xref: /openbmc/linux/tools/perf/util/evsel.c (revision 2127c01b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "cpumap.h"
32 #include "thread_map.h"
33 #include "target.h"
34 #include "perf_regs.h"
35 #include "debug.h"
36 #include "trace-event.h"
37 #include "stat.h"
38 #include "string2.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include <linux/ctype.h>
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->max_events  = ULONG_MAX;
236 	evsel->evlist	   = NULL;
237 	evsel->bpf_fd	   = -1;
238 	INIT_LIST_HEAD(&evsel->node);
239 	INIT_LIST_HEAD(&evsel->config_terms);
240 	perf_evsel__object.init(evsel);
241 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
242 	perf_evsel__calc_id_pos(evsel);
243 	evsel->cmdline_group_boundary = false;
244 	evsel->metric_expr   = NULL;
245 	evsel->metric_name   = NULL;
246 	evsel->metric_events = NULL;
247 	evsel->collect_stat  = false;
248 	evsel->pmu_name      = NULL;
249 }
250 
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254 
255 	if (!evsel)
256 		return NULL;
257 	perf_evsel__init(evsel, attr, idx);
258 
259 	if (perf_evsel__is_bpf_output(evsel)) {
260 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
261 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
262 		evsel->attr.sample_period = 1;
263 	}
264 
265 	if (perf_evsel__is_clock(evsel)) {
266 		/*
267 		 * The evsel->unit points to static alias->unit
268 		 * so it's ok to use static string in here.
269 		 */
270 		static const char *unit = "msec";
271 
272 		evsel->unit = unit;
273 		evsel->scale = 1e-6;
274 	}
275 
276 	return evsel;
277 }
278 
279 static bool perf_event_can_profile_kernel(void)
280 {
281 	return geteuid() == 0 || perf_event_paranoid() == -1;
282 }
283 
284 struct perf_evsel *perf_evsel__new_cycles(bool precise)
285 {
286 	struct perf_event_attr attr = {
287 		.type	= PERF_TYPE_HARDWARE,
288 		.config	= PERF_COUNT_HW_CPU_CYCLES,
289 		.exclude_kernel	= !perf_event_can_profile_kernel(),
290 	};
291 	struct perf_evsel *evsel;
292 
293 	event_attr_init(&attr);
294 
295 	if (!precise)
296 		goto new_event;
297 
298 	/*
299 	 * Now let the usual logic to set up the perf_event_attr defaults
300 	 * to kick in when we return and before perf_evsel__open() is called.
301 	 */
302 new_event:
303 	evsel = perf_evsel__new(&attr);
304 	if (evsel == NULL)
305 		goto out;
306 
307 	evsel->precise_max = true;
308 
309 	/* use asprintf() because free(evsel) assumes name is allocated */
310 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
311 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
312 		     attr.exclude_kernel ? "u" : "",
313 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
314 		goto error_free;
315 out:
316 	return evsel;
317 error_free:
318 	perf_evsel__delete(evsel);
319 	evsel = NULL;
320 	goto out;
321 }
322 
323 /*
324  * Returns pointer with encoded error via <linux/err.h> interface.
325  */
326 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
327 {
328 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
329 	int err = -ENOMEM;
330 
331 	if (evsel == NULL) {
332 		goto out_err;
333 	} else {
334 		struct perf_event_attr attr = {
335 			.type	       = PERF_TYPE_TRACEPOINT,
336 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
337 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
338 		};
339 
340 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
341 			goto out_free;
342 
343 		evsel->tp_format = trace_event__tp_format(sys, name);
344 		if (IS_ERR(evsel->tp_format)) {
345 			err = PTR_ERR(evsel->tp_format);
346 			goto out_free;
347 		}
348 
349 		event_attr_init(&attr);
350 		attr.config = evsel->tp_format->id;
351 		attr.sample_period = 1;
352 		perf_evsel__init(evsel, &attr, idx);
353 	}
354 
355 	return evsel;
356 
357 out_free:
358 	zfree(&evsel->name);
359 	free(evsel);
360 out_err:
361 	return ERR_PTR(err);
362 }
363 
364 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
365 	"cycles",
366 	"instructions",
367 	"cache-references",
368 	"cache-misses",
369 	"branches",
370 	"branch-misses",
371 	"bus-cycles",
372 	"stalled-cycles-frontend",
373 	"stalled-cycles-backend",
374 	"ref-cycles",
375 };
376 
377 static const char *__perf_evsel__hw_name(u64 config)
378 {
379 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
380 		return perf_evsel__hw_names[config];
381 
382 	return "unknown-hardware";
383 }
384 
385 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
386 {
387 	int colon = 0, r = 0;
388 	struct perf_event_attr *attr = &evsel->attr;
389 	bool exclude_guest_default = false;
390 
391 #define MOD_PRINT(context, mod)	do {					\
392 		if (!attr->exclude_##context) {				\
393 			if (!colon) colon = ++r;			\
394 			r += scnprintf(bf + r, size - r, "%c", mod);	\
395 		} } while(0)
396 
397 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
398 		MOD_PRINT(kernel, 'k');
399 		MOD_PRINT(user, 'u');
400 		MOD_PRINT(hv, 'h');
401 		exclude_guest_default = true;
402 	}
403 
404 	if (attr->precise_ip) {
405 		if (!colon)
406 			colon = ++r;
407 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
408 		exclude_guest_default = true;
409 	}
410 
411 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
412 		MOD_PRINT(host, 'H');
413 		MOD_PRINT(guest, 'G');
414 	}
415 #undef MOD_PRINT
416 	if (colon)
417 		bf[colon - 1] = ':';
418 	return r;
419 }
420 
421 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
422 {
423 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
424 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
425 }
426 
427 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
428 	"cpu-clock",
429 	"task-clock",
430 	"page-faults",
431 	"context-switches",
432 	"cpu-migrations",
433 	"minor-faults",
434 	"major-faults",
435 	"alignment-faults",
436 	"emulation-faults",
437 	"dummy",
438 };
439 
440 static const char *__perf_evsel__sw_name(u64 config)
441 {
442 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
443 		return perf_evsel__sw_names[config];
444 	return "unknown-software";
445 }
446 
447 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
448 {
449 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
450 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
451 }
452 
453 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
454 {
455 	int r;
456 
457 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
458 
459 	if (type & HW_BREAKPOINT_R)
460 		r += scnprintf(bf + r, size - r, "r");
461 
462 	if (type & HW_BREAKPOINT_W)
463 		r += scnprintf(bf + r, size - r, "w");
464 
465 	if (type & HW_BREAKPOINT_X)
466 		r += scnprintf(bf + r, size - r, "x");
467 
468 	return r;
469 }
470 
471 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
472 {
473 	struct perf_event_attr *attr = &evsel->attr;
474 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
475 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
476 }
477 
478 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
479 				[PERF_EVSEL__MAX_ALIASES] = {
480  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
481  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
482  { "LLC",	"L2",							},
483  { "dTLB",	"d-tlb",	"Data-TLB",				},
484  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
485  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
486  { "node",								},
487 };
488 
489 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
490 				   [PERF_EVSEL__MAX_ALIASES] = {
491  { "load",	"loads",	"read",					},
492  { "store",	"stores",	"write",				},
493  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
494 };
495 
496 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
497 				       [PERF_EVSEL__MAX_ALIASES] = {
498  { "refs",	"Reference",	"ops",		"access",		},
499  { "misses",	"miss",							},
500 };
501 
502 #define C(x)		PERF_COUNT_HW_CACHE_##x
503 #define CACHE_READ	(1 << C(OP_READ))
504 #define CACHE_WRITE	(1 << C(OP_WRITE))
505 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
506 #define COP(x)		(1 << x)
507 
508 /*
509  * cache operartion stat
510  * L1I : Read and prefetch only
511  * ITLB and BPU : Read-only
512  */
513 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
514  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
515  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
516  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518  [C(ITLB)]	= (CACHE_READ),
519  [C(BPU)]	= (CACHE_READ),
520  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 };
522 
523 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
524 {
525 	if (perf_evsel__hw_cache_stat[type] & COP(op))
526 		return true;	/* valid */
527 	else
528 		return false;	/* invalid */
529 }
530 
531 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
532 					    char *bf, size_t size)
533 {
534 	if (result) {
535 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
536 				 perf_evsel__hw_cache_op[op][0],
537 				 perf_evsel__hw_cache_result[result][0]);
538 	}
539 
540 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
541 			 perf_evsel__hw_cache_op[op][1]);
542 }
543 
544 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
545 {
546 	u8 op, result, type = (config >>  0) & 0xff;
547 	const char *err = "unknown-ext-hardware-cache-type";
548 
549 	if (type >= PERF_COUNT_HW_CACHE_MAX)
550 		goto out_err;
551 
552 	op = (config >>  8) & 0xff;
553 	err = "unknown-ext-hardware-cache-op";
554 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
555 		goto out_err;
556 
557 	result = (config >> 16) & 0xff;
558 	err = "unknown-ext-hardware-cache-result";
559 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
560 		goto out_err;
561 
562 	err = "invalid-cache";
563 	if (!perf_evsel__is_cache_op_valid(type, op))
564 		goto out_err;
565 
566 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
567 out_err:
568 	return scnprintf(bf, size, "%s", err);
569 }
570 
571 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
572 {
573 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
574 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
575 }
576 
577 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
578 {
579 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
580 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581 }
582 
583 static int perf_evsel__tool_name(char *bf, size_t size)
584 {
585 	int ret = scnprintf(bf, size, "duration_time");
586 	return ret;
587 }
588 
589 const char *perf_evsel__name(struct perf_evsel *evsel)
590 {
591 	char bf[128];
592 
593 	if (!evsel)
594 		goto out_unknown;
595 
596 	if (evsel->name)
597 		return evsel->name;
598 
599 	switch (evsel->attr.type) {
600 	case PERF_TYPE_RAW:
601 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
602 		break;
603 
604 	case PERF_TYPE_HARDWARE:
605 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
606 		break;
607 
608 	case PERF_TYPE_HW_CACHE:
609 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
610 		break;
611 
612 	case PERF_TYPE_SOFTWARE:
613 		if (evsel->tool_event)
614 			perf_evsel__tool_name(bf, sizeof(bf));
615 		else
616 			perf_evsel__sw_name(evsel, bf, sizeof(bf));
617 		break;
618 
619 	case PERF_TYPE_TRACEPOINT:
620 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
621 		break;
622 
623 	case PERF_TYPE_BREAKPOINT:
624 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
625 		break;
626 
627 	default:
628 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
629 			  evsel->attr.type);
630 		break;
631 	}
632 
633 	evsel->name = strdup(bf);
634 
635 	if (evsel->name)
636 		return evsel->name;
637 out_unknown:
638 	return "unknown";
639 }
640 
641 const char *perf_evsel__group_name(struct perf_evsel *evsel)
642 {
643 	return evsel->group_name ?: "anon group";
644 }
645 
646 /*
647  * Returns the group details for the specified leader,
648  * with following rules.
649  *
650  *  For record -e '{cycles,instructions}'
651  *    'anon group { cycles:u, instructions:u }'
652  *
653  *  For record -e 'cycles,instructions' and report --group
654  *    'cycles:u, instructions:u'
655  */
656 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
657 {
658 	int ret = 0;
659 	struct perf_evsel *pos;
660 	const char *group_name = perf_evsel__group_name(evsel);
661 
662 	if (!evsel->forced_leader)
663 		ret = scnprintf(buf, size, "%s { ", group_name);
664 
665 	ret += scnprintf(buf + ret, size - ret, "%s",
666 			 perf_evsel__name(evsel));
667 
668 	for_each_group_member(pos, evsel)
669 		ret += scnprintf(buf + ret, size - ret, ", %s",
670 				 perf_evsel__name(pos));
671 
672 	if (!evsel->forced_leader)
673 		ret += scnprintf(buf + ret, size - ret, " }");
674 
675 	return ret;
676 }
677 
678 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
679 					   struct record_opts *opts,
680 					   struct callchain_param *param)
681 {
682 	bool function = perf_evsel__is_function_event(evsel);
683 	struct perf_event_attr *attr = &evsel->attr;
684 
685 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
686 
687 	attr->sample_max_stack = param->max_stack;
688 
689 	if (opts->kernel_callchains)
690 		attr->exclude_callchain_user = 1;
691 	if (opts->user_callchains)
692 		attr->exclude_callchain_kernel = 1;
693 	if (param->record_mode == CALLCHAIN_LBR) {
694 		if (!opts->branch_stack) {
695 			if (attr->exclude_user) {
696 				pr_warning("LBR callstack option is only available "
697 					   "to get user callchain information. "
698 					   "Falling back to framepointers.\n");
699 			} else {
700 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
701 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
702 							PERF_SAMPLE_BRANCH_CALL_STACK |
703 							PERF_SAMPLE_BRANCH_NO_CYCLES |
704 							PERF_SAMPLE_BRANCH_NO_FLAGS;
705 			}
706 		} else
707 			 pr_warning("Cannot use LBR callstack with branch stack. "
708 				    "Falling back to framepointers.\n");
709 	}
710 
711 	if (param->record_mode == CALLCHAIN_DWARF) {
712 		if (!function) {
713 			perf_evsel__set_sample_bit(evsel, REGS_USER);
714 			perf_evsel__set_sample_bit(evsel, STACK_USER);
715 			if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
716 				attr->sample_regs_user |= DWARF_MINIMAL_REGS;
717 				pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
718 					   "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
719 					   "so the minimal registers set (IP, SP) is explicitly forced.\n");
720 			} else {
721 				attr->sample_regs_user |= PERF_REGS_MASK;
722 			}
723 			attr->sample_stack_user = param->dump_size;
724 			attr->exclude_callchain_user = 1;
725 		} else {
726 			pr_info("Cannot use DWARF unwind for function trace event,"
727 				" falling back to framepointers.\n");
728 		}
729 	}
730 
731 	if (function) {
732 		pr_info("Disabling user space callchains for function trace event.\n");
733 		attr->exclude_callchain_user = 1;
734 	}
735 }
736 
737 void perf_evsel__config_callchain(struct perf_evsel *evsel,
738 				  struct record_opts *opts,
739 				  struct callchain_param *param)
740 {
741 	if (param->enabled)
742 		return __perf_evsel__config_callchain(evsel, opts, param);
743 }
744 
745 static void
746 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
747 			    struct callchain_param *param)
748 {
749 	struct perf_event_attr *attr = &evsel->attr;
750 
751 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
752 	if (param->record_mode == CALLCHAIN_LBR) {
753 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
754 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
755 					      PERF_SAMPLE_BRANCH_CALL_STACK);
756 	}
757 	if (param->record_mode == CALLCHAIN_DWARF) {
758 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
759 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
760 	}
761 }
762 
763 static void apply_config_terms(struct perf_evsel *evsel,
764 			       struct record_opts *opts, bool track)
765 {
766 	struct perf_evsel_config_term *term;
767 	struct list_head *config_terms = &evsel->config_terms;
768 	struct perf_event_attr *attr = &evsel->attr;
769 	/* callgraph default */
770 	struct callchain_param param = {
771 		.record_mode = callchain_param.record_mode,
772 	};
773 	u32 dump_size = 0;
774 	int max_stack = 0;
775 	const char *callgraph_buf = NULL;
776 
777 	list_for_each_entry(term, config_terms, list) {
778 		switch (term->type) {
779 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
780 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
781 				attr->sample_period = term->val.period;
782 				attr->freq = 0;
783 				perf_evsel__reset_sample_bit(evsel, PERIOD);
784 			}
785 			break;
786 		case PERF_EVSEL__CONFIG_TERM_FREQ:
787 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
788 				attr->sample_freq = term->val.freq;
789 				attr->freq = 1;
790 				perf_evsel__set_sample_bit(evsel, PERIOD);
791 			}
792 			break;
793 		case PERF_EVSEL__CONFIG_TERM_TIME:
794 			if (term->val.time)
795 				perf_evsel__set_sample_bit(evsel, TIME);
796 			else
797 				perf_evsel__reset_sample_bit(evsel, TIME);
798 			break;
799 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
800 			callgraph_buf = term->val.callgraph;
801 			break;
802 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
803 			if (term->val.branch && strcmp(term->val.branch, "no")) {
804 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
805 				parse_branch_str(term->val.branch,
806 						 &attr->branch_sample_type);
807 			} else
808 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
809 			break;
810 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
811 			dump_size = term->val.stack_user;
812 			break;
813 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
814 			max_stack = term->val.max_stack;
815 			break;
816 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
817 			evsel->max_events = term->val.max_events;
818 			break;
819 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
820 			/*
821 			 * attr->inherit should has already been set by
822 			 * perf_evsel__config. If user explicitly set
823 			 * inherit using config terms, override global
824 			 * opt->no_inherit setting.
825 			 */
826 			attr->inherit = term->val.inherit ? 1 : 0;
827 			break;
828 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
829 			attr->write_backward = term->val.overwrite ? 1 : 0;
830 			break;
831 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
832 			break;
833 		case PERF_EVSEL__CONFIG_TERM_PERCORE:
834 			break;
835 		default:
836 			break;
837 		}
838 	}
839 
840 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
841 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
842 		bool sample_address = false;
843 
844 		if (max_stack) {
845 			param.max_stack = max_stack;
846 			if (callgraph_buf == NULL)
847 				callgraph_buf = "fp";
848 		}
849 
850 		/* parse callgraph parameters */
851 		if (callgraph_buf != NULL) {
852 			if (!strcmp(callgraph_buf, "no")) {
853 				param.enabled = false;
854 				param.record_mode = CALLCHAIN_NONE;
855 			} else {
856 				param.enabled = true;
857 				if (parse_callchain_record(callgraph_buf, &param)) {
858 					pr_err("per-event callgraph setting for %s failed. "
859 					       "Apply callgraph global setting for it\n",
860 					       evsel->name);
861 					return;
862 				}
863 				if (param.record_mode == CALLCHAIN_DWARF)
864 					sample_address = true;
865 			}
866 		}
867 		if (dump_size > 0) {
868 			dump_size = round_up(dump_size, sizeof(u64));
869 			param.dump_size = dump_size;
870 		}
871 
872 		/* If global callgraph set, clear it */
873 		if (callchain_param.enabled)
874 			perf_evsel__reset_callgraph(evsel, &callchain_param);
875 
876 		/* set perf-event callgraph */
877 		if (param.enabled) {
878 			if (sample_address) {
879 				perf_evsel__set_sample_bit(evsel, ADDR);
880 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
881 				evsel->attr.mmap_data = track;
882 			}
883 			perf_evsel__config_callchain(evsel, opts, &param);
884 		}
885 	}
886 }
887 
888 static bool is_dummy_event(struct perf_evsel *evsel)
889 {
890 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
891 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
892 }
893 
894 /*
895  * The enable_on_exec/disabled value strategy:
896  *
897  *  1) For any type of traced program:
898  *    - all independent events and group leaders are disabled
899  *    - all group members are enabled
900  *
901  *     Group members are ruled by group leaders. They need to
902  *     be enabled, because the group scheduling relies on that.
903  *
904  *  2) For traced programs executed by perf:
905  *     - all independent events and group leaders have
906  *       enable_on_exec set
907  *     - we don't specifically enable or disable any event during
908  *       the record command
909  *
910  *     Independent events and group leaders are initially disabled
911  *     and get enabled by exec. Group members are ruled by group
912  *     leaders as stated in 1).
913  *
914  *  3) For traced programs attached by perf (pid/tid):
915  *     - we specifically enable or disable all events during
916  *       the record command
917  *
918  *     When attaching events to already running traced we
919  *     enable/disable events specifically, as there's no
920  *     initial traced exec call.
921  */
922 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
923 			struct callchain_param *callchain)
924 {
925 	struct perf_evsel *leader = evsel->leader;
926 	struct perf_event_attr *attr = &evsel->attr;
927 	int track = evsel->tracking;
928 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
929 
930 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
931 	attr->inherit	    = !opts->no_inherit;
932 	attr->write_backward = opts->overwrite ? 1 : 0;
933 
934 	perf_evsel__set_sample_bit(evsel, IP);
935 	perf_evsel__set_sample_bit(evsel, TID);
936 
937 	if (evsel->sample_read) {
938 		perf_evsel__set_sample_bit(evsel, READ);
939 
940 		/*
941 		 * We need ID even in case of single event, because
942 		 * PERF_SAMPLE_READ process ID specific data.
943 		 */
944 		perf_evsel__set_sample_id(evsel, false);
945 
946 		/*
947 		 * Apply group format only if we belong to group
948 		 * with more than one members.
949 		 */
950 		if (leader->nr_members > 1) {
951 			attr->read_format |= PERF_FORMAT_GROUP;
952 			attr->inherit = 0;
953 		}
954 	}
955 
956 	/*
957 	 * We default some events to have a default interval. But keep
958 	 * it a weak assumption overridable by the user.
959 	 */
960 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
961 				     opts->user_interval != ULLONG_MAX)) {
962 		if (opts->freq) {
963 			perf_evsel__set_sample_bit(evsel, PERIOD);
964 			attr->freq		= 1;
965 			attr->sample_freq	= opts->freq;
966 		} else {
967 			attr->sample_period = opts->default_interval;
968 		}
969 	}
970 
971 	/*
972 	 * Disable sampling for all group members other
973 	 * than leader in case leader 'leads' the sampling.
974 	 */
975 	if ((leader != evsel) && leader->sample_read) {
976 		attr->freq           = 0;
977 		attr->sample_freq    = 0;
978 		attr->sample_period  = 0;
979 		attr->write_backward = 0;
980 
981 		/*
982 		 * We don't get sample for slave events, we make them
983 		 * when delivering group leader sample. Set the slave
984 		 * event to follow the master sample_type to ease up
985 		 * report.
986 		 */
987 		attr->sample_type = leader->attr.sample_type;
988 	}
989 
990 	if (opts->no_samples)
991 		attr->sample_freq = 0;
992 
993 	if (opts->inherit_stat) {
994 		evsel->attr.read_format |=
995 			PERF_FORMAT_TOTAL_TIME_ENABLED |
996 			PERF_FORMAT_TOTAL_TIME_RUNNING |
997 			PERF_FORMAT_ID;
998 		attr->inherit_stat = 1;
999 	}
1000 
1001 	if (opts->sample_address) {
1002 		perf_evsel__set_sample_bit(evsel, ADDR);
1003 		attr->mmap_data = track;
1004 	}
1005 
1006 	/*
1007 	 * We don't allow user space callchains for  function trace
1008 	 * event, due to issues with page faults while tracing page
1009 	 * fault handler and its overall trickiness nature.
1010 	 */
1011 	if (perf_evsel__is_function_event(evsel))
1012 		evsel->attr.exclude_callchain_user = 1;
1013 
1014 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
1015 		perf_evsel__config_callchain(evsel, opts, callchain);
1016 
1017 	if (opts->sample_intr_regs) {
1018 		attr->sample_regs_intr = opts->sample_intr_regs;
1019 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
1020 	}
1021 
1022 	if (opts->sample_user_regs) {
1023 		attr->sample_regs_user |= opts->sample_user_regs;
1024 		perf_evsel__set_sample_bit(evsel, REGS_USER);
1025 	}
1026 
1027 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1028 		perf_evsel__set_sample_bit(evsel, CPU);
1029 
1030 	/*
1031 	 * When the user explicitly disabled time don't force it here.
1032 	 */
1033 	if (opts->sample_time &&
1034 	    (!perf_missing_features.sample_id_all &&
1035 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1036 	     opts->sample_time_set)))
1037 		perf_evsel__set_sample_bit(evsel, TIME);
1038 
1039 	if (opts->raw_samples && !evsel->no_aux_samples) {
1040 		perf_evsel__set_sample_bit(evsel, TIME);
1041 		perf_evsel__set_sample_bit(evsel, RAW);
1042 		perf_evsel__set_sample_bit(evsel, CPU);
1043 	}
1044 
1045 	if (opts->sample_address)
1046 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1047 
1048 	if (opts->sample_phys_addr)
1049 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1050 
1051 	if (opts->no_buffering) {
1052 		attr->watermark = 0;
1053 		attr->wakeup_events = 1;
1054 	}
1055 	if (opts->branch_stack && !evsel->no_aux_samples) {
1056 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1057 		attr->branch_sample_type = opts->branch_stack;
1058 	}
1059 
1060 	if (opts->sample_weight)
1061 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1062 
1063 	attr->task  = track;
1064 	attr->mmap  = track;
1065 	attr->mmap2 = track && !perf_missing_features.mmap2;
1066 	attr->comm  = track;
1067 	attr->ksymbol = track && !perf_missing_features.ksymbol;
1068 	attr->bpf_event = track && !opts->no_bpf_event &&
1069 		!perf_missing_features.bpf_event;
1070 
1071 	if (opts->record_namespaces)
1072 		attr->namespaces  = track;
1073 
1074 	if (opts->record_switch_events)
1075 		attr->context_switch = track;
1076 
1077 	if (opts->sample_transaction)
1078 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1079 
1080 	if (opts->running_time) {
1081 		evsel->attr.read_format |=
1082 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1083 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1084 	}
1085 
1086 	/*
1087 	 * XXX see the function comment above
1088 	 *
1089 	 * Disabling only independent events or group leaders,
1090 	 * keeping group members enabled.
1091 	 */
1092 	if (perf_evsel__is_group_leader(evsel))
1093 		attr->disabled = 1;
1094 
1095 	/*
1096 	 * Setting enable_on_exec for independent events and
1097 	 * group leaders for traced executed by perf.
1098 	 */
1099 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1100 		!opts->initial_delay)
1101 		attr->enable_on_exec = 1;
1102 
1103 	if (evsel->immediate) {
1104 		attr->disabled = 0;
1105 		attr->enable_on_exec = 0;
1106 	}
1107 
1108 	clockid = opts->clockid;
1109 	if (opts->use_clockid) {
1110 		attr->use_clockid = 1;
1111 		attr->clockid = opts->clockid;
1112 	}
1113 
1114 	if (evsel->precise_max)
1115 		attr->precise_ip = 3;
1116 
1117 	if (opts->all_user) {
1118 		attr->exclude_kernel = 1;
1119 		attr->exclude_user   = 0;
1120 	}
1121 
1122 	if (opts->all_kernel) {
1123 		attr->exclude_kernel = 0;
1124 		attr->exclude_user   = 1;
1125 	}
1126 
1127 	if (evsel->own_cpus || evsel->unit)
1128 		evsel->attr.read_format |= PERF_FORMAT_ID;
1129 
1130 	/*
1131 	 * Apply event specific term settings,
1132 	 * it overloads any global configuration.
1133 	 */
1134 	apply_config_terms(evsel, opts, track);
1135 
1136 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1137 
1138 	/* The --period option takes the precedence. */
1139 	if (opts->period_set) {
1140 		if (opts->period)
1141 			perf_evsel__set_sample_bit(evsel, PERIOD);
1142 		else
1143 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1144 	}
1145 
1146 	/*
1147 	 * For initial_delay, a dummy event is added implicitly.
1148 	 * The software event will trigger -EOPNOTSUPP error out,
1149 	 * if BRANCH_STACK bit is set.
1150 	 */
1151 	if (opts->initial_delay && is_dummy_event(evsel))
1152 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1153 }
1154 
1155 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1156 {
1157 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1158 
1159 	if (evsel->fd) {
1160 		int cpu, thread;
1161 		for (cpu = 0; cpu < ncpus; cpu++) {
1162 			for (thread = 0; thread < nthreads; thread++) {
1163 				FD(evsel, cpu, thread) = -1;
1164 			}
1165 		}
1166 	}
1167 
1168 	return evsel->fd != NULL ? 0 : -ENOMEM;
1169 }
1170 
1171 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1172 			  int ioc,  void *arg)
1173 {
1174 	int cpu, thread;
1175 
1176 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1177 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1178 			int fd = FD(evsel, cpu, thread),
1179 			    err = ioctl(fd, ioc, arg);
1180 
1181 			if (err)
1182 				return err;
1183 		}
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1190 {
1191 	return perf_evsel__run_ioctl(evsel,
1192 				     PERF_EVENT_IOC_SET_FILTER,
1193 				     (void *)filter);
1194 }
1195 
1196 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1197 {
1198 	char *new_filter = strdup(filter);
1199 
1200 	if (new_filter != NULL) {
1201 		free(evsel->filter);
1202 		evsel->filter = new_filter;
1203 		return 0;
1204 	}
1205 
1206 	return -1;
1207 }
1208 
1209 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1210 				     const char *fmt, const char *filter)
1211 {
1212 	char *new_filter;
1213 
1214 	if (evsel->filter == NULL)
1215 		return perf_evsel__set_filter(evsel, filter);
1216 
1217 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1218 		free(evsel->filter);
1219 		evsel->filter = new_filter;
1220 		return 0;
1221 	}
1222 
1223 	return -1;
1224 }
1225 
1226 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1227 {
1228 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1229 }
1230 
1231 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1232 {
1233 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1234 }
1235 
1236 int perf_evsel__enable(struct perf_evsel *evsel)
1237 {
1238 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1239 
1240 	if (!err)
1241 		evsel->disabled = false;
1242 
1243 	return err;
1244 }
1245 
1246 int perf_evsel__disable(struct perf_evsel *evsel)
1247 {
1248 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1249 	/*
1250 	 * We mark it disabled here so that tools that disable a event can
1251 	 * ignore events after they disable it. I.e. the ring buffer may have
1252 	 * already a few more events queued up before the kernel got the stop
1253 	 * request.
1254 	 */
1255 	if (!err)
1256 		evsel->disabled = true;
1257 
1258 	return err;
1259 }
1260 
1261 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1262 {
1263 	if (ncpus == 0 || nthreads == 0)
1264 		return 0;
1265 
1266 	if (evsel->system_wide)
1267 		nthreads = 1;
1268 
1269 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1270 	if (evsel->sample_id == NULL)
1271 		return -ENOMEM;
1272 
1273 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1274 	if (evsel->id == NULL) {
1275 		xyarray__delete(evsel->sample_id);
1276 		evsel->sample_id = NULL;
1277 		return -ENOMEM;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1284 {
1285 	xyarray__delete(evsel->fd);
1286 	evsel->fd = NULL;
1287 }
1288 
1289 static void perf_evsel__free_id(struct perf_evsel *evsel)
1290 {
1291 	xyarray__delete(evsel->sample_id);
1292 	evsel->sample_id = NULL;
1293 	zfree(&evsel->id);
1294 }
1295 
1296 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1297 {
1298 	struct perf_evsel_config_term *term, *h;
1299 
1300 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1301 		list_del_init(&term->list);
1302 		free(term);
1303 	}
1304 }
1305 
1306 void perf_evsel__close_fd(struct perf_evsel *evsel)
1307 {
1308 	int cpu, thread;
1309 
1310 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1311 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1312 			close(FD(evsel, cpu, thread));
1313 			FD(evsel, cpu, thread) = -1;
1314 		}
1315 }
1316 
1317 void perf_evsel__exit(struct perf_evsel *evsel)
1318 {
1319 	assert(list_empty(&evsel->node));
1320 	assert(evsel->evlist == NULL);
1321 	perf_evsel__free_counts(evsel);
1322 	perf_evsel__free_fd(evsel);
1323 	perf_evsel__free_id(evsel);
1324 	perf_evsel__free_config_terms(evsel);
1325 	cgroup__put(evsel->cgrp);
1326 	cpu_map__put(evsel->cpus);
1327 	cpu_map__put(evsel->own_cpus);
1328 	thread_map__put(evsel->threads);
1329 	zfree(&evsel->group_name);
1330 	zfree(&evsel->name);
1331 	perf_evsel__object.fini(evsel);
1332 }
1333 
1334 void perf_evsel__delete(struct perf_evsel *evsel)
1335 {
1336 	perf_evsel__exit(evsel);
1337 	free(evsel);
1338 }
1339 
1340 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1341 				struct perf_counts_values *count)
1342 {
1343 	struct perf_counts_values tmp;
1344 
1345 	if (!evsel->prev_raw_counts)
1346 		return;
1347 
1348 	if (cpu == -1) {
1349 		tmp = evsel->prev_raw_counts->aggr;
1350 		evsel->prev_raw_counts->aggr = *count;
1351 	} else {
1352 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1353 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1354 	}
1355 
1356 	count->val = count->val - tmp.val;
1357 	count->ena = count->ena - tmp.ena;
1358 	count->run = count->run - tmp.run;
1359 }
1360 
1361 void perf_counts_values__scale(struct perf_counts_values *count,
1362 			       bool scale, s8 *pscaled)
1363 {
1364 	s8 scaled = 0;
1365 
1366 	if (scale) {
1367 		if (count->run == 0) {
1368 			scaled = -1;
1369 			count->val = 0;
1370 		} else if (count->run < count->ena) {
1371 			scaled = 1;
1372 			count->val = (u64)((double) count->val * count->ena / count->run);
1373 		}
1374 	}
1375 
1376 	if (pscaled)
1377 		*pscaled = scaled;
1378 }
1379 
1380 static int perf_evsel__read_size(struct perf_evsel *evsel)
1381 {
1382 	u64 read_format = evsel->attr.read_format;
1383 	int entry = sizeof(u64); /* value */
1384 	int size = 0;
1385 	int nr = 1;
1386 
1387 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1388 		size += sizeof(u64);
1389 
1390 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1391 		size += sizeof(u64);
1392 
1393 	if (read_format & PERF_FORMAT_ID)
1394 		entry += sizeof(u64);
1395 
1396 	if (read_format & PERF_FORMAT_GROUP) {
1397 		nr = evsel->nr_members;
1398 		size += sizeof(u64);
1399 	}
1400 
1401 	size += entry * nr;
1402 	return size;
1403 }
1404 
1405 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1406 		     struct perf_counts_values *count)
1407 {
1408 	size_t size = perf_evsel__read_size(evsel);
1409 
1410 	memset(count, 0, sizeof(*count));
1411 
1412 	if (FD(evsel, cpu, thread) < 0)
1413 		return -EINVAL;
1414 
1415 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1416 		return -errno;
1417 
1418 	return 0;
1419 }
1420 
1421 static int
1422 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1423 {
1424 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1425 
1426 	return perf_evsel__read(evsel, cpu, thread, count);
1427 }
1428 
1429 static void
1430 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1431 		      u64 val, u64 ena, u64 run)
1432 {
1433 	struct perf_counts_values *count;
1434 
1435 	count = perf_counts(counter->counts, cpu, thread);
1436 
1437 	count->val    = val;
1438 	count->ena    = ena;
1439 	count->run    = run;
1440 	count->loaded = true;
1441 }
1442 
1443 static int
1444 perf_evsel__process_group_data(struct perf_evsel *leader,
1445 			       int cpu, int thread, u64 *data)
1446 {
1447 	u64 read_format = leader->attr.read_format;
1448 	struct sample_read_value *v;
1449 	u64 nr, ena = 0, run = 0, i;
1450 
1451 	nr = *data++;
1452 
1453 	if (nr != (u64) leader->nr_members)
1454 		return -EINVAL;
1455 
1456 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1457 		ena = *data++;
1458 
1459 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1460 		run = *data++;
1461 
1462 	v = (struct sample_read_value *) data;
1463 
1464 	perf_evsel__set_count(leader, cpu, thread,
1465 			      v[0].value, ena, run);
1466 
1467 	for (i = 1; i < nr; i++) {
1468 		struct perf_evsel *counter;
1469 
1470 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1471 		if (!counter)
1472 			return -EINVAL;
1473 
1474 		perf_evsel__set_count(counter, cpu, thread,
1475 				      v[i].value, ena, run);
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 static int
1482 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1483 {
1484 	struct perf_stat_evsel *ps = leader->stats;
1485 	u64 read_format = leader->attr.read_format;
1486 	int size = perf_evsel__read_size(leader);
1487 	u64 *data = ps->group_data;
1488 
1489 	if (!(read_format & PERF_FORMAT_ID))
1490 		return -EINVAL;
1491 
1492 	if (!perf_evsel__is_group_leader(leader))
1493 		return -EINVAL;
1494 
1495 	if (!data) {
1496 		data = zalloc(size);
1497 		if (!data)
1498 			return -ENOMEM;
1499 
1500 		ps->group_data = data;
1501 	}
1502 
1503 	if (FD(leader, cpu, thread) < 0)
1504 		return -EINVAL;
1505 
1506 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1507 		return -errno;
1508 
1509 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1510 }
1511 
1512 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1513 {
1514 	u64 read_format = evsel->attr.read_format;
1515 
1516 	if (read_format & PERF_FORMAT_GROUP)
1517 		return perf_evsel__read_group(evsel, cpu, thread);
1518 	else
1519 		return perf_evsel__read_one(evsel, cpu, thread);
1520 }
1521 
1522 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1523 			      int cpu, int thread, bool scale)
1524 {
1525 	struct perf_counts_values count;
1526 	size_t nv = scale ? 3 : 1;
1527 
1528 	if (FD(evsel, cpu, thread) < 0)
1529 		return -EINVAL;
1530 
1531 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1532 		return -ENOMEM;
1533 
1534 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1535 		return -errno;
1536 
1537 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1538 	perf_counts_values__scale(&count, scale, NULL);
1539 	*perf_counts(evsel->counts, cpu, thread) = count;
1540 	return 0;
1541 }
1542 
1543 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1544 {
1545 	struct perf_evsel *leader = evsel->leader;
1546 	int fd;
1547 
1548 	if (perf_evsel__is_group_leader(evsel))
1549 		return -1;
1550 
1551 	/*
1552 	 * Leader must be already processed/open,
1553 	 * if not it's a bug.
1554 	 */
1555 	BUG_ON(!leader->fd);
1556 
1557 	fd = FD(leader, cpu, thread);
1558 	BUG_ON(fd == -1);
1559 
1560 	return fd;
1561 }
1562 
1563 struct bit_names {
1564 	int bit;
1565 	const char *name;
1566 };
1567 
1568 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1569 {
1570 	bool first_bit = true;
1571 	int i = 0;
1572 
1573 	do {
1574 		if (value & bits[i].bit) {
1575 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1576 			first_bit = false;
1577 		}
1578 	} while (bits[++i].name != NULL);
1579 }
1580 
1581 static void __p_sample_type(char *buf, size_t size, u64 value)
1582 {
1583 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1584 	struct bit_names bits[] = {
1585 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1586 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1587 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1588 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1589 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1590 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1591 		{ .name = NULL, }
1592 	};
1593 #undef bit_name
1594 	__p_bits(buf, size, value, bits);
1595 }
1596 
1597 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1598 {
1599 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1600 	struct bit_names bits[] = {
1601 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1602 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1603 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1604 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1605 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1606 		{ .name = NULL, }
1607 	};
1608 #undef bit_name
1609 	__p_bits(buf, size, value, bits);
1610 }
1611 
1612 static void __p_read_format(char *buf, size_t size, u64 value)
1613 {
1614 #define bit_name(n) { PERF_FORMAT_##n, #n }
1615 	struct bit_names bits[] = {
1616 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1617 		bit_name(ID), bit_name(GROUP),
1618 		{ .name = NULL, }
1619 	};
1620 #undef bit_name
1621 	__p_bits(buf, size, value, bits);
1622 }
1623 
1624 #define BUF_SIZE		1024
1625 
1626 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1627 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1628 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1629 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1630 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1631 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1632 
1633 #define PRINT_ATTRn(_n, _f, _p)				\
1634 do {							\
1635 	if (attr->_f) {					\
1636 		_p(attr->_f);				\
1637 		ret += attr__fprintf(fp, _n, buf, priv);\
1638 	}						\
1639 } while (0)
1640 
1641 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1642 
1643 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1644 			     attr__fprintf_f attr__fprintf, void *priv)
1645 {
1646 	char buf[BUF_SIZE];
1647 	int ret = 0;
1648 
1649 	PRINT_ATTRf(type, p_unsigned);
1650 	PRINT_ATTRf(size, p_unsigned);
1651 	PRINT_ATTRf(config, p_hex);
1652 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1653 	PRINT_ATTRf(sample_type, p_sample_type);
1654 	PRINT_ATTRf(read_format, p_read_format);
1655 
1656 	PRINT_ATTRf(disabled, p_unsigned);
1657 	PRINT_ATTRf(inherit, p_unsigned);
1658 	PRINT_ATTRf(pinned, p_unsigned);
1659 	PRINT_ATTRf(exclusive, p_unsigned);
1660 	PRINT_ATTRf(exclude_user, p_unsigned);
1661 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1662 	PRINT_ATTRf(exclude_hv, p_unsigned);
1663 	PRINT_ATTRf(exclude_idle, p_unsigned);
1664 	PRINT_ATTRf(mmap, p_unsigned);
1665 	PRINT_ATTRf(comm, p_unsigned);
1666 	PRINT_ATTRf(freq, p_unsigned);
1667 	PRINT_ATTRf(inherit_stat, p_unsigned);
1668 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1669 	PRINT_ATTRf(task, p_unsigned);
1670 	PRINT_ATTRf(watermark, p_unsigned);
1671 	PRINT_ATTRf(precise_ip, p_unsigned);
1672 	PRINT_ATTRf(mmap_data, p_unsigned);
1673 	PRINT_ATTRf(sample_id_all, p_unsigned);
1674 	PRINT_ATTRf(exclude_host, p_unsigned);
1675 	PRINT_ATTRf(exclude_guest, p_unsigned);
1676 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1677 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1678 	PRINT_ATTRf(mmap2, p_unsigned);
1679 	PRINT_ATTRf(comm_exec, p_unsigned);
1680 	PRINT_ATTRf(use_clockid, p_unsigned);
1681 	PRINT_ATTRf(context_switch, p_unsigned);
1682 	PRINT_ATTRf(write_backward, p_unsigned);
1683 	PRINT_ATTRf(namespaces, p_unsigned);
1684 	PRINT_ATTRf(ksymbol, p_unsigned);
1685 	PRINT_ATTRf(bpf_event, p_unsigned);
1686 
1687 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1688 	PRINT_ATTRf(bp_type, p_unsigned);
1689 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1690 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1691 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1692 	PRINT_ATTRf(sample_regs_user, p_hex);
1693 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1694 	PRINT_ATTRf(clockid, p_signed);
1695 	PRINT_ATTRf(sample_regs_intr, p_hex);
1696 	PRINT_ATTRf(aux_watermark, p_unsigned);
1697 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1698 
1699 	return ret;
1700 }
1701 
1702 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1703 				void *priv __maybe_unused)
1704 {
1705 	return fprintf(fp, "  %-32s %s\n", name, val);
1706 }
1707 
1708 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1709 				  int nr_cpus, int nr_threads,
1710 				  int thread_idx)
1711 {
1712 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1713 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1714 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1715 }
1716 
1717 static int update_fds(struct perf_evsel *evsel,
1718 		      int nr_cpus, int cpu_idx,
1719 		      int nr_threads, int thread_idx)
1720 {
1721 	struct perf_evsel *pos;
1722 
1723 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1724 		return -EINVAL;
1725 
1726 	evlist__for_each_entry(evsel->evlist, pos) {
1727 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1728 
1729 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1730 
1731 		/*
1732 		 * Since fds for next evsel has not been created,
1733 		 * there is no need to iterate whole event list.
1734 		 */
1735 		if (pos == evsel)
1736 			break;
1737 	}
1738 	return 0;
1739 }
1740 
1741 static bool ignore_missing_thread(struct perf_evsel *evsel,
1742 				  int nr_cpus, int cpu,
1743 				  struct thread_map *threads,
1744 				  int thread, int err)
1745 {
1746 	pid_t ignore_pid = thread_map__pid(threads, thread);
1747 
1748 	if (!evsel->ignore_missing_thread)
1749 		return false;
1750 
1751 	/* The system wide setup does not work with threads. */
1752 	if (evsel->system_wide)
1753 		return false;
1754 
1755 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1756 	if (err != -ESRCH)
1757 		return false;
1758 
1759 	/* If there's only one thread, let it fail. */
1760 	if (threads->nr == 1)
1761 		return false;
1762 
1763 	/*
1764 	 * We should remove fd for missing_thread first
1765 	 * because thread_map__remove() will decrease threads->nr.
1766 	 */
1767 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1768 		return false;
1769 
1770 	if (thread_map__remove(threads, thread))
1771 		return false;
1772 
1773 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1774 		   ignore_pid);
1775 	return true;
1776 }
1777 
1778 static void display_attr(struct perf_event_attr *attr)
1779 {
1780 	if (verbose >= 2) {
1781 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1782 		fprintf(stderr, "perf_event_attr:\n");
1783 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1784 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1785 	}
1786 }
1787 
1788 static int perf_event_open(struct perf_evsel *evsel,
1789 			   pid_t pid, int cpu, int group_fd,
1790 			   unsigned long flags)
1791 {
1792 	int precise_ip = evsel->attr.precise_ip;
1793 	int fd;
1794 
1795 	while (1) {
1796 		pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1797 			  pid, cpu, group_fd, flags);
1798 
1799 		fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags);
1800 		if (fd >= 0)
1801 			break;
1802 
1803 		/* Do not try less precise if not requested. */
1804 		if (!evsel->precise_max)
1805 			break;
1806 
1807 		/*
1808 		 * We tried all the precise_ip values, and it's
1809 		 * still failing, so leave it to standard fallback.
1810 		 */
1811 		if (!evsel->attr.precise_ip) {
1812 			evsel->attr.precise_ip = precise_ip;
1813 			break;
1814 		}
1815 
1816 		pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1817 		evsel->attr.precise_ip--;
1818 		pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip);
1819 		display_attr(&evsel->attr);
1820 	}
1821 
1822 	return fd;
1823 }
1824 
1825 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1826 		     struct thread_map *threads)
1827 {
1828 	int cpu, thread, nthreads;
1829 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1830 	int pid = -1, err;
1831 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1832 
1833 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1834 		return -EINVAL;
1835 
1836 	if (cpus == NULL) {
1837 		static struct cpu_map *empty_cpu_map;
1838 
1839 		if (empty_cpu_map == NULL) {
1840 			empty_cpu_map = cpu_map__dummy_new();
1841 			if (empty_cpu_map == NULL)
1842 				return -ENOMEM;
1843 		}
1844 
1845 		cpus = empty_cpu_map;
1846 	}
1847 
1848 	if (threads == NULL) {
1849 		static struct thread_map *empty_thread_map;
1850 
1851 		if (empty_thread_map == NULL) {
1852 			empty_thread_map = thread_map__new_by_tid(-1);
1853 			if (empty_thread_map == NULL)
1854 				return -ENOMEM;
1855 		}
1856 
1857 		threads = empty_thread_map;
1858 	}
1859 
1860 	if (evsel->system_wide)
1861 		nthreads = 1;
1862 	else
1863 		nthreads = threads->nr;
1864 
1865 	if (evsel->fd == NULL &&
1866 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1867 		return -ENOMEM;
1868 
1869 	if (evsel->cgrp) {
1870 		flags |= PERF_FLAG_PID_CGROUP;
1871 		pid = evsel->cgrp->fd;
1872 	}
1873 
1874 fallback_missing_features:
1875 	if (perf_missing_features.clockid_wrong)
1876 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1877 	if (perf_missing_features.clockid) {
1878 		evsel->attr.use_clockid = 0;
1879 		evsel->attr.clockid = 0;
1880 	}
1881 	if (perf_missing_features.cloexec)
1882 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1883 	if (perf_missing_features.mmap2)
1884 		evsel->attr.mmap2 = 0;
1885 	if (perf_missing_features.exclude_guest)
1886 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1887 	if (perf_missing_features.lbr_flags)
1888 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1889 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1890 	if (perf_missing_features.group_read && evsel->attr.inherit)
1891 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1892 	if (perf_missing_features.ksymbol)
1893 		evsel->attr.ksymbol = 0;
1894 	if (perf_missing_features.bpf_event)
1895 		evsel->attr.bpf_event = 0;
1896 retry_sample_id:
1897 	if (perf_missing_features.sample_id_all)
1898 		evsel->attr.sample_id_all = 0;
1899 
1900 	display_attr(&evsel->attr);
1901 
1902 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1903 
1904 		for (thread = 0; thread < nthreads; thread++) {
1905 			int fd, group_fd;
1906 
1907 			if (!evsel->cgrp && !evsel->system_wide)
1908 				pid = thread_map__pid(threads, thread);
1909 
1910 			group_fd = get_group_fd(evsel, cpu, thread);
1911 retry_open:
1912 			test_attr__ready();
1913 
1914 			fd = perf_event_open(evsel, pid, cpus->map[cpu],
1915 					     group_fd, flags);
1916 
1917 			FD(evsel, cpu, thread) = fd;
1918 
1919 			if (fd < 0) {
1920 				err = -errno;
1921 
1922 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1923 					/*
1924 					 * We just removed 1 thread, so take a step
1925 					 * back on thread index and lower the upper
1926 					 * nthreads limit.
1927 					 */
1928 					nthreads--;
1929 					thread--;
1930 
1931 					/* ... and pretend like nothing have happened. */
1932 					err = 0;
1933 					continue;
1934 				}
1935 
1936 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1937 					  err);
1938 				goto try_fallback;
1939 			}
1940 
1941 			pr_debug2(" = %d\n", fd);
1942 
1943 			if (evsel->bpf_fd >= 0) {
1944 				int evt_fd = fd;
1945 				int bpf_fd = evsel->bpf_fd;
1946 
1947 				err = ioctl(evt_fd,
1948 					    PERF_EVENT_IOC_SET_BPF,
1949 					    bpf_fd);
1950 				if (err && errno != EEXIST) {
1951 					pr_err("failed to attach bpf fd %d: %s\n",
1952 					       bpf_fd, strerror(errno));
1953 					err = -EINVAL;
1954 					goto out_close;
1955 				}
1956 			}
1957 
1958 			set_rlimit = NO_CHANGE;
1959 
1960 			/*
1961 			 * If we succeeded but had to kill clockid, fail and
1962 			 * have perf_evsel__open_strerror() print us a nice
1963 			 * error.
1964 			 */
1965 			if (perf_missing_features.clockid ||
1966 			    perf_missing_features.clockid_wrong) {
1967 				err = -EINVAL;
1968 				goto out_close;
1969 			}
1970 		}
1971 	}
1972 
1973 	return 0;
1974 
1975 try_fallback:
1976 	/*
1977 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1978 	 * of them try to increase the limits.
1979 	 */
1980 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1981 		struct rlimit l;
1982 		int old_errno = errno;
1983 
1984 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1985 			if (set_rlimit == NO_CHANGE)
1986 				l.rlim_cur = l.rlim_max;
1987 			else {
1988 				l.rlim_cur = l.rlim_max + 1000;
1989 				l.rlim_max = l.rlim_cur;
1990 			}
1991 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1992 				set_rlimit++;
1993 				errno = old_errno;
1994 				goto retry_open;
1995 			}
1996 		}
1997 		errno = old_errno;
1998 	}
1999 
2000 	if (err != -EINVAL || cpu > 0 || thread > 0)
2001 		goto out_close;
2002 
2003 	/*
2004 	 * Must probe features in the order they were added to the
2005 	 * perf_event_attr interface.
2006 	 */
2007 	if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
2008 		perf_missing_features.bpf_event = true;
2009 		pr_debug2("switching off bpf_event\n");
2010 		goto fallback_missing_features;
2011 	} else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
2012 		perf_missing_features.ksymbol = true;
2013 		pr_debug2("switching off ksymbol\n");
2014 		goto fallback_missing_features;
2015 	} else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
2016 		perf_missing_features.write_backward = true;
2017 		pr_debug2("switching off write_backward\n");
2018 		goto out_close;
2019 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
2020 		perf_missing_features.clockid_wrong = true;
2021 		pr_debug2("switching off clockid\n");
2022 		goto fallback_missing_features;
2023 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
2024 		perf_missing_features.clockid = true;
2025 		pr_debug2("switching off use_clockid\n");
2026 		goto fallback_missing_features;
2027 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
2028 		perf_missing_features.cloexec = true;
2029 		pr_debug2("switching off cloexec flag\n");
2030 		goto fallback_missing_features;
2031 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
2032 		perf_missing_features.mmap2 = true;
2033 		pr_debug2("switching off mmap2\n");
2034 		goto fallback_missing_features;
2035 	} else if (!perf_missing_features.exclude_guest &&
2036 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
2037 		perf_missing_features.exclude_guest = true;
2038 		pr_debug2("switching off exclude_guest, exclude_host\n");
2039 		goto fallback_missing_features;
2040 	} else if (!perf_missing_features.sample_id_all) {
2041 		perf_missing_features.sample_id_all = true;
2042 		pr_debug2("switching off sample_id_all\n");
2043 		goto retry_sample_id;
2044 	} else if (!perf_missing_features.lbr_flags &&
2045 			(evsel->attr.branch_sample_type &
2046 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
2047 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
2048 		perf_missing_features.lbr_flags = true;
2049 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
2050 		goto fallback_missing_features;
2051 	} else if (!perf_missing_features.group_read &&
2052 		    evsel->attr.inherit &&
2053 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
2054 		   perf_evsel__is_group_leader(evsel)) {
2055 		perf_missing_features.group_read = true;
2056 		pr_debug2("switching off group read\n");
2057 		goto fallback_missing_features;
2058 	}
2059 out_close:
2060 	if (err)
2061 		threads->err_thread = thread;
2062 
2063 	do {
2064 		while (--thread >= 0) {
2065 			close(FD(evsel, cpu, thread));
2066 			FD(evsel, cpu, thread) = -1;
2067 		}
2068 		thread = nthreads;
2069 	} while (--cpu >= 0);
2070 	return err;
2071 }
2072 
2073 void perf_evsel__close(struct perf_evsel *evsel)
2074 {
2075 	if (evsel->fd == NULL)
2076 		return;
2077 
2078 	perf_evsel__close_fd(evsel);
2079 	perf_evsel__free_fd(evsel);
2080 }
2081 
2082 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2083 			     struct cpu_map *cpus)
2084 {
2085 	return perf_evsel__open(evsel, cpus, NULL);
2086 }
2087 
2088 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2089 				struct thread_map *threads)
2090 {
2091 	return perf_evsel__open(evsel, NULL, threads);
2092 }
2093 
2094 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2095 				       const union perf_event *event,
2096 				       struct perf_sample *sample)
2097 {
2098 	u64 type = evsel->attr.sample_type;
2099 	const u64 *array = event->sample.array;
2100 	bool swapped = evsel->needs_swap;
2101 	union u64_swap u;
2102 
2103 	array += ((event->header.size -
2104 		   sizeof(event->header)) / sizeof(u64)) - 1;
2105 
2106 	if (type & PERF_SAMPLE_IDENTIFIER) {
2107 		sample->id = *array;
2108 		array--;
2109 	}
2110 
2111 	if (type & PERF_SAMPLE_CPU) {
2112 		u.val64 = *array;
2113 		if (swapped) {
2114 			/* undo swap of u64, then swap on individual u32s */
2115 			u.val64 = bswap_64(u.val64);
2116 			u.val32[0] = bswap_32(u.val32[0]);
2117 		}
2118 
2119 		sample->cpu = u.val32[0];
2120 		array--;
2121 	}
2122 
2123 	if (type & PERF_SAMPLE_STREAM_ID) {
2124 		sample->stream_id = *array;
2125 		array--;
2126 	}
2127 
2128 	if (type & PERF_SAMPLE_ID) {
2129 		sample->id = *array;
2130 		array--;
2131 	}
2132 
2133 	if (type & PERF_SAMPLE_TIME) {
2134 		sample->time = *array;
2135 		array--;
2136 	}
2137 
2138 	if (type & PERF_SAMPLE_TID) {
2139 		u.val64 = *array;
2140 		if (swapped) {
2141 			/* undo swap of u64, then swap on individual u32s */
2142 			u.val64 = bswap_64(u.val64);
2143 			u.val32[0] = bswap_32(u.val32[0]);
2144 			u.val32[1] = bswap_32(u.val32[1]);
2145 		}
2146 
2147 		sample->pid = u.val32[0];
2148 		sample->tid = u.val32[1];
2149 		array--;
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2156 			    u64 size)
2157 {
2158 	return size > max_size || offset + size > endp;
2159 }
2160 
2161 #define OVERFLOW_CHECK(offset, size, max_size)				\
2162 	do {								\
2163 		if (overflow(endp, (max_size), (offset), (size)))	\
2164 			return -EFAULT;					\
2165 	} while (0)
2166 
2167 #define OVERFLOW_CHECK_u64(offset) \
2168 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2169 
2170 static int
2171 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2172 {
2173 	/*
2174 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2175 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2176 	 * check the format does not go past the end of the event.
2177 	 */
2178 	if (sample_size + sizeof(event->header) > event->header.size)
2179 		return -EFAULT;
2180 
2181 	return 0;
2182 }
2183 
2184 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2185 			     struct perf_sample *data)
2186 {
2187 	u64 type = evsel->attr.sample_type;
2188 	bool swapped = evsel->needs_swap;
2189 	const u64 *array;
2190 	u16 max_size = event->header.size;
2191 	const void *endp = (void *)event + max_size;
2192 	u64 sz;
2193 
2194 	/*
2195 	 * used for cross-endian analysis. See git commit 65014ab3
2196 	 * for why this goofiness is needed.
2197 	 */
2198 	union u64_swap u;
2199 
2200 	memset(data, 0, sizeof(*data));
2201 	data->cpu = data->pid = data->tid = -1;
2202 	data->stream_id = data->id = data->time = -1ULL;
2203 	data->period = evsel->attr.sample_period;
2204 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2205 	data->misc    = event->header.misc;
2206 	data->id = -1ULL;
2207 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2208 
2209 	if (event->header.type != PERF_RECORD_SAMPLE) {
2210 		if (!evsel->attr.sample_id_all)
2211 			return 0;
2212 		return perf_evsel__parse_id_sample(evsel, event, data);
2213 	}
2214 
2215 	array = event->sample.array;
2216 
2217 	if (perf_event__check_size(event, evsel->sample_size))
2218 		return -EFAULT;
2219 
2220 	if (type & PERF_SAMPLE_IDENTIFIER) {
2221 		data->id = *array;
2222 		array++;
2223 	}
2224 
2225 	if (type & PERF_SAMPLE_IP) {
2226 		data->ip = *array;
2227 		array++;
2228 	}
2229 
2230 	if (type & PERF_SAMPLE_TID) {
2231 		u.val64 = *array;
2232 		if (swapped) {
2233 			/* undo swap of u64, then swap on individual u32s */
2234 			u.val64 = bswap_64(u.val64);
2235 			u.val32[0] = bswap_32(u.val32[0]);
2236 			u.val32[1] = bswap_32(u.val32[1]);
2237 		}
2238 
2239 		data->pid = u.val32[0];
2240 		data->tid = u.val32[1];
2241 		array++;
2242 	}
2243 
2244 	if (type & PERF_SAMPLE_TIME) {
2245 		data->time = *array;
2246 		array++;
2247 	}
2248 
2249 	if (type & PERF_SAMPLE_ADDR) {
2250 		data->addr = *array;
2251 		array++;
2252 	}
2253 
2254 	if (type & PERF_SAMPLE_ID) {
2255 		data->id = *array;
2256 		array++;
2257 	}
2258 
2259 	if (type & PERF_SAMPLE_STREAM_ID) {
2260 		data->stream_id = *array;
2261 		array++;
2262 	}
2263 
2264 	if (type & PERF_SAMPLE_CPU) {
2265 
2266 		u.val64 = *array;
2267 		if (swapped) {
2268 			/* undo swap of u64, then swap on individual u32s */
2269 			u.val64 = bswap_64(u.val64);
2270 			u.val32[0] = bswap_32(u.val32[0]);
2271 		}
2272 
2273 		data->cpu = u.val32[0];
2274 		array++;
2275 	}
2276 
2277 	if (type & PERF_SAMPLE_PERIOD) {
2278 		data->period = *array;
2279 		array++;
2280 	}
2281 
2282 	if (type & PERF_SAMPLE_READ) {
2283 		u64 read_format = evsel->attr.read_format;
2284 
2285 		OVERFLOW_CHECK_u64(array);
2286 		if (read_format & PERF_FORMAT_GROUP)
2287 			data->read.group.nr = *array;
2288 		else
2289 			data->read.one.value = *array;
2290 
2291 		array++;
2292 
2293 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2294 			OVERFLOW_CHECK_u64(array);
2295 			data->read.time_enabled = *array;
2296 			array++;
2297 		}
2298 
2299 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2300 			OVERFLOW_CHECK_u64(array);
2301 			data->read.time_running = *array;
2302 			array++;
2303 		}
2304 
2305 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2306 		if (read_format & PERF_FORMAT_GROUP) {
2307 			const u64 max_group_nr = UINT64_MAX /
2308 					sizeof(struct sample_read_value);
2309 
2310 			if (data->read.group.nr > max_group_nr)
2311 				return -EFAULT;
2312 			sz = data->read.group.nr *
2313 			     sizeof(struct sample_read_value);
2314 			OVERFLOW_CHECK(array, sz, max_size);
2315 			data->read.group.values =
2316 					(struct sample_read_value *)array;
2317 			array = (void *)array + sz;
2318 		} else {
2319 			OVERFLOW_CHECK_u64(array);
2320 			data->read.one.id = *array;
2321 			array++;
2322 		}
2323 	}
2324 
2325 	if (evsel__has_callchain(evsel)) {
2326 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2327 
2328 		OVERFLOW_CHECK_u64(array);
2329 		data->callchain = (struct ip_callchain *)array++;
2330 		if (data->callchain->nr > max_callchain_nr)
2331 			return -EFAULT;
2332 		sz = data->callchain->nr * sizeof(u64);
2333 		OVERFLOW_CHECK(array, sz, max_size);
2334 		array = (void *)array + sz;
2335 	}
2336 
2337 	if (type & PERF_SAMPLE_RAW) {
2338 		OVERFLOW_CHECK_u64(array);
2339 		u.val64 = *array;
2340 
2341 		/*
2342 		 * Undo swap of u64, then swap on individual u32s,
2343 		 * get the size of the raw area and undo all of the
2344 		 * swap. The pevent interface handles endianity by
2345 		 * itself.
2346 		 */
2347 		if (swapped) {
2348 			u.val64 = bswap_64(u.val64);
2349 			u.val32[0] = bswap_32(u.val32[0]);
2350 			u.val32[1] = bswap_32(u.val32[1]);
2351 		}
2352 		data->raw_size = u.val32[0];
2353 
2354 		/*
2355 		 * The raw data is aligned on 64bits including the
2356 		 * u32 size, so it's safe to use mem_bswap_64.
2357 		 */
2358 		if (swapped)
2359 			mem_bswap_64((void *) array, data->raw_size);
2360 
2361 		array = (void *)array + sizeof(u32);
2362 
2363 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2364 		data->raw_data = (void *)array;
2365 		array = (void *)array + data->raw_size;
2366 	}
2367 
2368 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2369 		const u64 max_branch_nr = UINT64_MAX /
2370 					  sizeof(struct branch_entry);
2371 
2372 		OVERFLOW_CHECK_u64(array);
2373 		data->branch_stack = (struct branch_stack *)array++;
2374 
2375 		if (data->branch_stack->nr > max_branch_nr)
2376 			return -EFAULT;
2377 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2378 		OVERFLOW_CHECK(array, sz, max_size);
2379 		array = (void *)array + sz;
2380 	}
2381 
2382 	if (type & PERF_SAMPLE_REGS_USER) {
2383 		OVERFLOW_CHECK_u64(array);
2384 		data->user_regs.abi = *array;
2385 		array++;
2386 
2387 		if (data->user_regs.abi) {
2388 			u64 mask = evsel->attr.sample_regs_user;
2389 
2390 			sz = hweight64(mask) * sizeof(u64);
2391 			OVERFLOW_CHECK(array, sz, max_size);
2392 			data->user_regs.mask = mask;
2393 			data->user_regs.regs = (u64 *)array;
2394 			array = (void *)array + sz;
2395 		}
2396 	}
2397 
2398 	if (type & PERF_SAMPLE_STACK_USER) {
2399 		OVERFLOW_CHECK_u64(array);
2400 		sz = *array++;
2401 
2402 		data->user_stack.offset = ((char *)(array - 1)
2403 					  - (char *) event);
2404 
2405 		if (!sz) {
2406 			data->user_stack.size = 0;
2407 		} else {
2408 			OVERFLOW_CHECK(array, sz, max_size);
2409 			data->user_stack.data = (char *)array;
2410 			array = (void *)array + sz;
2411 			OVERFLOW_CHECK_u64(array);
2412 			data->user_stack.size = *array++;
2413 			if (WARN_ONCE(data->user_stack.size > sz,
2414 				      "user stack dump failure\n"))
2415 				return -EFAULT;
2416 		}
2417 	}
2418 
2419 	if (type & PERF_SAMPLE_WEIGHT) {
2420 		OVERFLOW_CHECK_u64(array);
2421 		data->weight = *array;
2422 		array++;
2423 	}
2424 
2425 	if (type & PERF_SAMPLE_DATA_SRC) {
2426 		OVERFLOW_CHECK_u64(array);
2427 		data->data_src = *array;
2428 		array++;
2429 	}
2430 
2431 	if (type & PERF_SAMPLE_TRANSACTION) {
2432 		OVERFLOW_CHECK_u64(array);
2433 		data->transaction = *array;
2434 		array++;
2435 	}
2436 
2437 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2438 	if (type & PERF_SAMPLE_REGS_INTR) {
2439 		OVERFLOW_CHECK_u64(array);
2440 		data->intr_regs.abi = *array;
2441 		array++;
2442 
2443 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2444 			u64 mask = evsel->attr.sample_regs_intr;
2445 
2446 			sz = hweight64(mask) * sizeof(u64);
2447 			OVERFLOW_CHECK(array, sz, max_size);
2448 			data->intr_regs.mask = mask;
2449 			data->intr_regs.regs = (u64 *)array;
2450 			array = (void *)array + sz;
2451 		}
2452 	}
2453 
2454 	data->phys_addr = 0;
2455 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2456 		data->phys_addr = *array;
2457 		array++;
2458 	}
2459 
2460 	return 0;
2461 }
2462 
2463 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2464 				       union perf_event *event,
2465 				       u64 *timestamp)
2466 {
2467 	u64 type = evsel->attr.sample_type;
2468 	const u64 *array;
2469 
2470 	if (!(type & PERF_SAMPLE_TIME))
2471 		return -1;
2472 
2473 	if (event->header.type != PERF_RECORD_SAMPLE) {
2474 		struct perf_sample data = {
2475 			.time = -1ULL,
2476 		};
2477 
2478 		if (!evsel->attr.sample_id_all)
2479 			return -1;
2480 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2481 			return -1;
2482 
2483 		*timestamp = data.time;
2484 		return 0;
2485 	}
2486 
2487 	array = event->sample.array;
2488 
2489 	if (perf_event__check_size(event, evsel->sample_size))
2490 		return -EFAULT;
2491 
2492 	if (type & PERF_SAMPLE_IDENTIFIER)
2493 		array++;
2494 
2495 	if (type & PERF_SAMPLE_IP)
2496 		array++;
2497 
2498 	if (type & PERF_SAMPLE_TID)
2499 		array++;
2500 
2501 	if (type & PERF_SAMPLE_TIME)
2502 		*timestamp = *array;
2503 
2504 	return 0;
2505 }
2506 
2507 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2508 				     u64 read_format)
2509 {
2510 	size_t sz, result = sizeof(struct sample_event);
2511 
2512 	if (type & PERF_SAMPLE_IDENTIFIER)
2513 		result += sizeof(u64);
2514 
2515 	if (type & PERF_SAMPLE_IP)
2516 		result += sizeof(u64);
2517 
2518 	if (type & PERF_SAMPLE_TID)
2519 		result += sizeof(u64);
2520 
2521 	if (type & PERF_SAMPLE_TIME)
2522 		result += sizeof(u64);
2523 
2524 	if (type & PERF_SAMPLE_ADDR)
2525 		result += sizeof(u64);
2526 
2527 	if (type & PERF_SAMPLE_ID)
2528 		result += sizeof(u64);
2529 
2530 	if (type & PERF_SAMPLE_STREAM_ID)
2531 		result += sizeof(u64);
2532 
2533 	if (type & PERF_SAMPLE_CPU)
2534 		result += sizeof(u64);
2535 
2536 	if (type & PERF_SAMPLE_PERIOD)
2537 		result += sizeof(u64);
2538 
2539 	if (type & PERF_SAMPLE_READ) {
2540 		result += sizeof(u64);
2541 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2542 			result += sizeof(u64);
2543 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2544 			result += sizeof(u64);
2545 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2546 		if (read_format & PERF_FORMAT_GROUP) {
2547 			sz = sample->read.group.nr *
2548 			     sizeof(struct sample_read_value);
2549 			result += sz;
2550 		} else {
2551 			result += sizeof(u64);
2552 		}
2553 	}
2554 
2555 	if (type & PERF_SAMPLE_CALLCHAIN) {
2556 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2557 		result += sz;
2558 	}
2559 
2560 	if (type & PERF_SAMPLE_RAW) {
2561 		result += sizeof(u32);
2562 		result += sample->raw_size;
2563 	}
2564 
2565 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2566 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2567 		sz += sizeof(u64);
2568 		result += sz;
2569 	}
2570 
2571 	if (type & PERF_SAMPLE_REGS_USER) {
2572 		if (sample->user_regs.abi) {
2573 			result += sizeof(u64);
2574 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2575 			result += sz;
2576 		} else {
2577 			result += sizeof(u64);
2578 		}
2579 	}
2580 
2581 	if (type & PERF_SAMPLE_STACK_USER) {
2582 		sz = sample->user_stack.size;
2583 		result += sizeof(u64);
2584 		if (sz) {
2585 			result += sz;
2586 			result += sizeof(u64);
2587 		}
2588 	}
2589 
2590 	if (type & PERF_SAMPLE_WEIGHT)
2591 		result += sizeof(u64);
2592 
2593 	if (type & PERF_SAMPLE_DATA_SRC)
2594 		result += sizeof(u64);
2595 
2596 	if (type & PERF_SAMPLE_TRANSACTION)
2597 		result += sizeof(u64);
2598 
2599 	if (type & PERF_SAMPLE_REGS_INTR) {
2600 		if (sample->intr_regs.abi) {
2601 			result += sizeof(u64);
2602 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2603 			result += sz;
2604 		} else {
2605 			result += sizeof(u64);
2606 		}
2607 	}
2608 
2609 	if (type & PERF_SAMPLE_PHYS_ADDR)
2610 		result += sizeof(u64);
2611 
2612 	return result;
2613 }
2614 
2615 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2616 				  u64 read_format,
2617 				  const struct perf_sample *sample)
2618 {
2619 	u64 *array;
2620 	size_t sz;
2621 	/*
2622 	 * used for cross-endian analysis. See git commit 65014ab3
2623 	 * for why this goofiness is needed.
2624 	 */
2625 	union u64_swap u;
2626 
2627 	array = event->sample.array;
2628 
2629 	if (type & PERF_SAMPLE_IDENTIFIER) {
2630 		*array = sample->id;
2631 		array++;
2632 	}
2633 
2634 	if (type & PERF_SAMPLE_IP) {
2635 		*array = sample->ip;
2636 		array++;
2637 	}
2638 
2639 	if (type & PERF_SAMPLE_TID) {
2640 		u.val32[0] = sample->pid;
2641 		u.val32[1] = sample->tid;
2642 		*array = u.val64;
2643 		array++;
2644 	}
2645 
2646 	if (type & PERF_SAMPLE_TIME) {
2647 		*array = sample->time;
2648 		array++;
2649 	}
2650 
2651 	if (type & PERF_SAMPLE_ADDR) {
2652 		*array = sample->addr;
2653 		array++;
2654 	}
2655 
2656 	if (type & PERF_SAMPLE_ID) {
2657 		*array = sample->id;
2658 		array++;
2659 	}
2660 
2661 	if (type & PERF_SAMPLE_STREAM_ID) {
2662 		*array = sample->stream_id;
2663 		array++;
2664 	}
2665 
2666 	if (type & PERF_SAMPLE_CPU) {
2667 		u.val32[0] = sample->cpu;
2668 		u.val32[1] = 0;
2669 		*array = u.val64;
2670 		array++;
2671 	}
2672 
2673 	if (type & PERF_SAMPLE_PERIOD) {
2674 		*array = sample->period;
2675 		array++;
2676 	}
2677 
2678 	if (type & PERF_SAMPLE_READ) {
2679 		if (read_format & PERF_FORMAT_GROUP)
2680 			*array = sample->read.group.nr;
2681 		else
2682 			*array = sample->read.one.value;
2683 		array++;
2684 
2685 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2686 			*array = sample->read.time_enabled;
2687 			array++;
2688 		}
2689 
2690 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2691 			*array = sample->read.time_running;
2692 			array++;
2693 		}
2694 
2695 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2696 		if (read_format & PERF_FORMAT_GROUP) {
2697 			sz = sample->read.group.nr *
2698 			     sizeof(struct sample_read_value);
2699 			memcpy(array, sample->read.group.values, sz);
2700 			array = (void *)array + sz;
2701 		} else {
2702 			*array = sample->read.one.id;
2703 			array++;
2704 		}
2705 	}
2706 
2707 	if (type & PERF_SAMPLE_CALLCHAIN) {
2708 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2709 		memcpy(array, sample->callchain, sz);
2710 		array = (void *)array + sz;
2711 	}
2712 
2713 	if (type & PERF_SAMPLE_RAW) {
2714 		u.val32[0] = sample->raw_size;
2715 		*array = u.val64;
2716 		array = (void *)array + sizeof(u32);
2717 
2718 		memcpy(array, sample->raw_data, sample->raw_size);
2719 		array = (void *)array + sample->raw_size;
2720 	}
2721 
2722 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2723 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2724 		sz += sizeof(u64);
2725 		memcpy(array, sample->branch_stack, sz);
2726 		array = (void *)array + sz;
2727 	}
2728 
2729 	if (type & PERF_SAMPLE_REGS_USER) {
2730 		if (sample->user_regs.abi) {
2731 			*array++ = sample->user_regs.abi;
2732 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2733 			memcpy(array, sample->user_regs.regs, sz);
2734 			array = (void *)array + sz;
2735 		} else {
2736 			*array++ = 0;
2737 		}
2738 	}
2739 
2740 	if (type & PERF_SAMPLE_STACK_USER) {
2741 		sz = sample->user_stack.size;
2742 		*array++ = sz;
2743 		if (sz) {
2744 			memcpy(array, sample->user_stack.data, sz);
2745 			array = (void *)array + sz;
2746 			*array++ = sz;
2747 		}
2748 	}
2749 
2750 	if (type & PERF_SAMPLE_WEIGHT) {
2751 		*array = sample->weight;
2752 		array++;
2753 	}
2754 
2755 	if (type & PERF_SAMPLE_DATA_SRC) {
2756 		*array = sample->data_src;
2757 		array++;
2758 	}
2759 
2760 	if (type & PERF_SAMPLE_TRANSACTION) {
2761 		*array = sample->transaction;
2762 		array++;
2763 	}
2764 
2765 	if (type & PERF_SAMPLE_REGS_INTR) {
2766 		if (sample->intr_regs.abi) {
2767 			*array++ = sample->intr_regs.abi;
2768 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2769 			memcpy(array, sample->intr_regs.regs, sz);
2770 			array = (void *)array + sz;
2771 		} else {
2772 			*array++ = 0;
2773 		}
2774 	}
2775 
2776 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2777 		*array = sample->phys_addr;
2778 		array++;
2779 	}
2780 
2781 	return 0;
2782 }
2783 
2784 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2785 {
2786 	return tep_find_field(evsel->tp_format, name);
2787 }
2788 
2789 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2790 			 const char *name)
2791 {
2792 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2793 	int offset;
2794 
2795 	if (!field)
2796 		return NULL;
2797 
2798 	offset = field->offset;
2799 
2800 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2801 		offset = *(int *)(sample->raw_data + field->offset);
2802 		offset &= 0xffff;
2803 	}
2804 
2805 	return sample->raw_data + offset;
2806 }
2807 
2808 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2809 			 bool needs_swap)
2810 {
2811 	u64 value;
2812 	void *ptr = sample->raw_data + field->offset;
2813 
2814 	switch (field->size) {
2815 	case 1:
2816 		return *(u8 *)ptr;
2817 	case 2:
2818 		value = *(u16 *)ptr;
2819 		break;
2820 	case 4:
2821 		value = *(u32 *)ptr;
2822 		break;
2823 	case 8:
2824 		memcpy(&value, ptr, sizeof(u64));
2825 		break;
2826 	default:
2827 		return 0;
2828 	}
2829 
2830 	if (!needs_swap)
2831 		return value;
2832 
2833 	switch (field->size) {
2834 	case 2:
2835 		return bswap_16(value);
2836 	case 4:
2837 		return bswap_32(value);
2838 	case 8:
2839 		return bswap_64(value);
2840 	default:
2841 		return 0;
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2848 		       const char *name)
2849 {
2850 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2851 
2852 	if (!field)
2853 		return 0;
2854 
2855 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2856 }
2857 
2858 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2859 			  char *msg, size_t msgsize)
2860 {
2861 	int paranoid;
2862 
2863 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2864 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2865 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2866 		/*
2867 		 * If it's cycles then fall back to hrtimer based
2868 		 * cpu-clock-tick sw counter, which is always available even if
2869 		 * no PMU support.
2870 		 *
2871 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2872 		 * b0a873e).
2873 		 */
2874 		scnprintf(msg, msgsize, "%s",
2875 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2876 
2877 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2878 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2879 
2880 		zfree(&evsel->name);
2881 		return true;
2882 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2883 		   (paranoid = perf_event_paranoid()) > 1) {
2884 		const char *name = perf_evsel__name(evsel);
2885 		char *new_name;
2886 		const char *sep = ":";
2887 
2888 		/* Is there already the separator in the name. */
2889 		if (strchr(name, '/') ||
2890 		    strchr(name, ':'))
2891 			sep = "";
2892 
2893 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2894 			return false;
2895 
2896 		if (evsel->name)
2897 			free(evsel->name);
2898 		evsel->name = new_name;
2899 		scnprintf(msg, msgsize,
2900 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2901 		evsel->attr.exclude_kernel = 1;
2902 
2903 		return true;
2904 	}
2905 
2906 	return false;
2907 }
2908 
2909 static bool find_process(const char *name)
2910 {
2911 	size_t len = strlen(name);
2912 	DIR *dir;
2913 	struct dirent *d;
2914 	int ret = -1;
2915 
2916 	dir = opendir(procfs__mountpoint());
2917 	if (!dir)
2918 		return false;
2919 
2920 	/* Walk through the directory. */
2921 	while (ret && (d = readdir(dir)) != NULL) {
2922 		char path[PATH_MAX];
2923 		char *data;
2924 		size_t size;
2925 
2926 		if ((d->d_type != DT_DIR) ||
2927 		     !strcmp(".", d->d_name) ||
2928 		     !strcmp("..", d->d_name))
2929 			continue;
2930 
2931 		scnprintf(path, sizeof(path), "%s/%s/comm",
2932 			  procfs__mountpoint(), d->d_name);
2933 
2934 		if (filename__read_str(path, &data, &size))
2935 			continue;
2936 
2937 		ret = strncmp(name, data, len);
2938 		free(data);
2939 	}
2940 
2941 	closedir(dir);
2942 	return ret ? false : true;
2943 }
2944 
2945 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2946 			      int err, char *msg, size_t size)
2947 {
2948 	char sbuf[STRERR_BUFSIZE];
2949 	int printed = 0;
2950 
2951 	switch (err) {
2952 	case EPERM:
2953 	case EACCES:
2954 		if (err == EPERM)
2955 			printed = scnprintf(msg, size,
2956 				"No permission to enable %s event.\n\n",
2957 				perf_evsel__name(evsel));
2958 
2959 		return scnprintf(msg + printed, size - printed,
2960 		 "You may not have permission to collect %sstats.\n\n"
2961 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2962 		 "which controls use of the performance events system by\n"
2963 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2964 		 "The current value is %d:\n\n"
2965 		 "  -1: Allow use of (almost) all events by all users\n"
2966 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2967 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2968 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2969 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2970 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2971 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2972 		 "	kernel.perf_event_paranoid = -1\n" ,
2973 				 target->system_wide ? "system-wide " : "",
2974 				 perf_event_paranoid());
2975 	case ENOENT:
2976 		return scnprintf(msg, size, "The %s event is not supported.",
2977 				 perf_evsel__name(evsel));
2978 	case EMFILE:
2979 		return scnprintf(msg, size, "%s",
2980 			 "Too many events are opened.\n"
2981 			 "Probably the maximum number of open file descriptors has been reached.\n"
2982 			 "Hint: Try again after reducing the number of events.\n"
2983 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2984 	case ENOMEM:
2985 		if (evsel__has_callchain(evsel) &&
2986 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2987 			return scnprintf(msg, size,
2988 					 "Not enough memory to setup event with callchain.\n"
2989 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2990 					 "Hint: Current value: %d", sysctl__max_stack());
2991 		break;
2992 	case ENODEV:
2993 		if (target->cpu_list)
2994 			return scnprintf(msg, size, "%s",
2995 	 "No such device - did you specify an out-of-range profile CPU?");
2996 		break;
2997 	case EOPNOTSUPP:
2998 		if (evsel->attr.sample_period != 0)
2999 			return scnprintf(msg, size,
3000 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
3001 					 perf_evsel__name(evsel));
3002 		if (evsel->attr.precise_ip)
3003 			return scnprintf(msg, size, "%s",
3004 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
3005 #if defined(__i386__) || defined(__x86_64__)
3006 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
3007 			return scnprintf(msg, size, "%s",
3008 	"No hardware sampling interrupt available.\n");
3009 #endif
3010 		break;
3011 	case EBUSY:
3012 		if (find_process("oprofiled"))
3013 			return scnprintf(msg, size,
3014 	"The PMU counters are busy/taken by another profiler.\n"
3015 	"We found oprofile daemon running, please stop it and try again.");
3016 		break;
3017 	case EINVAL:
3018 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
3019 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
3020 		if (perf_missing_features.clockid)
3021 			return scnprintf(msg, size, "clockid feature not supported.");
3022 		if (perf_missing_features.clockid_wrong)
3023 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
3024 		break;
3025 	default:
3026 		break;
3027 	}
3028 
3029 	return scnprintf(msg, size,
3030 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
3031 	"/bin/dmesg | grep -i perf may provide additional information.\n",
3032 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
3033 			 perf_evsel__name(evsel));
3034 }
3035 
3036 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
3037 {
3038 	if (evsel && evsel->evlist)
3039 		return evsel->evlist->env;
3040 	return NULL;
3041 }
3042 
3043 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3044 {
3045 	int cpu, thread;
3046 
3047 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
3048 		for (thread = 0; thread < xyarray__max_y(evsel->fd);
3049 		     thread++) {
3050 			int fd = FD(evsel, cpu, thread);
3051 
3052 			if (perf_evlist__id_add_fd(evlist, evsel,
3053 						   cpu, thread, fd) < 0)
3054 				return -1;
3055 		}
3056 	}
3057 
3058 	return 0;
3059 }
3060 
3061 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3062 {
3063 	struct cpu_map *cpus = evsel->cpus;
3064 	struct thread_map *threads = evsel->threads;
3065 
3066 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
3067 		return -ENOMEM;
3068 
3069 	return store_evsel_ids(evsel, evlist);
3070 }
3071