1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 4 * 5 * Parts came from builtin-{top,stat,record}.c, see those files for further 6 * copyright notes. 7 */ 8 9 #include <byteswap.h> 10 #include <errno.h> 11 #include <inttypes.h> 12 #include <linux/bitops.h> 13 #include <api/fs/fs.h> 14 #include <api/fs/tracing_path.h> 15 #include <traceevent/event-parse.h> 16 #include <linux/hw_breakpoint.h> 17 #include <linux/perf_event.h> 18 #include <linux/compiler.h> 19 #include <linux/err.h> 20 #include <linux/zalloc.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "cpumap.h" 32 #include "thread_map.h" 33 #include "target.h" 34 #include "perf_regs.h" 35 #include "debug.h" 36 #include "trace-event.h" 37 #include "stat.h" 38 #include "string2.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include <linux/ctype.h> 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->max_events = ULONG_MAX; 236 evsel->evlist = NULL; 237 evsel->bpf_fd = -1; 238 INIT_LIST_HEAD(&evsel->node); 239 INIT_LIST_HEAD(&evsel->config_terms); 240 perf_evsel__object.init(evsel); 241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 242 perf_evsel__calc_id_pos(evsel); 243 evsel->cmdline_group_boundary = false; 244 evsel->metric_expr = NULL; 245 evsel->metric_name = NULL; 246 evsel->metric_events = NULL; 247 evsel->collect_stat = false; 248 evsel->pmu_name = NULL; 249 } 250 251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 252 { 253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 254 255 if (!evsel) 256 return NULL; 257 perf_evsel__init(evsel, attr, idx); 258 259 if (perf_evsel__is_bpf_output(evsel)) { 260 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 261 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 262 evsel->attr.sample_period = 1; 263 } 264 265 if (perf_evsel__is_clock(evsel)) { 266 /* 267 * The evsel->unit points to static alias->unit 268 * so it's ok to use static string in here. 269 */ 270 static const char *unit = "msec"; 271 272 evsel->unit = unit; 273 evsel->scale = 1e-6; 274 } 275 276 return evsel; 277 } 278 279 static bool perf_event_can_profile_kernel(void) 280 { 281 return geteuid() == 0 || perf_event_paranoid() == -1; 282 } 283 284 struct perf_evsel *perf_evsel__new_cycles(bool precise) 285 { 286 struct perf_event_attr attr = { 287 .type = PERF_TYPE_HARDWARE, 288 .config = PERF_COUNT_HW_CPU_CYCLES, 289 .exclude_kernel = !perf_event_can_profile_kernel(), 290 }; 291 struct perf_evsel *evsel; 292 293 event_attr_init(&attr); 294 295 if (!precise) 296 goto new_event; 297 298 /* 299 * Now let the usual logic to set up the perf_event_attr defaults 300 * to kick in when we return and before perf_evsel__open() is called. 301 */ 302 new_event: 303 evsel = perf_evsel__new(&attr); 304 if (evsel == NULL) 305 goto out; 306 307 evsel->precise_max = true; 308 309 /* use asprintf() because free(evsel) assumes name is allocated */ 310 if (asprintf(&evsel->name, "cycles%s%s%.*s", 311 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 312 attr.exclude_kernel ? "u" : "", 313 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 314 goto error_free; 315 out: 316 return evsel; 317 error_free: 318 perf_evsel__delete(evsel); 319 evsel = NULL; 320 goto out; 321 } 322 323 /* 324 * Returns pointer with encoded error via <linux/err.h> interface. 325 */ 326 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 327 { 328 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 329 int err = -ENOMEM; 330 331 if (evsel == NULL) { 332 goto out_err; 333 } else { 334 struct perf_event_attr attr = { 335 .type = PERF_TYPE_TRACEPOINT, 336 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 337 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 338 }; 339 340 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 341 goto out_free; 342 343 evsel->tp_format = trace_event__tp_format(sys, name); 344 if (IS_ERR(evsel->tp_format)) { 345 err = PTR_ERR(evsel->tp_format); 346 goto out_free; 347 } 348 349 event_attr_init(&attr); 350 attr.config = evsel->tp_format->id; 351 attr.sample_period = 1; 352 perf_evsel__init(evsel, &attr, idx); 353 } 354 355 return evsel; 356 357 out_free: 358 zfree(&evsel->name); 359 free(evsel); 360 out_err: 361 return ERR_PTR(err); 362 } 363 364 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 365 "cycles", 366 "instructions", 367 "cache-references", 368 "cache-misses", 369 "branches", 370 "branch-misses", 371 "bus-cycles", 372 "stalled-cycles-frontend", 373 "stalled-cycles-backend", 374 "ref-cycles", 375 }; 376 377 static const char *__perf_evsel__hw_name(u64 config) 378 { 379 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 380 return perf_evsel__hw_names[config]; 381 382 return "unknown-hardware"; 383 } 384 385 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 386 { 387 int colon = 0, r = 0; 388 struct perf_event_attr *attr = &evsel->attr; 389 bool exclude_guest_default = false; 390 391 #define MOD_PRINT(context, mod) do { \ 392 if (!attr->exclude_##context) { \ 393 if (!colon) colon = ++r; \ 394 r += scnprintf(bf + r, size - r, "%c", mod); \ 395 } } while(0) 396 397 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 398 MOD_PRINT(kernel, 'k'); 399 MOD_PRINT(user, 'u'); 400 MOD_PRINT(hv, 'h'); 401 exclude_guest_default = true; 402 } 403 404 if (attr->precise_ip) { 405 if (!colon) 406 colon = ++r; 407 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 408 exclude_guest_default = true; 409 } 410 411 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 412 MOD_PRINT(host, 'H'); 413 MOD_PRINT(guest, 'G'); 414 } 415 #undef MOD_PRINT 416 if (colon) 417 bf[colon - 1] = ':'; 418 return r; 419 } 420 421 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 422 { 423 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 424 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 425 } 426 427 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 428 "cpu-clock", 429 "task-clock", 430 "page-faults", 431 "context-switches", 432 "cpu-migrations", 433 "minor-faults", 434 "major-faults", 435 "alignment-faults", 436 "emulation-faults", 437 "dummy", 438 }; 439 440 static const char *__perf_evsel__sw_name(u64 config) 441 { 442 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 443 return perf_evsel__sw_names[config]; 444 return "unknown-software"; 445 } 446 447 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 448 { 449 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 450 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 451 } 452 453 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 454 { 455 int r; 456 457 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 458 459 if (type & HW_BREAKPOINT_R) 460 r += scnprintf(bf + r, size - r, "r"); 461 462 if (type & HW_BREAKPOINT_W) 463 r += scnprintf(bf + r, size - r, "w"); 464 465 if (type & HW_BREAKPOINT_X) 466 r += scnprintf(bf + r, size - r, "x"); 467 468 return r; 469 } 470 471 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 472 { 473 struct perf_event_attr *attr = &evsel->attr; 474 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 475 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 476 } 477 478 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 479 [PERF_EVSEL__MAX_ALIASES] = { 480 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 481 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 482 { "LLC", "L2", }, 483 { "dTLB", "d-tlb", "Data-TLB", }, 484 { "iTLB", "i-tlb", "Instruction-TLB", }, 485 { "branch", "branches", "bpu", "btb", "bpc", }, 486 { "node", }, 487 }; 488 489 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 490 [PERF_EVSEL__MAX_ALIASES] = { 491 { "load", "loads", "read", }, 492 { "store", "stores", "write", }, 493 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 494 }; 495 496 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 497 [PERF_EVSEL__MAX_ALIASES] = { 498 { "refs", "Reference", "ops", "access", }, 499 { "misses", "miss", }, 500 }; 501 502 #define C(x) PERF_COUNT_HW_CACHE_##x 503 #define CACHE_READ (1 << C(OP_READ)) 504 #define CACHE_WRITE (1 << C(OP_WRITE)) 505 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 506 #define COP(x) (1 << x) 507 508 /* 509 * cache operartion stat 510 * L1I : Read and prefetch only 511 * ITLB and BPU : Read-only 512 */ 513 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 514 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 515 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 516 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 517 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 518 [C(ITLB)] = (CACHE_READ), 519 [C(BPU)] = (CACHE_READ), 520 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 521 }; 522 523 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 524 { 525 if (perf_evsel__hw_cache_stat[type] & COP(op)) 526 return true; /* valid */ 527 else 528 return false; /* invalid */ 529 } 530 531 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 532 char *bf, size_t size) 533 { 534 if (result) { 535 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 536 perf_evsel__hw_cache_op[op][0], 537 perf_evsel__hw_cache_result[result][0]); 538 } 539 540 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 541 perf_evsel__hw_cache_op[op][1]); 542 } 543 544 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 545 { 546 u8 op, result, type = (config >> 0) & 0xff; 547 const char *err = "unknown-ext-hardware-cache-type"; 548 549 if (type >= PERF_COUNT_HW_CACHE_MAX) 550 goto out_err; 551 552 op = (config >> 8) & 0xff; 553 err = "unknown-ext-hardware-cache-op"; 554 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 555 goto out_err; 556 557 result = (config >> 16) & 0xff; 558 err = "unknown-ext-hardware-cache-result"; 559 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 560 goto out_err; 561 562 err = "invalid-cache"; 563 if (!perf_evsel__is_cache_op_valid(type, op)) 564 goto out_err; 565 566 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 567 out_err: 568 return scnprintf(bf, size, "%s", err); 569 } 570 571 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 572 { 573 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 574 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 575 } 576 577 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 578 { 579 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 581 } 582 583 static int perf_evsel__tool_name(char *bf, size_t size) 584 { 585 int ret = scnprintf(bf, size, "duration_time"); 586 return ret; 587 } 588 589 const char *perf_evsel__name(struct perf_evsel *evsel) 590 { 591 char bf[128]; 592 593 if (!evsel) 594 goto out_unknown; 595 596 if (evsel->name) 597 return evsel->name; 598 599 switch (evsel->attr.type) { 600 case PERF_TYPE_RAW: 601 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 602 break; 603 604 case PERF_TYPE_HARDWARE: 605 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 606 break; 607 608 case PERF_TYPE_HW_CACHE: 609 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 610 break; 611 612 case PERF_TYPE_SOFTWARE: 613 if (evsel->tool_event) 614 perf_evsel__tool_name(bf, sizeof(bf)); 615 else 616 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 617 break; 618 619 case PERF_TYPE_TRACEPOINT: 620 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 621 break; 622 623 case PERF_TYPE_BREAKPOINT: 624 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 625 break; 626 627 default: 628 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 629 evsel->attr.type); 630 break; 631 } 632 633 evsel->name = strdup(bf); 634 635 if (evsel->name) 636 return evsel->name; 637 out_unknown: 638 return "unknown"; 639 } 640 641 const char *perf_evsel__group_name(struct perf_evsel *evsel) 642 { 643 return evsel->group_name ?: "anon group"; 644 } 645 646 /* 647 * Returns the group details for the specified leader, 648 * with following rules. 649 * 650 * For record -e '{cycles,instructions}' 651 * 'anon group { cycles:u, instructions:u }' 652 * 653 * For record -e 'cycles,instructions' and report --group 654 * 'cycles:u, instructions:u' 655 */ 656 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 657 { 658 int ret = 0; 659 struct perf_evsel *pos; 660 const char *group_name = perf_evsel__group_name(evsel); 661 662 if (!evsel->forced_leader) 663 ret = scnprintf(buf, size, "%s { ", group_name); 664 665 ret += scnprintf(buf + ret, size - ret, "%s", 666 perf_evsel__name(evsel)); 667 668 for_each_group_member(pos, evsel) 669 ret += scnprintf(buf + ret, size - ret, ", %s", 670 perf_evsel__name(pos)); 671 672 if (!evsel->forced_leader) 673 ret += scnprintf(buf + ret, size - ret, " }"); 674 675 return ret; 676 } 677 678 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 679 struct record_opts *opts, 680 struct callchain_param *param) 681 { 682 bool function = perf_evsel__is_function_event(evsel); 683 struct perf_event_attr *attr = &evsel->attr; 684 685 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 686 687 attr->sample_max_stack = param->max_stack; 688 689 if (opts->kernel_callchains) 690 attr->exclude_callchain_user = 1; 691 if (opts->user_callchains) 692 attr->exclude_callchain_kernel = 1; 693 if (param->record_mode == CALLCHAIN_LBR) { 694 if (!opts->branch_stack) { 695 if (attr->exclude_user) { 696 pr_warning("LBR callstack option is only available " 697 "to get user callchain information. " 698 "Falling back to framepointers.\n"); 699 } else { 700 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 701 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 702 PERF_SAMPLE_BRANCH_CALL_STACK | 703 PERF_SAMPLE_BRANCH_NO_CYCLES | 704 PERF_SAMPLE_BRANCH_NO_FLAGS; 705 } 706 } else 707 pr_warning("Cannot use LBR callstack with branch stack. " 708 "Falling back to framepointers.\n"); 709 } 710 711 if (param->record_mode == CALLCHAIN_DWARF) { 712 if (!function) { 713 perf_evsel__set_sample_bit(evsel, REGS_USER); 714 perf_evsel__set_sample_bit(evsel, STACK_USER); 715 if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) { 716 attr->sample_regs_user |= DWARF_MINIMAL_REGS; 717 pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, " 718 "specifying a subset with --user-regs may render DWARF unwinding unreliable, " 719 "so the minimal registers set (IP, SP) is explicitly forced.\n"); 720 } else { 721 attr->sample_regs_user |= PERF_REGS_MASK; 722 } 723 attr->sample_stack_user = param->dump_size; 724 attr->exclude_callchain_user = 1; 725 } else { 726 pr_info("Cannot use DWARF unwind for function trace event," 727 " falling back to framepointers.\n"); 728 } 729 } 730 731 if (function) { 732 pr_info("Disabling user space callchains for function trace event.\n"); 733 attr->exclude_callchain_user = 1; 734 } 735 } 736 737 void perf_evsel__config_callchain(struct perf_evsel *evsel, 738 struct record_opts *opts, 739 struct callchain_param *param) 740 { 741 if (param->enabled) 742 return __perf_evsel__config_callchain(evsel, opts, param); 743 } 744 745 static void 746 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 747 struct callchain_param *param) 748 { 749 struct perf_event_attr *attr = &evsel->attr; 750 751 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 752 if (param->record_mode == CALLCHAIN_LBR) { 753 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 754 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 755 PERF_SAMPLE_BRANCH_CALL_STACK); 756 } 757 if (param->record_mode == CALLCHAIN_DWARF) { 758 perf_evsel__reset_sample_bit(evsel, REGS_USER); 759 perf_evsel__reset_sample_bit(evsel, STACK_USER); 760 } 761 } 762 763 static void apply_config_terms(struct perf_evsel *evsel, 764 struct record_opts *opts, bool track) 765 { 766 struct perf_evsel_config_term *term; 767 struct list_head *config_terms = &evsel->config_terms; 768 struct perf_event_attr *attr = &evsel->attr; 769 /* callgraph default */ 770 struct callchain_param param = { 771 .record_mode = callchain_param.record_mode, 772 }; 773 u32 dump_size = 0; 774 int max_stack = 0; 775 const char *callgraph_buf = NULL; 776 777 list_for_each_entry(term, config_terms, list) { 778 switch (term->type) { 779 case PERF_EVSEL__CONFIG_TERM_PERIOD: 780 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 781 attr->sample_period = term->val.period; 782 attr->freq = 0; 783 perf_evsel__reset_sample_bit(evsel, PERIOD); 784 } 785 break; 786 case PERF_EVSEL__CONFIG_TERM_FREQ: 787 if (!(term->weak && opts->user_freq != UINT_MAX)) { 788 attr->sample_freq = term->val.freq; 789 attr->freq = 1; 790 perf_evsel__set_sample_bit(evsel, PERIOD); 791 } 792 break; 793 case PERF_EVSEL__CONFIG_TERM_TIME: 794 if (term->val.time) 795 perf_evsel__set_sample_bit(evsel, TIME); 796 else 797 perf_evsel__reset_sample_bit(evsel, TIME); 798 break; 799 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 800 callgraph_buf = term->val.callgraph; 801 break; 802 case PERF_EVSEL__CONFIG_TERM_BRANCH: 803 if (term->val.branch && strcmp(term->val.branch, "no")) { 804 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 805 parse_branch_str(term->val.branch, 806 &attr->branch_sample_type); 807 } else 808 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 809 break; 810 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 811 dump_size = term->val.stack_user; 812 break; 813 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 814 max_stack = term->val.max_stack; 815 break; 816 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 817 evsel->max_events = term->val.max_events; 818 break; 819 case PERF_EVSEL__CONFIG_TERM_INHERIT: 820 /* 821 * attr->inherit should has already been set by 822 * perf_evsel__config. If user explicitly set 823 * inherit using config terms, override global 824 * opt->no_inherit setting. 825 */ 826 attr->inherit = term->val.inherit ? 1 : 0; 827 break; 828 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 829 attr->write_backward = term->val.overwrite ? 1 : 0; 830 break; 831 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 832 break; 833 case PERF_EVSEL__CONFIG_TERM_PERCORE: 834 break; 835 default: 836 break; 837 } 838 } 839 840 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 841 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 842 bool sample_address = false; 843 844 if (max_stack) { 845 param.max_stack = max_stack; 846 if (callgraph_buf == NULL) 847 callgraph_buf = "fp"; 848 } 849 850 /* parse callgraph parameters */ 851 if (callgraph_buf != NULL) { 852 if (!strcmp(callgraph_buf, "no")) { 853 param.enabled = false; 854 param.record_mode = CALLCHAIN_NONE; 855 } else { 856 param.enabled = true; 857 if (parse_callchain_record(callgraph_buf, ¶m)) { 858 pr_err("per-event callgraph setting for %s failed. " 859 "Apply callgraph global setting for it\n", 860 evsel->name); 861 return; 862 } 863 if (param.record_mode == CALLCHAIN_DWARF) 864 sample_address = true; 865 } 866 } 867 if (dump_size > 0) { 868 dump_size = round_up(dump_size, sizeof(u64)); 869 param.dump_size = dump_size; 870 } 871 872 /* If global callgraph set, clear it */ 873 if (callchain_param.enabled) 874 perf_evsel__reset_callgraph(evsel, &callchain_param); 875 876 /* set perf-event callgraph */ 877 if (param.enabled) { 878 if (sample_address) { 879 perf_evsel__set_sample_bit(evsel, ADDR); 880 perf_evsel__set_sample_bit(evsel, DATA_SRC); 881 evsel->attr.mmap_data = track; 882 } 883 perf_evsel__config_callchain(evsel, opts, ¶m); 884 } 885 } 886 } 887 888 static bool is_dummy_event(struct perf_evsel *evsel) 889 { 890 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 891 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 892 } 893 894 /* 895 * The enable_on_exec/disabled value strategy: 896 * 897 * 1) For any type of traced program: 898 * - all independent events and group leaders are disabled 899 * - all group members are enabled 900 * 901 * Group members are ruled by group leaders. They need to 902 * be enabled, because the group scheduling relies on that. 903 * 904 * 2) For traced programs executed by perf: 905 * - all independent events and group leaders have 906 * enable_on_exec set 907 * - we don't specifically enable or disable any event during 908 * the record command 909 * 910 * Independent events and group leaders are initially disabled 911 * and get enabled by exec. Group members are ruled by group 912 * leaders as stated in 1). 913 * 914 * 3) For traced programs attached by perf (pid/tid): 915 * - we specifically enable or disable all events during 916 * the record command 917 * 918 * When attaching events to already running traced we 919 * enable/disable events specifically, as there's no 920 * initial traced exec call. 921 */ 922 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 923 struct callchain_param *callchain) 924 { 925 struct perf_evsel *leader = evsel->leader; 926 struct perf_event_attr *attr = &evsel->attr; 927 int track = evsel->tracking; 928 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 929 930 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 931 attr->inherit = !opts->no_inherit; 932 attr->write_backward = opts->overwrite ? 1 : 0; 933 934 perf_evsel__set_sample_bit(evsel, IP); 935 perf_evsel__set_sample_bit(evsel, TID); 936 937 if (evsel->sample_read) { 938 perf_evsel__set_sample_bit(evsel, READ); 939 940 /* 941 * We need ID even in case of single event, because 942 * PERF_SAMPLE_READ process ID specific data. 943 */ 944 perf_evsel__set_sample_id(evsel, false); 945 946 /* 947 * Apply group format only if we belong to group 948 * with more than one members. 949 */ 950 if (leader->nr_members > 1) { 951 attr->read_format |= PERF_FORMAT_GROUP; 952 attr->inherit = 0; 953 } 954 } 955 956 /* 957 * We default some events to have a default interval. But keep 958 * it a weak assumption overridable by the user. 959 */ 960 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 961 opts->user_interval != ULLONG_MAX)) { 962 if (opts->freq) { 963 perf_evsel__set_sample_bit(evsel, PERIOD); 964 attr->freq = 1; 965 attr->sample_freq = opts->freq; 966 } else { 967 attr->sample_period = opts->default_interval; 968 } 969 } 970 971 /* 972 * Disable sampling for all group members other 973 * than leader in case leader 'leads' the sampling. 974 */ 975 if ((leader != evsel) && leader->sample_read) { 976 attr->freq = 0; 977 attr->sample_freq = 0; 978 attr->sample_period = 0; 979 attr->write_backward = 0; 980 981 /* 982 * We don't get sample for slave events, we make them 983 * when delivering group leader sample. Set the slave 984 * event to follow the master sample_type to ease up 985 * report. 986 */ 987 attr->sample_type = leader->attr.sample_type; 988 } 989 990 if (opts->no_samples) 991 attr->sample_freq = 0; 992 993 if (opts->inherit_stat) { 994 evsel->attr.read_format |= 995 PERF_FORMAT_TOTAL_TIME_ENABLED | 996 PERF_FORMAT_TOTAL_TIME_RUNNING | 997 PERF_FORMAT_ID; 998 attr->inherit_stat = 1; 999 } 1000 1001 if (opts->sample_address) { 1002 perf_evsel__set_sample_bit(evsel, ADDR); 1003 attr->mmap_data = track; 1004 } 1005 1006 /* 1007 * We don't allow user space callchains for function trace 1008 * event, due to issues with page faults while tracing page 1009 * fault handler and its overall trickiness nature. 1010 */ 1011 if (perf_evsel__is_function_event(evsel)) 1012 evsel->attr.exclude_callchain_user = 1; 1013 1014 if (callchain && callchain->enabled && !evsel->no_aux_samples) 1015 perf_evsel__config_callchain(evsel, opts, callchain); 1016 1017 if (opts->sample_intr_regs) { 1018 attr->sample_regs_intr = opts->sample_intr_regs; 1019 perf_evsel__set_sample_bit(evsel, REGS_INTR); 1020 } 1021 1022 if (opts->sample_user_regs) { 1023 attr->sample_regs_user |= opts->sample_user_regs; 1024 perf_evsel__set_sample_bit(evsel, REGS_USER); 1025 } 1026 1027 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1028 perf_evsel__set_sample_bit(evsel, CPU); 1029 1030 /* 1031 * When the user explicitly disabled time don't force it here. 1032 */ 1033 if (opts->sample_time && 1034 (!perf_missing_features.sample_id_all && 1035 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1036 opts->sample_time_set))) 1037 perf_evsel__set_sample_bit(evsel, TIME); 1038 1039 if (opts->raw_samples && !evsel->no_aux_samples) { 1040 perf_evsel__set_sample_bit(evsel, TIME); 1041 perf_evsel__set_sample_bit(evsel, RAW); 1042 perf_evsel__set_sample_bit(evsel, CPU); 1043 } 1044 1045 if (opts->sample_address) 1046 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1047 1048 if (opts->sample_phys_addr) 1049 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1050 1051 if (opts->no_buffering) { 1052 attr->watermark = 0; 1053 attr->wakeup_events = 1; 1054 } 1055 if (opts->branch_stack && !evsel->no_aux_samples) { 1056 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1057 attr->branch_sample_type = opts->branch_stack; 1058 } 1059 1060 if (opts->sample_weight) 1061 perf_evsel__set_sample_bit(evsel, WEIGHT); 1062 1063 attr->task = track; 1064 attr->mmap = track; 1065 attr->mmap2 = track && !perf_missing_features.mmap2; 1066 attr->comm = track; 1067 attr->ksymbol = track && !perf_missing_features.ksymbol; 1068 attr->bpf_event = track && !opts->no_bpf_event && 1069 !perf_missing_features.bpf_event; 1070 1071 if (opts->record_namespaces) 1072 attr->namespaces = track; 1073 1074 if (opts->record_switch_events) 1075 attr->context_switch = track; 1076 1077 if (opts->sample_transaction) 1078 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1079 1080 if (opts->running_time) { 1081 evsel->attr.read_format |= 1082 PERF_FORMAT_TOTAL_TIME_ENABLED | 1083 PERF_FORMAT_TOTAL_TIME_RUNNING; 1084 } 1085 1086 /* 1087 * XXX see the function comment above 1088 * 1089 * Disabling only independent events or group leaders, 1090 * keeping group members enabled. 1091 */ 1092 if (perf_evsel__is_group_leader(evsel)) 1093 attr->disabled = 1; 1094 1095 /* 1096 * Setting enable_on_exec for independent events and 1097 * group leaders for traced executed by perf. 1098 */ 1099 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1100 !opts->initial_delay) 1101 attr->enable_on_exec = 1; 1102 1103 if (evsel->immediate) { 1104 attr->disabled = 0; 1105 attr->enable_on_exec = 0; 1106 } 1107 1108 clockid = opts->clockid; 1109 if (opts->use_clockid) { 1110 attr->use_clockid = 1; 1111 attr->clockid = opts->clockid; 1112 } 1113 1114 if (evsel->precise_max) 1115 attr->precise_ip = 3; 1116 1117 if (opts->all_user) { 1118 attr->exclude_kernel = 1; 1119 attr->exclude_user = 0; 1120 } 1121 1122 if (opts->all_kernel) { 1123 attr->exclude_kernel = 0; 1124 attr->exclude_user = 1; 1125 } 1126 1127 if (evsel->own_cpus || evsel->unit) 1128 evsel->attr.read_format |= PERF_FORMAT_ID; 1129 1130 /* 1131 * Apply event specific term settings, 1132 * it overloads any global configuration. 1133 */ 1134 apply_config_terms(evsel, opts, track); 1135 1136 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1137 1138 /* The --period option takes the precedence. */ 1139 if (opts->period_set) { 1140 if (opts->period) 1141 perf_evsel__set_sample_bit(evsel, PERIOD); 1142 else 1143 perf_evsel__reset_sample_bit(evsel, PERIOD); 1144 } 1145 1146 /* 1147 * For initial_delay, a dummy event is added implicitly. 1148 * The software event will trigger -EOPNOTSUPP error out, 1149 * if BRANCH_STACK bit is set. 1150 */ 1151 if (opts->initial_delay && is_dummy_event(evsel)) 1152 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1153 } 1154 1155 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1156 { 1157 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1158 1159 if (evsel->fd) { 1160 int cpu, thread; 1161 for (cpu = 0; cpu < ncpus; cpu++) { 1162 for (thread = 0; thread < nthreads; thread++) { 1163 FD(evsel, cpu, thread) = -1; 1164 } 1165 } 1166 } 1167 1168 return evsel->fd != NULL ? 0 : -ENOMEM; 1169 } 1170 1171 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1172 int ioc, void *arg) 1173 { 1174 int cpu, thread; 1175 1176 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1177 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1178 int fd = FD(evsel, cpu, thread), 1179 err = ioctl(fd, ioc, arg); 1180 1181 if (err) 1182 return err; 1183 } 1184 } 1185 1186 return 0; 1187 } 1188 1189 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1190 { 1191 return perf_evsel__run_ioctl(evsel, 1192 PERF_EVENT_IOC_SET_FILTER, 1193 (void *)filter); 1194 } 1195 1196 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1197 { 1198 char *new_filter = strdup(filter); 1199 1200 if (new_filter != NULL) { 1201 free(evsel->filter); 1202 evsel->filter = new_filter; 1203 return 0; 1204 } 1205 1206 return -1; 1207 } 1208 1209 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1210 const char *fmt, const char *filter) 1211 { 1212 char *new_filter; 1213 1214 if (evsel->filter == NULL) 1215 return perf_evsel__set_filter(evsel, filter); 1216 1217 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1218 free(evsel->filter); 1219 evsel->filter = new_filter; 1220 return 0; 1221 } 1222 1223 return -1; 1224 } 1225 1226 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1227 { 1228 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1229 } 1230 1231 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1232 { 1233 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1234 } 1235 1236 int perf_evsel__enable(struct perf_evsel *evsel) 1237 { 1238 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0); 1239 1240 if (!err) 1241 evsel->disabled = false; 1242 1243 return err; 1244 } 1245 1246 int perf_evsel__disable(struct perf_evsel *evsel) 1247 { 1248 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0); 1249 /* 1250 * We mark it disabled here so that tools that disable a event can 1251 * ignore events after they disable it. I.e. the ring buffer may have 1252 * already a few more events queued up before the kernel got the stop 1253 * request. 1254 */ 1255 if (!err) 1256 evsel->disabled = true; 1257 1258 return err; 1259 } 1260 1261 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1262 { 1263 if (ncpus == 0 || nthreads == 0) 1264 return 0; 1265 1266 if (evsel->system_wide) 1267 nthreads = 1; 1268 1269 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1270 if (evsel->sample_id == NULL) 1271 return -ENOMEM; 1272 1273 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1274 if (evsel->id == NULL) { 1275 xyarray__delete(evsel->sample_id); 1276 evsel->sample_id = NULL; 1277 return -ENOMEM; 1278 } 1279 1280 return 0; 1281 } 1282 1283 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1284 { 1285 xyarray__delete(evsel->fd); 1286 evsel->fd = NULL; 1287 } 1288 1289 static void perf_evsel__free_id(struct perf_evsel *evsel) 1290 { 1291 xyarray__delete(evsel->sample_id); 1292 evsel->sample_id = NULL; 1293 zfree(&evsel->id); 1294 } 1295 1296 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1297 { 1298 struct perf_evsel_config_term *term, *h; 1299 1300 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1301 list_del_init(&term->list); 1302 free(term); 1303 } 1304 } 1305 1306 void perf_evsel__close_fd(struct perf_evsel *evsel) 1307 { 1308 int cpu, thread; 1309 1310 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1311 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1312 close(FD(evsel, cpu, thread)); 1313 FD(evsel, cpu, thread) = -1; 1314 } 1315 } 1316 1317 void perf_evsel__exit(struct perf_evsel *evsel) 1318 { 1319 assert(list_empty(&evsel->node)); 1320 assert(evsel->evlist == NULL); 1321 perf_evsel__free_counts(evsel); 1322 perf_evsel__free_fd(evsel); 1323 perf_evsel__free_id(evsel); 1324 perf_evsel__free_config_terms(evsel); 1325 cgroup__put(evsel->cgrp); 1326 cpu_map__put(evsel->cpus); 1327 cpu_map__put(evsel->own_cpus); 1328 thread_map__put(evsel->threads); 1329 zfree(&evsel->group_name); 1330 zfree(&evsel->name); 1331 perf_evsel__object.fini(evsel); 1332 } 1333 1334 void perf_evsel__delete(struct perf_evsel *evsel) 1335 { 1336 perf_evsel__exit(evsel); 1337 free(evsel); 1338 } 1339 1340 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1341 struct perf_counts_values *count) 1342 { 1343 struct perf_counts_values tmp; 1344 1345 if (!evsel->prev_raw_counts) 1346 return; 1347 1348 if (cpu == -1) { 1349 tmp = evsel->prev_raw_counts->aggr; 1350 evsel->prev_raw_counts->aggr = *count; 1351 } else { 1352 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1353 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1354 } 1355 1356 count->val = count->val - tmp.val; 1357 count->ena = count->ena - tmp.ena; 1358 count->run = count->run - tmp.run; 1359 } 1360 1361 void perf_counts_values__scale(struct perf_counts_values *count, 1362 bool scale, s8 *pscaled) 1363 { 1364 s8 scaled = 0; 1365 1366 if (scale) { 1367 if (count->run == 0) { 1368 scaled = -1; 1369 count->val = 0; 1370 } else if (count->run < count->ena) { 1371 scaled = 1; 1372 count->val = (u64)((double) count->val * count->ena / count->run); 1373 } 1374 } 1375 1376 if (pscaled) 1377 *pscaled = scaled; 1378 } 1379 1380 static int perf_evsel__read_size(struct perf_evsel *evsel) 1381 { 1382 u64 read_format = evsel->attr.read_format; 1383 int entry = sizeof(u64); /* value */ 1384 int size = 0; 1385 int nr = 1; 1386 1387 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1388 size += sizeof(u64); 1389 1390 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1391 size += sizeof(u64); 1392 1393 if (read_format & PERF_FORMAT_ID) 1394 entry += sizeof(u64); 1395 1396 if (read_format & PERF_FORMAT_GROUP) { 1397 nr = evsel->nr_members; 1398 size += sizeof(u64); 1399 } 1400 1401 size += entry * nr; 1402 return size; 1403 } 1404 1405 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1406 struct perf_counts_values *count) 1407 { 1408 size_t size = perf_evsel__read_size(evsel); 1409 1410 memset(count, 0, sizeof(*count)); 1411 1412 if (FD(evsel, cpu, thread) < 0) 1413 return -EINVAL; 1414 1415 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1416 return -errno; 1417 1418 return 0; 1419 } 1420 1421 static int 1422 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1423 { 1424 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1425 1426 return perf_evsel__read(evsel, cpu, thread, count); 1427 } 1428 1429 static void 1430 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1431 u64 val, u64 ena, u64 run) 1432 { 1433 struct perf_counts_values *count; 1434 1435 count = perf_counts(counter->counts, cpu, thread); 1436 1437 count->val = val; 1438 count->ena = ena; 1439 count->run = run; 1440 count->loaded = true; 1441 } 1442 1443 static int 1444 perf_evsel__process_group_data(struct perf_evsel *leader, 1445 int cpu, int thread, u64 *data) 1446 { 1447 u64 read_format = leader->attr.read_format; 1448 struct sample_read_value *v; 1449 u64 nr, ena = 0, run = 0, i; 1450 1451 nr = *data++; 1452 1453 if (nr != (u64) leader->nr_members) 1454 return -EINVAL; 1455 1456 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1457 ena = *data++; 1458 1459 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1460 run = *data++; 1461 1462 v = (struct sample_read_value *) data; 1463 1464 perf_evsel__set_count(leader, cpu, thread, 1465 v[0].value, ena, run); 1466 1467 for (i = 1; i < nr; i++) { 1468 struct perf_evsel *counter; 1469 1470 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1471 if (!counter) 1472 return -EINVAL; 1473 1474 perf_evsel__set_count(counter, cpu, thread, 1475 v[i].value, ena, run); 1476 } 1477 1478 return 0; 1479 } 1480 1481 static int 1482 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1483 { 1484 struct perf_stat_evsel *ps = leader->stats; 1485 u64 read_format = leader->attr.read_format; 1486 int size = perf_evsel__read_size(leader); 1487 u64 *data = ps->group_data; 1488 1489 if (!(read_format & PERF_FORMAT_ID)) 1490 return -EINVAL; 1491 1492 if (!perf_evsel__is_group_leader(leader)) 1493 return -EINVAL; 1494 1495 if (!data) { 1496 data = zalloc(size); 1497 if (!data) 1498 return -ENOMEM; 1499 1500 ps->group_data = data; 1501 } 1502 1503 if (FD(leader, cpu, thread) < 0) 1504 return -EINVAL; 1505 1506 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1507 return -errno; 1508 1509 return perf_evsel__process_group_data(leader, cpu, thread, data); 1510 } 1511 1512 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1513 { 1514 u64 read_format = evsel->attr.read_format; 1515 1516 if (read_format & PERF_FORMAT_GROUP) 1517 return perf_evsel__read_group(evsel, cpu, thread); 1518 else 1519 return perf_evsel__read_one(evsel, cpu, thread); 1520 } 1521 1522 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1523 int cpu, int thread, bool scale) 1524 { 1525 struct perf_counts_values count; 1526 size_t nv = scale ? 3 : 1; 1527 1528 if (FD(evsel, cpu, thread) < 0) 1529 return -EINVAL; 1530 1531 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1532 return -ENOMEM; 1533 1534 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1535 return -errno; 1536 1537 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1538 perf_counts_values__scale(&count, scale, NULL); 1539 *perf_counts(evsel->counts, cpu, thread) = count; 1540 return 0; 1541 } 1542 1543 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1544 { 1545 struct perf_evsel *leader = evsel->leader; 1546 int fd; 1547 1548 if (perf_evsel__is_group_leader(evsel)) 1549 return -1; 1550 1551 /* 1552 * Leader must be already processed/open, 1553 * if not it's a bug. 1554 */ 1555 BUG_ON(!leader->fd); 1556 1557 fd = FD(leader, cpu, thread); 1558 BUG_ON(fd == -1); 1559 1560 return fd; 1561 } 1562 1563 struct bit_names { 1564 int bit; 1565 const char *name; 1566 }; 1567 1568 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1569 { 1570 bool first_bit = true; 1571 int i = 0; 1572 1573 do { 1574 if (value & bits[i].bit) { 1575 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1576 first_bit = false; 1577 } 1578 } while (bits[++i].name != NULL); 1579 } 1580 1581 static void __p_sample_type(char *buf, size_t size, u64 value) 1582 { 1583 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1584 struct bit_names bits[] = { 1585 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1586 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1587 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1588 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1589 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1590 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1591 { .name = NULL, } 1592 }; 1593 #undef bit_name 1594 __p_bits(buf, size, value, bits); 1595 } 1596 1597 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1598 { 1599 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1600 struct bit_names bits[] = { 1601 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1602 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1603 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1604 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1605 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1606 { .name = NULL, } 1607 }; 1608 #undef bit_name 1609 __p_bits(buf, size, value, bits); 1610 } 1611 1612 static void __p_read_format(char *buf, size_t size, u64 value) 1613 { 1614 #define bit_name(n) { PERF_FORMAT_##n, #n } 1615 struct bit_names bits[] = { 1616 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1617 bit_name(ID), bit_name(GROUP), 1618 { .name = NULL, } 1619 }; 1620 #undef bit_name 1621 __p_bits(buf, size, value, bits); 1622 } 1623 1624 #define BUF_SIZE 1024 1625 1626 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1627 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1628 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1629 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1630 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1631 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1632 1633 #define PRINT_ATTRn(_n, _f, _p) \ 1634 do { \ 1635 if (attr->_f) { \ 1636 _p(attr->_f); \ 1637 ret += attr__fprintf(fp, _n, buf, priv);\ 1638 } \ 1639 } while (0) 1640 1641 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1642 1643 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1644 attr__fprintf_f attr__fprintf, void *priv) 1645 { 1646 char buf[BUF_SIZE]; 1647 int ret = 0; 1648 1649 PRINT_ATTRf(type, p_unsigned); 1650 PRINT_ATTRf(size, p_unsigned); 1651 PRINT_ATTRf(config, p_hex); 1652 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1653 PRINT_ATTRf(sample_type, p_sample_type); 1654 PRINT_ATTRf(read_format, p_read_format); 1655 1656 PRINT_ATTRf(disabled, p_unsigned); 1657 PRINT_ATTRf(inherit, p_unsigned); 1658 PRINT_ATTRf(pinned, p_unsigned); 1659 PRINT_ATTRf(exclusive, p_unsigned); 1660 PRINT_ATTRf(exclude_user, p_unsigned); 1661 PRINT_ATTRf(exclude_kernel, p_unsigned); 1662 PRINT_ATTRf(exclude_hv, p_unsigned); 1663 PRINT_ATTRf(exclude_idle, p_unsigned); 1664 PRINT_ATTRf(mmap, p_unsigned); 1665 PRINT_ATTRf(comm, p_unsigned); 1666 PRINT_ATTRf(freq, p_unsigned); 1667 PRINT_ATTRf(inherit_stat, p_unsigned); 1668 PRINT_ATTRf(enable_on_exec, p_unsigned); 1669 PRINT_ATTRf(task, p_unsigned); 1670 PRINT_ATTRf(watermark, p_unsigned); 1671 PRINT_ATTRf(precise_ip, p_unsigned); 1672 PRINT_ATTRf(mmap_data, p_unsigned); 1673 PRINT_ATTRf(sample_id_all, p_unsigned); 1674 PRINT_ATTRf(exclude_host, p_unsigned); 1675 PRINT_ATTRf(exclude_guest, p_unsigned); 1676 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1677 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1678 PRINT_ATTRf(mmap2, p_unsigned); 1679 PRINT_ATTRf(comm_exec, p_unsigned); 1680 PRINT_ATTRf(use_clockid, p_unsigned); 1681 PRINT_ATTRf(context_switch, p_unsigned); 1682 PRINT_ATTRf(write_backward, p_unsigned); 1683 PRINT_ATTRf(namespaces, p_unsigned); 1684 PRINT_ATTRf(ksymbol, p_unsigned); 1685 PRINT_ATTRf(bpf_event, p_unsigned); 1686 1687 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1688 PRINT_ATTRf(bp_type, p_unsigned); 1689 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1690 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1691 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1692 PRINT_ATTRf(sample_regs_user, p_hex); 1693 PRINT_ATTRf(sample_stack_user, p_unsigned); 1694 PRINT_ATTRf(clockid, p_signed); 1695 PRINT_ATTRf(sample_regs_intr, p_hex); 1696 PRINT_ATTRf(aux_watermark, p_unsigned); 1697 PRINT_ATTRf(sample_max_stack, p_unsigned); 1698 1699 return ret; 1700 } 1701 1702 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1703 void *priv __maybe_unused) 1704 { 1705 return fprintf(fp, " %-32s %s\n", name, val); 1706 } 1707 1708 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1709 int nr_cpus, int nr_threads, 1710 int thread_idx) 1711 { 1712 for (int cpu = 0; cpu < nr_cpus; cpu++) 1713 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1714 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1715 } 1716 1717 static int update_fds(struct perf_evsel *evsel, 1718 int nr_cpus, int cpu_idx, 1719 int nr_threads, int thread_idx) 1720 { 1721 struct perf_evsel *pos; 1722 1723 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1724 return -EINVAL; 1725 1726 evlist__for_each_entry(evsel->evlist, pos) { 1727 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1728 1729 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1730 1731 /* 1732 * Since fds for next evsel has not been created, 1733 * there is no need to iterate whole event list. 1734 */ 1735 if (pos == evsel) 1736 break; 1737 } 1738 return 0; 1739 } 1740 1741 static bool ignore_missing_thread(struct perf_evsel *evsel, 1742 int nr_cpus, int cpu, 1743 struct thread_map *threads, 1744 int thread, int err) 1745 { 1746 pid_t ignore_pid = thread_map__pid(threads, thread); 1747 1748 if (!evsel->ignore_missing_thread) 1749 return false; 1750 1751 /* The system wide setup does not work with threads. */ 1752 if (evsel->system_wide) 1753 return false; 1754 1755 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1756 if (err != -ESRCH) 1757 return false; 1758 1759 /* If there's only one thread, let it fail. */ 1760 if (threads->nr == 1) 1761 return false; 1762 1763 /* 1764 * We should remove fd for missing_thread first 1765 * because thread_map__remove() will decrease threads->nr. 1766 */ 1767 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1768 return false; 1769 1770 if (thread_map__remove(threads, thread)) 1771 return false; 1772 1773 pr_warning("WARNING: Ignored open failure for pid %d\n", 1774 ignore_pid); 1775 return true; 1776 } 1777 1778 static void display_attr(struct perf_event_attr *attr) 1779 { 1780 if (verbose >= 2) { 1781 fprintf(stderr, "%.60s\n", graph_dotted_line); 1782 fprintf(stderr, "perf_event_attr:\n"); 1783 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1784 fprintf(stderr, "%.60s\n", graph_dotted_line); 1785 } 1786 } 1787 1788 static int perf_event_open(struct perf_evsel *evsel, 1789 pid_t pid, int cpu, int group_fd, 1790 unsigned long flags) 1791 { 1792 int precise_ip = evsel->attr.precise_ip; 1793 int fd; 1794 1795 while (1) { 1796 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1797 pid, cpu, group_fd, flags); 1798 1799 fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags); 1800 if (fd >= 0) 1801 break; 1802 1803 /* Do not try less precise if not requested. */ 1804 if (!evsel->precise_max) 1805 break; 1806 1807 /* 1808 * We tried all the precise_ip values, and it's 1809 * still failing, so leave it to standard fallback. 1810 */ 1811 if (!evsel->attr.precise_ip) { 1812 evsel->attr.precise_ip = precise_ip; 1813 break; 1814 } 1815 1816 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP); 1817 evsel->attr.precise_ip--; 1818 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip); 1819 display_attr(&evsel->attr); 1820 } 1821 1822 return fd; 1823 } 1824 1825 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1826 struct thread_map *threads) 1827 { 1828 int cpu, thread, nthreads; 1829 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1830 int pid = -1, err; 1831 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1832 1833 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1834 return -EINVAL; 1835 1836 if (cpus == NULL) { 1837 static struct cpu_map *empty_cpu_map; 1838 1839 if (empty_cpu_map == NULL) { 1840 empty_cpu_map = cpu_map__dummy_new(); 1841 if (empty_cpu_map == NULL) 1842 return -ENOMEM; 1843 } 1844 1845 cpus = empty_cpu_map; 1846 } 1847 1848 if (threads == NULL) { 1849 static struct thread_map *empty_thread_map; 1850 1851 if (empty_thread_map == NULL) { 1852 empty_thread_map = thread_map__new_by_tid(-1); 1853 if (empty_thread_map == NULL) 1854 return -ENOMEM; 1855 } 1856 1857 threads = empty_thread_map; 1858 } 1859 1860 if (evsel->system_wide) 1861 nthreads = 1; 1862 else 1863 nthreads = threads->nr; 1864 1865 if (evsel->fd == NULL && 1866 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1867 return -ENOMEM; 1868 1869 if (evsel->cgrp) { 1870 flags |= PERF_FLAG_PID_CGROUP; 1871 pid = evsel->cgrp->fd; 1872 } 1873 1874 fallback_missing_features: 1875 if (perf_missing_features.clockid_wrong) 1876 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1877 if (perf_missing_features.clockid) { 1878 evsel->attr.use_clockid = 0; 1879 evsel->attr.clockid = 0; 1880 } 1881 if (perf_missing_features.cloexec) 1882 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1883 if (perf_missing_features.mmap2) 1884 evsel->attr.mmap2 = 0; 1885 if (perf_missing_features.exclude_guest) 1886 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1887 if (perf_missing_features.lbr_flags) 1888 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1889 PERF_SAMPLE_BRANCH_NO_CYCLES); 1890 if (perf_missing_features.group_read && evsel->attr.inherit) 1891 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1892 if (perf_missing_features.ksymbol) 1893 evsel->attr.ksymbol = 0; 1894 if (perf_missing_features.bpf_event) 1895 evsel->attr.bpf_event = 0; 1896 retry_sample_id: 1897 if (perf_missing_features.sample_id_all) 1898 evsel->attr.sample_id_all = 0; 1899 1900 display_attr(&evsel->attr); 1901 1902 for (cpu = 0; cpu < cpus->nr; cpu++) { 1903 1904 for (thread = 0; thread < nthreads; thread++) { 1905 int fd, group_fd; 1906 1907 if (!evsel->cgrp && !evsel->system_wide) 1908 pid = thread_map__pid(threads, thread); 1909 1910 group_fd = get_group_fd(evsel, cpu, thread); 1911 retry_open: 1912 test_attr__ready(); 1913 1914 fd = perf_event_open(evsel, pid, cpus->map[cpu], 1915 group_fd, flags); 1916 1917 FD(evsel, cpu, thread) = fd; 1918 1919 if (fd < 0) { 1920 err = -errno; 1921 1922 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1923 /* 1924 * We just removed 1 thread, so take a step 1925 * back on thread index and lower the upper 1926 * nthreads limit. 1927 */ 1928 nthreads--; 1929 thread--; 1930 1931 /* ... and pretend like nothing have happened. */ 1932 err = 0; 1933 continue; 1934 } 1935 1936 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1937 err); 1938 goto try_fallback; 1939 } 1940 1941 pr_debug2(" = %d\n", fd); 1942 1943 if (evsel->bpf_fd >= 0) { 1944 int evt_fd = fd; 1945 int bpf_fd = evsel->bpf_fd; 1946 1947 err = ioctl(evt_fd, 1948 PERF_EVENT_IOC_SET_BPF, 1949 bpf_fd); 1950 if (err && errno != EEXIST) { 1951 pr_err("failed to attach bpf fd %d: %s\n", 1952 bpf_fd, strerror(errno)); 1953 err = -EINVAL; 1954 goto out_close; 1955 } 1956 } 1957 1958 set_rlimit = NO_CHANGE; 1959 1960 /* 1961 * If we succeeded but had to kill clockid, fail and 1962 * have perf_evsel__open_strerror() print us a nice 1963 * error. 1964 */ 1965 if (perf_missing_features.clockid || 1966 perf_missing_features.clockid_wrong) { 1967 err = -EINVAL; 1968 goto out_close; 1969 } 1970 } 1971 } 1972 1973 return 0; 1974 1975 try_fallback: 1976 /* 1977 * perf stat needs between 5 and 22 fds per CPU. When we run out 1978 * of them try to increase the limits. 1979 */ 1980 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1981 struct rlimit l; 1982 int old_errno = errno; 1983 1984 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1985 if (set_rlimit == NO_CHANGE) 1986 l.rlim_cur = l.rlim_max; 1987 else { 1988 l.rlim_cur = l.rlim_max + 1000; 1989 l.rlim_max = l.rlim_cur; 1990 } 1991 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1992 set_rlimit++; 1993 errno = old_errno; 1994 goto retry_open; 1995 } 1996 } 1997 errno = old_errno; 1998 } 1999 2000 if (err != -EINVAL || cpu > 0 || thread > 0) 2001 goto out_close; 2002 2003 /* 2004 * Must probe features in the order they were added to the 2005 * perf_event_attr interface. 2006 */ 2007 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) { 2008 perf_missing_features.bpf_event = true; 2009 pr_debug2("switching off bpf_event\n"); 2010 goto fallback_missing_features; 2011 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) { 2012 perf_missing_features.ksymbol = true; 2013 pr_debug2("switching off ksymbol\n"); 2014 goto fallback_missing_features; 2015 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 2016 perf_missing_features.write_backward = true; 2017 pr_debug2("switching off write_backward\n"); 2018 goto out_close; 2019 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 2020 perf_missing_features.clockid_wrong = true; 2021 pr_debug2("switching off clockid\n"); 2022 goto fallback_missing_features; 2023 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 2024 perf_missing_features.clockid = true; 2025 pr_debug2("switching off use_clockid\n"); 2026 goto fallback_missing_features; 2027 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 2028 perf_missing_features.cloexec = true; 2029 pr_debug2("switching off cloexec flag\n"); 2030 goto fallback_missing_features; 2031 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 2032 perf_missing_features.mmap2 = true; 2033 pr_debug2("switching off mmap2\n"); 2034 goto fallback_missing_features; 2035 } else if (!perf_missing_features.exclude_guest && 2036 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 2037 perf_missing_features.exclude_guest = true; 2038 pr_debug2("switching off exclude_guest, exclude_host\n"); 2039 goto fallback_missing_features; 2040 } else if (!perf_missing_features.sample_id_all) { 2041 perf_missing_features.sample_id_all = true; 2042 pr_debug2("switching off sample_id_all\n"); 2043 goto retry_sample_id; 2044 } else if (!perf_missing_features.lbr_flags && 2045 (evsel->attr.branch_sample_type & 2046 (PERF_SAMPLE_BRANCH_NO_CYCLES | 2047 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 2048 perf_missing_features.lbr_flags = true; 2049 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 2050 goto fallback_missing_features; 2051 } else if (!perf_missing_features.group_read && 2052 evsel->attr.inherit && 2053 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 2054 perf_evsel__is_group_leader(evsel)) { 2055 perf_missing_features.group_read = true; 2056 pr_debug2("switching off group read\n"); 2057 goto fallback_missing_features; 2058 } 2059 out_close: 2060 if (err) 2061 threads->err_thread = thread; 2062 2063 do { 2064 while (--thread >= 0) { 2065 close(FD(evsel, cpu, thread)); 2066 FD(evsel, cpu, thread) = -1; 2067 } 2068 thread = nthreads; 2069 } while (--cpu >= 0); 2070 return err; 2071 } 2072 2073 void perf_evsel__close(struct perf_evsel *evsel) 2074 { 2075 if (evsel->fd == NULL) 2076 return; 2077 2078 perf_evsel__close_fd(evsel); 2079 perf_evsel__free_fd(evsel); 2080 } 2081 2082 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 2083 struct cpu_map *cpus) 2084 { 2085 return perf_evsel__open(evsel, cpus, NULL); 2086 } 2087 2088 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 2089 struct thread_map *threads) 2090 { 2091 return perf_evsel__open(evsel, NULL, threads); 2092 } 2093 2094 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 2095 const union perf_event *event, 2096 struct perf_sample *sample) 2097 { 2098 u64 type = evsel->attr.sample_type; 2099 const u64 *array = event->sample.array; 2100 bool swapped = evsel->needs_swap; 2101 union u64_swap u; 2102 2103 array += ((event->header.size - 2104 sizeof(event->header)) / sizeof(u64)) - 1; 2105 2106 if (type & PERF_SAMPLE_IDENTIFIER) { 2107 sample->id = *array; 2108 array--; 2109 } 2110 2111 if (type & PERF_SAMPLE_CPU) { 2112 u.val64 = *array; 2113 if (swapped) { 2114 /* undo swap of u64, then swap on individual u32s */ 2115 u.val64 = bswap_64(u.val64); 2116 u.val32[0] = bswap_32(u.val32[0]); 2117 } 2118 2119 sample->cpu = u.val32[0]; 2120 array--; 2121 } 2122 2123 if (type & PERF_SAMPLE_STREAM_ID) { 2124 sample->stream_id = *array; 2125 array--; 2126 } 2127 2128 if (type & PERF_SAMPLE_ID) { 2129 sample->id = *array; 2130 array--; 2131 } 2132 2133 if (type & PERF_SAMPLE_TIME) { 2134 sample->time = *array; 2135 array--; 2136 } 2137 2138 if (type & PERF_SAMPLE_TID) { 2139 u.val64 = *array; 2140 if (swapped) { 2141 /* undo swap of u64, then swap on individual u32s */ 2142 u.val64 = bswap_64(u.val64); 2143 u.val32[0] = bswap_32(u.val32[0]); 2144 u.val32[1] = bswap_32(u.val32[1]); 2145 } 2146 2147 sample->pid = u.val32[0]; 2148 sample->tid = u.val32[1]; 2149 array--; 2150 } 2151 2152 return 0; 2153 } 2154 2155 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2156 u64 size) 2157 { 2158 return size > max_size || offset + size > endp; 2159 } 2160 2161 #define OVERFLOW_CHECK(offset, size, max_size) \ 2162 do { \ 2163 if (overflow(endp, (max_size), (offset), (size))) \ 2164 return -EFAULT; \ 2165 } while (0) 2166 2167 #define OVERFLOW_CHECK_u64(offset) \ 2168 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2169 2170 static int 2171 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2172 { 2173 /* 2174 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2175 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2176 * check the format does not go past the end of the event. 2177 */ 2178 if (sample_size + sizeof(event->header) > event->header.size) 2179 return -EFAULT; 2180 2181 return 0; 2182 } 2183 2184 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2185 struct perf_sample *data) 2186 { 2187 u64 type = evsel->attr.sample_type; 2188 bool swapped = evsel->needs_swap; 2189 const u64 *array; 2190 u16 max_size = event->header.size; 2191 const void *endp = (void *)event + max_size; 2192 u64 sz; 2193 2194 /* 2195 * used for cross-endian analysis. See git commit 65014ab3 2196 * for why this goofiness is needed. 2197 */ 2198 union u64_swap u; 2199 2200 memset(data, 0, sizeof(*data)); 2201 data->cpu = data->pid = data->tid = -1; 2202 data->stream_id = data->id = data->time = -1ULL; 2203 data->period = evsel->attr.sample_period; 2204 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2205 data->misc = event->header.misc; 2206 data->id = -1ULL; 2207 data->data_src = PERF_MEM_DATA_SRC_NONE; 2208 2209 if (event->header.type != PERF_RECORD_SAMPLE) { 2210 if (!evsel->attr.sample_id_all) 2211 return 0; 2212 return perf_evsel__parse_id_sample(evsel, event, data); 2213 } 2214 2215 array = event->sample.array; 2216 2217 if (perf_event__check_size(event, evsel->sample_size)) 2218 return -EFAULT; 2219 2220 if (type & PERF_SAMPLE_IDENTIFIER) { 2221 data->id = *array; 2222 array++; 2223 } 2224 2225 if (type & PERF_SAMPLE_IP) { 2226 data->ip = *array; 2227 array++; 2228 } 2229 2230 if (type & PERF_SAMPLE_TID) { 2231 u.val64 = *array; 2232 if (swapped) { 2233 /* undo swap of u64, then swap on individual u32s */ 2234 u.val64 = bswap_64(u.val64); 2235 u.val32[0] = bswap_32(u.val32[0]); 2236 u.val32[1] = bswap_32(u.val32[1]); 2237 } 2238 2239 data->pid = u.val32[0]; 2240 data->tid = u.val32[1]; 2241 array++; 2242 } 2243 2244 if (type & PERF_SAMPLE_TIME) { 2245 data->time = *array; 2246 array++; 2247 } 2248 2249 if (type & PERF_SAMPLE_ADDR) { 2250 data->addr = *array; 2251 array++; 2252 } 2253 2254 if (type & PERF_SAMPLE_ID) { 2255 data->id = *array; 2256 array++; 2257 } 2258 2259 if (type & PERF_SAMPLE_STREAM_ID) { 2260 data->stream_id = *array; 2261 array++; 2262 } 2263 2264 if (type & PERF_SAMPLE_CPU) { 2265 2266 u.val64 = *array; 2267 if (swapped) { 2268 /* undo swap of u64, then swap on individual u32s */ 2269 u.val64 = bswap_64(u.val64); 2270 u.val32[0] = bswap_32(u.val32[0]); 2271 } 2272 2273 data->cpu = u.val32[0]; 2274 array++; 2275 } 2276 2277 if (type & PERF_SAMPLE_PERIOD) { 2278 data->period = *array; 2279 array++; 2280 } 2281 2282 if (type & PERF_SAMPLE_READ) { 2283 u64 read_format = evsel->attr.read_format; 2284 2285 OVERFLOW_CHECK_u64(array); 2286 if (read_format & PERF_FORMAT_GROUP) 2287 data->read.group.nr = *array; 2288 else 2289 data->read.one.value = *array; 2290 2291 array++; 2292 2293 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2294 OVERFLOW_CHECK_u64(array); 2295 data->read.time_enabled = *array; 2296 array++; 2297 } 2298 2299 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2300 OVERFLOW_CHECK_u64(array); 2301 data->read.time_running = *array; 2302 array++; 2303 } 2304 2305 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2306 if (read_format & PERF_FORMAT_GROUP) { 2307 const u64 max_group_nr = UINT64_MAX / 2308 sizeof(struct sample_read_value); 2309 2310 if (data->read.group.nr > max_group_nr) 2311 return -EFAULT; 2312 sz = data->read.group.nr * 2313 sizeof(struct sample_read_value); 2314 OVERFLOW_CHECK(array, sz, max_size); 2315 data->read.group.values = 2316 (struct sample_read_value *)array; 2317 array = (void *)array + sz; 2318 } else { 2319 OVERFLOW_CHECK_u64(array); 2320 data->read.one.id = *array; 2321 array++; 2322 } 2323 } 2324 2325 if (evsel__has_callchain(evsel)) { 2326 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2327 2328 OVERFLOW_CHECK_u64(array); 2329 data->callchain = (struct ip_callchain *)array++; 2330 if (data->callchain->nr > max_callchain_nr) 2331 return -EFAULT; 2332 sz = data->callchain->nr * sizeof(u64); 2333 OVERFLOW_CHECK(array, sz, max_size); 2334 array = (void *)array + sz; 2335 } 2336 2337 if (type & PERF_SAMPLE_RAW) { 2338 OVERFLOW_CHECK_u64(array); 2339 u.val64 = *array; 2340 2341 /* 2342 * Undo swap of u64, then swap on individual u32s, 2343 * get the size of the raw area and undo all of the 2344 * swap. The pevent interface handles endianity by 2345 * itself. 2346 */ 2347 if (swapped) { 2348 u.val64 = bswap_64(u.val64); 2349 u.val32[0] = bswap_32(u.val32[0]); 2350 u.val32[1] = bswap_32(u.val32[1]); 2351 } 2352 data->raw_size = u.val32[0]; 2353 2354 /* 2355 * The raw data is aligned on 64bits including the 2356 * u32 size, so it's safe to use mem_bswap_64. 2357 */ 2358 if (swapped) 2359 mem_bswap_64((void *) array, data->raw_size); 2360 2361 array = (void *)array + sizeof(u32); 2362 2363 OVERFLOW_CHECK(array, data->raw_size, max_size); 2364 data->raw_data = (void *)array; 2365 array = (void *)array + data->raw_size; 2366 } 2367 2368 if (type & PERF_SAMPLE_BRANCH_STACK) { 2369 const u64 max_branch_nr = UINT64_MAX / 2370 sizeof(struct branch_entry); 2371 2372 OVERFLOW_CHECK_u64(array); 2373 data->branch_stack = (struct branch_stack *)array++; 2374 2375 if (data->branch_stack->nr > max_branch_nr) 2376 return -EFAULT; 2377 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2378 OVERFLOW_CHECK(array, sz, max_size); 2379 array = (void *)array + sz; 2380 } 2381 2382 if (type & PERF_SAMPLE_REGS_USER) { 2383 OVERFLOW_CHECK_u64(array); 2384 data->user_regs.abi = *array; 2385 array++; 2386 2387 if (data->user_regs.abi) { 2388 u64 mask = evsel->attr.sample_regs_user; 2389 2390 sz = hweight64(mask) * sizeof(u64); 2391 OVERFLOW_CHECK(array, sz, max_size); 2392 data->user_regs.mask = mask; 2393 data->user_regs.regs = (u64 *)array; 2394 array = (void *)array + sz; 2395 } 2396 } 2397 2398 if (type & PERF_SAMPLE_STACK_USER) { 2399 OVERFLOW_CHECK_u64(array); 2400 sz = *array++; 2401 2402 data->user_stack.offset = ((char *)(array - 1) 2403 - (char *) event); 2404 2405 if (!sz) { 2406 data->user_stack.size = 0; 2407 } else { 2408 OVERFLOW_CHECK(array, sz, max_size); 2409 data->user_stack.data = (char *)array; 2410 array = (void *)array + sz; 2411 OVERFLOW_CHECK_u64(array); 2412 data->user_stack.size = *array++; 2413 if (WARN_ONCE(data->user_stack.size > sz, 2414 "user stack dump failure\n")) 2415 return -EFAULT; 2416 } 2417 } 2418 2419 if (type & PERF_SAMPLE_WEIGHT) { 2420 OVERFLOW_CHECK_u64(array); 2421 data->weight = *array; 2422 array++; 2423 } 2424 2425 if (type & PERF_SAMPLE_DATA_SRC) { 2426 OVERFLOW_CHECK_u64(array); 2427 data->data_src = *array; 2428 array++; 2429 } 2430 2431 if (type & PERF_SAMPLE_TRANSACTION) { 2432 OVERFLOW_CHECK_u64(array); 2433 data->transaction = *array; 2434 array++; 2435 } 2436 2437 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2438 if (type & PERF_SAMPLE_REGS_INTR) { 2439 OVERFLOW_CHECK_u64(array); 2440 data->intr_regs.abi = *array; 2441 array++; 2442 2443 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2444 u64 mask = evsel->attr.sample_regs_intr; 2445 2446 sz = hweight64(mask) * sizeof(u64); 2447 OVERFLOW_CHECK(array, sz, max_size); 2448 data->intr_regs.mask = mask; 2449 data->intr_regs.regs = (u64 *)array; 2450 array = (void *)array + sz; 2451 } 2452 } 2453 2454 data->phys_addr = 0; 2455 if (type & PERF_SAMPLE_PHYS_ADDR) { 2456 data->phys_addr = *array; 2457 array++; 2458 } 2459 2460 return 0; 2461 } 2462 2463 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2464 union perf_event *event, 2465 u64 *timestamp) 2466 { 2467 u64 type = evsel->attr.sample_type; 2468 const u64 *array; 2469 2470 if (!(type & PERF_SAMPLE_TIME)) 2471 return -1; 2472 2473 if (event->header.type != PERF_RECORD_SAMPLE) { 2474 struct perf_sample data = { 2475 .time = -1ULL, 2476 }; 2477 2478 if (!evsel->attr.sample_id_all) 2479 return -1; 2480 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2481 return -1; 2482 2483 *timestamp = data.time; 2484 return 0; 2485 } 2486 2487 array = event->sample.array; 2488 2489 if (perf_event__check_size(event, evsel->sample_size)) 2490 return -EFAULT; 2491 2492 if (type & PERF_SAMPLE_IDENTIFIER) 2493 array++; 2494 2495 if (type & PERF_SAMPLE_IP) 2496 array++; 2497 2498 if (type & PERF_SAMPLE_TID) 2499 array++; 2500 2501 if (type & PERF_SAMPLE_TIME) 2502 *timestamp = *array; 2503 2504 return 0; 2505 } 2506 2507 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2508 u64 read_format) 2509 { 2510 size_t sz, result = sizeof(struct sample_event); 2511 2512 if (type & PERF_SAMPLE_IDENTIFIER) 2513 result += sizeof(u64); 2514 2515 if (type & PERF_SAMPLE_IP) 2516 result += sizeof(u64); 2517 2518 if (type & PERF_SAMPLE_TID) 2519 result += sizeof(u64); 2520 2521 if (type & PERF_SAMPLE_TIME) 2522 result += sizeof(u64); 2523 2524 if (type & PERF_SAMPLE_ADDR) 2525 result += sizeof(u64); 2526 2527 if (type & PERF_SAMPLE_ID) 2528 result += sizeof(u64); 2529 2530 if (type & PERF_SAMPLE_STREAM_ID) 2531 result += sizeof(u64); 2532 2533 if (type & PERF_SAMPLE_CPU) 2534 result += sizeof(u64); 2535 2536 if (type & PERF_SAMPLE_PERIOD) 2537 result += sizeof(u64); 2538 2539 if (type & PERF_SAMPLE_READ) { 2540 result += sizeof(u64); 2541 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2542 result += sizeof(u64); 2543 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2544 result += sizeof(u64); 2545 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2546 if (read_format & PERF_FORMAT_GROUP) { 2547 sz = sample->read.group.nr * 2548 sizeof(struct sample_read_value); 2549 result += sz; 2550 } else { 2551 result += sizeof(u64); 2552 } 2553 } 2554 2555 if (type & PERF_SAMPLE_CALLCHAIN) { 2556 sz = (sample->callchain->nr + 1) * sizeof(u64); 2557 result += sz; 2558 } 2559 2560 if (type & PERF_SAMPLE_RAW) { 2561 result += sizeof(u32); 2562 result += sample->raw_size; 2563 } 2564 2565 if (type & PERF_SAMPLE_BRANCH_STACK) { 2566 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2567 sz += sizeof(u64); 2568 result += sz; 2569 } 2570 2571 if (type & PERF_SAMPLE_REGS_USER) { 2572 if (sample->user_regs.abi) { 2573 result += sizeof(u64); 2574 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2575 result += sz; 2576 } else { 2577 result += sizeof(u64); 2578 } 2579 } 2580 2581 if (type & PERF_SAMPLE_STACK_USER) { 2582 sz = sample->user_stack.size; 2583 result += sizeof(u64); 2584 if (sz) { 2585 result += sz; 2586 result += sizeof(u64); 2587 } 2588 } 2589 2590 if (type & PERF_SAMPLE_WEIGHT) 2591 result += sizeof(u64); 2592 2593 if (type & PERF_SAMPLE_DATA_SRC) 2594 result += sizeof(u64); 2595 2596 if (type & PERF_SAMPLE_TRANSACTION) 2597 result += sizeof(u64); 2598 2599 if (type & PERF_SAMPLE_REGS_INTR) { 2600 if (sample->intr_regs.abi) { 2601 result += sizeof(u64); 2602 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2603 result += sz; 2604 } else { 2605 result += sizeof(u64); 2606 } 2607 } 2608 2609 if (type & PERF_SAMPLE_PHYS_ADDR) 2610 result += sizeof(u64); 2611 2612 return result; 2613 } 2614 2615 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2616 u64 read_format, 2617 const struct perf_sample *sample) 2618 { 2619 u64 *array; 2620 size_t sz; 2621 /* 2622 * used for cross-endian analysis. See git commit 65014ab3 2623 * for why this goofiness is needed. 2624 */ 2625 union u64_swap u; 2626 2627 array = event->sample.array; 2628 2629 if (type & PERF_SAMPLE_IDENTIFIER) { 2630 *array = sample->id; 2631 array++; 2632 } 2633 2634 if (type & PERF_SAMPLE_IP) { 2635 *array = sample->ip; 2636 array++; 2637 } 2638 2639 if (type & PERF_SAMPLE_TID) { 2640 u.val32[0] = sample->pid; 2641 u.val32[1] = sample->tid; 2642 *array = u.val64; 2643 array++; 2644 } 2645 2646 if (type & PERF_SAMPLE_TIME) { 2647 *array = sample->time; 2648 array++; 2649 } 2650 2651 if (type & PERF_SAMPLE_ADDR) { 2652 *array = sample->addr; 2653 array++; 2654 } 2655 2656 if (type & PERF_SAMPLE_ID) { 2657 *array = sample->id; 2658 array++; 2659 } 2660 2661 if (type & PERF_SAMPLE_STREAM_ID) { 2662 *array = sample->stream_id; 2663 array++; 2664 } 2665 2666 if (type & PERF_SAMPLE_CPU) { 2667 u.val32[0] = sample->cpu; 2668 u.val32[1] = 0; 2669 *array = u.val64; 2670 array++; 2671 } 2672 2673 if (type & PERF_SAMPLE_PERIOD) { 2674 *array = sample->period; 2675 array++; 2676 } 2677 2678 if (type & PERF_SAMPLE_READ) { 2679 if (read_format & PERF_FORMAT_GROUP) 2680 *array = sample->read.group.nr; 2681 else 2682 *array = sample->read.one.value; 2683 array++; 2684 2685 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2686 *array = sample->read.time_enabled; 2687 array++; 2688 } 2689 2690 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2691 *array = sample->read.time_running; 2692 array++; 2693 } 2694 2695 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2696 if (read_format & PERF_FORMAT_GROUP) { 2697 sz = sample->read.group.nr * 2698 sizeof(struct sample_read_value); 2699 memcpy(array, sample->read.group.values, sz); 2700 array = (void *)array + sz; 2701 } else { 2702 *array = sample->read.one.id; 2703 array++; 2704 } 2705 } 2706 2707 if (type & PERF_SAMPLE_CALLCHAIN) { 2708 sz = (sample->callchain->nr + 1) * sizeof(u64); 2709 memcpy(array, sample->callchain, sz); 2710 array = (void *)array + sz; 2711 } 2712 2713 if (type & PERF_SAMPLE_RAW) { 2714 u.val32[0] = sample->raw_size; 2715 *array = u.val64; 2716 array = (void *)array + sizeof(u32); 2717 2718 memcpy(array, sample->raw_data, sample->raw_size); 2719 array = (void *)array + sample->raw_size; 2720 } 2721 2722 if (type & PERF_SAMPLE_BRANCH_STACK) { 2723 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2724 sz += sizeof(u64); 2725 memcpy(array, sample->branch_stack, sz); 2726 array = (void *)array + sz; 2727 } 2728 2729 if (type & PERF_SAMPLE_REGS_USER) { 2730 if (sample->user_regs.abi) { 2731 *array++ = sample->user_regs.abi; 2732 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2733 memcpy(array, sample->user_regs.regs, sz); 2734 array = (void *)array + sz; 2735 } else { 2736 *array++ = 0; 2737 } 2738 } 2739 2740 if (type & PERF_SAMPLE_STACK_USER) { 2741 sz = sample->user_stack.size; 2742 *array++ = sz; 2743 if (sz) { 2744 memcpy(array, sample->user_stack.data, sz); 2745 array = (void *)array + sz; 2746 *array++ = sz; 2747 } 2748 } 2749 2750 if (type & PERF_SAMPLE_WEIGHT) { 2751 *array = sample->weight; 2752 array++; 2753 } 2754 2755 if (type & PERF_SAMPLE_DATA_SRC) { 2756 *array = sample->data_src; 2757 array++; 2758 } 2759 2760 if (type & PERF_SAMPLE_TRANSACTION) { 2761 *array = sample->transaction; 2762 array++; 2763 } 2764 2765 if (type & PERF_SAMPLE_REGS_INTR) { 2766 if (sample->intr_regs.abi) { 2767 *array++ = sample->intr_regs.abi; 2768 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2769 memcpy(array, sample->intr_regs.regs, sz); 2770 array = (void *)array + sz; 2771 } else { 2772 *array++ = 0; 2773 } 2774 } 2775 2776 if (type & PERF_SAMPLE_PHYS_ADDR) { 2777 *array = sample->phys_addr; 2778 array++; 2779 } 2780 2781 return 0; 2782 } 2783 2784 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2785 { 2786 return tep_find_field(evsel->tp_format, name); 2787 } 2788 2789 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2790 const char *name) 2791 { 2792 struct tep_format_field *field = perf_evsel__field(evsel, name); 2793 int offset; 2794 2795 if (!field) 2796 return NULL; 2797 2798 offset = field->offset; 2799 2800 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2801 offset = *(int *)(sample->raw_data + field->offset); 2802 offset &= 0xffff; 2803 } 2804 2805 return sample->raw_data + offset; 2806 } 2807 2808 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2809 bool needs_swap) 2810 { 2811 u64 value; 2812 void *ptr = sample->raw_data + field->offset; 2813 2814 switch (field->size) { 2815 case 1: 2816 return *(u8 *)ptr; 2817 case 2: 2818 value = *(u16 *)ptr; 2819 break; 2820 case 4: 2821 value = *(u32 *)ptr; 2822 break; 2823 case 8: 2824 memcpy(&value, ptr, sizeof(u64)); 2825 break; 2826 default: 2827 return 0; 2828 } 2829 2830 if (!needs_swap) 2831 return value; 2832 2833 switch (field->size) { 2834 case 2: 2835 return bswap_16(value); 2836 case 4: 2837 return bswap_32(value); 2838 case 8: 2839 return bswap_64(value); 2840 default: 2841 return 0; 2842 } 2843 2844 return 0; 2845 } 2846 2847 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2848 const char *name) 2849 { 2850 struct tep_format_field *field = perf_evsel__field(evsel, name); 2851 2852 if (!field) 2853 return 0; 2854 2855 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2856 } 2857 2858 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2859 char *msg, size_t msgsize) 2860 { 2861 int paranoid; 2862 2863 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2864 evsel->attr.type == PERF_TYPE_HARDWARE && 2865 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2866 /* 2867 * If it's cycles then fall back to hrtimer based 2868 * cpu-clock-tick sw counter, which is always available even if 2869 * no PMU support. 2870 * 2871 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2872 * b0a873e). 2873 */ 2874 scnprintf(msg, msgsize, "%s", 2875 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2876 2877 evsel->attr.type = PERF_TYPE_SOFTWARE; 2878 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2879 2880 zfree(&evsel->name); 2881 return true; 2882 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2883 (paranoid = perf_event_paranoid()) > 1) { 2884 const char *name = perf_evsel__name(evsel); 2885 char *new_name; 2886 const char *sep = ":"; 2887 2888 /* Is there already the separator in the name. */ 2889 if (strchr(name, '/') || 2890 strchr(name, ':')) 2891 sep = ""; 2892 2893 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2894 return false; 2895 2896 if (evsel->name) 2897 free(evsel->name); 2898 evsel->name = new_name; 2899 scnprintf(msg, msgsize, 2900 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2901 evsel->attr.exclude_kernel = 1; 2902 2903 return true; 2904 } 2905 2906 return false; 2907 } 2908 2909 static bool find_process(const char *name) 2910 { 2911 size_t len = strlen(name); 2912 DIR *dir; 2913 struct dirent *d; 2914 int ret = -1; 2915 2916 dir = opendir(procfs__mountpoint()); 2917 if (!dir) 2918 return false; 2919 2920 /* Walk through the directory. */ 2921 while (ret && (d = readdir(dir)) != NULL) { 2922 char path[PATH_MAX]; 2923 char *data; 2924 size_t size; 2925 2926 if ((d->d_type != DT_DIR) || 2927 !strcmp(".", d->d_name) || 2928 !strcmp("..", d->d_name)) 2929 continue; 2930 2931 scnprintf(path, sizeof(path), "%s/%s/comm", 2932 procfs__mountpoint(), d->d_name); 2933 2934 if (filename__read_str(path, &data, &size)) 2935 continue; 2936 2937 ret = strncmp(name, data, len); 2938 free(data); 2939 } 2940 2941 closedir(dir); 2942 return ret ? false : true; 2943 } 2944 2945 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2946 int err, char *msg, size_t size) 2947 { 2948 char sbuf[STRERR_BUFSIZE]; 2949 int printed = 0; 2950 2951 switch (err) { 2952 case EPERM: 2953 case EACCES: 2954 if (err == EPERM) 2955 printed = scnprintf(msg, size, 2956 "No permission to enable %s event.\n\n", 2957 perf_evsel__name(evsel)); 2958 2959 return scnprintf(msg + printed, size - printed, 2960 "You may not have permission to collect %sstats.\n\n" 2961 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2962 "which controls use of the performance events system by\n" 2963 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2964 "The current value is %d:\n\n" 2965 " -1: Allow use of (almost) all events by all users\n" 2966 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2967 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2968 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2969 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2970 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2971 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2972 " kernel.perf_event_paranoid = -1\n" , 2973 target->system_wide ? "system-wide " : "", 2974 perf_event_paranoid()); 2975 case ENOENT: 2976 return scnprintf(msg, size, "The %s event is not supported.", 2977 perf_evsel__name(evsel)); 2978 case EMFILE: 2979 return scnprintf(msg, size, "%s", 2980 "Too many events are opened.\n" 2981 "Probably the maximum number of open file descriptors has been reached.\n" 2982 "Hint: Try again after reducing the number of events.\n" 2983 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2984 case ENOMEM: 2985 if (evsel__has_callchain(evsel) && 2986 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2987 return scnprintf(msg, size, 2988 "Not enough memory to setup event with callchain.\n" 2989 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2990 "Hint: Current value: %d", sysctl__max_stack()); 2991 break; 2992 case ENODEV: 2993 if (target->cpu_list) 2994 return scnprintf(msg, size, "%s", 2995 "No such device - did you specify an out-of-range profile CPU?"); 2996 break; 2997 case EOPNOTSUPP: 2998 if (evsel->attr.sample_period != 0) 2999 return scnprintf(msg, size, 3000 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 3001 perf_evsel__name(evsel)); 3002 if (evsel->attr.precise_ip) 3003 return scnprintf(msg, size, "%s", 3004 "\'precise\' request may not be supported. Try removing 'p' modifier."); 3005 #if defined(__i386__) || defined(__x86_64__) 3006 if (evsel->attr.type == PERF_TYPE_HARDWARE) 3007 return scnprintf(msg, size, "%s", 3008 "No hardware sampling interrupt available.\n"); 3009 #endif 3010 break; 3011 case EBUSY: 3012 if (find_process("oprofiled")) 3013 return scnprintf(msg, size, 3014 "The PMU counters are busy/taken by another profiler.\n" 3015 "We found oprofile daemon running, please stop it and try again."); 3016 break; 3017 case EINVAL: 3018 if (evsel->attr.write_backward && perf_missing_features.write_backward) 3019 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 3020 if (perf_missing_features.clockid) 3021 return scnprintf(msg, size, "clockid feature not supported."); 3022 if (perf_missing_features.clockid_wrong) 3023 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 3024 break; 3025 default: 3026 break; 3027 } 3028 3029 return scnprintf(msg, size, 3030 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 3031 "/bin/dmesg | grep -i perf may provide additional information.\n", 3032 err, str_error_r(err, sbuf, sizeof(sbuf)), 3033 perf_evsel__name(evsel)); 3034 } 3035 3036 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 3037 { 3038 if (evsel && evsel->evlist) 3039 return evsel->evlist->env; 3040 return NULL; 3041 } 3042 3043 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3044 { 3045 int cpu, thread; 3046 3047 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 3048 for (thread = 0; thread < xyarray__max_y(evsel->fd); 3049 thread++) { 3050 int fd = FD(evsel, cpu, thread); 3051 3052 if (perf_evlist__id_add_fd(evlist, evsel, 3053 cpu, thread, fd) < 0) 3054 return -1; 3055 } 3056 } 3057 3058 return 0; 3059 } 3060 3061 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3062 { 3063 struct cpu_map *cpus = evsel->cpus; 3064 struct thread_map *threads = evsel->threads; 3065 3066 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 3067 return -ENOMEM; 3068 3069 return store_evsel_ids(evsel, evlist); 3070 } 3071