xref: /openbmc/linux/tools/perf/util/evsel.c (revision 20e8ef5c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include <stdlib.h>
26 #include <perf/evsel.h>
27 #include "asm/bug.h"
28 #include "bpf_counter.h"
29 #include "callchain.h"
30 #include "cgroup.h"
31 #include "counts.h"
32 #include "event.h"
33 #include "evsel.h"
34 #include "util/env.h"
35 #include "util/evsel_config.h"
36 #include "util/evsel_fprintf.h"
37 #include "evlist.h"
38 #include <perf/cpumap.h>
39 #include "thread_map.h"
40 #include "target.h"
41 #include "perf_regs.h"
42 #include "record.h"
43 #include "debug.h"
44 #include "trace-event.h"
45 #include "stat.h"
46 #include "string2.h"
47 #include "memswap.h"
48 #include "util.h"
49 #include "hashmap.h"
50 #include "pmu-hybrid.h"
51 #include "../perf-sys.h"
52 #include "util/parse-branch-options.h"
53 #include <internal/xyarray.h>
54 #include <internal/lib.h>
55 
56 #include <linux/ctype.h>
57 
58 struct perf_missing_features perf_missing_features;
59 
60 static clockid_t clockid;
61 
62 static int evsel__no_extra_init(struct evsel *evsel __maybe_unused)
63 {
64 	return 0;
65 }
66 
67 void __weak test_attr__ready(void) { }
68 
69 static void evsel__no_extra_fini(struct evsel *evsel __maybe_unused)
70 {
71 }
72 
73 static struct {
74 	size_t	size;
75 	int	(*init)(struct evsel *evsel);
76 	void	(*fini)(struct evsel *evsel);
77 } perf_evsel__object = {
78 	.size = sizeof(struct evsel),
79 	.init = evsel__no_extra_init,
80 	.fini = evsel__no_extra_fini,
81 };
82 
83 int evsel__object_config(size_t object_size, int (*init)(struct evsel *evsel),
84 			 void (*fini)(struct evsel *evsel))
85 {
86 
87 	if (object_size == 0)
88 		goto set_methods;
89 
90 	if (perf_evsel__object.size > object_size)
91 		return -EINVAL;
92 
93 	perf_evsel__object.size = object_size;
94 
95 set_methods:
96 	if (init != NULL)
97 		perf_evsel__object.init = init;
98 
99 	if (fini != NULL)
100 		perf_evsel__object.fini = fini;
101 
102 	return 0;
103 }
104 
105 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
106 
107 int __evsel__sample_size(u64 sample_type)
108 {
109 	u64 mask = sample_type & PERF_SAMPLE_MASK;
110 	int size = 0;
111 	int i;
112 
113 	for (i = 0; i < 64; i++) {
114 		if (mask & (1ULL << i))
115 			size++;
116 	}
117 
118 	size *= sizeof(u64);
119 
120 	return size;
121 }
122 
123 /**
124  * __perf_evsel__calc_id_pos - calculate id_pos.
125  * @sample_type: sample type
126  *
127  * This function returns the position of the event id (PERF_SAMPLE_ID or
128  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
129  * perf_record_sample.
130  */
131 static int __perf_evsel__calc_id_pos(u64 sample_type)
132 {
133 	int idx = 0;
134 
135 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
136 		return 0;
137 
138 	if (!(sample_type & PERF_SAMPLE_ID))
139 		return -1;
140 
141 	if (sample_type & PERF_SAMPLE_IP)
142 		idx += 1;
143 
144 	if (sample_type & PERF_SAMPLE_TID)
145 		idx += 1;
146 
147 	if (sample_type & PERF_SAMPLE_TIME)
148 		idx += 1;
149 
150 	if (sample_type & PERF_SAMPLE_ADDR)
151 		idx += 1;
152 
153 	return idx;
154 }
155 
156 /**
157  * __perf_evsel__calc_is_pos - calculate is_pos.
158  * @sample_type: sample type
159  *
160  * This function returns the position (counting backwards) of the event id
161  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
162  * sample_id_all is used there is an id sample appended to non-sample events.
163  */
164 static int __perf_evsel__calc_is_pos(u64 sample_type)
165 {
166 	int idx = 1;
167 
168 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
169 		return 1;
170 
171 	if (!(sample_type & PERF_SAMPLE_ID))
172 		return -1;
173 
174 	if (sample_type & PERF_SAMPLE_CPU)
175 		idx += 1;
176 
177 	if (sample_type & PERF_SAMPLE_STREAM_ID)
178 		idx += 1;
179 
180 	return idx;
181 }
182 
183 void evsel__calc_id_pos(struct evsel *evsel)
184 {
185 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type);
186 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type);
187 }
188 
189 void __evsel__set_sample_bit(struct evsel *evsel,
190 				  enum perf_event_sample_format bit)
191 {
192 	if (!(evsel->core.attr.sample_type & bit)) {
193 		evsel->core.attr.sample_type |= bit;
194 		evsel->sample_size += sizeof(u64);
195 		evsel__calc_id_pos(evsel);
196 	}
197 }
198 
199 void __evsel__reset_sample_bit(struct evsel *evsel,
200 				    enum perf_event_sample_format bit)
201 {
202 	if (evsel->core.attr.sample_type & bit) {
203 		evsel->core.attr.sample_type &= ~bit;
204 		evsel->sample_size -= sizeof(u64);
205 		evsel__calc_id_pos(evsel);
206 	}
207 }
208 
209 void evsel__set_sample_id(struct evsel *evsel,
210 			       bool can_sample_identifier)
211 {
212 	if (can_sample_identifier) {
213 		evsel__reset_sample_bit(evsel, ID);
214 		evsel__set_sample_bit(evsel, IDENTIFIER);
215 	} else {
216 		evsel__set_sample_bit(evsel, ID);
217 	}
218 	evsel->core.attr.read_format |= PERF_FORMAT_ID;
219 }
220 
221 /**
222  * evsel__is_function_event - Return whether given evsel is a function
223  * trace event
224  *
225  * @evsel - evsel selector to be tested
226  *
227  * Return %true if event is function trace event
228  */
229 bool evsel__is_function_event(struct evsel *evsel)
230 {
231 #define FUNCTION_EVENT "ftrace:function"
232 
233 	return evsel->name &&
234 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
235 
236 #undef FUNCTION_EVENT
237 }
238 
239 void evsel__init(struct evsel *evsel,
240 		 struct perf_event_attr *attr, int idx)
241 {
242 	perf_evsel__init(&evsel->core, attr, idx);
243 	evsel->tracking	   = !idx;
244 	evsel->unit	   = strdup("");
245 	evsel->scale	   = 1.0;
246 	evsel->max_events  = ULONG_MAX;
247 	evsel->evlist	   = NULL;
248 	evsel->bpf_obj	   = NULL;
249 	evsel->bpf_fd	   = -1;
250 	INIT_LIST_HEAD(&evsel->config_terms);
251 	INIT_LIST_HEAD(&evsel->bpf_counter_list);
252 	perf_evsel__object.init(evsel);
253 	evsel->sample_size = __evsel__sample_size(attr->sample_type);
254 	evsel__calc_id_pos(evsel);
255 	evsel->cmdline_group_boundary = false;
256 	evsel->metric_expr   = NULL;
257 	evsel->metric_name   = NULL;
258 	evsel->metric_events = NULL;
259 	evsel->per_pkg_mask  = NULL;
260 	evsel->collect_stat  = false;
261 	evsel->pmu_name      = NULL;
262 }
263 
264 struct evsel *evsel__new_idx(struct perf_event_attr *attr, int idx)
265 {
266 	struct evsel *evsel = zalloc(perf_evsel__object.size);
267 
268 	if (!evsel)
269 		return NULL;
270 	evsel__init(evsel, attr, idx);
271 
272 	if (evsel__is_bpf_output(evsel)) {
273 		evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
274 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
275 		evsel->core.attr.sample_period = 1;
276 	}
277 
278 	if (evsel__is_clock(evsel)) {
279 		free((char *)evsel->unit);
280 		evsel->unit = strdup("msec");
281 		evsel->scale = 1e-6;
282 	}
283 
284 	return evsel;
285 }
286 
287 static bool perf_event_can_profile_kernel(void)
288 {
289 	return perf_event_paranoid_check(1);
290 }
291 
292 struct evsel *evsel__new_cycles(bool precise __maybe_unused, __u32 type, __u64 config)
293 {
294 	struct perf_event_attr attr = {
295 		.type	= type,
296 		.config	= config,
297 		.exclude_kernel	= !perf_event_can_profile_kernel(),
298 	};
299 	struct evsel *evsel;
300 
301 	event_attr_init(&attr);
302 
303 	/*
304 	 * Now let the usual logic to set up the perf_event_attr defaults
305 	 * to kick in when we return and before perf_evsel__open() is called.
306 	 */
307 	evsel = evsel__new(&attr);
308 	if (evsel == NULL)
309 		goto out;
310 
311 	arch_evsel__fixup_new_cycles(&evsel->core.attr);
312 
313 	evsel->precise_max = true;
314 
315 	/* use asprintf() because free(evsel) assumes name is allocated */
316 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
317 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
318 		     attr.exclude_kernel ? "u" : "",
319 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
320 		goto error_free;
321 out:
322 	return evsel;
323 error_free:
324 	evsel__delete(evsel);
325 	evsel = NULL;
326 	goto out;
327 }
328 
329 int copy_config_terms(struct list_head *dst, struct list_head *src)
330 {
331 	struct evsel_config_term *pos, *tmp;
332 
333 	list_for_each_entry(pos, src, list) {
334 		tmp = malloc(sizeof(*tmp));
335 		if (tmp == NULL)
336 			return -ENOMEM;
337 
338 		*tmp = *pos;
339 		if (tmp->free_str) {
340 			tmp->val.str = strdup(pos->val.str);
341 			if (tmp->val.str == NULL) {
342 				free(tmp);
343 				return -ENOMEM;
344 			}
345 		}
346 		list_add_tail(&tmp->list, dst);
347 	}
348 	return 0;
349 }
350 
351 static int evsel__copy_config_terms(struct evsel *dst, struct evsel *src)
352 {
353 	return copy_config_terms(&dst->config_terms, &src->config_terms);
354 }
355 
356 /**
357  * evsel__clone - create a new evsel copied from @orig
358  * @orig: original evsel
359  *
360  * The assumption is that @orig is not configured nor opened yet.
361  * So we only care about the attributes that can be set while it's parsed.
362  */
363 struct evsel *evsel__clone(struct evsel *orig)
364 {
365 	struct evsel *evsel;
366 
367 	BUG_ON(orig->core.fd);
368 	BUG_ON(orig->counts);
369 	BUG_ON(orig->priv);
370 	BUG_ON(orig->per_pkg_mask);
371 
372 	/* cannot handle BPF objects for now */
373 	if (orig->bpf_obj)
374 		return NULL;
375 
376 	evsel = evsel__new(&orig->core.attr);
377 	if (evsel == NULL)
378 		return NULL;
379 
380 	evsel->core.cpus = perf_cpu_map__get(orig->core.cpus);
381 	evsel->core.own_cpus = perf_cpu_map__get(orig->core.own_cpus);
382 	evsel->core.threads = perf_thread_map__get(orig->core.threads);
383 	evsel->core.nr_members = orig->core.nr_members;
384 	evsel->core.system_wide = orig->core.system_wide;
385 
386 	if (orig->name) {
387 		evsel->name = strdup(orig->name);
388 		if (evsel->name == NULL)
389 			goto out_err;
390 	}
391 	if (orig->group_name) {
392 		evsel->group_name = strdup(orig->group_name);
393 		if (evsel->group_name == NULL)
394 			goto out_err;
395 	}
396 	if (orig->pmu_name) {
397 		evsel->pmu_name = strdup(orig->pmu_name);
398 		if (evsel->pmu_name == NULL)
399 			goto out_err;
400 	}
401 	if (orig->filter) {
402 		evsel->filter = strdup(orig->filter);
403 		if (evsel->filter == NULL)
404 			goto out_err;
405 	}
406 	if (orig->metric_id) {
407 		evsel->metric_id = strdup(orig->metric_id);
408 		if (evsel->metric_id == NULL)
409 			goto out_err;
410 	}
411 	evsel->cgrp = cgroup__get(orig->cgrp);
412 	evsel->tp_format = orig->tp_format;
413 	evsel->handler = orig->handler;
414 	evsel->core.leader = orig->core.leader;
415 
416 	evsel->max_events = orig->max_events;
417 	evsel->tool_event = orig->tool_event;
418 	free((char *)evsel->unit);
419 	evsel->unit = strdup(orig->unit);
420 	if (evsel->unit == NULL)
421 		goto out_err;
422 
423 	evsel->scale = orig->scale;
424 	evsel->snapshot = orig->snapshot;
425 	evsel->per_pkg = orig->per_pkg;
426 	evsel->percore = orig->percore;
427 	evsel->precise_max = orig->precise_max;
428 	evsel->use_uncore_alias = orig->use_uncore_alias;
429 	evsel->is_libpfm_event = orig->is_libpfm_event;
430 
431 	evsel->exclude_GH = orig->exclude_GH;
432 	evsel->sample_read = orig->sample_read;
433 	evsel->auto_merge_stats = orig->auto_merge_stats;
434 	evsel->collect_stat = orig->collect_stat;
435 	evsel->weak_group = orig->weak_group;
436 	evsel->use_config_name = orig->use_config_name;
437 
438 	if (evsel__copy_config_terms(evsel, orig) < 0)
439 		goto out_err;
440 
441 	return evsel;
442 
443 out_err:
444 	evsel__delete(evsel);
445 	return NULL;
446 }
447 
448 /*
449  * Returns pointer with encoded error via <linux/err.h> interface.
450  */
451 struct evsel *evsel__newtp_idx(const char *sys, const char *name, int idx)
452 {
453 	struct evsel *evsel = zalloc(perf_evsel__object.size);
454 	int err = -ENOMEM;
455 
456 	if (evsel == NULL) {
457 		goto out_err;
458 	} else {
459 		struct perf_event_attr attr = {
460 			.type	       = PERF_TYPE_TRACEPOINT,
461 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
462 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
463 		};
464 
465 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
466 			goto out_free;
467 
468 		evsel->tp_format = trace_event__tp_format(sys, name);
469 		if (IS_ERR(evsel->tp_format)) {
470 			err = PTR_ERR(evsel->tp_format);
471 			goto out_free;
472 		}
473 
474 		event_attr_init(&attr);
475 		attr.config = evsel->tp_format->id;
476 		attr.sample_period = 1;
477 		evsel__init(evsel, &attr, idx);
478 	}
479 
480 	return evsel;
481 
482 out_free:
483 	zfree(&evsel->name);
484 	free(evsel);
485 out_err:
486 	return ERR_PTR(err);
487 }
488 
489 const char *evsel__hw_names[PERF_COUNT_HW_MAX] = {
490 	"cycles",
491 	"instructions",
492 	"cache-references",
493 	"cache-misses",
494 	"branches",
495 	"branch-misses",
496 	"bus-cycles",
497 	"stalled-cycles-frontend",
498 	"stalled-cycles-backend",
499 	"ref-cycles",
500 };
501 
502 char *evsel__bpf_counter_events;
503 
504 bool evsel__match_bpf_counter_events(const char *name)
505 {
506 	int name_len;
507 	bool match;
508 	char *ptr;
509 
510 	if (!evsel__bpf_counter_events)
511 		return false;
512 
513 	ptr = strstr(evsel__bpf_counter_events, name);
514 	name_len = strlen(name);
515 
516 	/* check name matches a full token in evsel__bpf_counter_events */
517 	match = (ptr != NULL) &&
518 		((ptr == evsel__bpf_counter_events) || (*(ptr - 1) == ',')) &&
519 		((*(ptr + name_len) == ',') || (*(ptr + name_len) == '\0'));
520 
521 	return match;
522 }
523 
524 static const char *__evsel__hw_name(u64 config)
525 {
526 	if (config < PERF_COUNT_HW_MAX && evsel__hw_names[config])
527 		return evsel__hw_names[config];
528 
529 	return "unknown-hardware";
530 }
531 
532 static int evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size)
533 {
534 	int colon = 0, r = 0;
535 	struct perf_event_attr *attr = &evsel->core.attr;
536 	bool exclude_guest_default = false;
537 
538 #define MOD_PRINT(context, mod)	do {					\
539 		if (!attr->exclude_##context) {				\
540 			if (!colon) colon = ++r;			\
541 			r += scnprintf(bf + r, size - r, "%c", mod);	\
542 		} } while(0)
543 
544 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
545 		MOD_PRINT(kernel, 'k');
546 		MOD_PRINT(user, 'u');
547 		MOD_PRINT(hv, 'h');
548 		exclude_guest_default = true;
549 	}
550 
551 	if (attr->precise_ip) {
552 		if (!colon)
553 			colon = ++r;
554 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
555 		exclude_guest_default = true;
556 	}
557 
558 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
559 		MOD_PRINT(host, 'H');
560 		MOD_PRINT(guest, 'G');
561 	}
562 #undef MOD_PRINT
563 	if (colon)
564 		bf[colon - 1] = ':';
565 	return r;
566 }
567 
568 static int evsel__hw_name(struct evsel *evsel, char *bf, size_t size)
569 {
570 	int r = scnprintf(bf, size, "%s", __evsel__hw_name(evsel->core.attr.config));
571 	return r + evsel__add_modifiers(evsel, bf + r, size - r);
572 }
573 
574 const char *evsel__sw_names[PERF_COUNT_SW_MAX] = {
575 	"cpu-clock",
576 	"task-clock",
577 	"page-faults",
578 	"context-switches",
579 	"cpu-migrations",
580 	"minor-faults",
581 	"major-faults",
582 	"alignment-faults",
583 	"emulation-faults",
584 	"dummy",
585 };
586 
587 static const char *__evsel__sw_name(u64 config)
588 {
589 	if (config < PERF_COUNT_SW_MAX && evsel__sw_names[config])
590 		return evsel__sw_names[config];
591 	return "unknown-software";
592 }
593 
594 static int evsel__sw_name(struct evsel *evsel, char *bf, size_t size)
595 {
596 	int r = scnprintf(bf, size, "%s", __evsel__sw_name(evsel->core.attr.config));
597 	return r + evsel__add_modifiers(evsel, bf + r, size - r);
598 }
599 
600 static int __evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
601 {
602 	int r;
603 
604 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
605 
606 	if (type & HW_BREAKPOINT_R)
607 		r += scnprintf(bf + r, size - r, "r");
608 
609 	if (type & HW_BREAKPOINT_W)
610 		r += scnprintf(bf + r, size - r, "w");
611 
612 	if (type & HW_BREAKPOINT_X)
613 		r += scnprintf(bf + r, size - r, "x");
614 
615 	return r;
616 }
617 
618 static int evsel__bp_name(struct evsel *evsel, char *bf, size_t size)
619 {
620 	struct perf_event_attr *attr = &evsel->core.attr;
621 	int r = __evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
622 	return r + evsel__add_modifiers(evsel, bf + r, size - r);
623 }
624 
625 const char *evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX][EVSEL__MAX_ALIASES] = {
626  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
627  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
628  { "LLC",	"L2",							},
629  { "dTLB",	"d-tlb",	"Data-TLB",				},
630  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
631  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
632  { "node",								},
633 };
634 
635 const char *evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX][EVSEL__MAX_ALIASES] = {
636  { "load",	"loads",	"read",					},
637  { "store",	"stores",	"write",				},
638  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
639 };
640 
641 const char *evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX][EVSEL__MAX_ALIASES] = {
642  { "refs",	"Reference",	"ops",		"access",		},
643  { "misses",	"miss",							},
644 };
645 
646 #define C(x)		PERF_COUNT_HW_CACHE_##x
647 #define CACHE_READ	(1 << C(OP_READ))
648 #define CACHE_WRITE	(1 << C(OP_WRITE))
649 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
650 #define COP(x)		(1 << x)
651 
652 /*
653  * cache operation stat
654  * L1I : Read and prefetch only
655  * ITLB and BPU : Read-only
656  */
657 static unsigned long evsel__hw_cache_stat[C(MAX)] = {
658  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
659  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
660  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
661  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
662  [C(ITLB)]	= (CACHE_READ),
663  [C(BPU)]	= (CACHE_READ),
664  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
665 };
666 
667 bool evsel__is_cache_op_valid(u8 type, u8 op)
668 {
669 	if (evsel__hw_cache_stat[type] & COP(op))
670 		return true;	/* valid */
671 	else
672 		return false;	/* invalid */
673 }
674 
675 int __evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, char *bf, size_t size)
676 {
677 	if (result) {
678 		return scnprintf(bf, size, "%s-%s-%s", evsel__hw_cache[type][0],
679 				 evsel__hw_cache_op[op][0],
680 				 evsel__hw_cache_result[result][0]);
681 	}
682 
683 	return scnprintf(bf, size, "%s-%s", evsel__hw_cache[type][0],
684 			 evsel__hw_cache_op[op][1]);
685 }
686 
687 static int __evsel__hw_cache_name(u64 config, char *bf, size_t size)
688 {
689 	u8 op, result, type = (config >>  0) & 0xff;
690 	const char *err = "unknown-ext-hardware-cache-type";
691 
692 	if (type >= PERF_COUNT_HW_CACHE_MAX)
693 		goto out_err;
694 
695 	op = (config >>  8) & 0xff;
696 	err = "unknown-ext-hardware-cache-op";
697 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
698 		goto out_err;
699 
700 	result = (config >> 16) & 0xff;
701 	err = "unknown-ext-hardware-cache-result";
702 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
703 		goto out_err;
704 
705 	err = "invalid-cache";
706 	if (!evsel__is_cache_op_valid(type, op))
707 		goto out_err;
708 
709 	return __evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
710 out_err:
711 	return scnprintf(bf, size, "%s", err);
712 }
713 
714 static int evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size)
715 {
716 	int ret = __evsel__hw_cache_name(evsel->core.attr.config, bf, size);
717 	return ret + evsel__add_modifiers(evsel, bf + ret, size - ret);
718 }
719 
720 static int evsel__raw_name(struct evsel *evsel, char *bf, size_t size)
721 {
722 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config);
723 	return ret + evsel__add_modifiers(evsel, bf + ret, size - ret);
724 }
725 
726 static int evsel__tool_name(char *bf, size_t size)
727 {
728 	int ret = scnprintf(bf, size, "duration_time");
729 	return ret;
730 }
731 
732 const char *evsel__name(struct evsel *evsel)
733 {
734 	char bf[128];
735 
736 	if (!evsel)
737 		goto out_unknown;
738 
739 	if (evsel->name)
740 		return evsel->name;
741 
742 	switch (evsel->core.attr.type) {
743 	case PERF_TYPE_RAW:
744 		evsel__raw_name(evsel, bf, sizeof(bf));
745 		break;
746 
747 	case PERF_TYPE_HARDWARE:
748 		evsel__hw_name(evsel, bf, sizeof(bf));
749 		break;
750 
751 	case PERF_TYPE_HW_CACHE:
752 		evsel__hw_cache_name(evsel, bf, sizeof(bf));
753 		break;
754 
755 	case PERF_TYPE_SOFTWARE:
756 		if (evsel->tool_event)
757 			evsel__tool_name(bf, sizeof(bf));
758 		else
759 			evsel__sw_name(evsel, bf, sizeof(bf));
760 		break;
761 
762 	case PERF_TYPE_TRACEPOINT:
763 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
764 		break;
765 
766 	case PERF_TYPE_BREAKPOINT:
767 		evsel__bp_name(evsel, bf, sizeof(bf));
768 		break;
769 
770 	default:
771 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
772 			  evsel->core.attr.type);
773 		break;
774 	}
775 
776 	evsel->name = strdup(bf);
777 
778 	if (evsel->name)
779 		return evsel->name;
780 out_unknown:
781 	return "unknown";
782 }
783 
784 const char *evsel__metric_id(const struct evsel *evsel)
785 {
786 	if (evsel->metric_id)
787 		return evsel->metric_id;
788 
789 	if (evsel->core.attr.type == PERF_TYPE_SOFTWARE && evsel->tool_event)
790 		return "duration_time";
791 
792 	return "unknown";
793 }
794 
795 const char *evsel__group_name(struct evsel *evsel)
796 {
797 	return evsel->group_name ?: "anon group";
798 }
799 
800 /*
801  * Returns the group details for the specified leader,
802  * with following rules.
803  *
804  *  For record -e '{cycles,instructions}'
805  *    'anon group { cycles:u, instructions:u }'
806  *
807  *  For record -e 'cycles,instructions' and report --group
808  *    'cycles:u, instructions:u'
809  */
810 int evsel__group_desc(struct evsel *evsel, char *buf, size_t size)
811 {
812 	int ret = 0;
813 	struct evsel *pos;
814 	const char *group_name = evsel__group_name(evsel);
815 
816 	if (!evsel->forced_leader)
817 		ret = scnprintf(buf, size, "%s { ", group_name);
818 
819 	ret += scnprintf(buf + ret, size - ret, "%s", evsel__name(evsel));
820 
821 	for_each_group_member(pos, evsel)
822 		ret += scnprintf(buf + ret, size - ret, ", %s", evsel__name(pos));
823 
824 	if (!evsel->forced_leader)
825 		ret += scnprintf(buf + ret, size - ret, " }");
826 
827 	return ret;
828 }
829 
830 static void __evsel__config_callchain(struct evsel *evsel, struct record_opts *opts,
831 				      struct callchain_param *param)
832 {
833 	bool function = evsel__is_function_event(evsel);
834 	struct perf_event_attr *attr = &evsel->core.attr;
835 
836 	evsel__set_sample_bit(evsel, CALLCHAIN);
837 
838 	attr->sample_max_stack = param->max_stack;
839 
840 	if (opts->kernel_callchains)
841 		attr->exclude_callchain_user = 1;
842 	if (opts->user_callchains)
843 		attr->exclude_callchain_kernel = 1;
844 	if (param->record_mode == CALLCHAIN_LBR) {
845 		if (!opts->branch_stack) {
846 			if (attr->exclude_user) {
847 				pr_warning("LBR callstack option is only available "
848 					   "to get user callchain information. "
849 					   "Falling back to framepointers.\n");
850 			} else {
851 				evsel__set_sample_bit(evsel, BRANCH_STACK);
852 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
853 							PERF_SAMPLE_BRANCH_CALL_STACK |
854 							PERF_SAMPLE_BRANCH_NO_CYCLES |
855 							PERF_SAMPLE_BRANCH_NO_FLAGS |
856 							PERF_SAMPLE_BRANCH_HW_INDEX;
857 			}
858 		} else
859 			 pr_warning("Cannot use LBR callstack with branch stack. "
860 				    "Falling back to framepointers.\n");
861 	}
862 
863 	if (param->record_mode == CALLCHAIN_DWARF) {
864 		if (!function) {
865 			evsel__set_sample_bit(evsel, REGS_USER);
866 			evsel__set_sample_bit(evsel, STACK_USER);
867 			if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
868 				attr->sample_regs_user |= DWARF_MINIMAL_REGS;
869 				pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
870 					   "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
871 					   "so the minimal registers set (IP, SP) is explicitly forced.\n");
872 			} else {
873 				attr->sample_regs_user |= PERF_REGS_MASK;
874 			}
875 			attr->sample_stack_user = param->dump_size;
876 			attr->exclude_callchain_user = 1;
877 		} else {
878 			pr_info("Cannot use DWARF unwind for function trace event,"
879 				" falling back to framepointers.\n");
880 		}
881 	}
882 
883 	if (function) {
884 		pr_info("Disabling user space callchains for function trace event.\n");
885 		attr->exclude_callchain_user = 1;
886 	}
887 }
888 
889 void evsel__config_callchain(struct evsel *evsel, struct record_opts *opts,
890 			     struct callchain_param *param)
891 {
892 	if (param->enabled)
893 		return __evsel__config_callchain(evsel, opts, param);
894 }
895 
896 static void evsel__reset_callgraph(struct evsel *evsel, struct callchain_param *param)
897 {
898 	struct perf_event_attr *attr = &evsel->core.attr;
899 
900 	evsel__reset_sample_bit(evsel, CALLCHAIN);
901 	if (param->record_mode == CALLCHAIN_LBR) {
902 		evsel__reset_sample_bit(evsel, BRANCH_STACK);
903 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
904 					      PERF_SAMPLE_BRANCH_CALL_STACK |
905 					      PERF_SAMPLE_BRANCH_HW_INDEX);
906 	}
907 	if (param->record_mode == CALLCHAIN_DWARF) {
908 		evsel__reset_sample_bit(evsel, REGS_USER);
909 		evsel__reset_sample_bit(evsel, STACK_USER);
910 	}
911 }
912 
913 static void evsel__apply_config_terms(struct evsel *evsel,
914 				      struct record_opts *opts, bool track)
915 {
916 	struct evsel_config_term *term;
917 	struct list_head *config_terms = &evsel->config_terms;
918 	struct perf_event_attr *attr = &evsel->core.attr;
919 	/* callgraph default */
920 	struct callchain_param param = {
921 		.record_mode = callchain_param.record_mode,
922 	};
923 	u32 dump_size = 0;
924 	int max_stack = 0;
925 	const char *callgraph_buf = NULL;
926 
927 	list_for_each_entry(term, config_terms, list) {
928 		switch (term->type) {
929 		case EVSEL__CONFIG_TERM_PERIOD:
930 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
931 				attr->sample_period = term->val.period;
932 				attr->freq = 0;
933 				evsel__reset_sample_bit(evsel, PERIOD);
934 			}
935 			break;
936 		case EVSEL__CONFIG_TERM_FREQ:
937 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
938 				attr->sample_freq = term->val.freq;
939 				attr->freq = 1;
940 				evsel__set_sample_bit(evsel, PERIOD);
941 			}
942 			break;
943 		case EVSEL__CONFIG_TERM_TIME:
944 			if (term->val.time)
945 				evsel__set_sample_bit(evsel, TIME);
946 			else
947 				evsel__reset_sample_bit(evsel, TIME);
948 			break;
949 		case EVSEL__CONFIG_TERM_CALLGRAPH:
950 			callgraph_buf = term->val.str;
951 			break;
952 		case EVSEL__CONFIG_TERM_BRANCH:
953 			if (term->val.str && strcmp(term->val.str, "no")) {
954 				evsel__set_sample_bit(evsel, BRANCH_STACK);
955 				parse_branch_str(term->val.str,
956 						 &attr->branch_sample_type);
957 			} else
958 				evsel__reset_sample_bit(evsel, BRANCH_STACK);
959 			break;
960 		case EVSEL__CONFIG_TERM_STACK_USER:
961 			dump_size = term->val.stack_user;
962 			break;
963 		case EVSEL__CONFIG_TERM_MAX_STACK:
964 			max_stack = term->val.max_stack;
965 			break;
966 		case EVSEL__CONFIG_TERM_MAX_EVENTS:
967 			evsel->max_events = term->val.max_events;
968 			break;
969 		case EVSEL__CONFIG_TERM_INHERIT:
970 			/*
971 			 * attr->inherit should has already been set by
972 			 * evsel__config. If user explicitly set
973 			 * inherit using config terms, override global
974 			 * opt->no_inherit setting.
975 			 */
976 			attr->inherit = term->val.inherit ? 1 : 0;
977 			break;
978 		case EVSEL__CONFIG_TERM_OVERWRITE:
979 			attr->write_backward = term->val.overwrite ? 1 : 0;
980 			break;
981 		case EVSEL__CONFIG_TERM_DRV_CFG:
982 			break;
983 		case EVSEL__CONFIG_TERM_PERCORE:
984 			break;
985 		case EVSEL__CONFIG_TERM_AUX_OUTPUT:
986 			attr->aux_output = term->val.aux_output ? 1 : 0;
987 			break;
988 		case EVSEL__CONFIG_TERM_AUX_SAMPLE_SIZE:
989 			/* Already applied by auxtrace */
990 			break;
991 		case EVSEL__CONFIG_TERM_CFG_CHG:
992 			break;
993 		default:
994 			break;
995 		}
996 	}
997 
998 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
999 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
1000 		bool sample_address = false;
1001 
1002 		if (max_stack) {
1003 			param.max_stack = max_stack;
1004 			if (callgraph_buf == NULL)
1005 				callgraph_buf = "fp";
1006 		}
1007 
1008 		/* parse callgraph parameters */
1009 		if (callgraph_buf != NULL) {
1010 			if (!strcmp(callgraph_buf, "no")) {
1011 				param.enabled = false;
1012 				param.record_mode = CALLCHAIN_NONE;
1013 			} else {
1014 				param.enabled = true;
1015 				if (parse_callchain_record(callgraph_buf, &param)) {
1016 					pr_err("per-event callgraph setting for %s failed. "
1017 					       "Apply callgraph global setting for it\n",
1018 					       evsel->name);
1019 					return;
1020 				}
1021 				if (param.record_mode == CALLCHAIN_DWARF)
1022 					sample_address = true;
1023 			}
1024 		}
1025 		if (dump_size > 0) {
1026 			dump_size = round_up(dump_size, sizeof(u64));
1027 			param.dump_size = dump_size;
1028 		}
1029 
1030 		/* If global callgraph set, clear it */
1031 		if (callchain_param.enabled)
1032 			evsel__reset_callgraph(evsel, &callchain_param);
1033 
1034 		/* set perf-event callgraph */
1035 		if (param.enabled) {
1036 			if (sample_address) {
1037 				evsel__set_sample_bit(evsel, ADDR);
1038 				evsel__set_sample_bit(evsel, DATA_SRC);
1039 				evsel->core.attr.mmap_data = track;
1040 			}
1041 			evsel__config_callchain(evsel, opts, &param);
1042 		}
1043 	}
1044 }
1045 
1046 struct evsel_config_term *__evsel__get_config_term(struct evsel *evsel, enum evsel_term_type type)
1047 {
1048 	struct evsel_config_term *term, *found_term = NULL;
1049 
1050 	list_for_each_entry(term, &evsel->config_terms, list) {
1051 		if (term->type == type)
1052 			found_term = term;
1053 	}
1054 
1055 	return found_term;
1056 }
1057 
1058 void __weak arch_evsel__set_sample_weight(struct evsel *evsel)
1059 {
1060 	evsel__set_sample_bit(evsel, WEIGHT);
1061 }
1062 
1063 void __weak arch_evsel__fixup_new_cycles(struct perf_event_attr *attr __maybe_unused)
1064 {
1065 }
1066 
1067 static void evsel__set_default_freq_period(struct record_opts *opts,
1068 					   struct perf_event_attr *attr)
1069 {
1070 	if (opts->freq) {
1071 		attr->freq = 1;
1072 		attr->sample_freq = opts->freq;
1073 	} else {
1074 		attr->sample_period = opts->default_interval;
1075 	}
1076 }
1077 
1078 /*
1079  * The enable_on_exec/disabled value strategy:
1080  *
1081  *  1) For any type of traced program:
1082  *    - all independent events and group leaders are disabled
1083  *    - all group members are enabled
1084  *
1085  *     Group members are ruled by group leaders. They need to
1086  *     be enabled, because the group scheduling relies on that.
1087  *
1088  *  2) For traced programs executed by perf:
1089  *     - all independent events and group leaders have
1090  *       enable_on_exec set
1091  *     - we don't specifically enable or disable any event during
1092  *       the record command
1093  *
1094  *     Independent events and group leaders are initially disabled
1095  *     and get enabled by exec. Group members are ruled by group
1096  *     leaders as stated in 1).
1097  *
1098  *  3) For traced programs attached by perf (pid/tid):
1099  *     - we specifically enable or disable all events during
1100  *       the record command
1101  *
1102  *     When attaching events to already running traced we
1103  *     enable/disable events specifically, as there's no
1104  *     initial traced exec call.
1105  */
1106 void evsel__config(struct evsel *evsel, struct record_opts *opts,
1107 		   struct callchain_param *callchain)
1108 {
1109 	struct evsel *leader = evsel__leader(evsel);
1110 	struct perf_event_attr *attr = &evsel->core.attr;
1111 	int track = evsel->tracking;
1112 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
1113 
1114 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
1115 	attr->inherit	    = !opts->no_inherit;
1116 	attr->write_backward = opts->overwrite ? 1 : 0;
1117 
1118 	evsel__set_sample_bit(evsel, IP);
1119 	evsel__set_sample_bit(evsel, TID);
1120 
1121 	if (evsel->sample_read) {
1122 		evsel__set_sample_bit(evsel, READ);
1123 
1124 		/*
1125 		 * We need ID even in case of single event, because
1126 		 * PERF_SAMPLE_READ process ID specific data.
1127 		 */
1128 		evsel__set_sample_id(evsel, false);
1129 
1130 		/*
1131 		 * Apply group format only if we belong to group
1132 		 * with more than one members.
1133 		 */
1134 		if (leader->core.nr_members > 1) {
1135 			attr->read_format |= PERF_FORMAT_GROUP;
1136 			attr->inherit = 0;
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * We default some events to have a default interval. But keep
1142 	 * it a weak assumption overridable by the user.
1143 	 */
1144 	if ((evsel->is_libpfm_event && !attr->sample_period) ||
1145 	    (!evsel->is_libpfm_event && (!attr->sample_period ||
1146 					 opts->user_freq != UINT_MAX ||
1147 					 opts->user_interval != ULLONG_MAX)))
1148 		evsel__set_default_freq_period(opts, attr);
1149 
1150 	/*
1151 	 * If attr->freq was set (here or earlier), ask for period
1152 	 * to be sampled.
1153 	 */
1154 	if (attr->freq)
1155 		evsel__set_sample_bit(evsel, PERIOD);
1156 
1157 	if (opts->no_samples)
1158 		attr->sample_freq = 0;
1159 
1160 	if (opts->inherit_stat) {
1161 		evsel->core.attr.read_format |=
1162 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1163 			PERF_FORMAT_TOTAL_TIME_RUNNING |
1164 			PERF_FORMAT_ID;
1165 		attr->inherit_stat = 1;
1166 	}
1167 
1168 	if (opts->sample_address) {
1169 		evsel__set_sample_bit(evsel, ADDR);
1170 		attr->mmap_data = track;
1171 	}
1172 
1173 	/*
1174 	 * We don't allow user space callchains for  function trace
1175 	 * event, due to issues with page faults while tracing page
1176 	 * fault handler and its overall trickiness nature.
1177 	 */
1178 	if (evsel__is_function_event(evsel))
1179 		evsel->core.attr.exclude_callchain_user = 1;
1180 
1181 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
1182 		evsel__config_callchain(evsel, opts, callchain);
1183 
1184 	if (opts->sample_intr_regs && !evsel->no_aux_samples &&
1185 	    !evsel__is_dummy_event(evsel)) {
1186 		attr->sample_regs_intr = opts->sample_intr_regs;
1187 		evsel__set_sample_bit(evsel, REGS_INTR);
1188 	}
1189 
1190 	if (opts->sample_user_regs && !evsel->no_aux_samples &&
1191 	    !evsel__is_dummy_event(evsel)) {
1192 		attr->sample_regs_user |= opts->sample_user_regs;
1193 		evsel__set_sample_bit(evsel, REGS_USER);
1194 	}
1195 
1196 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1197 		evsel__set_sample_bit(evsel, CPU);
1198 
1199 	/*
1200 	 * When the user explicitly disabled time don't force it here.
1201 	 */
1202 	if (opts->sample_time &&
1203 	    (!perf_missing_features.sample_id_all &&
1204 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1205 	     opts->sample_time_set)))
1206 		evsel__set_sample_bit(evsel, TIME);
1207 
1208 	if (opts->raw_samples && !evsel->no_aux_samples) {
1209 		evsel__set_sample_bit(evsel, TIME);
1210 		evsel__set_sample_bit(evsel, RAW);
1211 		evsel__set_sample_bit(evsel, CPU);
1212 	}
1213 
1214 	if (opts->sample_address)
1215 		evsel__set_sample_bit(evsel, DATA_SRC);
1216 
1217 	if (opts->sample_phys_addr)
1218 		evsel__set_sample_bit(evsel, PHYS_ADDR);
1219 
1220 	if (opts->no_buffering) {
1221 		attr->watermark = 0;
1222 		attr->wakeup_events = 1;
1223 	}
1224 	if (opts->branch_stack && !evsel->no_aux_samples) {
1225 		evsel__set_sample_bit(evsel, BRANCH_STACK);
1226 		attr->branch_sample_type = opts->branch_stack;
1227 	}
1228 
1229 	if (opts->sample_weight)
1230 		arch_evsel__set_sample_weight(evsel);
1231 
1232 	attr->task     = track;
1233 	attr->mmap     = track;
1234 	attr->mmap2    = track && !perf_missing_features.mmap2;
1235 	attr->comm     = track;
1236 	attr->build_id = track && opts->build_id;
1237 
1238 	/*
1239 	 * ksymbol is tracked separately with text poke because it needs to be
1240 	 * system wide and enabled immediately.
1241 	 */
1242 	if (!opts->text_poke)
1243 		attr->ksymbol = track && !perf_missing_features.ksymbol;
1244 	attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf;
1245 
1246 	if (opts->record_namespaces)
1247 		attr->namespaces  = track;
1248 
1249 	if (opts->record_cgroup) {
1250 		attr->cgroup = track && !perf_missing_features.cgroup;
1251 		evsel__set_sample_bit(evsel, CGROUP);
1252 	}
1253 
1254 	if (opts->sample_data_page_size)
1255 		evsel__set_sample_bit(evsel, DATA_PAGE_SIZE);
1256 
1257 	if (opts->sample_code_page_size)
1258 		evsel__set_sample_bit(evsel, CODE_PAGE_SIZE);
1259 
1260 	if (opts->record_switch_events)
1261 		attr->context_switch = track;
1262 
1263 	if (opts->sample_transaction)
1264 		evsel__set_sample_bit(evsel, TRANSACTION);
1265 
1266 	if (opts->running_time) {
1267 		evsel->core.attr.read_format |=
1268 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1269 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1270 	}
1271 
1272 	/*
1273 	 * XXX see the function comment above
1274 	 *
1275 	 * Disabling only independent events or group leaders,
1276 	 * keeping group members enabled.
1277 	 */
1278 	if (evsel__is_group_leader(evsel))
1279 		attr->disabled = 1;
1280 
1281 	/*
1282 	 * Setting enable_on_exec for independent events and
1283 	 * group leaders for traced executed by perf.
1284 	 */
1285 	if (target__none(&opts->target) && evsel__is_group_leader(evsel) &&
1286 	    !opts->initial_delay)
1287 		attr->enable_on_exec = 1;
1288 
1289 	if (evsel->immediate) {
1290 		attr->disabled = 0;
1291 		attr->enable_on_exec = 0;
1292 	}
1293 
1294 	clockid = opts->clockid;
1295 	if (opts->use_clockid) {
1296 		attr->use_clockid = 1;
1297 		attr->clockid = opts->clockid;
1298 	}
1299 
1300 	if (evsel->precise_max)
1301 		attr->precise_ip = 3;
1302 
1303 	if (opts->all_user) {
1304 		attr->exclude_kernel = 1;
1305 		attr->exclude_user   = 0;
1306 	}
1307 
1308 	if (opts->all_kernel) {
1309 		attr->exclude_kernel = 0;
1310 		attr->exclude_user   = 1;
1311 	}
1312 
1313 	if (evsel->core.own_cpus || evsel->unit)
1314 		evsel->core.attr.read_format |= PERF_FORMAT_ID;
1315 
1316 	/*
1317 	 * Apply event specific term settings,
1318 	 * it overloads any global configuration.
1319 	 */
1320 	evsel__apply_config_terms(evsel, opts, track);
1321 
1322 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1323 
1324 	/* The --period option takes the precedence. */
1325 	if (opts->period_set) {
1326 		if (opts->period)
1327 			evsel__set_sample_bit(evsel, PERIOD);
1328 		else
1329 			evsel__reset_sample_bit(evsel, PERIOD);
1330 	}
1331 
1332 	/*
1333 	 * A dummy event never triggers any actual counter and therefore
1334 	 * cannot be used with branch_stack.
1335 	 *
1336 	 * For initial_delay, a dummy event is added implicitly.
1337 	 * The software event will trigger -EOPNOTSUPP error out,
1338 	 * if BRANCH_STACK bit is set.
1339 	 */
1340 	if (evsel__is_dummy_event(evsel))
1341 		evsel__reset_sample_bit(evsel, BRANCH_STACK);
1342 }
1343 
1344 int evsel__set_filter(struct evsel *evsel, const char *filter)
1345 {
1346 	char *new_filter = strdup(filter);
1347 
1348 	if (new_filter != NULL) {
1349 		free(evsel->filter);
1350 		evsel->filter = new_filter;
1351 		return 0;
1352 	}
1353 
1354 	return -1;
1355 }
1356 
1357 static int evsel__append_filter(struct evsel *evsel, const char *fmt, const char *filter)
1358 {
1359 	char *new_filter;
1360 
1361 	if (evsel->filter == NULL)
1362 		return evsel__set_filter(evsel, filter);
1363 
1364 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1365 		free(evsel->filter);
1366 		evsel->filter = new_filter;
1367 		return 0;
1368 	}
1369 
1370 	return -1;
1371 }
1372 
1373 int evsel__append_tp_filter(struct evsel *evsel, const char *filter)
1374 {
1375 	return evsel__append_filter(evsel, "(%s) && (%s)", filter);
1376 }
1377 
1378 int evsel__append_addr_filter(struct evsel *evsel, const char *filter)
1379 {
1380 	return evsel__append_filter(evsel, "%s,%s", filter);
1381 }
1382 
1383 /* Caller has to clear disabled after going through all CPUs. */
1384 int evsel__enable_cpu(struct evsel *evsel, int cpu_map_idx)
1385 {
1386 	return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
1387 }
1388 
1389 int evsel__enable(struct evsel *evsel)
1390 {
1391 	int err = perf_evsel__enable(&evsel->core);
1392 
1393 	if (!err)
1394 		evsel->disabled = false;
1395 	return err;
1396 }
1397 
1398 /* Caller has to set disabled after going through all CPUs. */
1399 int evsel__disable_cpu(struct evsel *evsel, int cpu_map_idx)
1400 {
1401 	return perf_evsel__disable_cpu(&evsel->core, cpu_map_idx);
1402 }
1403 
1404 int evsel__disable(struct evsel *evsel)
1405 {
1406 	int err = perf_evsel__disable(&evsel->core);
1407 	/*
1408 	 * We mark it disabled here so that tools that disable a event can
1409 	 * ignore events after they disable it. I.e. the ring buffer may have
1410 	 * already a few more events queued up before the kernel got the stop
1411 	 * request.
1412 	 */
1413 	if (!err)
1414 		evsel->disabled = true;
1415 
1416 	return err;
1417 }
1418 
1419 void free_config_terms(struct list_head *config_terms)
1420 {
1421 	struct evsel_config_term *term, *h;
1422 
1423 	list_for_each_entry_safe(term, h, config_terms, list) {
1424 		list_del_init(&term->list);
1425 		if (term->free_str)
1426 			zfree(&term->val.str);
1427 		free(term);
1428 	}
1429 }
1430 
1431 static void evsel__free_config_terms(struct evsel *evsel)
1432 {
1433 	free_config_terms(&evsel->config_terms);
1434 }
1435 
1436 void evsel__exit(struct evsel *evsel)
1437 {
1438 	assert(list_empty(&evsel->core.node));
1439 	assert(evsel->evlist == NULL);
1440 	bpf_counter__destroy(evsel);
1441 	evsel__free_counts(evsel);
1442 	perf_evsel__free_fd(&evsel->core);
1443 	perf_evsel__free_id(&evsel->core);
1444 	evsel__free_config_terms(evsel);
1445 	cgroup__put(evsel->cgrp);
1446 	perf_cpu_map__put(evsel->core.cpus);
1447 	perf_cpu_map__put(evsel->core.own_cpus);
1448 	perf_thread_map__put(evsel->core.threads);
1449 	zfree(&evsel->group_name);
1450 	zfree(&evsel->name);
1451 	zfree(&evsel->pmu_name);
1452 	zfree(&evsel->unit);
1453 	zfree(&evsel->metric_id);
1454 	evsel__zero_per_pkg(evsel);
1455 	hashmap__free(evsel->per_pkg_mask);
1456 	evsel->per_pkg_mask = NULL;
1457 	zfree(&evsel->metric_events);
1458 	perf_evsel__object.fini(evsel);
1459 }
1460 
1461 void evsel__delete(struct evsel *evsel)
1462 {
1463 	evsel__exit(evsel);
1464 	free(evsel);
1465 }
1466 
1467 void evsel__compute_deltas(struct evsel *evsel, int cpu_map_idx, int thread,
1468 			   struct perf_counts_values *count)
1469 {
1470 	struct perf_counts_values tmp;
1471 
1472 	if (!evsel->prev_raw_counts)
1473 		return;
1474 
1475 	if (cpu_map_idx == -1) {
1476 		tmp = evsel->prev_raw_counts->aggr;
1477 		evsel->prev_raw_counts->aggr = *count;
1478 	} else {
1479 		tmp = *perf_counts(evsel->prev_raw_counts, cpu_map_idx, thread);
1480 		*perf_counts(evsel->prev_raw_counts, cpu_map_idx, thread) = *count;
1481 	}
1482 
1483 	count->val = count->val - tmp.val;
1484 	count->ena = count->ena - tmp.ena;
1485 	count->run = count->run - tmp.run;
1486 }
1487 
1488 static int evsel__read_one(struct evsel *evsel, int cpu_map_idx, int thread)
1489 {
1490 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu_map_idx, thread);
1491 
1492 	return perf_evsel__read(&evsel->core, cpu_map_idx, thread, count);
1493 }
1494 
1495 static void evsel__set_count(struct evsel *counter, int cpu_map_idx, int thread,
1496 			     u64 val, u64 ena, u64 run)
1497 {
1498 	struct perf_counts_values *count;
1499 
1500 	count = perf_counts(counter->counts, cpu_map_idx, thread);
1501 
1502 	count->val    = val;
1503 	count->ena    = ena;
1504 	count->run    = run;
1505 
1506 	perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, true);
1507 }
1508 
1509 static int evsel__process_group_data(struct evsel *leader, int cpu_map_idx, int thread, u64 *data)
1510 {
1511 	u64 read_format = leader->core.attr.read_format;
1512 	struct sample_read_value *v;
1513 	u64 nr, ena = 0, run = 0, i;
1514 
1515 	nr = *data++;
1516 
1517 	if (nr != (u64) leader->core.nr_members)
1518 		return -EINVAL;
1519 
1520 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1521 		ena = *data++;
1522 
1523 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1524 		run = *data++;
1525 
1526 	v = (struct sample_read_value *) data;
1527 
1528 	evsel__set_count(leader, cpu_map_idx, thread, v[0].value, ena, run);
1529 
1530 	for (i = 1; i < nr; i++) {
1531 		struct evsel *counter;
1532 
1533 		counter = evlist__id2evsel(leader->evlist, v[i].id);
1534 		if (!counter)
1535 			return -EINVAL;
1536 
1537 		evsel__set_count(counter, cpu_map_idx, thread, v[i].value, ena, run);
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 static int evsel__read_group(struct evsel *leader, int cpu_map_idx, int thread)
1544 {
1545 	struct perf_stat_evsel *ps = leader->stats;
1546 	u64 read_format = leader->core.attr.read_format;
1547 	int size = perf_evsel__read_size(&leader->core);
1548 	u64 *data = ps->group_data;
1549 
1550 	if (!(read_format & PERF_FORMAT_ID))
1551 		return -EINVAL;
1552 
1553 	if (!evsel__is_group_leader(leader))
1554 		return -EINVAL;
1555 
1556 	if (!data) {
1557 		data = zalloc(size);
1558 		if (!data)
1559 			return -ENOMEM;
1560 
1561 		ps->group_data = data;
1562 	}
1563 
1564 	if (FD(leader, cpu_map_idx, thread) < 0)
1565 		return -EINVAL;
1566 
1567 	if (readn(FD(leader, cpu_map_idx, thread), data, size) <= 0)
1568 		return -errno;
1569 
1570 	return evsel__process_group_data(leader, cpu_map_idx, thread, data);
1571 }
1572 
1573 int evsel__read_counter(struct evsel *evsel, int cpu_map_idx, int thread)
1574 {
1575 	u64 read_format = evsel->core.attr.read_format;
1576 
1577 	if (read_format & PERF_FORMAT_GROUP)
1578 		return evsel__read_group(evsel, cpu_map_idx, thread);
1579 
1580 	return evsel__read_one(evsel, cpu_map_idx, thread);
1581 }
1582 
1583 int __evsel__read_on_cpu(struct evsel *evsel, int cpu_map_idx, int thread, bool scale)
1584 {
1585 	struct perf_counts_values count;
1586 	size_t nv = scale ? 3 : 1;
1587 
1588 	if (FD(evsel, cpu_map_idx, thread) < 0)
1589 		return -EINVAL;
1590 
1591 	if (evsel->counts == NULL && evsel__alloc_counts(evsel) < 0)
1592 		return -ENOMEM;
1593 
1594 	if (readn(FD(evsel, cpu_map_idx, thread), &count, nv * sizeof(u64)) <= 0)
1595 		return -errno;
1596 
1597 	evsel__compute_deltas(evsel, cpu_map_idx, thread, &count);
1598 	perf_counts_values__scale(&count, scale, NULL);
1599 	*perf_counts(evsel->counts, cpu_map_idx, thread) = count;
1600 	return 0;
1601 }
1602 
1603 static int evsel__match_other_cpu(struct evsel *evsel, struct evsel *other,
1604 				  int cpu_map_idx)
1605 {
1606 	struct perf_cpu cpu;
1607 
1608 	cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx);
1609 	return perf_cpu_map__idx(other->core.cpus, cpu);
1610 }
1611 
1612 static int evsel__hybrid_group_cpu_map_idx(struct evsel *evsel, int cpu_map_idx)
1613 {
1614 	struct evsel *leader = evsel__leader(evsel);
1615 
1616 	if ((evsel__is_hybrid(evsel) && !evsel__is_hybrid(leader)) ||
1617 	    (!evsel__is_hybrid(evsel) && evsel__is_hybrid(leader))) {
1618 		return evsel__match_other_cpu(evsel, leader, cpu_map_idx);
1619 	}
1620 
1621 	return cpu_map_idx;
1622 }
1623 
1624 static int get_group_fd(struct evsel *evsel, int cpu_map_idx, int thread)
1625 {
1626 	struct evsel *leader = evsel__leader(evsel);
1627 	int fd;
1628 
1629 	if (evsel__is_group_leader(evsel))
1630 		return -1;
1631 
1632 	/*
1633 	 * Leader must be already processed/open,
1634 	 * if not it's a bug.
1635 	 */
1636 	BUG_ON(!leader->core.fd);
1637 
1638 	cpu_map_idx = evsel__hybrid_group_cpu_map_idx(evsel, cpu_map_idx);
1639 	if (cpu_map_idx == -1)
1640 		return -1;
1641 
1642 	fd = FD(leader, cpu_map_idx, thread);
1643 	BUG_ON(fd == -1);
1644 
1645 	return fd;
1646 }
1647 
1648 static void evsel__remove_fd(struct evsel *pos, int nr_cpus, int nr_threads, int thread_idx)
1649 {
1650 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1651 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1652 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1653 }
1654 
1655 static int update_fds(struct evsel *evsel,
1656 		      int nr_cpus, int cpu_map_idx,
1657 		      int nr_threads, int thread_idx)
1658 {
1659 	struct evsel *pos;
1660 
1661 	if (cpu_map_idx >= nr_cpus || thread_idx >= nr_threads)
1662 		return -EINVAL;
1663 
1664 	evlist__for_each_entry(evsel->evlist, pos) {
1665 		nr_cpus = pos != evsel ? nr_cpus : cpu_map_idx;
1666 
1667 		evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1668 
1669 		/*
1670 		 * Since fds for next evsel has not been created,
1671 		 * there is no need to iterate whole event list.
1672 		 */
1673 		if (pos == evsel)
1674 			break;
1675 	}
1676 	return 0;
1677 }
1678 
1679 static bool evsel__ignore_missing_thread(struct evsel *evsel,
1680 					 int nr_cpus, int cpu_map_idx,
1681 					 struct perf_thread_map *threads,
1682 					 int thread, int err)
1683 {
1684 	pid_t ignore_pid = perf_thread_map__pid(threads, thread);
1685 
1686 	if (!evsel->ignore_missing_thread)
1687 		return false;
1688 
1689 	/* The system wide setup does not work with threads. */
1690 	if (evsel->core.system_wide)
1691 		return false;
1692 
1693 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1694 	if (err != -ESRCH)
1695 		return false;
1696 
1697 	/* If there's only one thread, let it fail. */
1698 	if (threads->nr == 1)
1699 		return false;
1700 
1701 	/*
1702 	 * We should remove fd for missing_thread first
1703 	 * because thread_map__remove() will decrease threads->nr.
1704 	 */
1705 	if (update_fds(evsel, nr_cpus, cpu_map_idx, threads->nr, thread))
1706 		return false;
1707 
1708 	if (thread_map__remove(threads, thread))
1709 		return false;
1710 
1711 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1712 		   ignore_pid);
1713 	return true;
1714 }
1715 
1716 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1717 				void *priv __maybe_unused)
1718 {
1719 	return fprintf(fp, "  %-32s %s\n", name, val);
1720 }
1721 
1722 static void display_attr(struct perf_event_attr *attr)
1723 {
1724 	if (verbose >= 2 || debug_peo_args) {
1725 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1726 		fprintf(stderr, "perf_event_attr:\n");
1727 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1728 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1729 	}
1730 }
1731 
1732 bool evsel__precise_ip_fallback(struct evsel *evsel)
1733 {
1734 	/* Do not try less precise if not requested. */
1735 	if (!evsel->precise_max)
1736 		return false;
1737 
1738 	/*
1739 	 * We tried all the precise_ip values, and it's
1740 	 * still failing, so leave it to standard fallback.
1741 	 */
1742 	if (!evsel->core.attr.precise_ip) {
1743 		evsel->core.attr.precise_ip = evsel->precise_ip_original;
1744 		return false;
1745 	}
1746 
1747 	if (!evsel->precise_ip_original)
1748 		evsel->precise_ip_original = evsel->core.attr.precise_ip;
1749 
1750 	evsel->core.attr.precise_ip--;
1751 	pr_debug2_peo("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip);
1752 	display_attr(&evsel->core.attr);
1753 	return true;
1754 }
1755 
1756 static struct perf_cpu_map *empty_cpu_map;
1757 static struct perf_thread_map *empty_thread_map;
1758 
1759 static int __evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus,
1760 		struct perf_thread_map *threads)
1761 {
1762 	int nthreads;
1763 
1764 	if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) ||
1765 	    (perf_missing_features.aux_output     && evsel->core.attr.aux_output))
1766 		return -EINVAL;
1767 
1768 	if (cpus == NULL) {
1769 		if (empty_cpu_map == NULL) {
1770 			empty_cpu_map = perf_cpu_map__dummy_new();
1771 			if (empty_cpu_map == NULL)
1772 				return -ENOMEM;
1773 		}
1774 
1775 		cpus = empty_cpu_map;
1776 	}
1777 
1778 	if (threads == NULL) {
1779 		if (empty_thread_map == NULL) {
1780 			empty_thread_map = thread_map__new_by_tid(-1);
1781 			if (empty_thread_map == NULL)
1782 				return -ENOMEM;
1783 		}
1784 
1785 		threads = empty_thread_map;
1786 	}
1787 
1788 	if (evsel->core.system_wide)
1789 		nthreads = 1;
1790 	else
1791 		nthreads = threads->nr;
1792 
1793 	if (evsel->core.fd == NULL &&
1794 	    perf_evsel__alloc_fd(&evsel->core, perf_cpu_map__nr(cpus), nthreads) < 0)
1795 		return -ENOMEM;
1796 
1797 	evsel->open_flags = PERF_FLAG_FD_CLOEXEC;
1798 	if (evsel->cgrp)
1799 		evsel->open_flags |= PERF_FLAG_PID_CGROUP;
1800 
1801 	return 0;
1802 }
1803 
1804 static void evsel__disable_missing_features(struct evsel *evsel)
1805 {
1806 	if (perf_missing_features.weight_struct) {
1807 		evsel__set_sample_bit(evsel, WEIGHT);
1808 		evsel__reset_sample_bit(evsel, WEIGHT_STRUCT);
1809 	}
1810 	if (perf_missing_features.clockid_wrong)
1811 		evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */
1812 	if (perf_missing_features.clockid) {
1813 		evsel->core.attr.use_clockid = 0;
1814 		evsel->core.attr.clockid = 0;
1815 	}
1816 	if (perf_missing_features.cloexec)
1817 		evsel->open_flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1818 	if (perf_missing_features.mmap2)
1819 		evsel->core.attr.mmap2 = 0;
1820 	if (evsel->pmu && evsel->pmu->missing_features.exclude_guest)
1821 		evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0;
1822 	if (perf_missing_features.lbr_flags)
1823 		evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1824 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1825 	if (perf_missing_features.group_read && evsel->core.attr.inherit)
1826 		evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1827 	if (perf_missing_features.ksymbol)
1828 		evsel->core.attr.ksymbol = 0;
1829 	if (perf_missing_features.bpf)
1830 		evsel->core.attr.bpf_event = 0;
1831 	if (perf_missing_features.branch_hw_idx)
1832 		evsel->core.attr.branch_sample_type &= ~PERF_SAMPLE_BRANCH_HW_INDEX;
1833 	if (perf_missing_features.sample_id_all)
1834 		evsel->core.attr.sample_id_all = 0;
1835 }
1836 
1837 int evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus,
1838 			struct perf_thread_map *threads)
1839 {
1840 	int err;
1841 
1842 	err = __evsel__prepare_open(evsel, cpus, threads);
1843 	if (err)
1844 		return err;
1845 
1846 	evsel__disable_missing_features(evsel);
1847 
1848 	return err;
1849 }
1850 
1851 bool evsel__detect_missing_features(struct evsel *evsel)
1852 {
1853 	/*
1854 	 * Must probe features in the order they were added to the
1855 	 * perf_event_attr interface.
1856 	 */
1857 	if (!perf_missing_features.weight_struct &&
1858 	    (evsel->core.attr.sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) {
1859 		perf_missing_features.weight_struct = true;
1860 		pr_debug2("switching off weight struct support\n");
1861 		return true;
1862 	} else if (!perf_missing_features.code_page_size &&
1863 	    (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)) {
1864 		perf_missing_features.code_page_size = true;
1865 		pr_debug2_peo("Kernel has no PERF_SAMPLE_CODE_PAGE_SIZE support, bailing out\n");
1866 		return false;
1867 	} else if (!perf_missing_features.data_page_size &&
1868 	    (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)) {
1869 		perf_missing_features.data_page_size = true;
1870 		pr_debug2_peo("Kernel has no PERF_SAMPLE_DATA_PAGE_SIZE support, bailing out\n");
1871 		return false;
1872 	} else if (!perf_missing_features.cgroup && evsel->core.attr.cgroup) {
1873 		perf_missing_features.cgroup = true;
1874 		pr_debug2_peo("Kernel has no cgroup sampling support, bailing out\n");
1875 		return false;
1876 	} else if (!perf_missing_features.branch_hw_idx &&
1877 	    (evsel->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX)) {
1878 		perf_missing_features.branch_hw_idx = true;
1879 		pr_debug2("switching off branch HW index support\n");
1880 		return true;
1881 	} else if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) {
1882 		perf_missing_features.aux_output = true;
1883 		pr_debug2_peo("Kernel has no attr.aux_output support, bailing out\n");
1884 		return false;
1885 	} else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) {
1886 		perf_missing_features.bpf = true;
1887 		pr_debug2_peo("switching off bpf_event\n");
1888 		return true;
1889 	} else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) {
1890 		perf_missing_features.ksymbol = true;
1891 		pr_debug2_peo("switching off ksymbol\n");
1892 		return true;
1893 	} else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) {
1894 		perf_missing_features.write_backward = true;
1895 		pr_debug2_peo("switching off write_backward\n");
1896 		return false;
1897 	} else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) {
1898 		perf_missing_features.clockid_wrong = true;
1899 		pr_debug2_peo("switching off clockid\n");
1900 		return true;
1901 	} else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) {
1902 		perf_missing_features.clockid = true;
1903 		pr_debug2_peo("switching off use_clockid\n");
1904 		return true;
1905 	} else if (!perf_missing_features.cloexec && (evsel->open_flags & PERF_FLAG_FD_CLOEXEC)) {
1906 		perf_missing_features.cloexec = true;
1907 		pr_debug2_peo("switching off cloexec flag\n");
1908 		return true;
1909 	} else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) {
1910 		perf_missing_features.mmap2 = true;
1911 		pr_debug2_peo("switching off mmap2\n");
1912 		return true;
1913 	} else if ((evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host) &&
1914 		   (evsel->pmu == NULL || evsel->pmu->missing_features.exclude_guest)) {
1915 		if (evsel->pmu == NULL) {
1916 			evsel->pmu = evsel__find_pmu(evsel);
1917 			if (evsel->pmu)
1918 				evsel->pmu->missing_features.exclude_guest = true;
1919 			else {
1920 				/* we cannot find PMU, disable attrs now */
1921 				evsel->core.attr.exclude_host = false;
1922 				evsel->core.attr.exclude_guest = false;
1923 			}
1924 		}
1925 
1926 		if (evsel->exclude_GH) {
1927 			pr_debug2_peo("PMU has no exclude_host/guest support, bailing out\n");
1928 			return false;
1929 		}
1930 		if (!perf_missing_features.exclude_guest) {
1931 			perf_missing_features.exclude_guest = true;
1932 			pr_debug2_peo("switching off exclude_guest, exclude_host\n");
1933 		}
1934 		return true;
1935 	} else if (!perf_missing_features.sample_id_all) {
1936 		perf_missing_features.sample_id_all = true;
1937 		pr_debug2_peo("switching off sample_id_all\n");
1938 		return true;
1939 	} else if (!perf_missing_features.lbr_flags &&
1940 			(evsel->core.attr.branch_sample_type &
1941 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1942 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1943 		perf_missing_features.lbr_flags = true;
1944 		pr_debug2_peo("switching off branch sample type no (cycles/flags)\n");
1945 		return true;
1946 	} else if (!perf_missing_features.group_read &&
1947 		    evsel->core.attr.inherit &&
1948 		   (evsel->core.attr.read_format & PERF_FORMAT_GROUP) &&
1949 		   evsel__is_group_leader(evsel)) {
1950 		perf_missing_features.group_read = true;
1951 		pr_debug2_peo("switching off group read\n");
1952 		return true;
1953 	} else {
1954 		return false;
1955 	}
1956 }
1957 
1958 bool evsel__increase_rlimit(enum rlimit_action *set_rlimit)
1959 {
1960 	int old_errno;
1961 	struct rlimit l;
1962 
1963 	if (*set_rlimit < INCREASED_MAX) {
1964 		old_errno = errno;
1965 
1966 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1967 			if (*set_rlimit == NO_CHANGE) {
1968 				l.rlim_cur = l.rlim_max;
1969 			} else {
1970 				l.rlim_cur = l.rlim_max + 1000;
1971 				l.rlim_max = l.rlim_cur;
1972 			}
1973 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1974 				(*set_rlimit) += 1;
1975 				errno = old_errno;
1976 				return true;
1977 			}
1978 		}
1979 		errno = old_errno;
1980 	}
1981 
1982 	return false;
1983 }
1984 
1985 static int evsel__open_cpu(struct evsel *evsel, struct perf_cpu_map *cpus,
1986 		struct perf_thread_map *threads,
1987 		int start_cpu_map_idx, int end_cpu_map_idx)
1988 {
1989 	int idx, thread, nthreads;
1990 	int pid = -1, err, old_errno;
1991 	enum rlimit_action set_rlimit = NO_CHANGE;
1992 
1993 	err = __evsel__prepare_open(evsel, cpus, threads);
1994 	if (err)
1995 		return err;
1996 
1997 	if (cpus == NULL)
1998 		cpus = empty_cpu_map;
1999 
2000 	if (threads == NULL)
2001 		threads = empty_thread_map;
2002 
2003 	if (evsel->core.system_wide)
2004 		nthreads = 1;
2005 	else
2006 		nthreads = threads->nr;
2007 
2008 	if (evsel->cgrp)
2009 		pid = evsel->cgrp->fd;
2010 
2011 fallback_missing_features:
2012 	evsel__disable_missing_features(evsel);
2013 
2014 	display_attr(&evsel->core.attr);
2015 
2016 	for (idx = start_cpu_map_idx; idx < end_cpu_map_idx; idx++) {
2017 
2018 		for (thread = 0; thread < nthreads; thread++) {
2019 			int fd, group_fd;
2020 retry_open:
2021 			if (thread >= nthreads)
2022 				break;
2023 
2024 			if (!evsel->cgrp && !evsel->core.system_wide)
2025 				pid = perf_thread_map__pid(threads, thread);
2026 
2027 			group_fd = get_group_fd(evsel, idx, thread);
2028 
2029 			test_attr__ready();
2030 
2031 			pr_debug2_peo("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
2032 				pid, perf_cpu_map__cpu(cpus, idx).cpu, group_fd, evsel->open_flags);
2033 
2034 			fd = sys_perf_event_open(&evsel->core.attr, pid,
2035 						perf_cpu_map__cpu(cpus, idx).cpu,
2036 						group_fd, evsel->open_flags);
2037 
2038 			FD(evsel, idx, thread) = fd;
2039 
2040 			if (fd < 0) {
2041 				err = -errno;
2042 
2043 				pr_debug2_peo("\nsys_perf_event_open failed, error %d\n",
2044 					  err);
2045 				goto try_fallback;
2046 			}
2047 
2048 			bpf_counter__install_pe(evsel, idx, fd);
2049 
2050 			if (unlikely(test_attr__enabled)) {
2051 				test_attr__open(&evsel->core.attr, pid,
2052 						perf_cpu_map__cpu(cpus, idx),
2053 						fd, group_fd, evsel->open_flags);
2054 			}
2055 
2056 			pr_debug2_peo(" = %d\n", fd);
2057 
2058 			if (evsel->bpf_fd >= 0) {
2059 				int evt_fd = fd;
2060 				int bpf_fd = evsel->bpf_fd;
2061 
2062 				err = ioctl(evt_fd,
2063 					    PERF_EVENT_IOC_SET_BPF,
2064 					    bpf_fd);
2065 				if (err && errno != EEXIST) {
2066 					pr_err("failed to attach bpf fd %d: %s\n",
2067 					       bpf_fd, strerror(errno));
2068 					err = -EINVAL;
2069 					goto out_close;
2070 				}
2071 			}
2072 
2073 			set_rlimit = NO_CHANGE;
2074 
2075 			/*
2076 			 * If we succeeded but had to kill clockid, fail and
2077 			 * have evsel__open_strerror() print us a nice error.
2078 			 */
2079 			if (perf_missing_features.clockid ||
2080 			    perf_missing_features.clockid_wrong) {
2081 				err = -EINVAL;
2082 				goto out_close;
2083 			}
2084 		}
2085 	}
2086 
2087 	return 0;
2088 
2089 try_fallback:
2090 	if (evsel__precise_ip_fallback(evsel))
2091 		goto retry_open;
2092 
2093 	if (evsel__ignore_missing_thread(evsel, perf_cpu_map__nr(cpus),
2094 					 idx, threads, thread, err)) {
2095 		/* We just removed 1 thread, so lower the upper nthreads limit. */
2096 		nthreads--;
2097 
2098 		/* ... and pretend like nothing have happened. */
2099 		err = 0;
2100 		goto retry_open;
2101 	}
2102 	/*
2103 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
2104 	 * of them try to increase the limits.
2105 	 */
2106 	if (err == -EMFILE && evsel__increase_rlimit(&set_rlimit))
2107 		goto retry_open;
2108 
2109 	if (err != -EINVAL || idx > 0 || thread > 0)
2110 		goto out_close;
2111 
2112 	if (evsel__detect_missing_features(evsel))
2113 		goto fallback_missing_features;
2114 out_close:
2115 	if (err)
2116 		threads->err_thread = thread;
2117 
2118 	old_errno = errno;
2119 	do {
2120 		while (--thread >= 0) {
2121 			if (FD(evsel, idx, thread) >= 0)
2122 				close(FD(evsel, idx, thread));
2123 			FD(evsel, idx, thread) = -1;
2124 		}
2125 		thread = nthreads;
2126 	} while (--idx >= 0);
2127 	errno = old_errno;
2128 	return err;
2129 }
2130 
2131 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus,
2132 		struct perf_thread_map *threads)
2133 {
2134 	return evsel__open_cpu(evsel, cpus, threads, 0, perf_cpu_map__nr(cpus));
2135 }
2136 
2137 void evsel__close(struct evsel *evsel)
2138 {
2139 	perf_evsel__close(&evsel->core);
2140 	perf_evsel__free_id(&evsel->core);
2141 }
2142 
2143 int evsel__open_per_cpu(struct evsel *evsel, struct perf_cpu_map *cpus, int cpu_map_idx)
2144 {
2145 	if (cpu_map_idx == -1)
2146 		return evsel__open_cpu(evsel, cpus, NULL, 0, perf_cpu_map__nr(cpus));
2147 
2148 	return evsel__open_cpu(evsel, cpus, NULL, cpu_map_idx, cpu_map_idx + 1);
2149 }
2150 
2151 int evsel__open_per_thread(struct evsel *evsel, struct perf_thread_map *threads)
2152 {
2153 	return evsel__open(evsel, NULL, threads);
2154 }
2155 
2156 static int perf_evsel__parse_id_sample(const struct evsel *evsel,
2157 				       const union perf_event *event,
2158 				       struct perf_sample *sample)
2159 {
2160 	u64 type = evsel->core.attr.sample_type;
2161 	const __u64 *array = event->sample.array;
2162 	bool swapped = evsel->needs_swap;
2163 	union u64_swap u;
2164 
2165 	array += ((event->header.size -
2166 		   sizeof(event->header)) / sizeof(u64)) - 1;
2167 
2168 	if (type & PERF_SAMPLE_IDENTIFIER) {
2169 		sample->id = *array;
2170 		array--;
2171 	}
2172 
2173 	if (type & PERF_SAMPLE_CPU) {
2174 		u.val64 = *array;
2175 		if (swapped) {
2176 			/* undo swap of u64, then swap on individual u32s */
2177 			u.val64 = bswap_64(u.val64);
2178 			u.val32[0] = bswap_32(u.val32[0]);
2179 		}
2180 
2181 		sample->cpu = u.val32[0];
2182 		array--;
2183 	}
2184 
2185 	if (type & PERF_SAMPLE_STREAM_ID) {
2186 		sample->stream_id = *array;
2187 		array--;
2188 	}
2189 
2190 	if (type & PERF_SAMPLE_ID) {
2191 		sample->id = *array;
2192 		array--;
2193 	}
2194 
2195 	if (type & PERF_SAMPLE_TIME) {
2196 		sample->time = *array;
2197 		array--;
2198 	}
2199 
2200 	if (type & PERF_SAMPLE_TID) {
2201 		u.val64 = *array;
2202 		if (swapped) {
2203 			/* undo swap of u64, then swap on individual u32s */
2204 			u.val64 = bswap_64(u.val64);
2205 			u.val32[0] = bswap_32(u.val32[0]);
2206 			u.val32[1] = bswap_32(u.val32[1]);
2207 		}
2208 
2209 		sample->pid = u.val32[0];
2210 		sample->tid = u.val32[1];
2211 		array--;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2218 			    u64 size)
2219 {
2220 	return size > max_size || offset + size > endp;
2221 }
2222 
2223 #define OVERFLOW_CHECK(offset, size, max_size)				\
2224 	do {								\
2225 		if (overflow(endp, (max_size), (offset), (size)))	\
2226 			return -EFAULT;					\
2227 	} while (0)
2228 
2229 #define OVERFLOW_CHECK_u64(offset) \
2230 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2231 
2232 static int
2233 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2234 {
2235 	/*
2236 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2237 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2238 	 * check the format does not go past the end of the event.
2239 	 */
2240 	if (sample_size + sizeof(event->header) > event->header.size)
2241 		return -EFAULT;
2242 
2243 	return 0;
2244 }
2245 
2246 void __weak arch_perf_parse_sample_weight(struct perf_sample *data,
2247 					  const __u64 *array,
2248 					  u64 type __maybe_unused)
2249 {
2250 	data->weight = *array;
2251 }
2252 
2253 u64 evsel__bitfield_swap_branch_flags(u64 value)
2254 {
2255 	u64 new_val = 0;
2256 
2257 	/*
2258 	 * branch_flags
2259 	 * union {
2260 	 * 	u64 values;
2261 	 * 	struct {
2262 	 * 		mispred:1	//target mispredicted
2263 	 * 		predicted:1	//target predicted
2264 	 * 		in_tx:1		//in transaction
2265 	 * 		abort:1		//transaction abort
2266 	 * 		cycles:16	//cycle count to last branch
2267 	 * 		type:4		//branch type
2268 	 * 		reserved:40
2269 	 * 	}
2270 	 * }
2271 	 *
2272 	 * Avoid bswap64() the entire branch_flag.value,
2273 	 * as it has variable bit-field sizes. Instead the
2274 	 * macro takes the bit-field position/size,
2275 	 * swaps it based on the host endianness.
2276 	 *
2277 	 * tep_is_bigendian() is used here instead of
2278 	 * bigendian() to avoid python test fails.
2279 	 */
2280 	if (tep_is_bigendian()) {
2281 		new_val = bitfield_swap(value, 0, 1);
2282 		new_val |= bitfield_swap(value, 1, 1);
2283 		new_val |= bitfield_swap(value, 2, 1);
2284 		new_val |= bitfield_swap(value, 3, 1);
2285 		new_val |= bitfield_swap(value, 4, 16);
2286 		new_val |= bitfield_swap(value, 20, 4);
2287 		new_val |= bitfield_swap(value, 24, 40);
2288 	} else {
2289 		new_val = bitfield_swap(value, 63, 1);
2290 		new_val |= bitfield_swap(value, 62, 1);
2291 		new_val |= bitfield_swap(value, 61, 1);
2292 		new_val |= bitfield_swap(value, 60, 1);
2293 		new_val |= bitfield_swap(value, 44, 16);
2294 		new_val |= bitfield_swap(value, 40, 4);
2295 		new_val |= bitfield_swap(value, 0, 40);
2296 	}
2297 
2298 	return new_val;
2299 }
2300 
2301 int evsel__parse_sample(struct evsel *evsel, union perf_event *event,
2302 			struct perf_sample *data)
2303 {
2304 	u64 type = evsel->core.attr.sample_type;
2305 	bool swapped = evsel->needs_swap;
2306 	const __u64 *array;
2307 	u16 max_size = event->header.size;
2308 	const void *endp = (void *)event + max_size;
2309 	u64 sz;
2310 
2311 	/*
2312 	 * used for cross-endian analysis. See git commit 65014ab3
2313 	 * for why this goofiness is needed.
2314 	 */
2315 	union u64_swap u;
2316 
2317 	memset(data, 0, sizeof(*data));
2318 	data->cpu = data->pid = data->tid = -1;
2319 	data->stream_id = data->id = data->time = -1ULL;
2320 	data->period = evsel->core.attr.sample_period;
2321 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2322 	data->misc    = event->header.misc;
2323 	data->id = -1ULL;
2324 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2325 
2326 	if (event->header.type != PERF_RECORD_SAMPLE) {
2327 		if (!evsel->core.attr.sample_id_all)
2328 			return 0;
2329 		return perf_evsel__parse_id_sample(evsel, event, data);
2330 	}
2331 
2332 	array = event->sample.array;
2333 
2334 	if (perf_event__check_size(event, evsel->sample_size))
2335 		return -EFAULT;
2336 
2337 	if (type & PERF_SAMPLE_IDENTIFIER) {
2338 		data->id = *array;
2339 		array++;
2340 	}
2341 
2342 	if (type & PERF_SAMPLE_IP) {
2343 		data->ip = *array;
2344 		array++;
2345 	}
2346 
2347 	if (type & PERF_SAMPLE_TID) {
2348 		u.val64 = *array;
2349 		if (swapped) {
2350 			/* undo swap of u64, then swap on individual u32s */
2351 			u.val64 = bswap_64(u.val64);
2352 			u.val32[0] = bswap_32(u.val32[0]);
2353 			u.val32[1] = bswap_32(u.val32[1]);
2354 		}
2355 
2356 		data->pid = u.val32[0];
2357 		data->tid = u.val32[1];
2358 		array++;
2359 	}
2360 
2361 	if (type & PERF_SAMPLE_TIME) {
2362 		data->time = *array;
2363 		array++;
2364 	}
2365 
2366 	if (type & PERF_SAMPLE_ADDR) {
2367 		data->addr = *array;
2368 		array++;
2369 	}
2370 
2371 	if (type & PERF_SAMPLE_ID) {
2372 		data->id = *array;
2373 		array++;
2374 	}
2375 
2376 	if (type & PERF_SAMPLE_STREAM_ID) {
2377 		data->stream_id = *array;
2378 		array++;
2379 	}
2380 
2381 	if (type & PERF_SAMPLE_CPU) {
2382 
2383 		u.val64 = *array;
2384 		if (swapped) {
2385 			/* undo swap of u64, then swap on individual u32s */
2386 			u.val64 = bswap_64(u.val64);
2387 			u.val32[0] = bswap_32(u.val32[0]);
2388 		}
2389 
2390 		data->cpu = u.val32[0];
2391 		array++;
2392 	}
2393 
2394 	if (type & PERF_SAMPLE_PERIOD) {
2395 		data->period = *array;
2396 		array++;
2397 	}
2398 
2399 	if (type & PERF_SAMPLE_READ) {
2400 		u64 read_format = evsel->core.attr.read_format;
2401 
2402 		OVERFLOW_CHECK_u64(array);
2403 		if (read_format & PERF_FORMAT_GROUP)
2404 			data->read.group.nr = *array;
2405 		else
2406 			data->read.one.value = *array;
2407 
2408 		array++;
2409 
2410 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2411 			OVERFLOW_CHECK_u64(array);
2412 			data->read.time_enabled = *array;
2413 			array++;
2414 		}
2415 
2416 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2417 			OVERFLOW_CHECK_u64(array);
2418 			data->read.time_running = *array;
2419 			array++;
2420 		}
2421 
2422 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2423 		if (read_format & PERF_FORMAT_GROUP) {
2424 			const u64 max_group_nr = UINT64_MAX /
2425 					sizeof(struct sample_read_value);
2426 
2427 			if (data->read.group.nr > max_group_nr)
2428 				return -EFAULT;
2429 			sz = data->read.group.nr *
2430 			     sizeof(struct sample_read_value);
2431 			OVERFLOW_CHECK(array, sz, max_size);
2432 			data->read.group.values =
2433 					(struct sample_read_value *)array;
2434 			array = (void *)array + sz;
2435 		} else {
2436 			OVERFLOW_CHECK_u64(array);
2437 			data->read.one.id = *array;
2438 			array++;
2439 		}
2440 	}
2441 
2442 	if (type & PERF_SAMPLE_CALLCHAIN) {
2443 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2444 
2445 		OVERFLOW_CHECK_u64(array);
2446 		data->callchain = (struct ip_callchain *)array++;
2447 		if (data->callchain->nr > max_callchain_nr)
2448 			return -EFAULT;
2449 		sz = data->callchain->nr * sizeof(u64);
2450 		OVERFLOW_CHECK(array, sz, max_size);
2451 		array = (void *)array + sz;
2452 	}
2453 
2454 	if (type & PERF_SAMPLE_RAW) {
2455 		OVERFLOW_CHECK_u64(array);
2456 		u.val64 = *array;
2457 
2458 		/*
2459 		 * Undo swap of u64, then swap on individual u32s,
2460 		 * get the size of the raw area and undo all of the
2461 		 * swap. The pevent interface handles endianness by
2462 		 * itself.
2463 		 */
2464 		if (swapped) {
2465 			u.val64 = bswap_64(u.val64);
2466 			u.val32[0] = bswap_32(u.val32[0]);
2467 			u.val32[1] = bswap_32(u.val32[1]);
2468 		}
2469 		data->raw_size = u.val32[0];
2470 
2471 		/*
2472 		 * The raw data is aligned on 64bits including the
2473 		 * u32 size, so it's safe to use mem_bswap_64.
2474 		 */
2475 		if (swapped)
2476 			mem_bswap_64((void *) array, data->raw_size);
2477 
2478 		array = (void *)array + sizeof(u32);
2479 
2480 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2481 		data->raw_data = (void *)array;
2482 		array = (void *)array + data->raw_size;
2483 	}
2484 
2485 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2486 		const u64 max_branch_nr = UINT64_MAX /
2487 					  sizeof(struct branch_entry);
2488 		struct branch_entry *e;
2489 		unsigned int i;
2490 
2491 		OVERFLOW_CHECK_u64(array);
2492 		data->branch_stack = (struct branch_stack *)array++;
2493 
2494 		if (data->branch_stack->nr > max_branch_nr)
2495 			return -EFAULT;
2496 
2497 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2498 		if (evsel__has_branch_hw_idx(evsel)) {
2499 			sz += sizeof(u64);
2500 			e = &data->branch_stack->entries[0];
2501 		} else {
2502 			data->no_hw_idx = true;
2503 			/*
2504 			 * if the PERF_SAMPLE_BRANCH_HW_INDEX is not applied,
2505 			 * only nr and entries[] will be output by kernel.
2506 			 */
2507 			e = (struct branch_entry *)&data->branch_stack->hw_idx;
2508 		}
2509 
2510 		if (swapped) {
2511 			/*
2512 			 * struct branch_flag does not have endian
2513 			 * specific bit field definition. And bswap
2514 			 * will not resolve the issue, since these
2515 			 * are bit fields.
2516 			 *
2517 			 * evsel__bitfield_swap_branch_flags() uses a
2518 			 * bitfield_swap macro to swap the bit position
2519 			 * based on the host endians.
2520 			 */
2521 			for (i = 0; i < data->branch_stack->nr; i++, e++)
2522 				e->flags.value = evsel__bitfield_swap_branch_flags(e->flags.value);
2523 		}
2524 
2525 		OVERFLOW_CHECK(array, sz, max_size);
2526 		array = (void *)array + sz;
2527 	}
2528 
2529 	if (type & PERF_SAMPLE_REGS_USER) {
2530 		OVERFLOW_CHECK_u64(array);
2531 		data->user_regs.abi = *array;
2532 		array++;
2533 
2534 		if (data->user_regs.abi) {
2535 			u64 mask = evsel->core.attr.sample_regs_user;
2536 
2537 			sz = hweight64(mask) * sizeof(u64);
2538 			OVERFLOW_CHECK(array, sz, max_size);
2539 			data->user_regs.mask = mask;
2540 			data->user_regs.regs = (u64 *)array;
2541 			array = (void *)array + sz;
2542 		}
2543 	}
2544 
2545 	if (type & PERF_SAMPLE_STACK_USER) {
2546 		OVERFLOW_CHECK_u64(array);
2547 		sz = *array++;
2548 
2549 		data->user_stack.offset = ((char *)(array - 1)
2550 					  - (char *) event);
2551 
2552 		if (!sz) {
2553 			data->user_stack.size = 0;
2554 		} else {
2555 			OVERFLOW_CHECK(array, sz, max_size);
2556 			data->user_stack.data = (char *)array;
2557 			array = (void *)array + sz;
2558 			OVERFLOW_CHECK_u64(array);
2559 			data->user_stack.size = *array++;
2560 			if (WARN_ONCE(data->user_stack.size > sz,
2561 				      "user stack dump failure\n"))
2562 				return -EFAULT;
2563 		}
2564 	}
2565 
2566 	if (type & PERF_SAMPLE_WEIGHT_TYPE) {
2567 		OVERFLOW_CHECK_u64(array);
2568 		arch_perf_parse_sample_weight(data, array, type);
2569 		array++;
2570 	}
2571 
2572 	if (type & PERF_SAMPLE_DATA_SRC) {
2573 		OVERFLOW_CHECK_u64(array);
2574 		data->data_src = *array;
2575 		array++;
2576 	}
2577 
2578 	if (type & PERF_SAMPLE_TRANSACTION) {
2579 		OVERFLOW_CHECK_u64(array);
2580 		data->transaction = *array;
2581 		array++;
2582 	}
2583 
2584 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2585 	if (type & PERF_SAMPLE_REGS_INTR) {
2586 		OVERFLOW_CHECK_u64(array);
2587 		data->intr_regs.abi = *array;
2588 		array++;
2589 
2590 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2591 			u64 mask = evsel->core.attr.sample_regs_intr;
2592 
2593 			sz = hweight64(mask) * sizeof(u64);
2594 			OVERFLOW_CHECK(array, sz, max_size);
2595 			data->intr_regs.mask = mask;
2596 			data->intr_regs.regs = (u64 *)array;
2597 			array = (void *)array + sz;
2598 		}
2599 	}
2600 
2601 	data->phys_addr = 0;
2602 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2603 		data->phys_addr = *array;
2604 		array++;
2605 	}
2606 
2607 	data->cgroup = 0;
2608 	if (type & PERF_SAMPLE_CGROUP) {
2609 		data->cgroup = *array;
2610 		array++;
2611 	}
2612 
2613 	data->data_page_size = 0;
2614 	if (type & PERF_SAMPLE_DATA_PAGE_SIZE) {
2615 		data->data_page_size = *array;
2616 		array++;
2617 	}
2618 
2619 	data->code_page_size = 0;
2620 	if (type & PERF_SAMPLE_CODE_PAGE_SIZE) {
2621 		data->code_page_size = *array;
2622 		array++;
2623 	}
2624 
2625 	if (type & PERF_SAMPLE_AUX) {
2626 		OVERFLOW_CHECK_u64(array);
2627 		sz = *array++;
2628 
2629 		OVERFLOW_CHECK(array, sz, max_size);
2630 		/* Undo swap of data */
2631 		if (swapped)
2632 			mem_bswap_64((char *)array, sz);
2633 		data->aux_sample.size = sz;
2634 		data->aux_sample.data = (char *)array;
2635 		array = (void *)array + sz;
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 int evsel__parse_sample_timestamp(struct evsel *evsel, union perf_event *event,
2642 				  u64 *timestamp)
2643 {
2644 	u64 type = evsel->core.attr.sample_type;
2645 	const __u64 *array;
2646 
2647 	if (!(type & PERF_SAMPLE_TIME))
2648 		return -1;
2649 
2650 	if (event->header.type != PERF_RECORD_SAMPLE) {
2651 		struct perf_sample data = {
2652 			.time = -1ULL,
2653 		};
2654 
2655 		if (!evsel->core.attr.sample_id_all)
2656 			return -1;
2657 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2658 			return -1;
2659 
2660 		*timestamp = data.time;
2661 		return 0;
2662 	}
2663 
2664 	array = event->sample.array;
2665 
2666 	if (perf_event__check_size(event, evsel->sample_size))
2667 		return -EFAULT;
2668 
2669 	if (type & PERF_SAMPLE_IDENTIFIER)
2670 		array++;
2671 
2672 	if (type & PERF_SAMPLE_IP)
2673 		array++;
2674 
2675 	if (type & PERF_SAMPLE_TID)
2676 		array++;
2677 
2678 	if (type & PERF_SAMPLE_TIME)
2679 		*timestamp = *array;
2680 
2681 	return 0;
2682 }
2683 
2684 struct tep_format_field *evsel__field(struct evsel *evsel, const char *name)
2685 {
2686 	return tep_find_field(evsel->tp_format, name);
2687 }
2688 
2689 void *evsel__rawptr(struct evsel *evsel, struct perf_sample *sample, const char *name)
2690 {
2691 	struct tep_format_field *field = evsel__field(evsel, name);
2692 	int offset;
2693 
2694 	if (!field)
2695 		return NULL;
2696 
2697 	offset = field->offset;
2698 
2699 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2700 		offset = *(int *)(sample->raw_data + field->offset);
2701 		offset &= 0xffff;
2702 		if (field->flags & TEP_FIELD_IS_RELATIVE)
2703 			offset += field->offset + field->size;
2704 	}
2705 
2706 	return sample->raw_data + offset;
2707 }
2708 
2709 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2710 			 bool needs_swap)
2711 {
2712 	u64 value;
2713 	void *ptr = sample->raw_data + field->offset;
2714 
2715 	switch (field->size) {
2716 	case 1:
2717 		return *(u8 *)ptr;
2718 	case 2:
2719 		value = *(u16 *)ptr;
2720 		break;
2721 	case 4:
2722 		value = *(u32 *)ptr;
2723 		break;
2724 	case 8:
2725 		memcpy(&value, ptr, sizeof(u64));
2726 		break;
2727 	default:
2728 		return 0;
2729 	}
2730 
2731 	if (!needs_swap)
2732 		return value;
2733 
2734 	switch (field->size) {
2735 	case 2:
2736 		return bswap_16(value);
2737 	case 4:
2738 		return bswap_32(value);
2739 	case 8:
2740 		return bswap_64(value);
2741 	default:
2742 		return 0;
2743 	}
2744 
2745 	return 0;
2746 }
2747 
2748 u64 evsel__intval(struct evsel *evsel, struct perf_sample *sample, const char *name)
2749 {
2750 	struct tep_format_field *field = evsel__field(evsel, name);
2751 
2752 	if (!field)
2753 		return 0;
2754 
2755 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2756 }
2757 
2758 bool evsel__fallback(struct evsel *evsel, int err, char *msg, size_t msgsize)
2759 {
2760 	int paranoid;
2761 
2762 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2763 	    evsel->core.attr.type   == PERF_TYPE_HARDWARE &&
2764 	    evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2765 		/*
2766 		 * If it's cycles then fall back to hrtimer based
2767 		 * cpu-clock-tick sw counter, which is always available even if
2768 		 * no PMU support.
2769 		 *
2770 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2771 		 * b0a873e).
2772 		 */
2773 		scnprintf(msg, msgsize, "%s",
2774 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2775 
2776 		evsel->core.attr.type   = PERF_TYPE_SOFTWARE;
2777 		evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK;
2778 
2779 		zfree(&evsel->name);
2780 		return true;
2781 	} else if (err == EACCES && !evsel->core.attr.exclude_kernel &&
2782 		   (paranoid = perf_event_paranoid()) > 1) {
2783 		const char *name = evsel__name(evsel);
2784 		char *new_name;
2785 		const char *sep = ":";
2786 
2787 		/* If event has exclude user then don't exclude kernel. */
2788 		if (evsel->core.attr.exclude_user)
2789 			return false;
2790 
2791 		/* Is there already the separator in the name. */
2792 		if (strchr(name, '/') ||
2793 		    (strchr(name, ':') && !evsel->is_libpfm_event))
2794 			sep = "";
2795 
2796 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2797 			return false;
2798 
2799 		if (evsel->name)
2800 			free(evsel->name);
2801 		evsel->name = new_name;
2802 		scnprintf(msg, msgsize, "kernel.perf_event_paranoid=%d, trying "
2803 			  "to fall back to excluding kernel and hypervisor "
2804 			  " samples", paranoid);
2805 		evsel->core.attr.exclude_kernel = 1;
2806 		evsel->core.attr.exclude_hv     = 1;
2807 
2808 		return true;
2809 	}
2810 
2811 	return false;
2812 }
2813 
2814 static bool find_process(const char *name)
2815 {
2816 	size_t len = strlen(name);
2817 	DIR *dir;
2818 	struct dirent *d;
2819 	int ret = -1;
2820 
2821 	dir = opendir(procfs__mountpoint());
2822 	if (!dir)
2823 		return false;
2824 
2825 	/* Walk through the directory. */
2826 	while (ret && (d = readdir(dir)) != NULL) {
2827 		char path[PATH_MAX];
2828 		char *data;
2829 		size_t size;
2830 
2831 		if ((d->d_type != DT_DIR) ||
2832 		     !strcmp(".", d->d_name) ||
2833 		     !strcmp("..", d->d_name))
2834 			continue;
2835 
2836 		scnprintf(path, sizeof(path), "%s/%s/comm",
2837 			  procfs__mountpoint(), d->d_name);
2838 
2839 		if (filename__read_str(path, &data, &size))
2840 			continue;
2841 
2842 		ret = strncmp(name, data, len);
2843 		free(data);
2844 	}
2845 
2846 	closedir(dir);
2847 	return ret ? false : true;
2848 }
2849 
2850 int evsel__open_strerror(struct evsel *evsel, struct target *target,
2851 			 int err, char *msg, size_t size)
2852 {
2853 	char sbuf[STRERR_BUFSIZE];
2854 	int printed = 0, enforced = 0;
2855 
2856 	switch (err) {
2857 	case EPERM:
2858 	case EACCES:
2859 		printed += scnprintf(msg + printed, size - printed,
2860 			"Access to performance monitoring and observability operations is limited.\n");
2861 
2862 		if (!sysfs__read_int("fs/selinux/enforce", &enforced)) {
2863 			if (enforced) {
2864 				printed += scnprintf(msg + printed, size - printed,
2865 					"Enforced MAC policy settings (SELinux) can limit access to performance\n"
2866 					"monitoring and observability operations. Inspect system audit records for\n"
2867 					"more perf_event access control information and adjusting the policy.\n");
2868 			}
2869 		}
2870 
2871 		if (err == EPERM)
2872 			printed += scnprintf(msg, size,
2873 				"No permission to enable %s event.\n\n", evsel__name(evsel));
2874 
2875 		return scnprintf(msg + printed, size - printed,
2876 		 "Consider adjusting /proc/sys/kernel/perf_event_paranoid setting to open\n"
2877 		 "access to performance monitoring and observability operations for processes\n"
2878 		 "without CAP_PERFMON, CAP_SYS_PTRACE or CAP_SYS_ADMIN Linux capability.\n"
2879 		 "More information can be found at 'Perf events and tool security' document:\n"
2880 		 "https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html\n"
2881 		 "perf_event_paranoid setting is %d:\n"
2882 		 "  -1: Allow use of (almost) all events by all users\n"
2883 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2884 		 ">= 0: Disallow raw and ftrace function tracepoint access\n"
2885 		 ">= 1: Disallow CPU event access\n"
2886 		 ">= 2: Disallow kernel profiling\n"
2887 		 "To make the adjusted perf_event_paranoid setting permanent preserve it\n"
2888 		 "in /etc/sysctl.conf (e.g. kernel.perf_event_paranoid = <setting>)",
2889 		 perf_event_paranoid());
2890 	case ENOENT:
2891 		return scnprintf(msg, size, "The %s event is not supported.", evsel__name(evsel));
2892 	case EMFILE:
2893 		return scnprintf(msg, size, "%s",
2894 			 "Too many events are opened.\n"
2895 			 "Probably the maximum number of open file descriptors has been reached.\n"
2896 			 "Hint: Try again after reducing the number of events.\n"
2897 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2898 	case ENOMEM:
2899 		if (evsel__has_callchain(evsel) &&
2900 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2901 			return scnprintf(msg, size,
2902 					 "Not enough memory to setup event with callchain.\n"
2903 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2904 					 "Hint: Current value: %d", sysctl__max_stack());
2905 		break;
2906 	case ENODEV:
2907 		if (target->cpu_list)
2908 			return scnprintf(msg, size, "%s",
2909 	 "No such device - did you specify an out-of-range profile CPU?");
2910 		break;
2911 	case EOPNOTSUPP:
2912 		if (evsel->core.attr.aux_output)
2913 			return scnprintf(msg, size,
2914 	"%s: PMU Hardware doesn't support 'aux_output' feature",
2915 					 evsel__name(evsel));
2916 		if (evsel->core.attr.sample_period != 0)
2917 			return scnprintf(msg, size,
2918 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2919 					 evsel__name(evsel));
2920 		if (evsel->core.attr.precise_ip)
2921 			return scnprintf(msg, size, "%s",
2922 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2923 #if defined(__i386__) || defined(__x86_64__)
2924 		if (evsel->core.attr.type == PERF_TYPE_HARDWARE)
2925 			return scnprintf(msg, size, "%s",
2926 	"No hardware sampling interrupt available.\n");
2927 #endif
2928 		break;
2929 	case EBUSY:
2930 		if (find_process("oprofiled"))
2931 			return scnprintf(msg, size,
2932 	"The PMU counters are busy/taken by another profiler.\n"
2933 	"We found oprofile daemon running, please stop it and try again.");
2934 		break;
2935 	case EINVAL:
2936 		if (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE && perf_missing_features.code_page_size)
2937 			return scnprintf(msg, size, "Asking for the code page size isn't supported by this kernel.");
2938 		if (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE && perf_missing_features.data_page_size)
2939 			return scnprintf(msg, size, "Asking for the data page size isn't supported by this kernel.");
2940 		if (evsel->core.attr.write_backward && perf_missing_features.write_backward)
2941 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2942 		if (perf_missing_features.clockid)
2943 			return scnprintf(msg, size, "clockid feature not supported.");
2944 		if (perf_missing_features.clockid_wrong)
2945 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2946 		if (perf_missing_features.aux_output)
2947 			return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel.");
2948 		if (!target__has_cpu(target))
2949 			return scnprintf(msg, size,
2950 	"Invalid event (%s) in per-thread mode, enable system wide with '-a'.",
2951 					evsel__name(evsel));
2952 		break;
2953 	case ENODATA:
2954 		return scnprintf(msg, size, "Cannot collect data source with the load latency event alone. "
2955 				 "Please add an auxiliary event in front of the load latency event.");
2956 	default:
2957 		break;
2958 	}
2959 
2960 	return scnprintf(msg, size,
2961 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2962 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2963 			 err, str_error_r(err, sbuf, sizeof(sbuf)), evsel__name(evsel));
2964 }
2965 
2966 struct perf_env *evsel__env(struct evsel *evsel)
2967 {
2968 	if (evsel && evsel->evlist)
2969 		return evsel->evlist->env;
2970 	return &perf_env;
2971 }
2972 
2973 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist)
2974 {
2975 	int cpu_map_idx, thread;
2976 
2977 	for (cpu_map_idx = 0; cpu_map_idx < xyarray__max_x(evsel->core.fd); cpu_map_idx++) {
2978 		for (thread = 0; thread < xyarray__max_y(evsel->core.fd);
2979 		     thread++) {
2980 			int fd = FD(evsel, cpu_map_idx, thread);
2981 
2982 			if (perf_evlist__id_add_fd(&evlist->core, &evsel->core,
2983 						   cpu_map_idx, thread, fd) < 0)
2984 				return -1;
2985 		}
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 int evsel__store_ids(struct evsel *evsel, struct evlist *evlist)
2992 {
2993 	struct perf_cpu_map *cpus = evsel->core.cpus;
2994 	struct perf_thread_map *threads = evsel->core.threads;
2995 
2996 	if (perf_evsel__alloc_id(&evsel->core, perf_cpu_map__nr(cpus), threads->nr))
2997 		return -ENOMEM;
2998 
2999 	return store_evsel_ids(evsel, evlist);
3000 }
3001 
3002 void evsel__zero_per_pkg(struct evsel *evsel)
3003 {
3004 	struct hashmap_entry *cur;
3005 	size_t bkt;
3006 
3007 	if (evsel->per_pkg_mask) {
3008 		hashmap__for_each_entry(evsel->per_pkg_mask, cur, bkt)
3009 			free((char *)cur->key);
3010 
3011 		hashmap__clear(evsel->per_pkg_mask);
3012 	}
3013 }
3014 
3015 bool evsel__is_hybrid(struct evsel *evsel)
3016 {
3017 	return evsel->pmu_name && perf_pmu__is_hybrid(evsel->pmu_name);
3018 }
3019 
3020 struct evsel *evsel__leader(struct evsel *evsel)
3021 {
3022 	return container_of(evsel->core.leader, struct evsel, core);
3023 }
3024 
3025 bool evsel__has_leader(struct evsel *evsel, struct evsel *leader)
3026 {
3027 	return evsel->core.leader == &leader->core;
3028 }
3029 
3030 bool evsel__is_leader(struct evsel *evsel)
3031 {
3032 	return evsel__has_leader(evsel, evsel);
3033 }
3034 
3035 void evsel__set_leader(struct evsel *evsel, struct evsel *leader)
3036 {
3037 	evsel->core.leader = &leader->core;
3038 }
3039 
3040 int evsel__source_count(const struct evsel *evsel)
3041 {
3042 	struct evsel *pos;
3043 	int count = 0;
3044 
3045 	evlist__for_each_entry(evsel->evlist, pos) {
3046 		if (pos->metric_leader == evsel)
3047 			count++;
3048 	}
3049 	return count;
3050 }
3051