1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->evlist = NULL; 236 evsel->bpf_fd = -1; 237 INIT_LIST_HEAD(&evsel->node); 238 INIT_LIST_HEAD(&evsel->config_terms); 239 perf_evsel__object.init(evsel); 240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 241 perf_evsel__calc_id_pos(evsel); 242 evsel->cmdline_group_boundary = false; 243 evsel->metric_expr = NULL; 244 evsel->metric_name = NULL; 245 evsel->metric_events = NULL; 246 evsel->collect_stat = false; 247 evsel->pmu_name = NULL; 248 } 249 250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 251 { 252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 253 254 if (!evsel) 255 return NULL; 256 perf_evsel__init(evsel, attr, idx); 257 258 if (perf_evsel__is_bpf_output(evsel)) { 259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 261 evsel->attr.sample_period = 1; 262 } 263 264 if (perf_evsel__is_clock(evsel)) { 265 /* 266 * The evsel->unit points to static alias->unit 267 * so it's ok to use static string in here. 268 */ 269 static const char *unit = "msec"; 270 271 evsel->unit = unit; 272 evsel->scale = 1e-6; 273 } 274 275 return evsel; 276 } 277 278 static bool perf_event_can_profile_kernel(void) 279 { 280 return geteuid() == 0 || perf_event_paranoid() == -1; 281 } 282 283 struct perf_evsel *perf_evsel__new_cycles(bool precise) 284 { 285 struct perf_event_attr attr = { 286 .type = PERF_TYPE_HARDWARE, 287 .config = PERF_COUNT_HW_CPU_CYCLES, 288 .exclude_kernel = !perf_event_can_profile_kernel(), 289 }; 290 struct perf_evsel *evsel; 291 292 event_attr_init(&attr); 293 294 if (!precise) 295 goto new_event; 296 /* 297 * Unnamed union member, not supported as struct member named 298 * initializer in older compilers such as gcc 4.4.7 299 * 300 * Just for probing the precise_ip: 301 */ 302 attr.sample_period = 1; 303 304 perf_event_attr__set_max_precise_ip(&attr); 305 /* 306 * Now let the usual logic to set up the perf_event_attr defaults 307 * to kick in when we return and before perf_evsel__open() is called. 308 */ 309 attr.sample_period = 0; 310 new_event: 311 evsel = perf_evsel__new(&attr); 312 if (evsel == NULL) 313 goto out; 314 315 /* use asprintf() because free(evsel) assumes name is allocated */ 316 if (asprintf(&evsel->name, "cycles%s%s%.*s", 317 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 318 attr.exclude_kernel ? "u" : "", 319 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 320 goto error_free; 321 out: 322 return evsel; 323 error_free: 324 perf_evsel__delete(evsel); 325 evsel = NULL; 326 goto out; 327 } 328 329 /* 330 * Returns pointer with encoded error via <linux/err.h> interface. 331 */ 332 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 333 { 334 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 335 int err = -ENOMEM; 336 337 if (evsel == NULL) { 338 goto out_err; 339 } else { 340 struct perf_event_attr attr = { 341 .type = PERF_TYPE_TRACEPOINT, 342 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 343 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 344 }; 345 346 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 347 goto out_free; 348 349 evsel->tp_format = trace_event__tp_format(sys, name); 350 if (IS_ERR(evsel->tp_format)) { 351 err = PTR_ERR(evsel->tp_format); 352 goto out_free; 353 } 354 355 event_attr_init(&attr); 356 attr.config = evsel->tp_format->id; 357 attr.sample_period = 1; 358 perf_evsel__init(evsel, &attr, idx); 359 } 360 361 return evsel; 362 363 out_free: 364 zfree(&evsel->name); 365 free(evsel); 366 out_err: 367 return ERR_PTR(err); 368 } 369 370 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 371 "cycles", 372 "instructions", 373 "cache-references", 374 "cache-misses", 375 "branches", 376 "branch-misses", 377 "bus-cycles", 378 "stalled-cycles-frontend", 379 "stalled-cycles-backend", 380 "ref-cycles", 381 }; 382 383 static const char *__perf_evsel__hw_name(u64 config) 384 { 385 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 386 return perf_evsel__hw_names[config]; 387 388 return "unknown-hardware"; 389 } 390 391 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 392 { 393 int colon = 0, r = 0; 394 struct perf_event_attr *attr = &evsel->attr; 395 bool exclude_guest_default = false; 396 397 #define MOD_PRINT(context, mod) do { \ 398 if (!attr->exclude_##context) { \ 399 if (!colon) colon = ++r; \ 400 r += scnprintf(bf + r, size - r, "%c", mod); \ 401 } } while(0) 402 403 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 404 MOD_PRINT(kernel, 'k'); 405 MOD_PRINT(user, 'u'); 406 MOD_PRINT(hv, 'h'); 407 exclude_guest_default = true; 408 } 409 410 if (attr->precise_ip) { 411 if (!colon) 412 colon = ++r; 413 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 414 exclude_guest_default = true; 415 } 416 417 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 418 MOD_PRINT(host, 'H'); 419 MOD_PRINT(guest, 'G'); 420 } 421 #undef MOD_PRINT 422 if (colon) 423 bf[colon - 1] = ':'; 424 return r; 425 } 426 427 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 428 { 429 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 430 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 431 } 432 433 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 434 "cpu-clock", 435 "task-clock", 436 "page-faults", 437 "context-switches", 438 "cpu-migrations", 439 "minor-faults", 440 "major-faults", 441 "alignment-faults", 442 "emulation-faults", 443 "dummy", 444 }; 445 446 static const char *__perf_evsel__sw_name(u64 config) 447 { 448 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 449 return perf_evsel__sw_names[config]; 450 return "unknown-software"; 451 } 452 453 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 454 { 455 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 456 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 457 } 458 459 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 460 { 461 int r; 462 463 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 464 465 if (type & HW_BREAKPOINT_R) 466 r += scnprintf(bf + r, size - r, "r"); 467 468 if (type & HW_BREAKPOINT_W) 469 r += scnprintf(bf + r, size - r, "w"); 470 471 if (type & HW_BREAKPOINT_X) 472 r += scnprintf(bf + r, size - r, "x"); 473 474 return r; 475 } 476 477 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 478 { 479 struct perf_event_attr *attr = &evsel->attr; 480 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 481 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 482 } 483 484 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 485 [PERF_EVSEL__MAX_ALIASES] = { 486 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 487 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 488 { "LLC", "L2", }, 489 { "dTLB", "d-tlb", "Data-TLB", }, 490 { "iTLB", "i-tlb", "Instruction-TLB", }, 491 { "branch", "branches", "bpu", "btb", "bpc", }, 492 { "node", }, 493 }; 494 495 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 496 [PERF_EVSEL__MAX_ALIASES] = { 497 { "load", "loads", "read", }, 498 { "store", "stores", "write", }, 499 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 500 }; 501 502 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 503 [PERF_EVSEL__MAX_ALIASES] = { 504 { "refs", "Reference", "ops", "access", }, 505 { "misses", "miss", }, 506 }; 507 508 #define C(x) PERF_COUNT_HW_CACHE_##x 509 #define CACHE_READ (1 << C(OP_READ)) 510 #define CACHE_WRITE (1 << C(OP_WRITE)) 511 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 512 #define COP(x) (1 << x) 513 514 /* 515 * cache operartion stat 516 * L1I : Read and prefetch only 517 * ITLB and BPU : Read-only 518 */ 519 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 520 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 521 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 522 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 523 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 524 [C(ITLB)] = (CACHE_READ), 525 [C(BPU)] = (CACHE_READ), 526 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 527 }; 528 529 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 530 { 531 if (perf_evsel__hw_cache_stat[type] & COP(op)) 532 return true; /* valid */ 533 else 534 return false; /* invalid */ 535 } 536 537 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 538 char *bf, size_t size) 539 { 540 if (result) { 541 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 542 perf_evsel__hw_cache_op[op][0], 543 perf_evsel__hw_cache_result[result][0]); 544 } 545 546 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 547 perf_evsel__hw_cache_op[op][1]); 548 } 549 550 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 551 { 552 u8 op, result, type = (config >> 0) & 0xff; 553 const char *err = "unknown-ext-hardware-cache-type"; 554 555 if (type >= PERF_COUNT_HW_CACHE_MAX) 556 goto out_err; 557 558 op = (config >> 8) & 0xff; 559 err = "unknown-ext-hardware-cache-op"; 560 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 561 goto out_err; 562 563 result = (config >> 16) & 0xff; 564 err = "unknown-ext-hardware-cache-result"; 565 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 566 goto out_err; 567 568 err = "invalid-cache"; 569 if (!perf_evsel__is_cache_op_valid(type, op)) 570 goto out_err; 571 572 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 573 out_err: 574 return scnprintf(bf, size, "%s", err); 575 } 576 577 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 578 { 579 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 581 } 582 583 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 584 { 585 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 586 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 587 } 588 589 const char *perf_evsel__name(struct perf_evsel *evsel) 590 { 591 char bf[128]; 592 593 if (evsel->name) 594 return evsel->name; 595 596 switch (evsel->attr.type) { 597 case PERF_TYPE_RAW: 598 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 599 break; 600 601 case PERF_TYPE_HARDWARE: 602 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 603 break; 604 605 case PERF_TYPE_HW_CACHE: 606 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 607 break; 608 609 case PERF_TYPE_SOFTWARE: 610 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 611 break; 612 613 case PERF_TYPE_TRACEPOINT: 614 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 615 break; 616 617 case PERF_TYPE_BREAKPOINT: 618 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 619 break; 620 621 default: 622 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 623 evsel->attr.type); 624 break; 625 } 626 627 evsel->name = strdup(bf); 628 629 return evsel->name ?: "unknown"; 630 } 631 632 const char *perf_evsel__group_name(struct perf_evsel *evsel) 633 { 634 return evsel->group_name ?: "anon group"; 635 } 636 637 /* 638 * Returns the group details for the specified leader, 639 * with following rules. 640 * 641 * For record -e '{cycles,instructions}' 642 * 'anon group { cycles:u, instructions:u }' 643 * 644 * For record -e 'cycles,instructions' and report --group 645 * 'cycles:u, instructions:u' 646 */ 647 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 648 { 649 int ret = 0; 650 struct perf_evsel *pos; 651 const char *group_name = perf_evsel__group_name(evsel); 652 653 if (!evsel->forced_leader) 654 ret = scnprintf(buf, size, "%s { ", group_name); 655 656 ret += scnprintf(buf + ret, size - ret, "%s", 657 perf_evsel__name(evsel)); 658 659 for_each_group_member(pos, evsel) 660 ret += scnprintf(buf + ret, size - ret, ", %s", 661 perf_evsel__name(pos)); 662 663 if (!evsel->forced_leader) 664 ret += scnprintf(buf + ret, size - ret, " }"); 665 666 return ret; 667 } 668 669 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 670 struct record_opts *opts, 671 struct callchain_param *param) 672 { 673 bool function = perf_evsel__is_function_event(evsel); 674 struct perf_event_attr *attr = &evsel->attr; 675 676 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 677 678 attr->sample_max_stack = param->max_stack; 679 680 if (param->record_mode == CALLCHAIN_LBR) { 681 if (!opts->branch_stack) { 682 if (attr->exclude_user) { 683 pr_warning("LBR callstack option is only available " 684 "to get user callchain information. " 685 "Falling back to framepointers.\n"); 686 } else { 687 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 688 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 689 PERF_SAMPLE_BRANCH_CALL_STACK | 690 PERF_SAMPLE_BRANCH_NO_CYCLES | 691 PERF_SAMPLE_BRANCH_NO_FLAGS; 692 } 693 } else 694 pr_warning("Cannot use LBR callstack with branch stack. " 695 "Falling back to framepointers.\n"); 696 } 697 698 if (param->record_mode == CALLCHAIN_DWARF) { 699 if (!function) { 700 perf_evsel__set_sample_bit(evsel, REGS_USER); 701 perf_evsel__set_sample_bit(evsel, STACK_USER); 702 attr->sample_regs_user |= PERF_REGS_MASK; 703 attr->sample_stack_user = param->dump_size; 704 attr->exclude_callchain_user = 1; 705 } else { 706 pr_info("Cannot use DWARF unwind for function trace event," 707 " falling back to framepointers.\n"); 708 } 709 } 710 711 if (function) { 712 pr_info("Disabling user space callchains for function trace event.\n"); 713 attr->exclude_callchain_user = 1; 714 } 715 } 716 717 void perf_evsel__config_callchain(struct perf_evsel *evsel, 718 struct record_opts *opts, 719 struct callchain_param *param) 720 { 721 if (param->enabled) 722 return __perf_evsel__config_callchain(evsel, opts, param); 723 } 724 725 static void 726 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 727 struct callchain_param *param) 728 { 729 struct perf_event_attr *attr = &evsel->attr; 730 731 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 732 if (param->record_mode == CALLCHAIN_LBR) { 733 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 734 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 735 PERF_SAMPLE_BRANCH_CALL_STACK); 736 } 737 if (param->record_mode == CALLCHAIN_DWARF) { 738 perf_evsel__reset_sample_bit(evsel, REGS_USER); 739 perf_evsel__reset_sample_bit(evsel, STACK_USER); 740 } 741 } 742 743 static void apply_config_terms(struct perf_evsel *evsel, 744 struct record_opts *opts, bool track) 745 { 746 struct perf_evsel_config_term *term; 747 struct list_head *config_terms = &evsel->config_terms; 748 struct perf_event_attr *attr = &evsel->attr; 749 /* callgraph default */ 750 struct callchain_param param = { 751 .record_mode = callchain_param.record_mode, 752 }; 753 u32 dump_size = 0; 754 int max_stack = 0; 755 const char *callgraph_buf = NULL; 756 757 list_for_each_entry(term, config_terms, list) { 758 switch (term->type) { 759 case PERF_EVSEL__CONFIG_TERM_PERIOD: 760 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 761 attr->sample_period = term->val.period; 762 attr->freq = 0; 763 perf_evsel__reset_sample_bit(evsel, PERIOD); 764 } 765 break; 766 case PERF_EVSEL__CONFIG_TERM_FREQ: 767 if (!(term->weak && opts->user_freq != UINT_MAX)) { 768 attr->sample_freq = term->val.freq; 769 attr->freq = 1; 770 perf_evsel__set_sample_bit(evsel, PERIOD); 771 } 772 break; 773 case PERF_EVSEL__CONFIG_TERM_TIME: 774 if (term->val.time) 775 perf_evsel__set_sample_bit(evsel, TIME); 776 else 777 perf_evsel__reset_sample_bit(evsel, TIME); 778 break; 779 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 780 callgraph_buf = term->val.callgraph; 781 break; 782 case PERF_EVSEL__CONFIG_TERM_BRANCH: 783 if (term->val.branch && strcmp(term->val.branch, "no")) { 784 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 785 parse_branch_str(term->val.branch, 786 &attr->branch_sample_type); 787 } else 788 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 789 break; 790 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 791 dump_size = term->val.stack_user; 792 break; 793 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 794 max_stack = term->val.max_stack; 795 break; 796 case PERF_EVSEL__CONFIG_TERM_INHERIT: 797 /* 798 * attr->inherit should has already been set by 799 * perf_evsel__config. If user explicitly set 800 * inherit using config terms, override global 801 * opt->no_inherit setting. 802 */ 803 attr->inherit = term->val.inherit ? 1 : 0; 804 break; 805 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 806 attr->write_backward = term->val.overwrite ? 1 : 0; 807 break; 808 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 809 break; 810 default: 811 break; 812 } 813 } 814 815 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 816 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 817 bool sample_address = false; 818 819 if (max_stack) { 820 param.max_stack = max_stack; 821 if (callgraph_buf == NULL) 822 callgraph_buf = "fp"; 823 } 824 825 /* parse callgraph parameters */ 826 if (callgraph_buf != NULL) { 827 if (!strcmp(callgraph_buf, "no")) { 828 param.enabled = false; 829 param.record_mode = CALLCHAIN_NONE; 830 } else { 831 param.enabled = true; 832 if (parse_callchain_record(callgraph_buf, ¶m)) { 833 pr_err("per-event callgraph setting for %s failed. " 834 "Apply callgraph global setting for it\n", 835 evsel->name); 836 return; 837 } 838 if (param.record_mode == CALLCHAIN_DWARF) 839 sample_address = true; 840 } 841 } 842 if (dump_size > 0) { 843 dump_size = round_up(dump_size, sizeof(u64)); 844 param.dump_size = dump_size; 845 } 846 847 /* If global callgraph set, clear it */ 848 if (callchain_param.enabled) 849 perf_evsel__reset_callgraph(evsel, &callchain_param); 850 851 /* set perf-event callgraph */ 852 if (param.enabled) { 853 if (sample_address) { 854 perf_evsel__set_sample_bit(evsel, ADDR); 855 perf_evsel__set_sample_bit(evsel, DATA_SRC); 856 evsel->attr.mmap_data = track; 857 } 858 perf_evsel__config_callchain(evsel, opts, ¶m); 859 } 860 } 861 } 862 863 static bool is_dummy_event(struct perf_evsel *evsel) 864 { 865 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 866 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 867 } 868 869 /* 870 * The enable_on_exec/disabled value strategy: 871 * 872 * 1) For any type of traced program: 873 * - all independent events and group leaders are disabled 874 * - all group members are enabled 875 * 876 * Group members are ruled by group leaders. They need to 877 * be enabled, because the group scheduling relies on that. 878 * 879 * 2) For traced programs executed by perf: 880 * - all independent events and group leaders have 881 * enable_on_exec set 882 * - we don't specifically enable or disable any event during 883 * the record command 884 * 885 * Independent events and group leaders are initially disabled 886 * and get enabled by exec. Group members are ruled by group 887 * leaders as stated in 1). 888 * 889 * 3) For traced programs attached by perf (pid/tid): 890 * - we specifically enable or disable all events during 891 * the record command 892 * 893 * When attaching events to already running traced we 894 * enable/disable events specifically, as there's no 895 * initial traced exec call. 896 */ 897 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 898 struct callchain_param *callchain) 899 { 900 struct perf_evsel *leader = evsel->leader; 901 struct perf_event_attr *attr = &evsel->attr; 902 int track = evsel->tracking; 903 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 904 905 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 906 attr->inherit = !opts->no_inherit; 907 attr->write_backward = opts->overwrite ? 1 : 0; 908 909 perf_evsel__set_sample_bit(evsel, IP); 910 perf_evsel__set_sample_bit(evsel, TID); 911 912 if (evsel->sample_read) { 913 perf_evsel__set_sample_bit(evsel, READ); 914 915 /* 916 * We need ID even in case of single event, because 917 * PERF_SAMPLE_READ process ID specific data. 918 */ 919 perf_evsel__set_sample_id(evsel, false); 920 921 /* 922 * Apply group format only if we belong to group 923 * with more than one members. 924 */ 925 if (leader->nr_members > 1) { 926 attr->read_format |= PERF_FORMAT_GROUP; 927 attr->inherit = 0; 928 } 929 } 930 931 /* 932 * We default some events to have a default interval. But keep 933 * it a weak assumption overridable by the user. 934 */ 935 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 936 opts->user_interval != ULLONG_MAX)) { 937 if (opts->freq) { 938 perf_evsel__set_sample_bit(evsel, PERIOD); 939 attr->freq = 1; 940 attr->sample_freq = opts->freq; 941 } else { 942 attr->sample_period = opts->default_interval; 943 } 944 } 945 946 /* 947 * Disable sampling for all group members other 948 * than leader in case leader 'leads' the sampling. 949 */ 950 if ((leader != evsel) && leader->sample_read) { 951 attr->freq = 0; 952 attr->sample_freq = 0; 953 attr->sample_period = 0; 954 attr->write_backward = 0; 955 attr->sample_id_all = 0; 956 } 957 958 if (opts->no_samples) 959 attr->sample_freq = 0; 960 961 if (opts->inherit_stat) { 962 evsel->attr.read_format |= 963 PERF_FORMAT_TOTAL_TIME_ENABLED | 964 PERF_FORMAT_TOTAL_TIME_RUNNING | 965 PERF_FORMAT_ID; 966 attr->inherit_stat = 1; 967 } 968 969 if (opts->sample_address) { 970 perf_evsel__set_sample_bit(evsel, ADDR); 971 attr->mmap_data = track; 972 } 973 974 /* 975 * We don't allow user space callchains for function trace 976 * event, due to issues with page faults while tracing page 977 * fault handler and its overall trickiness nature. 978 */ 979 if (perf_evsel__is_function_event(evsel)) 980 evsel->attr.exclude_callchain_user = 1; 981 982 if (callchain && callchain->enabled && !evsel->no_aux_samples) 983 perf_evsel__config_callchain(evsel, opts, callchain); 984 985 if (opts->sample_intr_regs) { 986 attr->sample_regs_intr = opts->sample_intr_regs; 987 perf_evsel__set_sample_bit(evsel, REGS_INTR); 988 } 989 990 if (opts->sample_user_regs) { 991 attr->sample_regs_user |= opts->sample_user_regs; 992 perf_evsel__set_sample_bit(evsel, REGS_USER); 993 } 994 995 if (target__has_cpu(&opts->target) || opts->sample_cpu) 996 perf_evsel__set_sample_bit(evsel, CPU); 997 998 /* 999 * When the user explicitly disabled time don't force it here. 1000 */ 1001 if (opts->sample_time && 1002 (!perf_missing_features.sample_id_all && 1003 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1004 opts->sample_time_set))) 1005 perf_evsel__set_sample_bit(evsel, TIME); 1006 1007 if (opts->raw_samples && !evsel->no_aux_samples) { 1008 perf_evsel__set_sample_bit(evsel, TIME); 1009 perf_evsel__set_sample_bit(evsel, RAW); 1010 perf_evsel__set_sample_bit(evsel, CPU); 1011 } 1012 1013 if (opts->sample_address) 1014 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1015 1016 if (opts->sample_phys_addr) 1017 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1018 1019 if (opts->no_buffering) { 1020 attr->watermark = 0; 1021 attr->wakeup_events = 1; 1022 } 1023 if (opts->branch_stack && !evsel->no_aux_samples) { 1024 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1025 attr->branch_sample_type = opts->branch_stack; 1026 } 1027 1028 if (opts->sample_weight) 1029 perf_evsel__set_sample_bit(evsel, WEIGHT); 1030 1031 attr->task = track; 1032 attr->mmap = track; 1033 attr->mmap2 = track && !perf_missing_features.mmap2; 1034 attr->comm = track; 1035 1036 if (opts->record_namespaces) 1037 attr->namespaces = track; 1038 1039 if (opts->record_switch_events) 1040 attr->context_switch = track; 1041 1042 if (opts->sample_transaction) 1043 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1044 1045 if (opts->running_time) { 1046 evsel->attr.read_format |= 1047 PERF_FORMAT_TOTAL_TIME_ENABLED | 1048 PERF_FORMAT_TOTAL_TIME_RUNNING; 1049 } 1050 1051 /* 1052 * XXX see the function comment above 1053 * 1054 * Disabling only independent events or group leaders, 1055 * keeping group members enabled. 1056 */ 1057 if (perf_evsel__is_group_leader(evsel)) 1058 attr->disabled = 1; 1059 1060 /* 1061 * Setting enable_on_exec for independent events and 1062 * group leaders for traced executed by perf. 1063 */ 1064 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1065 !opts->initial_delay) 1066 attr->enable_on_exec = 1; 1067 1068 if (evsel->immediate) { 1069 attr->disabled = 0; 1070 attr->enable_on_exec = 0; 1071 } 1072 1073 clockid = opts->clockid; 1074 if (opts->use_clockid) { 1075 attr->use_clockid = 1; 1076 attr->clockid = opts->clockid; 1077 } 1078 1079 if (evsel->precise_max) 1080 perf_event_attr__set_max_precise_ip(attr); 1081 1082 if (opts->all_user) { 1083 attr->exclude_kernel = 1; 1084 attr->exclude_user = 0; 1085 } 1086 1087 if (opts->all_kernel) { 1088 attr->exclude_kernel = 0; 1089 attr->exclude_user = 1; 1090 } 1091 1092 if (evsel->own_cpus) 1093 evsel->attr.read_format |= PERF_FORMAT_ID; 1094 1095 /* 1096 * Apply event specific term settings, 1097 * it overloads any global configuration. 1098 */ 1099 apply_config_terms(evsel, opts, track); 1100 1101 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1102 1103 /* The --period option takes the precedence. */ 1104 if (opts->period_set) { 1105 if (opts->period) 1106 perf_evsel__set_sample_bit(evsel, PERIOD); 1107 else 1108 perf_evsel__reset_sample_bit(evsel, PERIOD); 1109 } 1110 1111 /* 1112 * For initial_delay, a dummy event is added implicitly. 1113 * The software event will trigger -EOPNOTSUPP error out, 1114 * if BRANCH_STACK bit is set. 1115 */ 1116 if (opts->initial_delay && is_dummy_event(evsel)) 1117 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1118 } 1119 1120 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1121 { 1122 if (evsel->system_wide) 1123 nthreads = 1; 1124 1125 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1126 1127 if (evsel->fd) { 1128 int cpu, thread; 1129 for (cpu = 0; cpu < ncpus; cpu++) { 1130 for (thread = 0; thread < nthreads; thread++) { 1131 FD(evsel, cpu, thread) = -1; 1132 } 1133 } 1134 } 1135 1136 return evsel->fd != NULL ? 0 : -ENOMEM; 1137 } 1138 1139 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1140 int ioc, void *arg) 1141 { 1142 int cpu, thread; 1143 1144 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1145 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1146 int fd = FD(evsel, cpu, thread), 1147 err = ioctl(fd, ioc, arg); 1148 1149 if (err) 1150 return err; 1151 } 1152 } 1153 1154 return 0; 1155 } 1156 1157 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1158 { 1159 return perf_evsel__run_ioctl(evsel, 1160 PERF_EVENT_IOC_SET_FILTER, 1161 (void *)filter); 1162 } 1163 1164 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1165 { 1166 char *new_filter = strdup(filter); 1167 1168 if (new_filter != NULL) { 1169 free(evsel->filter); 1170 evsel->filter = new_filter; 1171 return 0; 1172 } 1173 1174 return -1; 1175 } 1176 1177 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1178 const char *fmt, const char *filter) 1179 { 1180 char *new_filter; 1181 1182 if (evsel->filter == NULL) 1183 return perf_evsel__set_filter(evsel, filter); 1184 1185 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1186 free(evsel->filter); 1187 evsel->filter = new_filter; 1188 return 0; 1189 } 1190 1191 return -1; 1192 } 1193 1194 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1195 { 1196 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1197 } 1198 1199 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1200 { 1201 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1202 } 1203 1204 int perf_evsel__enable(struct perf_evsel *evsel) 1205 { 1206 return perf_evsel__run_ioctl(evsel, 1207 PERF_EVENT_IOC_ENABLE, 1208 0); 1209 } 1210 1211 int perf_evsel__disable(struct perf_evsel *evsel) 1212 { 1213 return perf_evsel__run_ioctl(evsel, 1214 PERF_EVENT_IOC_DISABLE, 1215 0); 1216 } 1217 1218 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1219 { 1220 if (ncpus == 0 || nthreads == 0) 1221 return 0; 1222 1223 if (evsel->system_wide) 1224 nthreads = 1; 1225 1226 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1227 if (evsel->sample_id == NULL) 1228 return -ENOMEM; 1229 1230 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1231 if (evsel->id == NULL) { 1232 xyarray__delete(evsel->sample_id); 1233 evsel->sample_id = NULL; 1234 return -ENOMEM; 1235 } 1236 1237 return 0; 1238 } 1239 1240 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1241 { 1242 xyarray__delete(evsel->fd); 1243 evsel->fd = NULL; 1244 } 1245 1246 static void perf_evsel__free_id(struct perf_evsel *evsel) 1247 { 1248 xyarray__delete(evsel->sample_id); 1249 evsel->sample_id = NULL; 1250 zfree(&evsel->id); 1251 } 1252 1253 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1254 { 1255 struct perf_evsel_config_term *term, *h; 1256 1257 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1258 list_del(&term->list); 1259 free(term); 1260 } 1261 } 1262 1263 void perf_evsel__close_fd(struct perf_evsel *evsel) 1264 { 1265 int cpu, thread; 1266 1267 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1268 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1269 close(FD(evsel, cpu, thread)); 1270 FD(evsel, cpu, thread) = -1; 1271 } 1272 } 1273 1274 void perf_evsel__exit(struct perf_evsel *evsel) 1275 { 1276 assert(list_empty(&evsel->node)); 1277 assert(evsel->evlist == NULL); 1278 perf_evsel__free_fd(evsel); 1279 perf_evsel__free_id(evsel); 1280 perf_evsel__free_config_terms(evsel); 1281 cgroup__put(evsel->cgrp); 1282 cpu_map__put(evsel->cpus); 1283 cpu_map__put(evsel->own_cpus); 1284 thread_map__put(evsel->threads); 1285 zfree(&evsel->group_name); 1286 zfree(&evsel->name); 1287 perf_evsel__object.fini(evsel); 1288 } 1289 1290 void perf_evsel__delete(struct perf_evsel *evsel) 1291 { 1292 perf_evsel__exit(evsel); 1293 free(evsel); 1294 } 1295 1296 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1297 struct perf_counts_values *count) 1298 { 1299 struct perf_counts_values tmp; 1300 1301 if (!evsel->prev_raw_counts) 1302 return; 1303 1304 if (cpu == -1) { 1305 tmp = evsel->prev_raw_counts->aggr; 1306 evsel->prev_raw_counts->aggr = *count; 1307 } else { 1308 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1309 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1310 } 1311 1312 count->val = count->val - tmp.val; 1313 count->ena = count->ena - tmp.ena; 1314 count->run = count->run - tmp.run; 1315 } 1316 1317 void perf_counts_values__scale(struct perf_counts_values *count, 1318 bool scale, s8 *pscaled) 1319 { 1320 s8 scaled = 0; 1321 1322 if (scale) { 1323 if (count->run == 0) { 1324 scaled = -1; 1325 count->val = 0; 1326 } else if (count->run < count->ena) { 1327 scaled = 1; 1328 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1329 } 1330 } else 1331 count->ena = count->run = 0; 1332 1333 if (pscaled) 1334 *pscaled = scaled; 1335 } 1336 1337 static int perf_evsel__read_size(struct perf_evsel *evsel) 1338 { 1339 u64 read_format = evsel->attr.read_format; 1340 int entry = sizeof(u64); /* value */ 1341 int size = 0; 1342 int nr = 1; 1343 1344 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1345 size += sizeof(u64); 1346 1347 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1348 size += sizeof(u64); 1349 1350 if (read_format & PERF_FORMAT_ID) 1351 entry += sizeof(u64); 1352 1353 if (read_format & PERF_FORMAT_GROUP) { 1354 nr = evsel->nr_members; 1355 size += sizeof(u64); 1356 } 1357 1358 size += entry * nr; 1359 return size; 1360 } 1361 1362 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1363 struct perf_counts_values *count) 1364 { 1365 size_t size = perf_evsel__read_size(evsel); 1366 1367 memset(count, 0, sizeof(*count)); 1368 1369 if (FD(evsel, cpu, thread) < 0) 1370 return -EINVAL; 1371 1372 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1373 return -errno; 1374 1375 return 0; 1376 } 1377 1378 static int 1379 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1380 { 1381 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1382 1383 return perf_evsel__read(evsel, cpu, thread, count); 1384 } 1385 1386 static void 1387 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1388 u64 val, u64 ena, u64 run) 1389 { 1390 struct perf_counts_values *count; 1391 1392 count = perf_counts(counter->counts, cpu, thread); 1393 1394 count->val = val; 1395 count->ena = ena; 1396 count->run = run; 1397 count->loaded = true; 1398 } 1399 1400 static int 1401 perf_evsel__process_group_data(struct perf_evsel *leader, 1402 int cpu, int thread, u64 *data) 1403 { 1404 u64 read_format = leader->attr.read_format; 1405 struct sample_read_value *v; 1406 u64 nr, ena = 0, run = 0, i; 1407 1408 nr = *data++; 1409 1410 if (nr != (u64) leader->nr_members) 1411 return -EINVAL; 1412 1413 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1414 ena = *data++; 1415 1416 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1417 run = *data++; 1418 1419 v = (struct sample_read_value *) data; 1420 1421 perf_evsel__set_count(leader, cpu, thread, 1422 v[0].value, ena, run); 1423 1424 for (i = 1; i < nr; i++) { 1425 struct perf_evsel *counter; 1426 1427 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1428 if (!counter) 1429 return -EINVAL; 1430 1431 perf_evsel__set_count(counter, cpu, thread, 1432 v[i].value, ena, run); 1433 } 1434 1435 return 0; 1436 } 1437 1438 static int 1439 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1440 { 1441 struct perf_stat_evsel *ps = leader->stats; 1442 u64 read_format = leader->attr.read_format; 1443 int size = perf_evsel__read_size(leader); 1444 u64 *data = ps->group_data; 1445 1446 if (!(read_format & PERF_FORMAT_ID)) 1447 return -EINVAL; 1448 1449 if (!perf_evsel__is_group_leader(leader)) 1450 return -EINVAL; 1451 1452 if (!data) { 1453 data = zalloc(size); 1454 if (!data) 1455 return -ENOMEM; 1456 1457 ps->group_data = data; 1458 } 1459 1460 if (FD(leader, cpu, thread) < 0) 1461 return -EINVAL; 1462 1463 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1464 return -errno; 1465 1466 return perf_evsel__process_group_data(leader, cpu, thread, data); 1467 } 1468 1469 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1470 { 1471 u64 read_format = evsel->attr.read_format; 1472 1473 if (read_format & PERF_FORMAT_GROUP) 1474 return perf_evsel__read_group(evsel, cpu, thread); 1475 else 1476 return perf_evsel__read_one(evsel, cpu, thread); 1477 } 1478 1479 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1480 int cpu, int thread, bool scale) 1481 { 1482 struct perf_counts_values count; 1483 size_t nv = scale ? 3 : 1; 1484 1485 if (FD(evsel, cpu, thread) < 0) 1486 return -EINVAL; 1487 1488 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1489 return -ENOMEM; 1490 1491 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1492 return -errno; 1493 1494 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1495 perf_counts_values__scale(&count, scale, NULL); 1496 *perf_counts(evsel->counts, cpu, thread) = count; 1497 return 0; 1498 } 1499 1500 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1501 { 1502 struct perf_evsel *leader = evsel->leader; 1503 int fd; 1504 1505 if (perf_evsel__is_group_leader(evsel)) 1506 return -1; 1507 1508 /* 1509 * Leader must be already processed/open, 1510 * if not it's a bug. 1511 */ 1512 BUG_ON(!leader->fd); 1513 1514 fd = FD(leader, cpu, thread); 1515 BUG_ON(fd == -1); 1516 1517 return fd; 1518 } 1519 1520 struct bit_names { 1521 int bit; 1522 const char *name; 1523 }; 1524 1525 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1526 { 1527 bool first_bit = true; 1528 int i = 0; 1529 1530 do { 1531 if (value & bits[i].bit) { 1532 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1533 first_bit = false; 1534 } 1535 } while (bits[++i].name != NULL); 1536 } 1537 1538 static void __p_sample_type(char *buf, size_t size, u64 value) 1539 { 1540 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1541 struct bit_names bits[] = { 1542 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1543 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1544 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1545 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1546 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1547 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1548 { .name = NULL, } 1549 }; 1550 #undef bit_name 1551 __p_bits(buf, size, value, bits); 1552 } 1553 1554 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1555 { 1556 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1557 struct bit_names bits[] = { 1558 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1559 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1560 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1561 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1562 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1563 { .name = NULL, } 1564 }; 1565 #undef bit_name 1566 __p_bits(buf, size, value, bits); 1567 } 1568 1569 static void __p_read_format(char *buf, size_t size, u64 value) 1570 { 1571 #define bit_name(n) { PERF_FORMAT_##n, #n } 1572 struct bit_names bits[] = { 1573 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1574 bit_name(ID), bit_name(GROUP), 1575 { .name = NULL, } 1576 }; 1577 #undef bit_name 1578 __p_bits(buf, size, value, bits); 1579 } 1580 1581 #define BUF_SIZE 1024 1582 1583 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1584 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1585 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1586 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1587 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1588 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1589 1590 #define PRINT_ATTRn(_n, _f, _p) \ 1591 do { \ 1592 if (attr->_f) { \ 1593 _p(attr->_f); \ 1594 ret += attr__fprintf(fp, _n, buf, priv);\ 1595 } \ 1596 } while (0) 1597 1598 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1599 1600 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1601 attr__fprintf_f attr__fprintf, void *priv) 1602 { 1603 char buf[BUF_SIZE]; 1604 int ret = 0; 1605 1606 PRINT_ATTRf(type, p_unsigned); 1607 PRINT_ATTRf(size, p_unsigned); 1608 PRINT_ATTRf(config, p_hex); 1609 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1610 PRINT_ATTRf(sample_type, p_sample_type); 1611 PRINT_ATTRf(read_format, p_read_format); 1612 1613 PRINT_ATTRf(disabled, p_unsigned); 1614 PRINT_ATTRf(inherit, p_unsigned); 1615 PRINT_ATTRf(pinned, p_unsigned); 1616 PRINT_ATTRf(exclusive, p_unsigned); 1617 PRINT_ATTRf(exclude_user, p_unsigned); 1618 PRINT_ATTRf(exclude_kernel, p_unsigned); 1619 PRINT_ATTRf(exclude_hv, p_unsigned); 1620 PRINT_ATTRf(exclude_idle, p_unsigned); 1621 PRINT_ATTRf(mmap, p_unsigned); 1622 PRINT_ATTRf(comm, p_unsigned); 1623 PRINT_ATTRf(freq, p_unsigned); 1624 PRINT_ATTRf(inherit_stat, p_unsigned); 1625 PRINT_ATTRf(enable_on_exec, p_unsigned); 1626 PRINT_ATTRf(task, p_unsigned); 1627 PRINT_ATTRf(watermark, p_unsigned); 1628 PRINT_ATTRf(precise_ip, p_unsigned); 1629 PRINT_ATTRf(mmap_data, p_unsigned); 1630 PRINT_ATTRf(sample_id_all, p_unsigned); 1631 PRINT_ATTRf(exclude_host, p_unsigned); 1632 PRINT_ATTRf(exclude_guest, p_unsigned); 1633 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1634 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1635 PRINT_ATTRf(mmap2, p_unsigned); 1636 PRINT_ATTRf(comm_exec, p_unsigned); 1637 PRINT_ATTRf(use_clockid, p_unsigned); 1638 PRINT_ATTRf(context_switch, p_unsigned); 1639 PRINT_ATTRf(write_backward, p_unsigned); 1640 PRINT_ATTRf(namespaces, p_unsigned); 1641 1642 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1643 PRINT_ATTRf(bp_type, p_unsigned); 1644 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1645 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1646 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1647 PRINT_ATTRf(sample_regs_user, p_hex); 1648 PRINT_ATTRf(sample_stack_user, p_unsigned); 1649 PRINT_ATTRf(clockid, p_signed); 1650 PRINT_ATTRf(sample_regs_intr, p_hex); 1651 PRINT_ATTRf(aux_watermark, p_unsigned); 1652 PRINT_ATTRf(sample_max_stack, p_unsigned); 1653 1654 return ret; 1655 } 1656 1657 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1658 void *priv __maybe_unused) 1659 { 1660 return fprintf(fp, " %-32s %s\n", name, val); 1661 } 1662 1663 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1664 int nr_cpus, int nr_threads, 1665 int thread_idx) 1666 { 1667 for (int cpu = 0; cpu < nr_cpus; cpu++) 1668 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1669 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1670 } 1671 1672 static int update_fds(struct perf_evsel *evsel, 1673 int nr_cpus, int cpu_idx, 1674 int nr_threads, int thread_idx) 1675 { 1676 struct perf_evsel *pos; 1677 1678 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1679 return -EINVAL; 1680 1681 evlist__for_each_entry(evsel->evlist, pos) { 1682 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1683 1684 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1685 1686 /* 1687 * Since fds for next evsel has not been created, 1688 * there is no need to iterate whole event list. 1689 */ 1690 if (pos == evsel) 1691 break; 1692 } 1693 return 0; 1694 } 1695 1696 static bool ignore_missing_thread(struct perf_evsel *evsel, 1697 int nr_cpus, int cpu, 1698 struct thread_map *threads, 1699 int thread, int err) 1700 { 1701 pid_t ignore_pid = thread_map__pid(threads, thread); 1702 1703 if (!evsel->ignore_missing_thread) 1704 return false; 1705 1706 /* The system wide setup does not work with threads. */ 1707 if (evsel->system_wide) 1708 return false; 1709 1710 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1711 if (err != -ESRCH) 1712 return false; 1713 1714 /* If there's only one thread, let it fail. */ 1715 if (threads->nr == 1) 1716 return false; 1717 1718 /* 1719 * We should remove fd for missing_thread first 1720 * because thread_map__remove() will decrease threads->nr. 1721 */ 1722 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1723 return false; 1724 1725 if (thread_map__remove(threads, thread)) 1726 return false; 1727 1728 pr_warning("WARNING: Ignored open failure for pid %d\n", 1729 ignore_pid); 1730 return true; 1731 } 1732 1733 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1734 struct thread_map *threads) 1735 { 1736 int cpu, thread, nthreads; 1737 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1738 int pid = -1, err; 1739 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1740 1741 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1742 return -EINVAL; 1743 1744 if (cpus == NULL) { 1745 static struct cpu_map *empty_cpu_map; 1746 1747 if (empty_cpu_map == NULL) { 1748 empty_cpu_map = cpu_map__dummy_new(); 1749 if (empty_cpu_map == NULL) 1750 return -ENOMEM; 1751 } 1752 1753 cpus = empty_cpu_map; 1754 } 1755 1756 if (threads == NULL) { 1757 static struct thread_map *empty_thread_map; 1758 1759 if (empty_thread_map == NULL) { 1760 empty_thread_map = thread_map__new_by_tid(-1); 1761 if (empty_thread_map == NULL) 1762 return -ENOMEM; 1763 } 1764 1765 threads = empty_thread_map; 1766 } 1767 1768 if (evsel->system_wide) 1769 nthreads = 1; 1770 else 1771 nthreads = threads->nr; 1772 1773 if (evsel->fd == NULL && 1774 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1775 return -ENOMEM; 1776 1777 if (evsel->cgrp) { 1778 flags |= PERF_FLAG_PID_CGROUP; 1779 pid = evsel->cgrp->fd; 1780 } 1781 1782 fallback_missing_features: 1783 if (perf_missing_features.clockid_wrong) 1784 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1785 if (perf_missing_features.clockid) { 1786 evsel->attr.use_clockid = 0; 1787 evsel->attr.clockid = 0; 1788 } 1789 if (perf_missing_features.cloexec) 1790 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1791 if (perf_missing_features.mmap2) 1792 evsel->attr.mmap2 = 0; 1793 if (perf_missing_features.exclude_guest) 1794 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1795 if (perf_missing_features.lbr_flags) 1796 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1797 PERF_SAMPLE_BRANCH_NO_CYCLES); 1798 if (perf_missing_features.group_read && evsel->attr.inherit) 1799 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1800 retry_sample_id: 1801 if (perf_missing_features.sample_id_all) 1802 evsel->attr.sample_id_all = 0; 1803 1804 if (verbose >= 2) { 1805 fprintf(stderr, "%.60s\n", graph_dotted_line); 1806 fprintf(stderr, "perf_event_attr:\n"); 1807 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1808 fprintf(stderr, "%.60s\n", graph_dotted_line); 1809 } 1810 1811 for (cpu = 0; cpu < cpus->nr; cpu++) { 1812 1813 for (thread = 0; thread < nthreads; thread++) { 1814 int fd, group_fd; 1815 1816 if (!evsel->cgrp && !evsel->system_wide) 1817 pid = thread_map__pid(threads, thread); 1818 1819 group_fd = get_group_fd(evsel, cpu, thread); 1820 retry_open: 1821 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1822 pid, cpus->map[cpu], group_fd, flags); 1823 1824 test_attr__ready(); 1825 1826 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1827 group_fd, flags); 1828 1829 FD(evsel, cpu, thread) = fd; 1830 1831 if (fd < 0) { 1832 err = -errno; 1833 1834 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1835 /* 1836 * We just removed 1 thread, so take a step 1837 * back on thread index and lower the upper 1838 * nthreads limit. 1839 */ 1840 nthreads--; 1841 thread--; 1842 1843 /* ... and pretend like nothing have happened. */ 1844 err = 0; 1845 continue; 1846 } 1847 1848 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1849 err); 1850 goto try_fallback; 1851 } 1852 1853 pr_debug2(" = %d\n", fd); 1854 1855 if (evsel->bpf_fd >= 0) { 1856 int evt_fd = fd; 1857 int bpf_fd = evsel->bpf_fd; 1858 1859 err = ioctl(evt_fd, 1860 PERF_EVENT_IOC_SET_BPF, 1861 bpf_fd); 1862 if (err && errno != EEXIST) { 1863 pr_err("failed to attach bpf fd %d: %s\n", 1864 bpf_fd, strerror(errno)); 1865 err = -EINVAL; 1866 goto out_close; 1867 } 1868 } 1869 1870 set_rlimit = NO_CHANGE; 1871 1872 /* 1873 * If we succeeded but had to kill clockid, fail and 1874 * have perf_evsel__open_strerror() print us a nice 1875 * error. 1876 */ 1877 if (perf_missing_features.clockid || 1878 perf_missing_features.clockid_wrong) { 1879 err = -EINVAL; 1880 goto out_close; 1881 } 1882 } 1883 } 1884 1885 return 0; 1886 1887 try_fallback: 1888 /* 1889 * perf stat needs between 5 and 22 fds per CPU. When we run out 1890 * of them try to increase the limits. 1891 */ 1892 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1893 struct rlimit l; 1894 int old_errno = errno; 1895 1896 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1897 if (set_rlimit == NO_CHANGE) 1898 l.rlim_cur = l.rlim_max; 1899 else { 1900 l.rlim_cur = l.rlim_max + 1000; 1901 l.rlim_max = l.rlim_cur; 1902 } 1903 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1904 set_rlimit++; 1905 errno = old_errno; 1906 goto retry_open; 1907 } 1908 } 1909 errno = old_errno; 1910 } 1911 1912 if (err != -EINVAL || cpu > 0 || thread > 0) 1913 goto out_close; 1914 1915 /* 1916 * Must probe features in the order they were added to the 1917 * perf_event_attr interface. 1918 */ 1919 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1920 perf_missing_features.write_backward = true; 1921 pr_debug2("switching off write_backward\n"); 1922 goto out_close; 1923 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1924 perf_missing_features.clockid_wrong = true; 1925 pr_debug2("switching off clockid\n"); 1926 goto fallback_missing_features; 1927 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1928 perf_missing_features.clockid = true; 1929 pr_debug2("switching off use_clockid\n"); 1930 goto fallback_missing_features; 1931 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1932 perf_missing_features.cloexec = true; 1933 pr_debug2("switching off cloexec flag\n"); 1934 goto fallback_missing_features; 1935 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1936 perf_missing_features.mmap2 = true; 1937 pr_debug2("switching off mmap2\n"); 1938 goto fallback_missing_features; 1939 } else if (!perf_missing_features.exclude_guest && 1940 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1941 perf_missing_features.exclude_guest = true; 1942 pr_debug2("switching off exclude_guest, exclude_host\n"); 1943 goto fallback_missing_features; 1944 } else if (!perf_missing_features.sample_id_all) { 1945 perf_missing_features.sample_id_all = true; 1946 pr_debug2("switching off sample_id_all\n"); 1947 goto retry_sample_id; 1948 } else if (!perf_missing_features.lbr_flags && 1949 (evsel->attr.branch_sample_type & 1950 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1951 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1952 perf_missing_features.lbr_flags = true; 1953 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 1954 goto fallback_missing_features; 1955 } else if (!perf_missing_features.group_read && 1956 evsel->attr.inherit && 1957 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 1958 perf_evsel__is_group_leader(evsel)) { 1959 perf_missing_features.group_read = true; 1960 pr_debug2("switching off group read\n"); 1961 goto fallback_missing_features; 1962 } 1963 out_close: 1964 if (err) 1965 threads->err_thread = thread; 1966 1967 do { 1968 while (--thread >= 0) { 1969 close(FD(evsel, cpu, thread)); 1970 FD(evsel, cpu, thread) = -1; 1971 } 1972 thread = nthreads; 1973 } while (--cpu >= 0); 1974 return err; 1975 } 1976 1977 void perf_evsel__close(struct perf_evsel *evsel) 1978 { 1979 if (evsel->fd == NULL) 1980 return; 1981 1982 perf_evsel__close_fd(evsel); 1983 perf_evsel__free_fd(evsel); 1984 } 1985 1986 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1987 struct cpu_map *cpus) 1988 { 1989 return perf_evsel__open(evsel, cpus, NULL); 1990 } 1991 1992 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1993 struct thread_map *threads) 1994 { 1995 return perf_evsel__open(evsel, NULL, threads); 1996 } 1997 1998 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1999 const union perf_event *event, 2000 struct perf_sample *sample) 2001 { 2002 u64 type = evsel->attr.sample_type; 2003 const u64 *array = event->sample.array; 2004 bool swapped = evsel->needs_swap; 2005 union u64_swap u; 2006 2007 array += ((event->header.size - 2008 sizeof(event->header)) / sizeof(u64)) - 1; 2009 2010 if (type & PERF_SAMPLE_IDENTIFIER) { 2011 sample->id = *array; 2012 array--; 2013 } 2014 2015 if (type & PERF_SAMPLE_CPU) { 2016 u.val64 = *array; 2017 if (swapped) { 2018 /* undo swap of u64, then swap on individual u32s */ 2019 u.val64 = bswap_64(u.val64); 2020 u.val32[0] = bswap_32(u.val32[0]); 2021 } 2022 2023 sample->cpu = u.val32[0]; 2024 array--; 2025 } 2026 2027 if (type & PERF_SAMPLE_STREAM_ID) { 2028 sample->stream_id = *array; 2029 array--; 2030 } 2031 2032 if (type & PERF_SAMPLE_ID) { 2033 sample->id = *array; 2034 array--; 2035 } 2036 2037 if (type & PERF_SAMPLE_TIME) { 2038 sample->time = *array; 2039 array--; 2040 } 2041 2042 if (type & PERF_SAMPLE_TID) { 2043 u.val64 = *array; 2044 if (swapped) { 2045 /* undo swap of u64, then swap on individual u32s */ 2046 u.val64 = bswap_64(u.val64); 2047 u.val32[0] = bswap_32(u.val32[0]); 2048 u.val32[1] = bswap_32(u.val32[1]); 2049 } 2050 2051 sample->pid = u.val32[0]; 2052 sample->tid = u.val32[1]; 2053 array--; 2054 } 2055 2056 return 0; 2057 } 2058 2059 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2060 u64 size) 2061 { 2062 return size > max_size || offset + size > endp; 2063 } 2064 2065 #define OVERFLOW_CHECK(offset, size, max_size) \ 2066 do { \ 2067 if (overflow(endp, (max_size), (offset), (size))) \ 2068 return -EFAULT; \ 2069 } while (0) 2070 2071 #define OVERFLOW_CHECK_u64(offset) \ 2072 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2073 2074 static int 2075 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2076 { 2077 /* 2078 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2079 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2080 * check the format does not go past the end of the event. 2081 */ 2082 if (sample_size + sizeof(event->header) > event->header.size) 2083 return -EFAULT; 2084 2085 return 0; 2086 } 2087 2088 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2089 struct perf_sample *data) 2090 { 2091 u64 type = evsel->attr.sample_type; 2092 bool swapped = evsel->needs_swap; 2093 const u64 *array; 2094 u16 max_size = event->header.size; 2095 const void *endp = (void *)event + max_size; 2096 u64 sz; 2097 2098 /* 2099 * used for cross-endian analysis. See git commit 65014ab3 2100 * for why this goofiness is needed. 2101 */ 2102 union u64_swap u; 2103 2104 memset(data, 0, sizeof(*data)); 2105 data->cpu = data->pid = data->tid = -1; 2106 data->stream_id = data->id = data->time = -1ULL; 2107 data->period = evsel->attr.sample_period; 2108 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2109 data->misc = event->header.misc; 2110 data->id = -1ULL; 2111 data->data_src = PERF_MEM_DATA_SRC_NONE; 2112 2113 if (event->header.type != PERF_RECORD_SAMPLE) { 2114 if (!evsel->attr.sample_id_all) 2115 return 0; 2116 return perf_evsel__parse_id_sample(evsel, event, data); 2117 } 2118 2119 array = event->sample.array; 2120 2121 if (perf_event__check_size(event, evsel->sample_size)) 2122 return -EFAULT; 2123 2124 if (type & PERF_SAMPLE_IDENTIFIER) { 2125 data->id = *array; 2126 array++; 2127 } 2128 2129 if (type & PERF_SAMPLE_IP) { 2130 data->ip = *array; 2131 array++; 2132 } 2133 2134 if (type & PERF_SAMPLE_TID) { 2135 u.val64 = *array; 2136 if (swapped) { 2137 /* undo swap of u64, then swap on individual u32s */ 2138 u.val64 = bswap_64(u.val64); 2139 u.val32[0] = bswap_32(u.val32[0]); 2140 u.val32[1] = bswap_32(u.val32[1]); 2141 } 2142 2143 data->pid = u.val32[0]; 2144 data->tid = u.val32[1]; 2145 array++; 2146 } 2147 2148 if (type & PERF_SAMPLE_TIME) { 2149 data->time = *array; 2150 array++; 2151 } 2152 2153 if (type & PERF_SAMPLE_ADDR) { 2154 data->addr = *array; 2155 array++; 2156 } 2157 2158 if (type & PERF_SAMPLE_ID) { 2159 data->id = *array; 2160 array++; 2161 } 2162 2163 if (type & PERF_SAMPLE_STREAM_ID) { 2164 data->stream_id = *array; 2165 array++; 2166 } 2167 2168 if (type & PERF_SAMPLE_CPU) { 2169 2170 u.val64 = *array; 2171 if (swapped) { 2172 /* undo swap of u64, then swap on individual u32s */ 2173 u.val64 = bswap_64(u.val64); 2174 u.val32[0] = bswap_32(u.val32[0]); 2175 } 2176 2177 data->cpu = u.val32[0]; 2178 array++; 2179 } 2180 2181 if (type & PERF_SAMPLE_PERIOD) { 2182 data->period = *array; 2183 array++; 2184 } 2185 2186 if (type & PERF_SAMPLE_READ) { 2187 u64 read_format = evsel->attr.read_format; 2188 2189 OVERFLOW_CHECK_u64(array); 2190 if (read_format & PERF_FORMAT_GROUP) 2191 data->read.group.nr = *array; 2192 else 2193 data->read.one.value = *array; 2194 2195 array++; 2196 2197 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2198 OVERFLOW_CHECK_u64(array); 2199 data->read.time_enabled = *array; 2200 array++; 2201 } 2202 2203 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2204 OVERFLOW_CHECK_u64(array); 2205 data->read.time_running = *array; 2206 array++; 2207 } 2208 2209 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2210 if (read_format & PERF_FORMAT_GROUP) { 2211 const u64 max_group_nr = UINT64_MAX / 2212 sizeof(struct sample_read_value); 2213 2214 if (data->read.group.nr > max_group_nr) 2215 return -EFAULT; 2216 sz = data->read.group.nr * 2217 sizeof(struct sample_read_value); 2218 OVERFLOW_CHECK(array, sz, max_size); 2219 data->read.group.values = 2220 (struct sample_read_value *)array; 2221 array = (void *)array + sz; 2222 } else { 2223 OVERFLOW_CHECK_u64(array); 2224 data->read.one.id = *array; 2225 array++; 2226 } 2227 } 2228 2229 if (evsel__has_callchain(evsel)) { 2230 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2231 2232 OVERFLOW_CHECK_u64(array); 2233 data->callchain = (struct ip_callchain *)array++; 2234 if (data->callchain->nr > max_callchain_nr) 2235 return -EFAULT; 2236 sz = data->callchain->nr * sizeof(u64); 2237 OVERFLOW_CHECK(array, sz, max_size); 2238 array = (void *)array + sz; 2239 } 2240 2241 if (type & PERF_SAMPLE_RAW) { 2242 OVERFLOW_CHECK_u64(array); 2243 u.val64 = *array; 2244 2245 /* 2246 * Undo swap of u64, then swap on individual u32s, 2247 * get the size of the raw area and undo all of the 2248 * swap. The pevent interface handles endianity by 2249 * itself. 2250 */ 2251 if (swapped) { 2252 u.val64 = bswap_64(u.val64); 2253 u.val32[0] = bswap_32(u.val32[0]); 2254 u.val32[1] = bswap_32(u.val32[1]); 2255 } 2256 data->raw_size = u.val32[0]; 2257 2258 /* 2259 * The raw data is aligned on 64bits including the 2260 * u32 size, so it's safe to use mem_bswap_64. 2261 */ 2262 if (swapped) 2263 mem_bswap_64((void *) array, data->raw_size); 2264 2265 array = (void *)array + sizeof(u32); 2266 2267 OVERFLOW_CHECK(array, data->raw_size, max_size); 2268 data->raw_data = (void *)array; 2269 array = (void *)array + data->raw_size; 2270 } 2271 2272 if (type & PERF_SAMPLE_BRANCH_STACK) { 2273 const u64 max_branch_nr = UINT64_MAX / 2274 sizeof(struct branch_entry); 2275 2276 OVERFLOW_CHECK_u64(array); 2277 data->branch_stack = (struct branch_stack *)array++; 2278 2279 if (data->branch_stack->nr > max_branch_nr) 2280 return -EFAULT; 2281 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2282 OVERFLOW_CHECK(array, sz, max_size); 2283 array = (void *)array + sz; 2284 } 2285 2286 if (type & PERF_SAMPLE_REGS_USER) { 2287 OVERFLOW_CHECK_u64(array); 2288 data->user_regs.abi = *array; 2289 array++; 2290 2291 if (data->user_regs.abi) { 2292 u64 mask = evsel->attr.sample_regs_user; 2293 2294 sz = hweight_long(mask) * sizeof(u64); 2295 OVERFLOW_CHECK(array, sz, max_size); 2296 data->user_regs.mask = mask; 2297 data->user_regs.regs = (u64 *)array; 2298 array = (void *)array + sz; 2299 } 2300 } 2301 2302 if (type & PERF_SAMPLE_STACK_USER) { 2303 OVERFLOW_CHECK_u64(array); 2304 sz = *array++; 2305 2306 data->user_stack.offset = ((char *)(array - 1) 2307 - (char *) event); 2308 2309 if (!sz) { 2310 data->user_stack.size = 0; 2311 } else { 2312 OVERFLOW_CHECK(array, sz, max_size); 2313 data->user_stack.data = (char *)array; 2314 array = (void *)array + sz; 2315 OVERFLOW_CHECK_u64(array); 2316 data->user_stack.size = *array++; 2317 if (WARN_ONCE(data->user_stack.size > sz, 2318 "user stack dump failure\n")) 2319 return -EFAULT; 2320 } 2321 } 2322 2323 if (type & PERF_SAMPLE_WEIGHT) { 2324 OVERFLOW_CHECK_u64(array); 2325 data->weight = *array; 2326 array++; 2327 } 2328 2329 if (type & PERF_SAMPLE_DATA_SRC) { 2330 OVERFLOW_CHECK_u64(array); 2331 data->data_src = *array; 2332 array++; 2333 } 2334 2335 if (type & PERF_SAMPLE_TRANSACTION) { 2336 OVERFLOW_CHECK_u64(array); 2337 data->transaction = *array; 2338 array++; 2339 } 2340 2341 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2342 if (type & PERF_SAMPLE_REGS_INTR) { 2343 OVERFLOW_CHECK_u64(array); 2344 data->intr_regs.abi = *array; 2345 array++; 2346 2347 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2348 u64 mask = evsel->attr.sample_regs_intr; 2349 2350 sz = hweight_long(mask) * sizeof(u64); 2351 OVERFLOW_CHECK(array, sz, max_size); 2352 data->intr_regs.mask = mask; 2353 data->intr_regs.regs = (u64 *)array; 2354 array = (void *)array + sz; 2355 } 2356 } 2357 2358 data->phys_addr = 0; 2359 if (type & PERF_SAMPLE_PHYS_ADDR) { 2360 data->phys_addr = *array; 2361 array++; 2362 } 2363 2364 return 0; 2365 } 2366 2367 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2368 union perf_event *event, 2369 u64 *timestamp) 2370 { 2371 u64 type = evsel->attr.sample_type; 2372 const u64 *array; 2373 2374 if (!(type & PERF_SAMPLE_TIME)) 2375 return -1; 2376 2377 if (event->header.type != PERF_RECORD_SAMPLE) { 2378 struct perf_sample data = { 2379 .time = -1ULL, 2380 }; 2381 2382 if (!evsel->attr.sample_id_all) 2383 return -1; 2384 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2385 return -1; 2386 2387 *timestamp = data.time; 2388 return 0; 2389 } 2390 2391 array = event->sample.array; 2392 2393 if (perf_event__check_size(event, evsel->sample_size)) 2394 return -EFAULT; 2395 2396 if (type & PERF_SAMPLE_IDENTIFIER) 2397 array++; 2398 2399 if (type & PERF_SAMPLE_IP) 2400 array++; 2401 2402 if (type & PERF_SAMPLE_TID) 2403 array++; 2404 2405 if (type & PERF_SAMPLE_TIME) 2406 *timestamp = *array; 2407 2408 return 0; 2409 } 2410 2411 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2412 u64 read_format) 2413 { 2414 size_t sz, result = sizeof(struct sample_event); 2415 2416 if (type & PERF_SAMPLE_IDENTIFIER) 2417 result += sizeof(u64); 2418 2419 if (type & PERF_SAMPLE_IP) 2420 result += sizeof(u64); 2421 2422 if (type & PERF_SAMPLE_TID) 2423 result += sizeof(u64); 2424 2425 if (type & PERF_SAMPLE_TIME) 2426 result += sizeof(u64); 2427 2428 if (type & PERF_SAMPLE_ADDR) 2429 result += sizeof(u64); 2430 2431 if (type & PERF_SAMPLE_ID) 2432 result += sizeof(u64); 2433 2434 if (type & PERF_SAMPLE_STREAM_ID) 2435 result += sizeof(u64); 2436 2437 if (type & PERF_SAMPLE_CPU) 2438 result += sizeof(u64); 2439 2440 if (type & PERF_SAMPLE_PERIOD) 2441 result += sizeof(u64); 2442 2443 if (type & PERF_SAMPLE_READ) { 2444 result += sizeof(u64); 2445 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2446 result += sizeof(u64); 2447 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2448 result += sizeof(u64); 2449 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2450 if (read_format & PERF_FORMAT_GROUP) { 2451 sz = sample->read.group.nr * 2452 sizeof(struct sample_read_value); 2453 result += sz; 2454 } else { 2455 result += sizeof(u64); 2456 } 2457 } 2458 2459 if (type & PERF_SAMPLE_CALLCHAIN) { 2460 sz = (sample->callchain->nr + 1) * sizeof(u64); 2461 result += sz; 2462 } 2463 2464 if (type & PERF_SAMPLE_RAW) { 2465 result += sizeof(u32); 2466 result += sample->raw_size; 2467 } 2468 2469 if (type & PERF_SAMPLE_BRANCH_STACK) { 2470 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2471 sz += sizeof(u64); 2472 result += sz; 2473 } 2474 2475 if (type & PERF_SAMPLE_REGS_USER) { 2476 if (sample->user_regs.abi) { 2477 result += sizeof(u64); 2478 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2479 result += sz; 2480 } else { 2481 result += sizeof(u64); 2482 } 2483 } 2484 2485 if (type & PERF_SAMPLE_STACK_USER) { 2486 sz = sample->user_stack.size; 2487 result += sizeof(u64); 2488 if (sz) { 2489 result += sz; 2490 result += sizeof(u64); 2491 } 2492 } 2493 2494 if (type & PERF_SAMPLE_WEIGHT) 2495 result += sizeof(u64); 2496 2497 if (type & PERF_SAMPLE_DATA_SRC) 2498 result += sizeof(u64); 2499 2500 if (type & PERF_SAMPLE_TRANSACTION) 2501 result += sizeof(u64); 2502 2503 if (type & PERF_SAMPLE_REGS_INTR) { 2504 if (sample->intr_regs.abi) { 2505 result += sizeof(u64); 2506 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2507 result += sz; 2508 } else { 2509 result += sizeof(u64); 2510 } 2511 } 2512 2513 if (type & PERF_SAMPLE_PHYS_ADDR) 2514 result += sizeof(u64); 2515 2516 return result; 2517 } 2518 2519 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2520 u64 read_format, 2521 const struct perf_sample *sample) 2522 { 2523 u64 *array; 2524 size_t sz; 2525 /* 2526 * used for cross-endian analysis. See git commit 65014ab3 2527 * for why this goofiness is needed. 2528 */ 2529 union u64_swap u; 2530 2531 array = event->sample.array; 2532 2533 if (type & PERF_SAMPLE_IDENTIFIER) { 2534 *array = sample->id; 2535 array++; 2536 } 2537 2538 if (type & PERF_SAMPLE_IP) { 2539 *array = sample->ip; 2540 array++; 2541 } 2542 2543 if (type & PERF_SAMPLE_TID) { 2544 u.val32[0] = sample->pid; 2545 u.val32[1] = sample->tid; 2546 *array = u.val64; 2547 array++; 2548 } 2549 2550 if (type & PERF_SAMPLE_TIME) { 2551 *array = sample->time; 2552 array++; 2553 } 2554 2555 if (type & PERF_SAMPLE_ADDR) { 2556 *array = sample->addr; 2557 array++; 2558 } 2559 2560 if (type & PERF_SAMPLE_ID) { 2561 *array = sample->id; 2562 array++; 2563 } 2564 2565 if (type & PERF_SAMPLE_STREAM_ID) { 2566 *array = sample->stream_id; 2567 array++; 2568 } 2569 2570 if (type & PERF_SAMPLE_CPU) { 2571 u.val32[0] = sample->cpu; 2572 u.val32[1] = 0; 2573 *array = u.val64; 2574 array++; 2575 } 2576 2577 if (type & PERF_SAMPLE_PERIOD) { 2578 *array = sample->period; 2579 array++; 2580 } 2581 2582 if (type & PERF_SAMPLE_READ) { 2583 if (read_format & PERF_FORMAT_GROUP) 2584 *array = sample->read.group.nr; 2585 else 2586 *array = sample->read.one.value; 2587 array++; 2588 2589 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2590 *array = sample->read.time_enabled; 2591 array++; 2592 } 2593 2594 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2595 *array = sample->read.time_running; 2596 array++; 2597 } 2598 2599 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2600 if (read_format & PERF_FORMAT_GROUP) { 2601 sz = sample->read.group.nr * 2602 sizeof(struct sample_read_value); 2603 memcpy(array, sample->read.group.values, sz); 2604 array = (void *)array + sz; 2605 } else { 2606 *array = sample->read.one.id; 2607 array++; 2608 } 2609 } 2610 2611 if (type & PERF_SAMPLE_CALLCHAIN) { 2612 sz = (sample->callchain->nr + 1) * sizeof(u64); 2613 memcpy(array, sample->callchain, sz); 2614 array = (void *)array + sz; 2615 } 2616 2617 if (type & PERF_SAMPLE_RAW) { 2618 u.val32[0] = sample->raw_size; 2619 *array = u.val64; 2620 array = (void *)array + sizeof(u32); 2621 2622 memcpy(array, sample->raw_data, sample->raw_size); 2623 array = (void *)array + sample->raw_size; 2624 } 2625 2626 if (type & PERF_SAMPLE_BRANCH_STACK) { 2627 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2628 sz += sizeof(u64); 2629 memcpy(array, sample->branch_stack, sz); 2630 array = (void *)array + sz; 2631 } 2632 2633 if (type & PERF_SAMPLE_REGS_USER) { 2634 if (sample->user_regs.abi) { 2635 *array++ = sample->user_regs.abi; 2636 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2637 memcpy(array, sample->user_regs.regs, sz); 2638 array = (void *)array + sz; 2639 } else { 2640 *array++ = 0; 2641 } 2642 } 2643 2644 if (type & PERF_SAMPLE_STACK_USER) { 2645 sz = sample->user_stack.size; 2646 *array++ = sz; 2647 if (sz) { 2648 memcpy(array, sample->user_stack.data, sz); 2649 array = (void *)array + sz; 2650 *array++ = sz; 2651 } 2652 } 2653 2654 if (type & PERF_SAMPLE_WEIGHT) { 2655 *array = sample->weight; 2656 array++; 2657 } 2658 2659 if (type & PERF_SAMPLE_DATA_SRC) { 2660 *array = sample->data_src; 2661 array++; 2662 } 2663 2664 if (type & PERF_SAMPLE_TRANSACTION) { 2665 *array = sample->transaction; 2666 array++; 2667 } 2668 2669 if (type & PERF_SAMPLE_REGS_INTR) { 2670 if (sample->intr_regs.abi) { 2671 *array++ = sample->intr_regs.abi; 2672 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2673 memcpy(array, sample->intr_regs.regs, sz); 2674 array = (void *)array + sz; 2675 } else { 2676 *array++ = 0; 2677 } 2678 } 2679 2680 if (type & PERF_SAMPLE_PHYS_ADDR) { 2681 *array = sample->phys_addr; 2682 array++; 2683 } 2684 2685 return 0; 2686 } 2687 2688 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2689 { 2690 return tep_find_field(evsel->tp_format, name); 2691 } 2692 2693 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2694 const char *name) 2695 { 2696 struct tep_format_field *field = perf_evsel__field(evsel, name); 2697 int offset; 2698 2699 if (!field) 2700 return NULL; 2701 2702 offset = field->offset; 2703 2704 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2705 offset = *(int *)(sample->raw_data + field->offset); 2706 offset &= 0xffff; 2707 } 2708 2709 return sample->raw_data + offset; 2710 } 2711 2712 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2713 bool needs_swap) 2714 { 2715 u64 value; 2716 void *ptr = sample->raw_data + field->offset; 2717 2718 switch (field->size) { 2719 case 1: 2720 return *(u8 *)ptr; 2721 case 2: 2722 value = *(u16 *)ptr; 2723 break; 2724 case 4: 2725 value = *(u32 *)ptr; 2726 break; 2727 case 8: 2728 memcpy(&value, ptr, sizeof(u64)); 2729 break; 2730 default: 2731 return 0; 2732 } 2733 2734 if (!needs_swap) 2735 return value; 2736 2737 switch (field->size) { 2738 case 2: 2739 return bswap_16(value); 2740 case 4: 2741 return bswap_32(value); 2742 case 8: 2743 return bswap_64(value); 2744 default: 2745 return 0; 2746 } 2747 2748 return 0; 2749 } 2750 2751 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2752 const char *name) 2753 { 2754 struct tep_format_field *field = perf_evsel__field(evsel, name); 2755 2756 if (!field) 2757 return 0; 2758 2759 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2760 } 2761 2762 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2763 char *msg, size_t msgsize) 2764 { 2765 int paranoid; 2766 2767 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2768 evsel->attr.type == PERF_TYPE_HARDWARE && 2769 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2770 /* 2771 * If it's cycles then fall back to hrtimer based 2772 * cpu-clock-tick sw counter, which is always available even if 2773 * no PMU support. 2774 * 2775 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2776 * b0a873e). 2777 */ 2778 scnprintf(msg, msgsize, "%s", 2779 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2780 2781 evsel->attr.type = PERF_TYPE_SOFTWARE; 2782 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2783 2784 zfree(&evsel->name); 2785 return true; 2786 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2787 (paranoid = perf_event_paranoid()) > 1) { 2788 const char *name = perf_evsel__name(evsel); 2789 char *new_name; 2790 const char *sep = ":"; 2791 2792 /* Is there already the separator in the name. */ 2793 if (strchr(name, '/') || 2794 strchr(name, ':')) 2795 sep = ""; 2796 2797 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2798 return false; 2799 2800 if (evsel->name) 2801 free(evsel->name); 2802 evsel->name = new_name; 2803 scnprintf(msg, msgsize, 2804 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2805 evsel->attr.exclude_kernel = 1; 2806 2807 return true; 2808 } 2809 2810 return false; 2811 } 2812 2813 static bool find_process(const char *name) 2814 { 2815 size_t len = strlen(name); 2816 DIR *dir; 2817 struct dirent *d; 2818 int ret = -1; 2819 2820 dir = opendir(procfs__mountpoint()); 2821 if (!dir) 2822 return false; 2823 2824 /* Walk through the directory. */ 2825 while (ret && (d = readdir(dir)) != NULL) { 2826 char path[PATH_MAX]; 2827 char *data; 2828 size_t size; 2829 2830 if ((d->d_type != DT_DIR) || 2831 !strcmp(".", d->d_name) || 2832 !strcmp("..", d->d_name)) 2833 continue; 2834 2835 scnprintf(path, sizeof(path), "%s/%s/comm", 2836 procfs__mountpoint(), d->d_name); 2837 2838 if (filename__read_str(path, &data, &size)) 2839 continue; 2840 2841 ret = strncmp(name, data, len); 2842 free(data); 2843 } 2844 2845 closedir(dir); 2846 return ret ? false : true; 2847 } 2848 2849 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2850 int err, char *msg, size_t size) 2851 { 2852 char sbuf[STRERR_BUFSIZE]; 2853 int printed = 0; 2854 2855 switch (err) { 2856 case EPERM: 2857 case EACCES: 2858 if (err == EPERM) 2859 printed = scnprintf(msg, size, 2860 "No permission to enable %s event.\n\n", 2861 perf_evsel__name(evsel)); 2862 2863 return scnprintf(msg + printed, size - printed, 2864 "You may not have permission to collect %sstats.\n\n" 2865 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2866 "which controls use of the performance events system by\n" 2867 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2868 "The current value is %d:\n\n" 2869 " -1: Allow use of (almost) all events by all users\n" 2870 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2871 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2872 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2873 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2874 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2875 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2876 " kernel.perf_event_paranoid = -1\n" , 2877 target->system_wide ? "system-wide " : "", 2878 perf_event_paranoid()); 2879 case ENOENT: 2880 return scnprintf(msg, size, "The %s event is not supported.", 2881 perf_evsel__name(evsel)); 2882 case EMFILE: 2883 return scnprintf(msg, size, "%s", 2884 "Too many events are opened.\n" 2885 "Probably the maximum number of open file descriptors has been reached.\n" 2886 "Hint: Try again after reducing the number of events.\n" 2887 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2888 case ENOMEM: 2889 if (evsel__has_callchain(evsel) && 2890 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2891 return scnprintf(msg, size, 2892 "Not enough memory to setup event with callchain.\n" 2893 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2894 "Hint: Current value: %d", sysctl__max_stack()); 2895 break; 2896 case ENODEV: 2897 if (target->cpu_list) 2898 return scnprintf(msg, size, "%s", 2899 "No such device - did you specify an out-of-range profile CPU?"); 2900 break; 2901 case EOPNOTSUPP: 2902 if (evsel->attr.sample_period != 0) 2903 return scnprintf(msg, size, 2904 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2905 perf_evsel__name(evsel)); 2906 if (evsel->attr.precise_ip) 2907 return scnprintf(msg, size, "%s", 2908 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2909 #if defined(__i386__) || defined(__x86_64__) 2910 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2911 return scnprintf(msg, size, "%s", 2912 "No hardware sampling interrupt available.\n"); 2913 #endif 2914 break; 2915 case EBUSY: 2916 if (find_process("oprofiled")) 2917 return scnprintf(msg, size, 2918 "The PMU counters are busy/taken by another profiler.\n" 2919 "We found oprofile daemon running, please stop it and try again."); 2920 break; 2921 case EINVAL: 2922 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2923 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2924 if (perf_missing_features.clockid) 2925 return scnprintf(msg, size, "clockid feature not supported."); 2926 if (perf_missing_features.clockid_wrong) 2927 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2928 break; 2929 default: 2930 break; 2931 } 2932 2933 return scnprintf(msg, size, 2934 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2935 "/bin/dmesg | grep -i perf may provide additional information.\n", 2936 err, str_error_r(err, sbuf, sizeof(sbuf)), 2937 perf_evsel__name(evsel)); 2938 } 2939 2940 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 2941 { 2942 if (evsel && evsel->evlist) 2943 return evsel->evlist->env; 2944 return NULL; 2945 } 2946 2947 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 2948 { 2949 int cpu, thread; 2950 2951 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 2952 for (thread = 0; thread < xyarray__max_y(evsel->fd); 2953 thread++) { 2954 int fd = FD(evsel, cpu, thread); 2955 2956 if (perf_evlist__id_add_fd(evlist, evsel, 2957 cpu, thread, fd) < 0) 2958 return -1; 2959 } 2960 } 2961 2962 return 0; 2963 } 2964 2965 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 2966 { 2967 struct cpu_map *cpus = evsel->cpus; 2968 struct thread_map *threads = evsel->threads; 2969 2970 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 2971 return -ENOMEM; 2972 2973 return store_evsel_ids(evsel, evlist); 2974 } 2975