 1098 int perf_evsel__enable(struct perf_evsel *evsel) 1099 { 1100 int nthreads = thread_map__nr(evsel->threads); 1101 int ncpus = cpu_map__nr(evsel->cpus); 1102 1103 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1104 PERF_EVENT_IOC_ENABLE, 1105 0); 1106 } 1107 1108 int perf_evsel__disable(struct perf_evsel *evsel) 1109 { 1110 int nthreads = thread_map__nr(evsel->threads); 1111 int ncpus = cpu_map__nr(evsel->cpus); 1112 1113 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1114 PERF_EVENT_IOC_DISABLE, 1115 0); 1116 } 1117 1118 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1119 { 1120 if (ncpus == 0 || nthreads == 0) 1121 return 0; 1122 1123 if (evsel->system_wide) 1124 nthreads = 1; 1125 1126 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1127 if (evsel->sample_id == NULL) 1128 return -ENOMEM; 1129 1130 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1131 if (evsel->id == NULL) { 1132 xyarray__delete(evsel->sample_id); 1133 evsel->sample_id = NULL; 1134 return -ENOMEM; 1135 } 1136 1137 return 0; 1138 } 1139 1140 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1141 { 1142 xyarray__delete(evsel->fd); 1143 evsel->fd = NULL; 1144 } 1145 1146 static void perf_evsel__free_id(struct perf_evsel *evsel) 1147 { 1148 xyarray__delete(evsel->sample_id); 1149 evsel->sample_id = NULL; 1150 zfree(&evsel->id); 1151 } 1152 1153 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1154 { 1155 struct perf_evsel_config_term *term, *h; 1156 1157 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1158 list_del(&term->list); 1159 free(term); 1160 } 1161 } 1162 1163 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1164 { 1165 int cpu, thread; 1166 1167 if (evsel->system_wide) 1168 nthreads = 1; 1169 1170 for (cpu = 0; cpu < ncpus; cpu++) 1171 for (thread = 0; thread < nthreads; ++thread) { 1172 close(FD(evsel, cpu, thread)); 1173 FD(evsel, cpu, thread) = -1; 1174 } 1175 } 1176 1177 void perf_evsel__exit(struct perf_evsel *evsel) 1178 { 1179 assert(list_empty(&evsel->node)); 1180 assert(evsel->evlist == NULL); 1181 perf_evsel__free_fd(evsel); 1182 perf_evsel__free_id(evsel); 1183 perf_evsel__free_config_terms(evsel); 1184 close_cgroup(evsel->cgrp); 1185 cpu_map__put(evsel->cpus); 1186 cpu_map__put(evsel->own_cpus); 1187 thread_map__put(evsel->threads); 1188 zfree(&evsel->group_name); 1189 zfree(&evsel->name); 1190 perf_evsel__object.fini(evsel); 1191 } 1192 1193 void perf_evsel__delete(struct perf_evsel *evsel) 1194 { 1195 perf_evsel__exit(evsel); 1196 free(evsel); 1197 } 1198 1199 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1200 struct perf_counts_values *count) 1201 { 1202 struct perf_counts_values tmp; 1203 1204 if (!evsel->prev_raw_counts) 1205 return; 1206 1207 if (cpu == -1) { 1208 tmp = evsel->prev_raw_counts->aggr; 1209 evsel->prev_raw_counts->aggr = *count; 1210 } else { 1211 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1212 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1213 } 1214 1215 count->val = count->val - tmp.val; 1216 count->ena = count->ena - tmp.ena; 1217 count->run = count->run - tmp.run; 1218 } 1219 1220 void perf_counts_values__scale(struct perf_counts_values *count, 1221 bool scale, s8 *pscaled) 1222 { 1223 s8 scaled = 0; 1224 1225 if (scale) { 1226 if (count->run == 0) { 1227 scaled = -1; 1228 count->val = 0; 1229 } else if (count->run < count->ena) { 1230 scaled = 1; 1231 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1232 } 1233 } else 1234 count->ena = count->run = 0; 1235 1236 if (pscaled) 1237 *pscaled = scaled; 1238 } 1239 1240 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1241 struct perf_counts_values *count) 1242 { 1243 memset(count, 0, sizeof(*count)); 1244 1245 if (FD(evsel, cpu, thread) < 0) 1246 return -EINVAL; 1247 1248 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0) 1249 return -errno; 1250 1251 return 0; 1252 } 1253 1254 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1255 int cpu, int thread, bool scale) 1256 { 1257 struct perf_counts_values count; 1258 size_t nv = scale ? 3 : 1; 1259 1260 if (FD(evsel, cpu, thread) < 0) 1261 return -EINVAL; 1262 1263 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1264 return -ENOMEM; 1265 1266 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1267 return -errno; 1268 1269 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1270 perf_counts_values__scale(&count, scale, NULL); 1271 *perf_counts(evsel->counts, cpu, thread) = count; 1272 return 0; 1273 } 1274 1275 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1276 { 1277 struct perf_evsel *leader = evsel->leader; 1278 int fd; 1279 1280 if (perf_evsel__is_group_leader(evsel)) 1281 return -1; 1282 1283 /* 1284 * Leader must be already processed/open, 1285 * if not it's a bug. 1286 */ 1287 BUG_ON(!leader->fd); 1288 1289 fd = FD(leader, cpu, thread); 1290 BUG_ON(fd == -1); 1291 1292 return fd; 1293 } 1294 1295 struct bit_names { 1296 int bit; 1297 const char *name; 1298 }; 1299 1300 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1301 { 1302 bool first_bit = true; 1303 int i = 0; 1304 1305 do { 1306 if (value & bits[i].bit) { 1307 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1308 first_bit = false; 1309 } 1310 } while (bits[++i].name != NULL); 1311 } 1312 1313 static void __p_sample_type(char *buf, size_t size, u64 value) 1314 { 1315 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1316 struct bit_names bits[] = { 1317 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1318 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1319 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1320 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1321 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1322 bit_name(WEIGHT), 1323 { .name = NULL, } 1324 }; 1325 #undef bit_name 1326 __p_bits(buf, size, value, bits); 1327 } 1328 1329 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1330 { 1331 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1332 struct bit_names bits[] = { 1333 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1334 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1335 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1336 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1337 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1338 { .name = NULL, } 1339 }; 1340 #undef bit_name 1341 __p_bits(buf, size, value, bits); 1342 } 1343 1344 static void __p_read_format(char *buf, size_t size, u64 value) 1345 { 1346 #define bit_name(n) { PERF_FORMAT_##n, #n } 1347 struct bit_names bits[] = { 1348 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1349 bit_name(ID), bit_name(GROUP), 1350 { .name = NULL, } 1351 }; 1352 #undef bit_name 1353 __p_bits(buf, size, value, bits); 1354 } 1355 1356 #define BUF_SIZE 1024 1357 1358 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1359 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1360 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1361 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1362 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1363 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1364 1365 #define PRINT_ATTRn(_n, _f, _p) \ 1366 do { \ 1367 if (attr->_f) { \ 1368 _p(attr->_f); \ 1369 ret += attr__fprintf(fp, _n, buf, priv);\ 1370 } \ 1371 } while (0) 1372 1373 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1374 1375 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1376 attr__fprintf_f attr__fprintf, void *priv) 1377 { 1378 char buf[BUF_SIZE]; 1379 int ret = 0; 1380 1381 PRINT_ATTRf(type, p_unsigned); 1382 PRINT_ATTRf(size, p_unsigned); 1383 PRINT_ATTRf(config, p_hex); 1384 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1385 PRINT_ATTRf(sample_type, p_sample_type); 1386 PRINT_ATTRf(read_format, p_read_format); 1387 1388 PRINT_ATTRf(disabled, p_unsigned); 1389 PRINT_ATTRf(inherit, p_unsigned); 1390 PRINT_ATTRf(pinned, p_unsigned); 1391 PRINT_ATTRf(exclusive, p_unsigned); 1392 PRINT_ATTRf(exclude_user, p_unsigned); 1393 PRINT_ATTRf(exclude_kernel, p_unsigned); 1394 PRINT_ATTRf(exclude_hv, p_unsigned); 1395 PRINT_ATTRf(exclude_idle, p_unsigned); 1396 PRINT_ATTRf(mmap, p_unsigned); 1397 PRINT_ATTRf(comm, p_unsigned); 1398 PRINT_ATTRf(freq, p_unsigned); 1399 PRINT_ATTRf(inherit_stat, p_unsigned); 1400 PRINT_ATTRf(enable_on_exec, p_unsigned); 1401 PRINT_ATTRf(task, p_unsigned); 1402 PRINT_ATTRf(watermark, p_unsigned); 1403 PRINT_ATTRf(precise_ip, p_unsigned); 1404 PRINT_ATTRf(mmap_data, p_unsigned); 1405 PRINT_ATTRf(sample_id_all, p_unsigned); 1406 PRINT_ATTRf(exclude_host, p_unsigned); 1407 PRINT_ATTRf(exclude_guest, p_unsigned); 1408 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1409 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1410 PRINT_ATTRf(mmap2, p_unsigned); 1411 PRINT_ATTRf(comm_exec, p_unsigned); 1412 PRINT_ATTRf(use_clockid, p_unsigned); 1413 PRINT_ATTRf(context_switch, p_unsigned); 1414 PRINT_ATTRf(write_backward, p_unsigned); 1415 1416 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1417 PRINT_ATTRf(bp_type, p_unsigned); 1418 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1419 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1420 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1421 PRINT_ATTRf(sample_regs_user, p_hex); 1422 PRINT_ATTRf(sample_stack_user, p_unsigned); 1423 PRINT_ATTRf(clockid, p_signed); 1424 PRINT_ATTRf(sample_regs_intr, p_hex); 1425 PRINT_ATTRf(aux_watermark, p_unsigned); 1426 PRINT_ATTRf(sample_max_stack, p_unsigned); 1427 1428 return ret; 1429 } 1430 1431 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1432 void *priv __attribute__((unused))) 1433 { 1434 return fprintf(fp, " %-32s %s\n", name, val); 1435 } 1436 1437 static bool ignore_missing_thread(struct perf_evsel *evsel, 1438 struct thread_map *threads, 1439 int thread, int err) 1440 { 1441 if (!evsel->ignore_missing_thread) 1442 return false; 1443 1444 /* The system wide setup does not work with threads. */ 1445 if (evsel->system_wide) 1446 return false; 1447 1448 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1449 if (err != -ESRCH) 1450 return false; 1451 1452 /* If there's only one thread, let it fail. */ 1453 if (threads->nr == 1) 1454 return false; 1455 1456 if (thread_map__remove(threads, thread)) 1457 return false; 1458 1459 pr_warning("WARNING: Ignored open failure for pid %d\n", 1460 thread_map__pid(threads, thread)); 1461 return true; 1462 } 1463 1464 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1465 struct thread_map *threads) 1466 { 1467 int cpu, thread, nthreads; 1468 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1469 int pid = -1, err; 1470 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1471 1472 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1473 return -EINVAL; 1474 1475 if (cpus == NULL) { 1476 static struct cpu_map *empty_cpu_map; 1477 1478 if (empty_cpu_map == NULL) { 1479 empty_cpu_map = cpu_map__dummy_new(); 1480 if (empty_cpu_map == NULL) 1481 return -ENOMEM; 1482 } 1483 1484 cpus = empty_cpu_map; 1485 } 1486 1487 if (threads == NULL) { 1488 static struct thread_map *empty_thread_map; 1489 1490 if (empty_thread_map == NULL) { 1491 empty_thread_map = thread_map__new_by_tid(-1); 1492 if (empty_thread_map == NULL) 1493 return -ENOMEM; 1494 } 1495 1496 threads = empty_thread_map; 1497 } 1498 1499 if (evsel->system_wide) 1500 nthreads = 1; 1501 else 1502 nthreads = threads->nr; 1503 1504 if (evsel->fd == NULL && 1505 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1506 return -ENOMEM; 1507 1508 if (evsel->cgrp) { 1509 flags |= PERF_FLAG_PID_CGROUP; 1510 pid = evsel->cgrp->fd; 1511 } 1512 1513 fallback_missing_features: 1514 if (perf_missing_features.clockid_wrong) 1515 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1516 if (perf_missing_features.clockid) { 1517 evsel->attr.use_clockid = 0; 1518 evsel->attr.clockid = 0; 1519 } 1520 if (perf_missing_features.cloexec) 1521 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1522 if (perf_missing_features.mmap2) 1523 evsel->attr.mmap2 = 0; 1524 if (perf_missing_features.exclude_guest) 1525 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1526 if (perf_missing_features.lbr_flags) 1527 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1528 PERF_SAMPLE_BRANCH_NO_CYCLES); 1529 retry_sample_id: 1530 if (perf_missing_features.sample_id_all) 1531 evsel->attr.sample_id_all = 0; 1532 1533 if (verbose >= 2) { 1534 fprintf(stderr, "%.60s\n", graph_dotted_line); 1535 fprintf(stderr, "perf_event_attr:\n"); 1536 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1537 fprintf(stderr, "%.60s\n", graph_dotted_line); 1538 } 1539 1540 for (cpu = 0; cpu < cpus->nr; cpu++) { 1541 1542 for (thread = 0; thread < nthreads; thread++) { 1543 int fd, group_fd; 1544 1545 if (!evsel->cgrp && !evsel->system_wide) 1546 pid = thread_map__pid(threads, thread); 1547 1548 group_fd = get_group_fd(evsel, cpu, thread); 1549 retry_open: 1550 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1551 pid, cpus->map[cpu], group_fd, flags); 1552 1553 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1554 group_fd, flags); 1555 1556 FD(evsel, cpu, thread) = fd; 1557 1558 if (fd < 0) { 1559 err = -errno; 1560 1561 if (ignore_missing_thread(evsel, threads, thread, err)) { 1562 /* 1563 * We just removed 1 thread, so take a step 1564 * back on thread index and lower the upper 1565 * nthreads limit. 1566 */ 1567 nthreads--; 1568 thread--; 1569 1570 /* ... and pretend like nothing have happened. */ 1571 err = 0; 1572 continue; 1573 } 1574 1575 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1576 err); 1577 goto try_fallback; 1578 } 1579 1580 pr_debug2(" = %d\n", fd); 1581 1582 if (evsel->bpf_fd >= 0) { 1583 int evt_fd = fd; 1584 int bpf_fd = evsel->bpf_fd; 1585 1586 err = ioctl(evt_fd, 1587 PERF_EVENT_IOC_SET_BPF, 1588 bpf_fd); 1589 if (err && errno != EEXIST) { 1590 pr_err("failed to attach bpf fd %d: %s\n", 1591 bpf_fd, strerror(errno)); 1592 err = -EINVAL; 1593 goto out_close; 1594 } 1595 } 1596 1597 set_rlimit = NO_CHANGE; 1598 1599 /* 1600 * If we succeeded but had to kill clockid, fail and 1601 * have perf_evsel__open_strerror() print us a nice 1602 * error. 1603 */ 1604 if (perf_missing_features.clockid || 1605 perf_missing_features.clockid_wrong) { 1606 err = -EINVAL; 1607 goto out_close; 1608 } 1609 } 1610 } 1611 1612 return 0; 1613 1614 try_fallback: 1615 /* 1616 * perf stat needs between 5 and 22 fds per CPU. When we run out 1617 * of them try to increase the limits. 1618 */ 1619 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1620 struct rlimit l; 1621 int old_errno = errno; 1622 1623 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1624 if (set_rlimit == NO_CHANGE) 1625 l.rlim_cur = l.rlim_max; 1626 else { 1627 l.rlim_cur = l.rlim_max + 1000; 1628 l.rlim_max = l.rlim_cur; 1629 } 1630 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1631 set_rlimit++; 1632 errno = old_errno; 1633 goto retry_open; 1634 } 1635 } 1636 errno = old_errno; 1637 } 1638 1639 if (err != -EINVAL || cpu > 0 || thread > 0) 1640 goto out_close; 1641 1642 /* 1643 * Must probe features in the order they were added to the 1644 * perf_event_attr interface. 1645 */ 1646 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1647 perf_missing_features.write_backward = true; 1648 goto out_close; 1649 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1650 perf_missing_features.clockid_wrong = true; 1651 goto fallback_missing_features; 1652 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1653 perf_missing_features.clockid = true; 1654 goto fallback_missing_features; 1655 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1656 perf_missing_features.cloexec = true; 1657 goto fallback_missing_features; 1658 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1659 perf_missing_features.mmap2 = true; 1660 goto fallback_missing_features; 1661 } else if (!perf_missing_features.exclude_guest && 1662 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1663 perf_missing_features.exclude_guest = true; 1664 goto fallback_missing_features; 1665 } else if (!perf_missing_features.sample_id_all) { 1666 perf_missing_features.sample_id_all = true; 1667 goto retry_sample_id; 1668 } else if (!perf_missing_features.lbr_flags && 1669 (evsel->attr.branch_sample_type & 1670 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1671 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1672 perf_missing_features.lbr_flags = true; 1673 goto fallback_missing_features; 1674 } 1675 out_close: 1676 do { 1677 while (--thread >= 0) { 1678 close(FD(evsel, cpu, thread)); 1679 FD(evsel, cpu, thread) = -1; 1680 } 1681 thread = nthreads; 1682 } while (--cpu >= 0); 1683 return err; 1684 } 1685 1686 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1687 { 1688 if (evsel->fd == NULL) 1689 return; 1690 1691 perf_evsel__close_fd(evsel, ncpus, nthreads); 1692 perf_evsel__free_fd(evsel); 1693 } 1694 1695 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1696 struct cpu_map *cpus) 1697 { 1698 return perf_evsel__open(evsel, cpus, NULL); 1699 } 1700 1701 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1702 struct thread_map *threads) 1703 { 1704 return perf_evsel__open(evsel, NULL, threads); 1705 } 1706 1707 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1708 const union perf_event *event, 1709 struct perf_sample *sample) 1710 { 1711 u64 type = evsel->attr.sample_type; 1712 const u64 *array = event->sample.array; 1713 bool swapped = evsel->needs_swap; 1714 union u64_swap u; 1715 1716 array += ((event->header.size - 1717 sizeof(event->header)) / sizeof(u64)) - 1; 1718 1719 if (type & PERF_SAMPLE_IDENTIFIER) { 1720 sample->id = *array; 1721 array--; 1722 } 1723 1724 if (type & PERF_SAMPLE_CPU) { 1725 u.val64 = *array; 1726 if (swapped) { 1727 /* undo swap of u64, then swap on individual u32s */ 1728 u.val64 = bswap_64(u.val64); 1729 u.val32[0] = bswap_32(u.val32[0]); 1730 } 1731 1732 sample->cpu = u.val32[0]; 1733 array--; 1734 } 1735 1736 if (type & PERF_SAMPLE_STREAM_ID) { 1737 sample->stream_id = *array; 1738 array--; 1739 } 1740 1741 if (type & PERF_SAMPLE_ID) { 1742 sample->id = *array; 1743 array--; 1744 } 1745 1746 if (type & PERF_SAMPLE_TIME) { 1747 sample->time = *array; 1748 array--; 1749 } 1750 1751 if (type & PERF_SAMPLE_TID) { 1752 u.val64 = *array; 1753 if (swapped) { 1754 /* undo swap of u64, then swap on individual u32s */ 1755 u.val64 = bswap_64(u.val64); 1756 u.val32[0] = bswap_32(u.val32[0]); 1757 u.val32[1] = bswap_32(u.val32[1]); 1758 } 1759 1760 sample->pid = u.val32[0]; 1761 sample->tid = u.val32[1]; 1762 array--; 1763 } 1764 1765 return 0; 1766 } 1767 1768 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1769 u64 size) 1770 { 1771 return size > max_size || offset + size > endp; 1772 } 1773 1774 #define OVERFLOW_CHECK(offset, size, max_size) \ 1775 do { \ 1776 if (overflow(endp, (max_size), (offset), (size))) \ 1777 return -EFAULT; \ 1778 } while (0) 1779 1780 #define OVERFLOW_CHECK_u64(offset) \ 1781 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1782 1783 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1784 struct perf_sample *data) 1785 { 1786 u64 type = evsel->attr.sample_type; 1787 bool swapped = evsel->needs_swap; 1788 const u64 *array; 1789 u16 max_size = event->header.size; 1790 const void *endp = (void *)event + max_size; 1791 u64 sz; 1792 1793 /* 1794 * used for cross-endian analysis. See git commit 65014ab3 1795 * for why this goofiness is needed. 1796 */ 1797 union u64_swap u; 1798 1799 memset(data, 0, sizeof(*data)); 1800 data->cpu = data->pid = data->tid = -1; 1801 data->stream_id = data->id = data->time = -1ULL; 1802 data->period = evsel->attr.sample_period; 1803 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1804 1805 if (event->header.type != PERF_RECORD_SAMPLE) { 1806 if (!evsel->attr.sample_id_all) 1807 return 0; 1808 return perf_evsel__parse_id_sample(evsel, event, data); 1809 } 1810 1811 array = event->sample.array; 1812 1813 /* 1814 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1815 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1816 * check the format does not go past the end of the event. 1817 */ 1818 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1819 return -EFAULT; 1820 1821 data->id = -1ULL; 1822 if (type & PERF_SAMPLE_IDENTIFIER) { 1823 data->id = *array; 1824 array++; 1825 } 1826 1827 if (type & PERF_SAMPLE_IP) { 1828 data->ip = *array; 1829 array++; 1830 } 1831 1832 if (type & PERF_SAMPLE_TID) { 1833 u.val64 = *array; 1834 if (swapped) { 1835 /* undo swap of u64, then swap on individual u32s */ 1836 u.val64 = bswap_64(u.val64); 1837 u.val32[0] = bswap_32(u.val32[0]); 1838 u.val32[1] = bswap_32(u.val32[1]); 1839 } 1840 1841 data->pid = u.val32[0]; 1842 data->tid = u.val32[1]; 1843 array++; 1844 } 1845 1846 if (type & PERF_SAMPLE_TIME) { 1847 data->time = *array; 1848 array++; 1849 } 1850 1851 data->addr = 0; 1852 if (type & PERF_SAMPLE_ADDR) { 1853 data->addr = *array; 1854 array++; 1855 } 1856 1857 if (type & PERF_SAMPLE_ID) { 1858 data->id = *array; 1859 array++; 1860 } 1861 1862 if (type & PERF_SAMPLE_STREAM_ID) { 1863 data->stream_id = *array; 1864 array++; 1865 } 1866 1867 if (type & PERF_SAMPLE_CPU) { 1868 1869 u.val64 = *array; 1870 if (swapped) { 1871 /* undo swap of u64, then swap on individual u32s */ 1872 u.val64 = bswap_64(u.val64); 1873 u.val32[0] = bswap_32(u.val32[0]); 1874 } 1875 1876 data->cpu = u.val32[0]; 1877 array++; 1878 } 1879 1880 if (type & PERF_SAMPLE_PERIOD) { 1881 data->period = *array; 1882 array++; 1883 } 1884 1885 if (type & PERF_SAMPLE_READ) { 1886 u64 read_format = evsel->attr.read_format; 1887 1888 OVERFLOW_CHECK_u64(array); 1889 if (read_format & PERF_FORMAT_GROUP) 1890 data->read.group.nr = *array; 1891 else 1892 data->read.one.value = *array; 1893 1894 array++; 1895 1896 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1897 OVERFLOW_CHECK_u64(array); 1898 data->read.time_enabled = *array; 1899 array++; 1900 } 1901 1902 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1903 OVERFLOW_CHECK_u64(array); 1904 data->read.time_running = *array; 1905 array++; 1906 } 1907 1908 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1909 if (read_format & PERF_FORMAT_GROUP) { 1910 const u64 max_group_nr = UINT64_MAX / 1911 sizeof(struct sample_read_value); 1912 1913 if (data->read.group.nr > max_group_nr) 1914 return -EFAULT; 1915 sz = data->read.group.nr * 1916 sizeof(struct sample_read_value); 1917 OVERFLOW_CHECK(array, sz, max_size); 1918 data->read.group.values = 1919 (struct sample_read_value *)array; 1920 array = (void *)array + sz; 1921 } else { 1922 OVERFLOW_CHECK_u64(array); 1923 data->read.one.id = *array; 1924 array++; 1925 } 1926 } 1927 1928 if (type & PERF_SAMPLE_CALLCHAIN) { 1929 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1930 1931 OVERFLOW_CHECK_u64(array); 1932 data->callchain = (struct ip_callchain *)array++; 1933 if (data->callchain->nr > max_callchain_nr) 1934 return -EFAULT; 1935 sz = data->callchain->nr * sizeof(u64); 1936 OVERFLOW_CHECK(array, sz, max_size); 1937 array = (void *)array + sz; 1938 } 1939 1940 if (type & PERF_SAMPLE_RAW) { 1941 OVERFLOW_CHECK_u64(array); 1942 u.val64 = *array; 1943 if (WARN_ONCE(swapped, 1944 "Endianness of raw data not corrected!\n")) { 1945 /* undo swap of u64, then swap on individual u32s */ 1946 u.val64 = bswap_64(u.val64); 1947 u.val32[0] = bswap_32(u.val32[0]); 1948 u.val32[1] = bswap_32(u.val32[1]); 1949 } 1950 data->raw_size = u.val32[0]; 1951 array = (void *)array + sizeof(u32); 1952 1953 OVERFLOW_CHECK(array, data->raw_size, max_size); 1954 data->raw_data = (void *)array; 1955 array = (void *)array + data->raw_size; 1956 } 1957 1958 if (type & PERF_SAMPLE_BRANCH_STACK) { 1959 const u64 max_branch_nr = UINT64_MAX / 1960 sizeof(struct branch_entry); 1961 1962 OVERFLOW_CHECK_u64(array); 1963 data->branch_stack = (struct branch_stack *)array++; 1964 1965 if (data->branch_stack->nr > max_branch_nr) 1966 return -EFAULT; 1967 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1968 OVERFLOW_CHECK(array, sz, max_size); 1969 array = (void *)array + sz; 1970 } 1971 1972 if (type & PERF_SAMPLE_REGS_USER) { 1973 OVERFLOW_CHECK_u64(array); 1974 data->user_regs.abi = *array; 1975 array++; 1976 1977 if (data->user_regs.abi) { 1978 u64 mask = evsel->attr.sample_regs_user; 1979 1980 sz = hweight_long(mask) * sizeof(u64); 1981 OVERFLOW_CHECK(array, sz, max_size); 1982 data->user_regs.mask = mask; 1983 data->user_regs.regs = (u64 *)array; 1984 array = (void *)array + sz; 1985 } 1986 } 1987 1988 if (type & PERF_SAMPLE_STACK_USER) { 1989 OVERFLOW_CHECK_u64(array); 1990 sz = *array++; 1991 1992 data->user_stack.offset = ((char *)(array - 1) 1993 - (char *) event); 1994 1995 if (!sz) { 1996 data->user_stack.size = 0; 1997 } else { 1998 OVERFLOW_CHECK(array, sz, max_size); 1999 data->user_stack.data = (char *)array; 2000 array = (void *)array + sz; 2001 OVERFLOW_CHECK_u64(array); 2002 data->user_stack.size = *array++; 2003 if (WARN_ONCE(data->user_stack.size > sz, 2004 "user stack dump failure\n")) 2005 return -EFAULT; 2006 } 2007 } 2008 2009 if (type & PERF_SAMPLE_WEIGHT) { 2010 OVERFLOW_CHECK_u64(array); 2011 data->weight = *array; 2012 array++; 2013 } 2014 2015 data->data_src = PERF_MEM_DATA_SRC_NONE; 2016 if (type & PERF_SAMPLE_DATA_SRC) { 2017 OVERFLOW_CHECK_u64(array); 2018 data->data_src = *array; 2019 array++; 2020 } 2021 2022 data->transaction = 0; 2023 if (type & PERF_SAMPLE_TRANSACTION) { 2024 OVERFLOW_CHECK_u64(array); 2025 data->transaction = *array; 2026 array++; 2027 } 2028 2029 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2030 if (type & PERF_SAMPLE_REGS_INTR) { 2031 OVERFLOW_CHECK_u64(array); 2032 data->intr_regs.abi = *array; 2033 array++; 2034 2035 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2036 u64 mask = evsel->attr.sample_regs_intr; 2037 2038 sz = hweight_long(mask) * sizeof(u64); 2039 OVERFLOW_CHECK(array, sz, max_size); 2040 data->intr_regs.mask = mask; 2041 data->intr_regs.regs = (u64 *)array; 2042 array = (void *)array + sz; 2043 } 2044 } 2045 2046 return 0; 2047 } 2048 2049 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2050 u64 read_format) 2051 { 2052 size_t sz, result = sizeof(struct sample_event); 2053 2054 if (type & PERF_SAMPLE_IDENTIFIER) 2055 result += sizeof(u64); 2056 2057 if (type & PERF_SAMPLE_IP) 2058 result += sizeof(u64); 2059 2060 if (type & PERF_SAMPLE_TID) 2061 result += sizeof(u64); 2062 2063 if (type & PERF_SAMPLE_TIME) 2064 result += sizeof(u64); 2065 2066 if (type & PERF_SAMPLE_ADDR) 2067 result += sizeof(u64); 2068 2069 if (type & PERF_SAMPLE_ID) 2070 result += sizeof(u64); 2071 2072 if (type & PERF_SAMPLE_STREAM_ID) 2073 result += sizeof(u64); 2074 2075 if (type & PERF_SAMPLE_CPU) 2076 result += sizeof(u64); 2077 2078 if (type & PERF_SAMPLE_PERIOD) 2079 result += sizeof(u64); 2080 2081 if (type & PERF_SAMPLE_READ) { 2082 result += sizeof(u64); 2083 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2084 result += sizeof(u64); 2085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2086 result += sizeof(u64); 2087 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2088 if (read_format & PERF_FORMAT_GROUP) { 2089 sz = sample->read.group.nr * 2090 sizeof(struct sample_read_value); 2091 result += sz; 2092 } else { 2093 result += sizeof(u64); 2094 } 2095 } 2096 2097 if (type & PERF_SAMPLE_CALLCHAIN) { 2098 sz = (sample->callchain->nr + 1) * sizeof(u64); 2099 result += sz; 2100 } 2101 2102 if (type & PERF_SAMPLE_RAW) { 2103 result += sizeof(u32); 2104 result += sample->raw_size; 2105 } 2106 2107 if (type & PERF_SAMPLE_BRANCH_STACK) { 2108 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2109 sz += sizeof(u64); 2110 result += sz; 2111 } 2112 2113 if (type & PERF_SAMPLE_REGS_USER) { 2114 if (sample->user_regs.abi) { 2115 result += sizeof(u64); 2116 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2117 result += sz; 2118 } else { 2119 result += sizeof(u64); 2120 } 2121 } 2122 2123 if (type & PERF_SAMPLE_STACK_USER) { 2124 sz = sample->user_stack.size; 2125 result += sizeof(u64); 2126 if (sz) { 2127 result += sz; 2128 result += sizeof(u64); 2129 } 2130 } 2131 2132 if (type & PERF_SAMPLE_WEIGHT) 2133 result += sizeof(u64); 2134 2135 if (type & PERF_SAMPLE_DATA_SRC) 2136 result += sizeof(u64); 2137 2138 if (type & PERF_SAMPLE_TRANSACTION) 2139 result += sizeof(u64); 2140 2141 if (type & PERF_SAMPLE_REGS_INTR) { 2142 if (sample->intr_regs.abi) { 2143 result += sizeof(u64); 2144 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2145 result += sz; 2146 } else { 2147 result += sizeof(u64); 2148 } 2149 } 2150 2151 return result; 2152 } 2153 2154 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2155 u64 read_format, 2156 const struct perf_sample *sample, 2157 bool swapped) 2158 { 2159 u64 *array; 2160 size_t sz; 2161 /* 2162 * used for cross-endian analysis. See git commit 65014ab3 2163 * for why this goofiness is needed. 2164 */ 2165 union u64_swap u; 2166 2167 array = event->sample.array; 2168 2169 if (type & PERF_SAMPLE_IDENTIFIER) { 2170 *array = sample->id; 2171 array++; 2172 } 2173 2174 if (type & PERF_SAMPLE_IP) { 2175 *array = sample->ip; 2176 array++; 2177 } 2178 2179 if (type & PERF_SAMPLE_TID) { 2180 u.val32[0] = sample->pid; 2181 u.val32[1] = sample->tid; 2182 if (swapped) { 2183 /* 2184 * Inverse of what is done in perf_evsel__parse_sample 2185 */ 2186 u.val32[0] = bswap_32(u.val32[0]); 2187 u.val32[1] = bswap_32(u.val32[1]); 2188 u.val64 = bswap_64(u.val64); 2189 } 2190 2191 *array = u.val64; 2192 array++; 2193 } 2194 2195 if (type & PERF_SAMPLE_TIME) { 2196 *array = sample->time; 2197 array++; 2198 } 2199 2200 if (type & PERF_SAMPLE_ADDR) { 2201 *array = sample->addr; 2202 array++; 2203 } 2204 2205 if (type & PERF_SAMPLE_ID) { 2206 *array = sample->id; 2207 array++; 2208 } 2209 2210 if (type & PERF_SAMPLE_STREAM_ID) { 2211 *array = sample->stream_id; 2212 array++; 2213 } 2214 2215 if (type & PERF_SAMPLE_CPU) { 2216 u.val32[0] = sample->cpu; 2217 if (swapped) { 2218 /* 2219 * Inverse of what is done in perf_evsel__parse_sample 2220 */ 2221 u.val32[0] = bswap_32(u.val32[0]); 2222 u.val64 = bswap_64(u.val64); 2223 } 2224 *array = u.val64; 2225 array++; 2226 } 2227 2228 if (type & PERF_SAMPLE_PERIOD) { 2229 *array = sample->period; 2230 array++; 2231 } 2232 2233 if (type & PERF_SAMPLE_READ) { 2234 if (read_format & PERF_FORMAT_GROUP) 2235 *array = sample->read.group.nr; 2236 else 2237 *array = sample->read.one.value; 2238 array++; 2239 2240 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2241 *array = sample->read.time_enabled; 2242 array++; 2243 } 2244 2245 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2246 *array = sample->read.time_running; 2247 array++; 2248 } 2249 2250 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2251 if (read_format & PERF_FORMAT_GROUP) { 2252 sz = sample->read.group.nr * 2253 sizeof(struct sample_read_value); 2254 memcpy(array, sample->read.group.values, sz); 2255 array = (void *)array + sz; 2256 } else { 2257 *array = sample->read.one.id; 2258 array++; 2259 } 2260 } 2261 2262 if (type & PERF_SAMPLE_CALLCHAIN) { 2263 sz = (sample->callchain->nr + 1) * sizeof(u64); 2264 memcpy(array, sample->callchain, sz); 2265 array = (void *)array + sz; 2266 } 2267 2268 if (type & PERF_SAMPLE_RAW) { 2269 u.val32[0] = sample->raw_size; 2270 if (WARN_ONCE(swapped, 2271 "Endianness of raw data not corrected!\n")) { 2272 /* 2273 * Inverse of what is done in perf_evsel__parse_sample 2274 */ 2275 u.val32[0] = bswap_32(u.val32[0]); 2276 u.val32[1] = bswap_32(u.val32[1]); 2277 u.val64 = bswap_64(u.val64); 2278 } 2279 *array = u.val64; 2280 array = (void *)array + sizeof(u32); 2281 2282 memcpy(array, sample->raw_data, sample->raw_size); 2283 array = (void *)array + sample->raw_size; 2284 } 2285 2286 if (type & PERF_SAMPLE_BRANCH_STACK) { 2287 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2288 sz += sizeof(u64); 2289 memcpy(array, sample->branch_stack, sz); 2290 array = (void *)array + sz; 2291 } 2292 2293 if (type & PERF_SAMPLE_REGS_USER) { 2294 if (sample->user_regs.abi) { 2295 *array++ = sample->user_regs.abi; 2296 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2297 memcpy(array, sample->user_regs.regs, sz); 2298 array = (void *)array + sz; 2299 } else { 2300 *array++ = 0; 2301 } 2302 } 2303 2304 if (type & PERF_SAMPLE_STACK_USER) { 2305 sz = sample->user_stack.size; 2306 *array++ = sz; 2307 if (sz) { 2308 memcpy(array, sample->user_stack.data, sz); 2309 array = (void *)array + sz; 2310 *array++ = sz; 2311 } 2312 } 2313 2314 if (type & PERF_SAMPLE_WEIGHT) { 2315 *array = sample->weight; 2316 array++; 2317 } 2318 2319 if (type & PERF_SAMPLE_DATA_SRC) { 2320 *array = sample->data_src; 2321 array++; 2322 } 2323 2324 if (type & PERF_SAMPLE_TRANSACTION) { 2325 *array = sample->transaction; 2326 array++; 2327 } 2328 2329 if (type & PERF_SAMPLE_REGS_INTR) { 2330 if (sample->intr_regs.abi) { 2331 *array++ = sample->intr_regs.abi; 2332 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2333 memcpy(array, sample->intr_regs.regs, sz); 2334 array = (void *)array + sz; 2335 } else { 2336 *array++ = 0; 2337 } 2338 } 2339 2340 return 0; 2341 } 2342 2343 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2344 { 2345 return pevent_find_field(evsel->tp_format, name); 2346 } 2347 2348 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2349 const char *name) 2350 { 2351 struct format_field *field = perf_evsel__field(evsel, name); 2352 int offset; 2353 2354 if (!field) 2355 return NULL; 2356 2357 offset = field->offset; 2358 2359 if (field->flags & FIELD_IS_DYNAMIC) { 2360 offset = *(int *)(sample->raw_data + field->offset); 2361 offset &= 0xffff; 2362 } 2363 2364 return sample->raw_data + offset; 2365 } 2366 2367 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2368 bool needs_swap) 2369 { 2370 u64 value; 2371 void *ptr = sample->raw_data + field->offset; 2372 2373 switch (field->size) { 2374 case 1: 2375 return *(u8 *)ptr; 2376 case 2: 2377 value = *(u16 *)ptr; 2378 break; 2379 case 4: 2380 value = *(u32 *)ptr; 2381 break; 2382 case 8: 2383 memcpy(&value, ptr, sizeof(u64)); 2384 break; 2385 default: 2386 return 0; 2387 } 2388 2389 if (!needs_swap) 2390 return value; 2391 2392 switch (field->size) { 2393 case 2: 2394 return bswap_16(value); 2395 case 4: 2396 return bswap_32(value); 2397 case 8: 2398 return bswap_64(value); 2399 default: 2400 return 0; 2401 } 2402 2403 return 0; 2404 } 2405 2406 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2407 const char *name) 2408 { 2409 struct format_field *field = perf_evsel__field(evsel, name); 2410 2411 if (!field) 2412 return 0; 2413 2414 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2415 } 2416 2417 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2418 char *msg, size_t msgsize) 2419 { 2420 int paranoid; 2421 2422 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2423 evsel->attr.type == PERF_TYPE_HARDWARE && 2424 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2425 /* 2426 * If it's cycles then fall back to hrtimer based 2427 * cpu-clock-tick sw counter, which is always available even if 2428 * no PMU support. 2429 * 2430 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2431 * b0a873e). 2432 */ 2433 scnprintf(msg, msgsize, "%s", 2434 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2435 2436 evsel->attr.type = PERF_TYPE_SOFTWARE; 2437 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2438 2439 zfree(&evsel->name); 2440 return true; 2441 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2442 (paranoid = perf_event_paranoid()) > 1) { 2443 const char *name = perf_evsel__name(evsel); 2444 char *new_name; 2445 2446 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2447 return false; 2448 2449 if (evsel->name) 2450 free(evsel->name); 2451 evsel->name = new_name; 2452 scnprintf(msg, msgsize, 2453 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2454 evsel->attr.exclude_kernel = 1; 2455 2456 return true; 2457 } 2458 2459 return false; 2460 } 2461 2462 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2463 int err, char *msg, size_t size) 2464 { 2465 char sbuf[STRERR_BUFSIZE]; 2466 int printed = 0; 2467 2468 switch (err) { 2469 case EPERM: 2470 case EACCES: 2471 if (err == EPERM) 2472 printed = scnprintf(msg, size, 2473 "No permission to enable %s event.\n\n", 2474 perf_evsel__name(evsel)); 2475 2476 return scnprintf(msg + printed, size - printed, 2477 "You may not have permission to collect %sstats.\n\n" 2478 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2479 "which controls use of the performance events system by\n" 2480 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2481 "The current value is %d:\n\n" 2482 " -1: Allow use of (almost) all events by all users\n" 2483 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2484 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2485 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2486 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2487 " kernel.perf_event_paranoid = -1\n" , 2488 target->system_wide ? "system-wide " : "", 2489 perf_event_paranoid()); 2490 case ENOENT: 2491 return scnprintf(msg, size, "The %s event is not supported.", 2492 perf_evsel__name(evsel)); 2493 case EMFILE: 2494 return scnprintf(msg, size, "%s", 2495 "Too many events are opened.\n" 2496 "Probably the maximum number of open file descriptors has been reached.\n" 2497 "Hint: Try again after reducing the number of events.\n" 2498 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2499 case ENOMEM: 2500 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2501 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2502 return scnprintf(msg, size, 2503 "Not enough memory to setup event with callchain.\n" 2504 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2505 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2506 break; 2507 case ENODEV: 2508 if (target->cpu_list) 2509 return scnprintf(msg, size, "%s", 2510 "No such device - did you specify an out-of-range profile CPU?"); 2511 break; 2512 case EOPNOTSUPP: 2513 if (evsel->attr.sample_period != 0) 2514 return scnprintf(msg, size, "%s", 2515 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2516 if (evsel->attr.precise_ip) 2517 return scnprintf(msg, size, "%s", 2518 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2519 #if defined(__i386__) || defined(__x86_64__) 2520 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2521 return scnprintf(msg, size, "%s", 2522 "No hardware sampling interrupt available.\n" 2523 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2524 #endif 2525 break; 2526 case EBUSY: 2527 if (find_process("oprofiled")) 2528 return scnprintf(msg, size, 2529 "The PMU counters are busy/taken by another profiler.\n" 2530 "We found oprofile daemon running, please stop it and try again."); 2531 break; 2532 case EINVAL: 2533 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2534 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2535 if (perf_missing_features.clockid) 2536 return scnprintf(msg, size, "clockid feature not supported."); 2537 if (perf_missing_features.clockid_wrong) 2538 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2539 break; 2540 default: 2541 break; 2542 } 2543 2544 return scnprintf(msg, size, 2545 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2546 "/bin/dmesg may provide additional information.\n" 2547 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2548 err, str_error_r(err, sbuf, sizeof(sbuf)), 2549 perf_evsel__name(evsel)); 2550 } 2551 2552 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2553 { 2554 if (evsel && evsel->evlist && evsel->evlist->env) 2555 return evsel->evlist->env->arch; 2556 return NULL; 2557 } 2558