1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/tracing_path.h> 15 #include <traceevent/event-parse.h> 16 #include <linux/hw_breakpoint.h> 17 #include <linux/perf_event.h> 18 #include <linux/err.h> 19 #include <sys/ioctl.h> 20 #include <sys/resource.h> 21 #include "asm/bug.h" 22 #include "callchain.h" 23 #include "cgroup.h" 24 #include "evsel.h" 25 #include "evlist.h" 26 #include "util.h" 27 #include "cpumap.h" 28 #include "thread_map.h" 29 #include "target.h" 30 #include "perf_regs.h" 31 #include "debug.h" 32 #include "trace-event.h" 33 #include "stat.h" 34 #include "util/parse-branch-options.h" 35 36 #include "sane_ctype.h" 37 38 static struct { 39 bool sample_id_all; 40 bool exclude_guest; 41 bool mmap2; 42 bool cloexec; 43 bool clockid; 44 bool clockid_wrong; 45 bool lbr_flags; 46 bool write_backward; 47 } perf_missing_features; 48 49 static clockid_t clockid; 50 51 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 52 { 53 return 0; 54 } 55 56 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 57 { 58 } 59 60 static struct { 61 size_t size; 62 int (*init)(struct perf_evsel *evsel); 63 void (*fini)(struct perf_evsel *evsel); 64 } perf_evsel__object = { 65 .size = sizeof(struct perf_evsel), 66 .init = perf_evsel__no_extra_init, 67 .fini = perf_evsel__no_extra_fini, 68 }; 69 70 int perf_evsel__object_config(size_t object_size, 71 int (*init)(struct perf_evsel *evsel), 72 void (*fini)(struct perf_evsel *evsel)) 73 { 74 75 if (object_size == 0) 76 goto set_methods; 77 78 if (perf_evsel__object.size > object_size) 79 return -EINVAL; 80 81 perf_evsel__object.size = object_size; 82 83 set_methods: 84 if (init != NULL) 85 perf_evsel__object.init = init; 86 87 if (fini != NULL) 88 perf_evsel__object.fini = fini; 89 90 return 0; 91 } 92 93 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 94 95 int __perf_evsel__sample_size(u64 sample_type) 96 { 97 u64 mask = sample_type & PERF_SAMPLE_MASK; 98 int size = 0; 99 int i; 100 101 for (i = 0; i < 64; i++) { 102 if (mask & (1ULL << i)) 103 size++; 104 } 105 106 size *= sizeof(u64); 107 108 return size; 109 } 110 111 /** 112 * __perf_evsel__calc_id_pos - calculate id_pos. 113 * @sample_type: sample type 114 * 115 * This function returns the position of the event id (PERF_SAMPLE_ID or 116 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 117 * sample_event. 118 */ 119 static int __perf_evsel__calc_id_pos(u64 sample_type) 120 { 121 int idx = 0; 122 123 if (sample_type & PERF_SAMPLE_IDENTIFIER) 124 return 0; 125 126 if (!(sample_type & PERF_SAMPLE_ID)) 127 return -1; 128 129 if (sample_type & PERF_SAMPLE_IP) 130 idx += 1; 131 132 if (sample_type & PERF_SAMPLE_TID) 133 idx += 1; 134 135 if (sample_type & PERF_SAMPLE_TIME) 136 idx += 1; 137 138 if (sample_type & PERF_SAMPLE_ADDR) 139 idx += 1; 140 141 return idx; 142 } 143 144 /** 145 * __perf_evsel__calc_is_pos - calculate is_pos. 146 * @sample_type: sample type 147 * 148 * This function returns the position (counting backwards) of the event id 149 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 150 * sample_id_all is used there is an id sample appended to non-sample events. 151 */ 152 static int __perf_evsel__calc_is_pos(u64 sample_type) 153 { 154 int idx = 1; 155 156 if (sample_type & PERF_SAMPLE_IDENTIFIER) 157 return 1; 158 159 if (!(sample_type & PERF_SAMPLE_ID)) 160 return -1; 161 162 if (sample_type & PERF_SAMPLE_CPU) 163 idx += 1; 164 165 if (sample_type & PERF_SAMPLE_STREAM_ID) 166 idx += 1; 167 168 return idx; 169 } 170 171 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 172 { 173 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 174 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 175 } 176 177 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 178 enum perf_event_sample_format bit) 179 { 180 if (!(evsel->attr.sample_type & bit)) { 181 evsel->attr.sample_type |= bit; 182 evsel->sample_size += sizeof(u64); 183 perf_evsel__calc_id_pos(evsel); 184 } 185 } 186 187 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 188 enum perf_event_sample_format bit) 189 { 190 if (evsel->attr.sample_type & bit) { 191 evsel->attr.sample_type &= ~bit; 192 evsel->sample_size -= sizeof(u64); 193 perf_evsel__calc_id_pos(evsel); 194 } 195 } 196 197 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 198 bool can_sample_identifier) 199 { 200 if (can_sample_identifier) { 201 perf_evsel__reset_sample_bit(evsel, ID); 202 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 203 } else { 204 perf_evsel__set_sample_bit(evsel, ID); 205 } 206 evsel->attr.read_format |= PERF_FORMAT_ID; 207 } 208 209 /** 210 * perf_evsel__is_function_event - Return whether given evsel is a function 211 * trace event 212 * 213 * @evsel - evsel selector to be tested 214 * 215 * Return %true if event is function trace event 216 */ 217 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 218 { 219 #define FUNCTION_EVENT "ftrace:function" 220 221 return evsel->name && 222 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 223 224 #undef FUNCTION_EVENT 225 } 226 227 void perf_evsel__init(struct perf_evsel *evsel, 228 struct perf_event_attr *attr, int idx) 229 { 230 evsel->idx = idx; 231 evsel->tracking = !idx; 232 evsel->attr = *attr; 233 evsel->leader = evsel; 234 evsel->unit = ""; 235 evsel->scale = 1.0; 236 evsel->evlist = NULL; 237 evsel->bpf_fd = -1; 238 INIT_LIST_HEAD(&evsel->node); 239 INIT_LIST_HEAD(&evsel->config_terms); 240 perf_evsel__object.init(evsel); 241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 242 perf_evsel__calc_id_pos(evsel); 243 evsel->cmdline_group_boundary = false; 244 evsel->metric_expr = NULL; 245 evsel->metric_name = NULL; 246 evsel->metric_events = NULL; 247 evsel->collect_stat = false; 248 } 249 250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 251 { 252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 253 254 if (evsel != NULL) 255 perf_evsel__init(evsel, attr, idx); 256 257 if (perf_evsel__is_bpf_output(evsel)) { 258 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 259 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 260 evsel->attr.sample_period = 1; 261 } 262 263 return evsel; 264 } 265 266 struct perf_evsel *perf_evsel__new_cycles(void) 267 { 268 struct perf_event_attr attr = { 269 .type = PERF_TYPE_HARDWARE, 270 .config = PERF_COUNT_HW_CPU_CYCLES, 271 }; 272 struct perf_evsel *evsel; 273 274 event_attr_init(&attr); 275 276 perf_event_attr__set_max_precise_ip(&attr); 277 278 evsel = perf_evsel__new(&attr); 279 if (evsel == NULL) 280 goto out; 281 282 /* use asprintf() because free(evsel) assumes name is allocated */ 283 if (asprintf(&evsel->name, "cycles%.*s", 284 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0) 285 goto error_free; 286 out: 287 return evsel; 288 error_free: 289 perf_evsel__delete(evsel); 290 evsel = NULL; 291 goto out; 292 } 293 294 /* 295 * Returns pointer with encoded error via <linux/err.h> interface. 296 */ 297 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 298 { 299 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 300 int err = -ENOMEM; 301 302 if (evsel == NULL) { 303 goto out_err; 304 } else { 305 struct perf_event_attr attr = { 306 .type = PERF_TYPE_TRACEPOINT, 307 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 308 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 309 }; 310 311 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 312 goto out_free; 313 314 evsel->tp_format = trace_event__tp_format(sys, name); 315 if (IS_ERR(evsel->tp_format)) { 316 err = PTR_ERR(evsel->tp_format); 317 goto out_free; 318 } 319 320 event_attr_init(&attr); 321 attr.config = evsel->tp_format->id; 322 attr.sample_period = 1; 323 perf_evsel__init(evsel, &attr, idx); 324 } 325 326 return evsel; 327 328 out_free: 329 zfree(&evsel->name); 330 free(evsel); 331 out_err: 332 return ERR_PTR(err); 333 } 334 335 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 336 "cycles", 337 "instructions", 338 "cache-references", 339 "cache-misses", 340 "branches", 341 "branch-misses", 342 "bus-cycles", 343 "stalled-cycles-frontend", 344 "stalled-cycles-backend", 345 "ref-cycles", 346 }; 347 348 static const char *__perf_evsel__hw_name(u64 config) 349 { 350 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 351 return perf_evsel__hw_names[config]; 352 353 return "unknown-hardware"; 354 } 355 356 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 357 { 358 int colon = 0, r = 0; 359 struct perf_event_attr *attr = &evsel->attr; 360 bool exclude_guest_default = false; 361 362 #define MOD_PRINT(context, mod) do { \ 363 if (!attr->exclude_##context) { \ 364 if (!colon) colon = ++r; \ 365 r += scnprintf(bf + r, size - r, "%c", mod); \ 366 } } while(0) 367 368 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 369 MOD_PRINT(kernel, 'k'); 370 MOD_PRINT(user, 'u'); 371 MOD_PRINT(hv, 'h'); 372 exclude_guest_default = true; 373 } 374 375 if (attr->precise_ip) { 376 if (!colon) 377 colon = ++r; 378 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 379 exclude_guest_default = true; 380 } 381 382 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 383 MOD_PRINT(host, 'H'); 384 MOD_PRINT(guest, 'G'); 385 } 386 #undef MOD_PRINT 387 if (colon) 388 bf[colon - 1] = ':'; 389 return r; 390 } 391 392 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 393 { 394 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 395 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 396 } 397 398 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 399 "cpu-clock", 400 "task-clock", 401 "page-faults", 402 "context-switches", 403 "cpu-migrations", 404 "minor-faults", 405 "major-faults", 406 "alignment-faults", 407 "emulation-faults", 408 "dummy", 409 }; 410 411 static const char *__perf_evsel__sw_name(u64 config) 412 { 413 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 414 return perf_evsel__sw_names[config]; 415 return "unknown-software"; 416 } 417 418 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 419 { 420 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 421 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 422 } 423 424 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 425 { 426 int r; 427 428 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 429 430 if (type & HW_BREAKPOINT_R) 431 r += scnprintf(bf + r, size - r, "r"); 432 433 if (type & HW_BREAKPOINT_W) 434 r += scnprintf(bf + r, size - r, "w"); 435 436 if (type & HW_BREAKPOINT_X) 437 r += scnprintf(bf + r, size - r, "x"); 438 439 return r; 440 } 441 442 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 443 { 444 struct perf_event_attr *attr = &evsel->attr; 445 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 446 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 447 } 448 449 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 450 [PERF_EVSEL__MAX_ALIASES] = { 451 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 452 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 453 { "LLC", "L2", }, 454 { "dTLB", "d-tlb", "Data-TLB", }, 455 { "iTLB", "i-tlb", "Instruction-TLB", }, 456 { "branch", "branches", "bpu", "btb", "bpc", }, 457 { "node", }, 458 }; 459 460 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 461 [PERF_EVSEL__MAX_ALIASES] = { 462 { "load", "loads", "read", }, 463 { "store", "stores", "write", }, 464 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 465 }; 466 467 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 468 [PERF_EVSEL__MAX_ALIASES] = { 469 { "refs", "Reference", "ops", "access", }, 470 { "misses", "miss", }, 471 }; 472 473 #define C(x) PERF_COUNT_HW_CACHE_##x 474 #define CACHE_READ (1 << C(OP_READ)) 475 #define CACHE_WRITE (1 << C(OP_WRITE)) 476 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 477 #define COP(x) (1 << x) 478 479 /* 480 * cache operartion stat 481 * L1I : Read and prefetch only 482 * ITLB and BPU : Read-only 483 */ 484 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 485 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 486 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 487 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 488 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 489 [C(ITLB)] = (CACHE_READ), 490 [C(BPU)] = (CACHE_READ), 491 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 492 }; 493 494 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 495 { 496 if (perf_evsel__hw_cache_stat[type] & COP(op)) 497 return true; /* valid */ 498 else 499 return false; /* invalid */ 500 } 501 502 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 503 char *bf, size_t size) 504 { 505 if (result) { 506 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 507 perf_evsel__hw_cache_op[op][0], 508 perf_evsel__hw_cache_result[result][0]); 509 } 510 511 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 512 perf_evsel__hw_cache_op[op][1]); 513 } 514 515 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 516 { 517 u8 op, result, type = (config >> 0) & 0xff; 518 const char *err = "unknown-ext-hardware-cache-type"; 519 520 if (type >= PERF_COUNT_HW_CACHE_MAX) 521 goto out_err; 522 523 op = (config >> 8) & 0xff; 524 err = "unknown-ext-hardware-cache-op"; 525 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 526 goto out_err; 527 528 result = (config >> 16) & 0xff; 529 err = "unknown-ext-hardware-cache-result"; 530 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 531 goto out_err; 532 533 err = "invalid-cache"; 534 if (!perf_evsel__is_cache_op_valid(type, op)) 535 goto out_err; 536 537 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 538 out_err: 539 return scnprintf(bf, size, "%s", err); 540 } 541 542 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 543 { 544 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 545 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 546 } 547 548 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 549 { 550 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 551 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 552 } 553 554 const char *perf_evsel__name(struct perf_evsel *evsel) 555 { 556 char bf[128]; 557 558 if (evsel->name) 559 return evsel->name; 560 561 switch (evsel->attr.type) { 562 case PERF_TYPE_RAW: 563 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 564 break; 565 566 case PERF_TYPE_HARDWARE: 567 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 568 break; 569 570 case PERF_TYPE_HW_CACHE: 571 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 572 break; 573 574 case PERF_TYPE_SOFTWARE: 575 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 576 break; 577 578 case PERF_TYPE_TRACEPOINT: 579 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 580 break; 581 582 case PERF_TYPE_BREAKPOINT: 583 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 584 break; 585 586 default: 587 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 588 evsel->attr.type); 589 break; 590 } 591 592 evsel->name = strdup(bf); 593 594 return evsel->name ?: "unknown"; 595 } 596 597 const char *perf_evsel__group_name(struct perf_evsel *evsel) 598 { 599 return evsel->group_name ?: "anon group"; 600 } 601 602 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 603 { 604 int ret; 605 struct perf_evsel *pos; 606 const char *group_name = perf_evsel__group_name(evsel); 607 608 ret = scnprintf(buf, size, "%s", group_name); 609 610 ret += scnprintf(buf + ret, size - ret, " { %s", 611 perf_evsel__name(evsel)); 612 613 for_each_group_member(pos, evsel) 614 ret += scnprintf(buf + ret, size - ret, ", %s", 615 perf_evsel__name(pos)); 616 617 ret += scnprintf(buf + ret, size - ret, " }"); 618 619 return ret; 620 } 621 622 void perf_evsel__config_callchain(struct perf_evsel *evsel, 623 struct record_opts *opts, 624 struct callchain_param *param) 625 { 626 bool function = perf_evsel__is_function_event(evsel); 627 struct perf_event_attr *attr = &evsel->attr; 628 629 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 630 631 attr->sample_max_stack = param->max_stack; 632 633 if (param->record_mode == CALLCHAIN_LBR) { 634 if (!opts->branch_stack) { 635 if (attr->exclude_user) { 636 pr_warning("LBR callstack option is only available " 637 "to get user callchain information. " 638 "Falling back to framepointers.\n"); 639 } else { 640 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 641 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 642 PERF_SAMPLE_BRANCH_CALL_STACK | 643 PERF_SAMPLE_BRANCH_NO_CYCLES | 644 PERF_SAMPLE_BRANCH_NO_FLAGS; 645 } 646 } else 647 pr_warning("Cannot use LBR callstack with branch stack. " 648 "Falling back to framepointers.\n"); 649 } 650 651 if (param->record_mode == CALLCHAIN_DWARF) { 652 if (!function) { 653 perf_evsel__set_sample_bit(evsel, REGS_USER); 654 perf_evsel__set_sample_bit(evsel, STACK_USER); 655 attr->sample_regs_user = PERF_REGS_MASK; 656 attr->sample_stack_user = param->dump_size; 657 attr->exclude_callchain_user = 1; 658 } else { 659 pr_info("Cannot use DWARF unwind for function trace event," 660 " falling back to framepointers.\n"); 661 } 662 } 663 664 if (function) { 665 pr_info("Disabling user space callchains for function trace event.\n"); 666 attr->exclude_callchain_user = 1; 667 } 668 } 669 670 static void 671 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 672 struct callchain_param *param) 673 { 674 struct perf_event_attr *attr = &evsel->attr; 675 676 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 677 if (param->record_mode == CALLCHAIN_LBR) { 678 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 679 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 680 PERF_SAMPLE_BRANCH_CALL_STACK); 681 } 682 if (param->record_mode == CALLCHAIN_DWARF) { 683 perf_evsel__reset_sample_bit(evsel, REGS_USER); 684 perf_evsel__reset_sample_bit(evsel, STACK_USER); 685 } 686 } 687 688 static void apply_config_terms(struct perf_evsel *evsel, 689 struct record_opts *opts) 690 { 691 struct perf_evsel_config_term *term; 692 struct list_head *config_terms = &evsel->config_terms; 693 struct perf_event_attr *attr = &evsel->attr; 694 struct callchain_param param; 695 u32 dump_size = 0; 696 int max_stack = 0; 697 const char *callgraph_buf = NULL; 698 699 /* callgraph default */ 700 param.record_mode = callchain_param.record_mode; 701 702 list_for_each_entry(term, config_terms, list) { 703 switch (term->type) { 704 case PERF_EVSEL__CONFIG_TERM_PERIOD: 705 attr->sample_period = term->val.period; 706 attr->freq = 0; 707 break; 708 case PERF_EVSEL__CONFIG_TERM_FREQ: 709 attr->sample_freq = term->val.freq; 710 attr->freq = 1; 711 break; 712 case PERF_EVSEL__CONFIG_TERM_TIME: 713 if (term->val.time) 714 perf_evsel__set_sample_bit(evsel, TIME); 715 else 716 perf_evsel__reset_sample_bit(evsel, TIME); 717 break; 718 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 719 callgraph_buf = term->val.callgraph; 720 break; 721 case PERF_EVSEL__CONFIG_TERM_BRANCH: 722 if (term->val.branch && strcmp(term->val.branch, "no")) { 723 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 724 parse_branch_str(term->val.branch, 725 &attr->branch_sample_type); 726 } else 727 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 728 break; 729 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 730 dump_size = term->val.stack_user; 731 break; 732 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 733 max_stack = term->val.max_stack; 734 break; 735 case PERF_EVSEL__CONFIG_TERM_INHERIT: 736 /* 737 * attr->inherit should has already been set by 738 * perf_evsel__config. If user explicitly set 739 * inherit using config terms, override global 740 * opt->no_inherit setting. 741 */ 742 attr->inherit = term->val.inherit ? 1 : 0; 743 break; 744 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 745 attr->write_backward = term->val.overwrite ? 1 : 0; 746 break; 747 default: 748 break; 749 } 750 } 751 752 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 753 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 754 if (max_stack) { 755 param.max_stack = max_stack; 756 if (callgraph_buf == NULL) 757 callgraph_buf = "fp"; 758 } 759 760 /* parse callgraph parameters */ 761 if (callgraph_buf != NULL) { 762 if (!strcmp(callgraph_buf, "no")) { 763 param.enabled = false; 764 param.record_mode = CALLCHAIN_NONE; 765 } else { 766 param.enabled = true; 767 if (parse_callchain_record(callgraph_buf, ¶m)) { 768 pr_err("per-event callgraph setting for %s failed. " 769 "Apply callgraph global setting for it\n", 770 evsel->name); 771 return; 772 } 773 } 774 } 775 if (dump_size > 0) { 776 dump_size = round_up(dump_size, sizeof(u64)); 777 param.dump_size = dump_size; 778 } 779 780 /* If global callgraph set, clear it */ 781 if (callchain_param.enabled) 782 perf_evsel__reset_callgraph(evsel, &callchain_param); 783 784 /* set perf-event callgraph */ 785 if (param.enabled) 786 perf_evsel__config_callchain(evsel, opts, ¶m); 787 } 788 } 789 790 /* 791 * The enable_on_exec/disabled value strategy: 792 * 793 * 1) For any type of traced program: 794 * - all independent events and group leaders are disabled 795 * - all group members are enabled 796 * 797 * Group members are ruled by group leaders. They need to 798 * be enabled, because the group scheduling relies on that. 799 * 800 * 2) For traced programs executed by perf: 801 * - all independent events and group leaders have 802 * enable_on_exec set 803 * - we don't specifically enable or disable any event during 804 * the record command 805 * 806 * Independent events and group leaders are initially disabled 807 * and get enabled by exec. Group members are ruled by group 808 * leaders as stated in 1). 809 * 810 * 3) For traced programs attached by perf (pid/tid): 811 * - we specifically enable or disable all events during 812 * the record command 813 * 814 * When attaching events to already running traced we 815 * enable/disable events specifically, as there's no 816 * initial traced exec call. 817 */ 818 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 819 struct callchain_param *callchain) 820 { 821 struct perf_evsel *leader = evsel->leader; 822 struct perf_event_attr *attr = &evsel->attr; 823 int track = evsel->tracking; 824 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 825 826 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 827 attr->inherit = !opts->no_inherit; 828 attr->write_backward = opts->overwrite ? 1 : 0; 829 830 perf_evsel__set_sample_bit(evsel, IP); 831 perf_evsel__set_sample_bit(evsel, TID); 832 833 if (evsel->sample_read) { 834 perf_evsel__set_sample_bit(evsel, READ); 835 836 /* 837 * We need ID even in case of single event, because 838 * PERF_SAMPLE_READ process ID specific data. 839 */ 840 perf_evsel__set_sample_id(evsel, false); 841 842 /* 843 * Apply group format only if we belong to group 844 * with more than one members. 845 */ 846 if (leader->nr_members > 1) { 847 attr->read_format |= PERF_FORMAT_GROUP; 848 attr->inherit = 0; 849 } 850 } 851 852 /* 853 * We default some events to have a default interval. But keep 854 * it a weak assumption overridable by the user. 855 */ 856 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 857 opts->user_interval != ULLONG_MAX)) { 858 if (opts->freq) { 859 perf_evsel__set_sample_bit(evsel, PERIOD); 860 attr->freq = 1; 861 attr->sample_freq = opts->freq; 862 } else { 863 attr->sample_period = opts->default_interval; 864 } 865 } 866 867 /* 868 * Disable sampling for all group members other 869 * than leader in case leader 'leads' the sampling. 870 */ 871 if ((leader != evsel) && leader->sample_read) { 872 attr->sample_freq = 0; 873 attr->sample_period = 0; 874 } 875 876 if (opts->no_samples) 877 attr->sample_freq = 0; 878 879 if (opts->inherit_stat) 880 attr->inherit_stat = 1; 881 882 if (opts->sample_address) { 883 perf_evsel__set_sample_bit(evsel, ADDR); 884 attr->mmap_data = track; 885 } 886 887 /* 888 * We don't allow user space callchains for function trace 889 * event, due to issues with page faults while tracing page 890 * fault handler and its overall trickiness nature. 891 */ 892 if (perf_evsel__is_function_event(evsel)) 893 evsel->attr.exclude_callchain_user = 1; 894 895 if (callchain && callchain->enabled && !evsel->no_aux_samples) 896 perf_evsel__config_callchain(evsel, opts, callchain); 897 898 if (opts->sample_intr_regs) { 899 attr->sample_regs_intr = opts->sample_intr_regs; 900 perf_evsel__set_sample_bit(evsel, REGS_INTR); 901 } 902 903 if (target__has_cpu(&opts->target) || opts->sample_cpu) 904 perf_evsel__set_sample_bit(evsel, CPU); 905 906 if (opts->period) 907 perf_evsel__set_sample_bit(evsel, PERIOD); 908 909 /* 910 * When the user explicitly disabled time don't force it here. 911 */ 912 if (opts->sample_time && 913 (!perf_missing_features.sample_id_all && 914 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 915 opts->sample_time_set))) 916 perf_evsel__set_sample_bit(evsel, TIME); 917 918 if (opts->raw_samples && !evsel->no_aux_samples) { 919 perf_evsel__set_sample_bit(evsel, TIME); 920 perf_evsel__set_sample_bit(evsel, RAW); 921 perf_evsel__set_sample_bit(evsel, CPU); 922 } 923 924 if (opts->sample_address) 925 perf_evsel__set_sample_bit(evsel, DATA_SRC); 926 927 if (opts->no_buffering) { 928 attr->watermark = 0; 929 attr->wakeup_events = 1; 930 } 931 if (opts->branch_stack && !evsel->no_aux_samples) { 932 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 933 attr->branch_sample_type = opts->branch_stack; 934 } 935 936 if (opts->sample_weight) 937 perf_evsel__set_sample_bit(evsel, WEIGHT); 938 939 attr->task = track; 940 attr->mmap = track; 941 attr->mmap2 = track && !perf_missing_features.mmap2; 942 attr->comm = track; 943 944 if (opts->record_namespaces) 945 attr->namespaces = track; 946 947 if (opts->record_switch_events) 948 attr->context_switch = track; 949 950 if (opts->sample_transaction) 951 perf_evsel__set_sample_bit(evsel, TRANSACTION); 952 953 if (opts->running_time) { 954 evsel->attr.read_format |= 955 PERF_FORMAT_TOTAL_TIME_ENABLED | 956 PERF_FORMAT_TOTAL_TIME_RUNNING; 957 } 958 959 /* 960 * XXX see the function comment above 961 * 962 * Disabling only independent events or group leaders, 963 * keeping group members enabled. 964 */ 965 if (perf_evsel__is_group_leader(evsel)) 966 attr->disabled = 1; 967 968 /* 969 * Setting enable_on_exec for independent events and 970 * group leaders for traced executed by perf. 971 */ 972 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 973 !opts->initial_delay) 974 attr->enable_on_exec = 1; 975 976 if (evsel->immediate) { 977 attr->disabled = 0; 978 attr->enable_on_exec = 0; 979 } 980 981 clockid = opts->clockid; 982 if (opts->use_clockid) { 983 attr->use_clockid = 1; 984 attr->clockid = opts->clockid; 985 } 986 987 if (evsel->precise_max) 988 perf_event_attr__set_max_precise_ip(attr); 989 990 if (opts->all_user) { 991 attr->exclude_kernel = 1; 992 attr->exclude_user = 0; 993 } 994 995 if (opts->all_kernel) { 996 attr->exclude_kernel = 0; 997 attr->exclude_user = 1; 998 } 999 1000 /* 1001 * Apply event specific term settings, 1002 * it overloads any global configuration. 1003 */ 1004 apply_config_terms(evsel, opts); 1005 1006 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1007 } 1008 1009 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1010 { 1011 if (evsel->system_wide) 1012 nthreads = 1; 1013 1014 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1015 1016 if (evsel->fd) { 1017 int cpu, thread; 1018 for (cpu = 0; cpu < ncpus; cpu++) { 1019 for (thread = 0; thread < nthreads; thread++) { 1020 FD(evsel, cpu, thread) = -1; 1021 } 1022 } 1023 } 1024 1025 return evsel->fd != NULL ? 0 : -ENOMEM; 1026 } 1027 1028 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 1029 int ioc, void *arg) 1030 { 1031 int cpu, thread; 1032 1033 if (evsel->system_wide) 1034 nthreads = 1; 1035 1036 for (cpu = 0; cpu < ncpus; cpu++) { 1037 for (thread = 0; thread < nthreads; thread++) { 1038 int fd = FD(evsel, cpu, thread), 1039 err = ioctl(fd, ioc, arg); 1040 1041 if (err) 1042 return err; 1043 } 1044 } 1045 1046 return 0; 1047 } 1048 1049 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 1050 const char *filter) 1051 { 1052 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1053 PERF_EVENT_IOC_SET_FILTER, 1054 (void *)filter); 1055 } 1056 1057 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1058 { 1059 char *new_filter = strdup(filter); 1060 1061 if (new_filter != NULL) { 1062 free(evsel->filter); 1063 evsel->filter = new_filter; 1064 return 0; 1065 } 1066 1067 return -1; 1068 } 1069 1070 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1071 const char *fmt, const char *filter) 1072 { 1073 char *new_filter; 1074 1075 if (evsel->filter == NULL) 1076 return perf_evsel__set_filter(evsel, filter); 1077 1078 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1079 free(evsel->filter); 1080 evsel->filter = new_filter; 1081 return 0; 1082 } 1083 1084 return -1; 1085 } 1086 1087 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1088 { 1089 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1090 } 1091 1092 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1093 { 1094 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1095 } 1096 1097 int perf_evsel__enable(struct perf_evsel *evsel) 1098 { 1099 int nthreads = thread_map__nr(evsel->threads); 1100 int ncpus = cpu_map__nr(evsel->cpus); 1101 1102 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1103 PERF_EVENT_IOC_ENABLE, 1104 0); 1105 } 1106 1107 int perf_evsel__disable(struct perf_evsel *evsel) 1108 { 1109 int nthreads = thread_map__nr(evsel->threads); 1110 int ncpus = cpu_map__nr(evsel->cpus); 1111 1112 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1113 PERF_EVENT_IOC_DISABLE, 1114 0); 1115 } 1116 1117 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1118 { 1119 if (ncpus == 0 || nthreads == 0) 1120 return 0; 1121 1122 if (evsel->system_wide) 1123 nthreads = 1; 1124 1125 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1126 if (evsel->sample_id == NULL) 1127 return -ENOMEM; 1128 1129 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1130 if (evsel->id == NULL) { 1131 xyarray__delete(evsel->sample_id); 1132 evsel->sample_id = NULL; 1133 return -ENOMEM; 1134 } 1135 1136 return 0; 1137 } 1138 1139 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1140 { 1141 xyarray__delete(evsel->fd); 1142 evsel->fd = NULL; 1143 } 1144 1145 static void perf_evsel__free_id(struct perf_evsel *evsel) 1146 { 1147 xyarray__delete(evsel->sample_id); 1148 evsel->sample_id = NULL; 1149 zfree(&evsel->id); 1150 } 1151 1152 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1153 { 1154 struct perf_evsel_config_term *term, *h; 1155 1156 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1157 list_del(&term->list); 1158 free(term); 1159 } 1160 } 1161 1162 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1163 { 1164 int cpu, thread; 1165 1166 if (evsel->system_wide) 1167 nthreads = 1; 1168 1169 for (cpu = 0; cpu < ncpus; cpu++) 1170 for (thread = 0; thread < nthreads; ++thread) { 1171 close(FD(evsel, cpu, thread)); 1172 FD(evsel, cpu, thread) = -1; 1173 } 1174 } 1175 1176 void perf_evsel__exit(struct perf_evsel *evsel) 1177 { 1178 assert(list_empty(&evsel->node)); 1179 assert(evsel->evlist == NULL); 1180 perf_evsel__free_fd(evsel); 1181 perf_evsel__free_id(evsel); 1182 perf_evsel__free_config_terms(evsel); 1183 close_cgroup(evsel->cgrp); 1184 cpu_map__put(evsel->cpus); 1185 cpu_map__put(evsel->own_cpus); 1186 thread_map__put(evsel->threads); 1187 zfree(&evsel->group_name); 1188 zfree(&evsel->name); 1189 perf_evsel__object.fini(evsel); 1190 } 1191 1192 void perf_evsel__delete(struct perf_evsel *evsel) 1193 { 1194 perf_evsel__exit(evsel); 1195 free(evsel); 1196 } 1197 1198 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1199 struct perf_counts_values *count) 1200 { 1201 struct perf_counts_values tmp; 1202 1203 if (!evsel->prev_raw_counts) 1204 return; 1205 1206 if (cpu == -1) { 1207 tmp = evsel->prev_raw_counts->aggr; 1208 evsel->prev_raw_counts->aggr = *count; 1209 } else { 1210 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1211 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1212 } 1213 1214 count->val = count->val - tmp.val; 1215 count->ena = count->ena - tmp.ena; 1216 count->run = count->run - tmp.run; 1217 } 1218 1219 void perf_counts_values__scale(struct perf_counts_values *count, 1220 bool scale, s8 *pscaled) 1221 { 1222 s8 scaled = 0; 1223 1224 if (scale) { 1225 if (count->run == 0) { 1226 scaled = -1; 1227 count->val = 0; 1228 } else if (count->run < count->ena) { 1229 scaled = 1; 1230 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1231 } 1232 } else 1233 count->ena = count->run = 0; 1234 1235 if (pscaled) 1236 *pscaled = scaled; 1237 } 1238 1239 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1240 struct perf_counts_values *count) 1241 { 1242 memset(count, 0, sizeof(*count)); 1243 1244 if (FD(evsel, cpu, thread) < 0) 1245 return -EINVAL; 1246 1247 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0) 1248 return -errno; 1249 1250 return 0; 1251 } 1252 1253 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1254 int cpu, int thread, bool scale) 1255 { 1256 struct perf_counts_values count; 1257 size_t nv = scale ? 3 : 1; 1258 1259 if (FD(evsel, cpu, thread) < 0) 1260 return -EINVAL; 1261 1262 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1263 return -ENOMEM; 1264 1265 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1266 return -errno; 1267 1268 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1269 perf_counts_values__scale(&count, scale, NULL); 1270 *perf_counts(evsel->counts, cpu, thread) = count; 1271 return 0; 1272 } 1273 1274 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1275 { 1276 struct perf_evsel *leader = evsel->leader; 1277 int fd; 1278 1279 if (perf_evsel__is_group_leader(evsel)) 1280 return -1; 1281 1282 /* 1283 * Leader must be already processed/open, 1284 * if not it's a bug. 1285 */ 1286 BUG_ON(!leader->fd); 1287 1288 fd = FD(leader, cpu, thread); 1289 BUG_ON(fd == -1); 1290 1291 return fd; 1292 } 1293 1294 struct bit_names { 1295 int bit; 1296 const char *name; 1297 }; 1298 1299 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1300 { 1301 bool first_bit = true; 1302 int i = 0; 1303 1304 do { 1305 if (value & bits[i].bit) { 1306 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1307 first_bit = false; 1308 } 1309 } while (bits[++i].name != NULL); 1310 } 1311 1312 static void __p_sample_type(char *buf, size_t size, u64 value) 1313 { 1314 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1315 struct bit_names bits[] = { 1316 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1317 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1318 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1319 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1320 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1321 bit_name(WEIGHT), 1322 { .name = NULL, } 1323 }; 1324 #undef bit_name 1325 __p_bits(buf, size, value, bits); 1326 } 1327 1328 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1329 { 1330 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1331 struct bit_names bits[] = { 1332 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1333 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1334 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1335 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1336 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1337 { .name = NULL, } 1338 }; 1339 #undef bit_name 1340 __p_bits(buf, size, value, bits); 1341 } 1342 1343 static void __p_read_format(char *buf, size_t size, u64 value) 1344 { 1345 #define bit_name(n) { PERF_FORMAT_##n, #n } 1346 struct bit_names bits[] = { 1347 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1348 bit_name(ID), bit_name(GROUP), 1349 { .name = NULL, } 1350 }; 1351 #undef bit_name 1352 __p_bits(buf, size, value, bits); 1353 } 1354 1355 #define BUF_SIZE 1024 1356 1357 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1358 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1359 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1360 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1361 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1362 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1363 1364 #define PRINT_ATTRn(_n, _f, _p) \ 1365 do { \ 1366 if (attr->_f) { \ 1367 _p(attr->_f); \ 1368 ret += attr__fprintf(fp, _n, buf, priv);\ 1369 } \ 1370 } while (0) 1371 1372 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1373 1374 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1375 attr__fprintf_f attr__fprintf, void *priv) 1376 { 1377 char buf[BUF_SIZE]; 1378 int ret = 0; 1379 1380 PRINT_ATTRf(type, p_unsigned); 1381 PRINT_ATTRf(size, p_unsigned); 1382 PRINT_ATTRf(config, p_hex); 1383 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1384 PRINT_ATTRf(sample_type, p_sample_type); 1385 PRINT_ATTRf(read_format, p_read_format); 1386 1387 PRINT_ATTRf(disabled, p_unsigned); 1388 PRINT_ATTRf(inherit, p_unsigned); 1389 PRINT_ATTRf(pinned, p_unsigned); 1390 PRINT_ATTRf(exclusive, p_unsigned); 1391 PRINT_ATTRf(exclude_user, p_unsigned); 1392 PRINT_ATTRf(exclude_kernel, p_unsigned); 1393 PRINT_ATTRf(exclude_hv, p_unsigned); 1394 PRINT_ATTRf(exclude_idle, p_unsigned); 1395 PRINT_ATTRf(mmap, p_unsigned); 1396 PRINT_ATTRf(comm, p_unsigned); 1397 PRINT_ATTRf(freq, p_unsigned); 1398 PRINT_ATTRf(inherit_stat, p_unsigned); 1399 PRINT_ATTRf(enable_on_exec, p_unsigned); 1400 PRINT_ATTRf(task, p_unsigned); 1401 PRINT_ATTRf(watermark, p_unsigned); 1402 PRINT_ATTRf(precise_ip, p_unsigned); 1403 PRINT_ATTRf(mmap_data, p_unsigned); 1404 PRINT_ATTRf(sample_id_all, p_unsigned); 1405 PRINT_ATTRf(exclude_host, p_unsigned); 1406 PRINT_ATTRf(exclude_guest, p_unsigned); 1407 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1408 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1409 PRINT_ATTRf(mmap2, p_unsigned); 1410 PRINT_ATTRf(comm_exec, p_unsigned); 1411 PRINT_ATTRf(use_clockid, p_unsigned); 1412 PRINT_ATTRf(context_switch, p_unsigned); 1413 PRINT_ATTRf(write_backward, p_unsigned); 1414 1415 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1416 PRINT_ATTRf(bp_type, p_unsigned); 1417 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1418 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1419 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1420 PRINT_ATTRf(sample_regs_user, p_hex); 1421 PRINT_ATTRf(sample_stack_user, p_unsigned); 1422 PRINT_ATTRf(clockid, p_signed); 1423 PRINT_ATTRf(sample_regs_intr, p_hex); 1424 PRINT_ATTRf(aux_watermark, p_unsigned); 1425 PRINT_ATTRf(sample_max_stack, p_unsigned); 1426 1427 return ret; 1428 } 1429 1430 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1431 void *priv __attribute__((unused))) 1432 { 1433 return fprintf(fp, " %-32s %s\n", name, val); 1434 } 1435 1436 static bool ignore_missing_thread(struct perf_evsel *evsel, 1437 struct thread_map *threads, 1438 int thread, int err) 1439 { 1440 if (!evsel->ignore_missing_thread) 1441 return false; 1442 1443 /* The system wide setup does not work with threads. */ 1444 if (evsel->system_wide) 1445 return false; 1446 1447 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1448 if (err != -ESRCH) 1449 return false; 1450 1451 /* If there's only one thread, let it fail. */ 1452 if (threads->nr == 1) 1453 return false; 1454 1455 if (thread_map__remove(threads, thread)) 1456 return false; 1457 1458 pr_warning("WARNING: Ignored open failure for pid %d\n", 1459 thread_map__pid(threads, thread)); 1460 return true; 1461 } 1462 1463 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1464 struct thread_map *threads) 1465 { 1466 int cpu, thread, nthreads; 1467 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1468 int pid = -1, err; 1469 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1470 1471 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1472 return -EINVAL; 1473 1474 if (cpus == NULL) { 1475 static struct cpu_map *empty_cpu_map; 1476 1477 if (empty_cpu_map == NULL) { 1478 empty_cpu_map = cpu_map__dummy_new(); 1479 if (empty_cpu_map == NULL) 1480 return -ENOMEM; 1481 } 1482 1483 cpus = empty_cpu_map; 1484 } 1485 1486 if (threads == NULL) { 1487 static struct thread_map *empty_thread_map; 1488 1489 if (empty_thread_map == NULL) { 1490 empty_thread_map = thread_map__new_by_tid(-1); 1491 if (empty_thread_map == NULL) 1492 return -ENOMEM; 1493 } 1494 1495 threads = empty_thread_map; 1496 } 1497 1498 if (evsel->system_wide) 1499 nthreads = 1; 1500 else 1501 nthreads = threads->nr; 1502 1503 if (evsel->fd == NULL && 1504 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1505 return -ENOMEM; 1506 1507 if (evsel->cgrp) { 1508 flags |= PERF_FLAG_PID_CGROUP; 1509 pid = evsel->cgrp->fd; 1510 } 1511 1512 fallback_missing_features: 1513 if (perf_missing_features.clockid_wrong) 1514 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1515 if (perf_missing_features.clockid) { 1516 evsel->attr.use_clockid = 0; 1517 evsel->attr.clockid = 0; 1518 } 1519 if (perf_missing_features.cloexec) 1520 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1521 if (perf_missing_features.mmap2) 1522 evsel->attr.mmap2 = 0; 1523 if (perf_missing_features.exclude_guest) 1524 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1525 if (perf_missing_features.lbr_flags) 1526 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1527 PERF_SAMPLE_BRANCH_NO_CYCLES); 1528 retry_sample_id: 1529 if (perf_missing_features.sample_id_all) 1530 evsel->attr.sample_id_all = 0; 1531 1532 if (verbose >= 2) { 1533 fprintf(stderr, "%.60s\n", graph_dotted_line); 1534 fprintf(stderr, "perf_event_attr:\n"); 1535 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1536 fprintf(stderr, "%.60s\n", graph_dotted_line); 1537 } 1538 1539 for (cpu = 0; cpu < cpus->nr; cpu++) { 1540 1541 for (thread = 0; thread < nthreads; thread++) { 1542 int fd, group_fd; 1543 1544 if (!evsel->cgrp && !evsel->system_wide) 1545 pid = thread_map__pid(threads, thread); 1546 1547 group_fd = get_group_fd(evsel, cpu, thread); 1548 retry_open: 1549 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1550 pid, cpus->map[cpu], group_fd, flags); 1551 1552 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu], 1553 group_fd, flags); 1554 1555 FD(evsel, cpu, thread) = fd; 1556 1557 if (fd < 0) { 1558 err = -errno; 1559 1560 if (ignore_missing_thread(evsel, threads, thread, err)) { 1561 /* 1562 * We just removed 1 thread, so take a step 1563 * back on thread index and lower the upper 1564 * nthreads limit. 1565 */ 1566 nthreads--; 1567 thread--; 1568 1569 /* ... and pretend like nothing have happened. */ 1570 err = 0; 1571 continue; 1572 } 1573 1574 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1575 err); 1576 goto try_fallback; 1577 } 1578 1579 pr_debug2(" = %d\n", fd); 1580 1581 if (evsel->bpf_fd >= 0) { 1582 int evt_fd = fd; 1583 int bpf_fd = evsel->bpf_fd; 1584 1585 err = ioctl(evt_fd, 1586 PERF_EVENT_IOC_SET_BPF, 1587 bpf_fd); 1588 if (err && errno != EEXIST) { 1589 pr_err("failed to attach bpf fd %d: %s\n", 1590 bpf_fd, strerror(errno)); 1591 err = -EINVAL; 1592 goto out_close; 1593 } 1594 } 1595 1596 set_rlimit = NO_CHANGE; 1597 1598 /* 1599 * If we succeeded but had to kill clockid, fail and 1600 * have perf_evsel__open_strerror() print us a nice 1601 * error. 1602 */ 1603 if (perf_missing_features.clockid || 1604 perf_missing_features.clockid_wrong) { 1605 err = -EINVAL; 1606 goto out_close; 1607 } 1608 } 1609 } 1610 1611 return 0; 1612 1613 try_fallback: 1614 /* 1615 * perf stat needs between 5 and 22 fds per CPU. When we run out 1616 * of them try to increase the limits. 1617 */ 1618 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1619 struct rlimit l; 1620 int old_errno = errno; 1621 1622 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1623 if (set_rlimit == NO_CHANGE) 1624 l.rlim_cur = l.rlim_max; 1625 else { 1626 l.rlim_cur = l.rlim_max + 1000; 1627 l.rlim_max = l.rlim_cur; 1628 } 1629 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1630 set_rlimit++; 1631 errno = old_errno; 1632 goto retry_open; 1633 } 1634 } 1635 errno = old_errno; 1636 } 1637 1638 if (err != -EINVAL || cpu > 0 || thread > 0) 1639 goto out_close; 1640 1641 /* 1642 * Must probe features in the order they were added to the 1643 * perf_event_attr interface. 1644 */ 1645 if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 1646 perf_missing_features.write_backward = true; 1647 goto out_close; 1648 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1649 perf_missing_features.clockid_wrong = true; 1650 goto fallback_missing_features; 1651 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1652 perf_missing_features.clockid = true; 1653 goto fallback_missing_features; 1654 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1655 perf_missing_features.cloexec = true; 1656 goto fallback_missing_features; 1657 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1658 perf_missing_features.mmap2 = true; 1659 goto fallback_missing_features; 1660 } else if (!perf_missing_features.exclude_guest && 1661 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1662 perf_missing_features.exclude_guest = true; 1663 goto fallback_missing_features; 1664 } else if (!perf_missing_features.sample_id_all) { 1665 perf_missing_features.sample_id_all = true; 1666 goto retry_sample_id; 1667 } else if (!perf_missing_features.lbr_flags && 1668 (evsel->attr.branch_sample_type & 1669 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1670 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1671 perf_missing_features.lbr_flags = true; 1672 goto fallback_missing_features; 1673 } 1674 out_close: 1675 do { 1676 while (--thread >= 0) { 1677 close(FD(evsel, cpu, thread)); 1678 FD(evsel, cpu, thread) = -1; 1679 } 1680 thread = nthreads; 1681 } while (--cpu >= 0); 1682 return err; 1683 } 1684 1685 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1686 { 1687 if (evsel->fd == NULL) 1688 return; 1689 1690 perf_evsel__close_fd(evsel, ncpus, nthreads); 1691 perf_evsel__free_fd(evsel); 1692 } 1693 1694 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1695 struct cpu_map *cpus) 1696 { 1697 return perf_evsel__open(evsel, cpus, NULL); 1698 } 1699 1700 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1701 struct thread_map *threads) 1702 { 1703 return perf_evsel__open(evsel, NULL, threads); 1704 } 1705 1706 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1707 const union perf_event *event, 1708 struct perf_sample *sample) 1709 { 1710 u64 type = evsel->attr.sample_type; 1711 const u64 *array = event->sample.array; 1712 bool swapped = evsel->needs_swap; 1713 union u64_swap u; 1714 1715 array += ((event->header.size - 1716 sizeof(event->header)) / sizeof(u64)) - 1; 1717 1718 if (type & PERF_SAMPLE_IDENTIFIER) { 1719 sample->id = *array; 1720 array--; 1721 } 1722 1723 if (type & PERF_SAMPLE_CPU) { 1724 u.val64 = *array; 1725 if (swapped) { 1726 /* undo swap of u64, then swap on individual u32s */ 1727 u.val64 = bswap_64(u.val64); 1728 u.val32[0] = bswap_32(u.val32[0]); 1729 } 1730 1731 sample->cpu = u.val32[0]; 1732 array--; 1733 } 1734 1735 if (type & PERF_SAMPLE_STREAM_ID) { 1736 sample->stream_id = *array; 1737 array--; 1738 } 1739 1740 if (type & PERF_SAMPLE_ID) { 1741 sample->id = *array; 1742 array--; 1743 } 1744 1745 if (type & PERF_SAMPLE_TIME) { 1746 sample->time = *array; 1747 array--; 1748 } 1749 1750 if (type & PERF_SAMPLE_TID) { 1751 u.val64 = *array; 1752 if (swapped) { 1753 /* undo swap of u64, then swap on individual u32s */ 1754 u.val64 = bswap_64(u.val64); 1755 u.val32[0] = bswap_32(u.val32[0]); 1756 u.val32[1] = bswap_32(u.val32[1]); 1757 } 1758 1759 sample->pid = u.val32[0]; 1760 sample->tid = u.val32[1]; 1761 array--; 1762 } 1763 1764 return 0; 1765 } 1766 1767 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1768 u64 size) 1769 { 1770 return size > max_size || offset + size > endp; 1771 } 1772 1773 #define OVERFLOW_CHECK(offset, size, max_size) \ 1774 do { \ 1775 if (overflow(endp, (max_size), (offset), (size))) \ 1776 return -EFAULT; \ 1777 } while (0) 1778 1779 #define OVERFLOW_CHECK_u64(offset) \ 1780 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1781 1782 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1783 struct perf_sample *data) 1784 { 1785 u64 type = evsel->attr.sample_type; 1786 bool swapped = evsel->needs_swap; 1787 const u64 *array; 1788 u16 max_size = event->header.size; 1789 const void *endp = (void *)event + max_size; 1790 u64 sz; 1791 1792 /* 1793 * used for cross-endian analysis. See git commit 65014ab3 1794 * for why this goofiness is needed. 1795 */ 1796 union u64_swap u; 1797 1798 memset(data, 0, sizeof(*data)); 1799 data->cpu = data->pid = data->tid = -1; 1800 data->stream_id = data->id = data->time = -1ULL; 1801 data->period = evsel->attr.sample_period; 1802 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1803 1804 if (event->header.type != PERF_RECORD_SAMPLE) { 1805 if (!evsel->attr.sample_id_all) 1806 return 0; 1807 return perf_evsel__parse_id_sample(evsel, event, data); 1808 } 1809 1810 array = event->sample.array; 1811 1812 /* 1813 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1814 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1815 * check the format does not go past the end of the event. 1816 */ 1817 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1818 return -EFAULT; 1819 1820 data->id = -1ULL; 1821 if (type & PERF_SAMPLE_IDENTIFIER) { 1822 data->id = *array; 1823 array++; 1824 } 1825 1826 if (type & PERF_SAMPLE_IP) { 1827 data->ip = *array; 1828 array++; 1829 } 1830 1831 if (type & PERF_SAMPLE_TID) { 1832 u.val64 = *array; 1833 if (swapped) { 1834 /* undo swap of u64, then swap on individual u32s */ 1835 u.val64 = bswap_64(u.val64); 1836 u.val32[0] = bswap_32(u.val32[0]); 1837 u.val32[1] = bswap_32(u.val32[1]); 1838 } 1839 1840 data->pid = u.val32[0]; 1841 data->tid = u.val32[1]; 1842 array++; 1843 } 1844 1845 if (type & PERF_SAMPLE_TIME) { 1846 data->time = *array; 1847 array++; 1848 } 1849 1850 data->addr = 0; 1851 if (type & PERF_SAMPLE_ADDR) { 1852 data->addr = *array; 1853 array++; 1854 } 1855 1856 if (type & PERF_SAMPLE_ID) { 1857 data->id = *array; 1858 array++; 1859 } 1860 1861 if (type & PERF_SAMPLE_STREAM_ID) { 1862 data->stream_id = *array; 1863 array++; 1864 } 1865 1866 if (type & PERF_SAMPLE_CPU) { 1867 1868 u.val64 = *array; 1869 if (swapped) { 1870 /* undo swap of u64, then swap on individual u32s */ 1871 u.val64 = bswap_64(u.val64); 1872 u.val32[0] = bswap_32(u.val32[0]); 1873 } 1874 1875 data->cpu = u.val32[0]; 1876 array++; 1877 } 1878 1879 if (type & PERF_SAMPLE_PERIOD) { 1880 data->period = *array; 1881 array++; 1882 } 1883 1884 if (type & PERF_SAMPLE_READ) { 1885 u64 read_format = evsel->attr.read_format; 1886 1887 OVERFLOW_CHECK_u64(array); 1888 if (read_format & PERF_FORMAT_GROUP) 1889 data->read.group.nr = *array; 1890 else 1891 data->read.one.value = *array; 1892 1893 array++; 1894 1895 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1896 OVERFLOW_CHECK_u64(array); 1897 data->read.time_enabled = *array; 1898 array++; 1899 } 1900 1901 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1902 OVERFLOW_CHECK_u64(array); 1903 data->read.time_running = *array; 1904 array++; 1905 } 1906 1907 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1908 if (read_format & PERF_FORMAT_GROUP) { 1909 const u64 max_group_nr = UINT64_MAX / 1910 sizeof(struct sample_read_value); 1911 1912 if (data->read.group.nr > max_group_nr) 1913 return -EFAULT; 1914 sz = data->read.group.nr * 1915 sizeof(struct sample_read_value); 1916 OVERFLOW_CHECK(array, sz, max_size); 1917 data->read.group.values = 1918 (struct sample_read_value *)array; 1919 array = (void *)array + sz; 1920 } else { 1921 OVERFLOW_CHECK_u64(array); 1922 data->read.one.id = *array; 1923 array++; 1924 } 1925 } 1926 1927 if (type & PERF_SAMPLE_CALLCHAIN) { 1928 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1929 1930 OVERFLOW_CHECK_u64(array); 1931 data->callchain = (struct ip_callchain *)array++; 1932 if (data->callchain->nr > max_callchain_nr) 1933 return -EFAULT; 1934 sz = data->callchain->nr * sizeof(u64); 1935 OVERFLOW_CHECK(array, sz, max_size); 1936 array = (void *)array + sz; 1937 } 1938 1939 if (type & PERF_SAMPLE_RAW) { 1940 OVERFLOW_CHECK_u64(array); 1941 u.val64 = *array; 1942 if (WARN_ONCE(swapped, 1943 "Endianness of raw data not corrected!\n")) { 1944 /* undo swap of u64, then swap on individual u32s */ 1945 u.val64 = bswap_64(u.val64); 1946 u.val32[0] = bswap_32(u.val32[0]); 1947 u.val32[1] = bswap_32(u.val32[1]); 1948 } 1949 data->raw_size = u.val32[0]; 1950 array = (void *)array + sizeof(u32); 1951 1952 OVERFLOW_CHECK(array, data->raw_size, max_size); 1953 data->raw_data = (void *)array; 1954 array = (void *)array + data->raw_size; 1955 } 1956 1957 if (type & PERF_SAMPLE_BRANCH_STACK) { 1958 const u64 max_branch_nr = UINT64_MAX / 1959 sizeof(struct branch_entry); 1960 1961 OVERFLOW_CHECK_u64(array); 1962 data->branch_stack = (struct branch_stack *)array++; 1963 1964 if (data->branch_stack->nr > max_branch_nr) 1965 return -EFAULT; 1966 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1967 OVERFLOW_CHECK(array, sz, max_size); 1968 array = (void *)array + sz; 1969 } 1970 1971 if (type & PERF_SAMPLE_REGS_USER) { 1972 OVERFLOW_CHECK_u64(array); 1973 data->user_regs.abi = *array; 1974 array++; 1975 1976 if (data->user_regs.abi) { 1977 u64 mask = evsel->attr.sample_regs_user; 1978 1979 sz = hweight_long(mask) * sizeof(u64); 1980 OVERFLOW_CHECK(array, sz, max_size); 1981 data->user_regs.mask = mask; 1982 data->user_regs.regs = (u64 *)array; 1983 array = (void *)array + sz; 1984 } 1985 } 1986 1987 if (type & PERF_SAMPLE_STACK_USER) { 1988 OVERFLOW_CHECK_u64(array); 1989 sz = *array++; 1990 1991 data->user_stack.offset = ((char *)(array - 1) 1992 - (char *) event); 1993 1994 if (!sz) { 1995 data->user_stack.size = 0; 1996 } else { 1997 OVERFLOW_CHECK(array, sz, max_size); 1998 data->user_stack.data = (char *)array; 1999 array = (void *)array + sz; 2000 OVERFLOW_CHECK_u64(array); 2001 data->user_stack.size = *array++; 2002 if (WARN_ONCE(data->user_stack.size > sz, 2003 "user stack dump failure\n")) 2004 return -EFAULT; 2005 } 2006 } 2007 2008 if (type & PERF_SAMPLE_WEIGHT) { 2009 OVERFLOW_CHECK_u64(array); 2010 data->weight = *array; 2011 array++; 2012 } 2013 2014 data->data_src = PERF_MEM_DATA_SRC_NONE; 2015 if (type & PERF_SAMPLE_DATA_SRC) { 2016 OVERFLOW_CHECK_u64(array); 2017 data->data_src = *array; 2018 array++; 2019 } 2020 2021 data->transaction = 0; 2022 if (type & PERF_SAMPLE_TRANSACTION) { 2023 OVERFLOW_CHECK_u64(array); 2024 data->transaction = *array; 2025 array++; 2026 } 2027 2028 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2029 if (type & PERF_SAMPLE_REGS_INTR) { 2030 OVERFLOW_CHECK_u64(array); 2031 data->intr_regs.abi = *array; 2032 array++; 2033 2034 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2035 u64 mask = evsel->attr.sample_regs_intr; 2036 2037 sz = hweight_long(mask) * sizeof(u64); 2038 OVERFLOW_CHECK(array, sz, max_size); 2039 data->intr_regs.mask = mask; 2040 data->intr_regs.regs = (u64 *)array; 2041 array = (void *)array + sz; 2042 } 2043 } 2044 2045 return 0; 2046 } 2047 2048 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2049 u64 read_format) 2050 { 2051 size_t sz, result = sizeof(struct sample_event); 2052 2053 if (type & PERF_SAMPLE_IDENTIFIER) 2054 result += sizeof(u64); 2055 2056 if (type & PERF_SAMPLE_IP) 2057 result += sizeof(u64); 2058 2059 if (type & PERF_SAMPLE_TID) 2060 result += sizeof(u64); 2061 2062 if (type & PERF_SAMPLE_TIME) 2063 result += sizeof(u64); 2064 2065 if (type & PERF_SAMPLE_ADDR) 2066 result += sizeof(u64); 2067 2068 if (type & PERF_SAMPLE_ID) 2069 result += sizeof(u64); 2070 2071 if (type & PERF_SAMPLE_STREAM_ID) 2072 result += sizeof(u64); 2073 2074 if (type & PERF_SAMPLE_CPU) 2075 result += sizeof(u64); 2076 2077 if (type & PERF_SAMPLE_PERIOD) 2078 result += sizeof(u64); 2079 2080 if (type & PERF_SAMPLE_READ) { 2081 result += sizeof(u64); 2082 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2083 result += sizeof(u64); 2084 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2085 result += sizeof(u64); 2086 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2087 if (read_format & PERF_FORMAT_GROUP) { 2088 sz = sample->read.group.nr * 2089 sizeof(struct sample_read_value); 2090 result += sz; 2091 } else { 2092 result += sizeof(u64); 2093 } 2094 } 2095 2096 if (type & PERF_SAMPLE_CALLCHAIN) { 2097 sz = (sample->callchain->nr + 1) * sizeof(u64); 2098 result += sz; 2099 } 2100 2101 if (type & PERF_SAMPLE_RAW) { 2102 result += sizeof(u32); 2103 result += sample->raw_size; 2104 } 2105 2106 if (type & PERF_SAMPLE_BRANCH_STACK) { 2107 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2108 sz += sizeof(u64); 2109 result += sz; 2110 } 2111 2112 if (type & PERF_SAMPLE_REGS_USER) { 2113 if (sample->user_regs.abi) { 2114 result += sizeof(u64); 2115 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2116 result += sz; 2117 } else { 2118 result += sizeof(u64); 2119 } 2120 } 2121 2122 if (type & PERF_SAMPLE_STACK_USER) { 2123 sz = sample->user_stack.size; 2124 result += sizeof(u64); 2125 if (sz) { 2126 result += sz; 2127 result += sizeof(u64); 2128 } 2129 } 2130 2131 if (type & PERF_SAMPLE_WEIGHT) 2132 result += sizeof(u64); 2133 2134 if (type & PERF_SAMPLE_DATA_SRC) 2135 result += sizeof(u64); 2136 2137 if (type & PERF_SAMPLE_TRANSACTION) 2138 result += sizeof(u64); 2139 2140 if (type & PERF_SAMPLE_REGS_INTR) { 2141 if (sample->intr_regs.abi) { 2142 result += sizeof(u64); 2143 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2144 result += sz; 2145 } else { 2146 result += sizeof(u64); 2147 } 2148 } 2149 2150 return result; 2151 } 2152 2153 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2154 u64 read_format, 2155 const struct perf_sample *sample, 2156 bool swapped) 2157 { 2158 u64 *array; 2159 size_t sz; 2160 /* 2161 * used for cross-endian analysis. See git commit 65014ab3 2162 * for why this goofiness is needed. 2163 */ 2164 union u64_swap u; 2165 2166 array = event->sample.array; 2167 2168 if (type & PERF_SAMPLE_IDENTIFIER) { 2169 *array = sample->id; 2170 array++; 2171 } 2172 2173 if (type & PERF_SAMPLE_IP) { 2174 *array = sample->ip; 2175 array++; 2176 } 2177 2178 if (type & PERF_SAMPLE_TID) { 2179 u.val32[0] = sample->pid; 2180 u.val32[1] = sample->tid; 2181 if (swapped) { 2182 /* 2183 * Inverse of what is done in perf_evsel__parse_sample 2184 */ 2185 u.val32[0] = bswap_32(u.val32[0]); 2186 u.val32[1] = bswap_32(u.val32[1]); 2187 u.val64 = bswap_64(u.val64); 2188 } 2189 2190 *array = u.val64; 2191 array++; 2192 } 2193 2194 if (type & PERF_SAMPLE_TIME) { 2195 *array = sample->time; 2196 array++; 2197 } 2198 2199 if (type & PERF_SAMPLE_ADDR) { 2200 *array = sample->addr; 2201 array++; 2202 } 2203 2204 if (type & PERF_SAMPLE_ID) { 2205 *array = sample->id; 2206 array++; 2207 } 2208 2209 if (type & PERF_SAMPLE_STREAM_ID) { 2210 *array = sample->stream_id; 2211 array++; 2212 } 2213 2214 if (type & PERF_SAMPLE_CPU) { 2215 u.val32[0] = sample->cpu; 2216 if (swapped) { 2217 /* 2218 * Inverse of what is done in perf_evsel__parse_sample 2219 */ 2220 u.val32[0] = bswap_32(u.val32[0]); 2221 u.val64 = bswap_64(u.val64); 2222 } 2223 *array = u.val64; 2224 array++; 2225 } 2226 2227 if (type & PERF_SAMPLE_PERIOD) { 2228 *array = sample->period; 2229 array++; 2230 } 2231 2232 if (type & PERF_SAMPLE_READ) { 2233 if (read_format & PERF_FORMAT_GROUP) 2234 *array = sample->read.group.nr; 2235 else 2236 *array = sample->read.one.value; 2237 array++; 2238 2239 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2240 *array = sample->read.time_enabled; 2241 array++; 2242 } 2243 2244 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2245 *array = sample->read.time_running; 2246 array++; 2247 } 2248 2249 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2250 if (read_format & PERF_FORMAT_GROUP) { 2251 sz = sample->read.group.nr * 2252 sizeof(struct sample_read_value); 2253 memcpy(array, sample->read.group.values, sz); 2254 array = (void *)array + sz; 2255 } else { 2256 *array = sample->read.one.id; 2257 array++; 2258 } 2259 } 2260 2261 if (type & PERF_SAMPLE_CALLCHAIN) { 2262 sz = (sample->callchain->nr + 1) * sizeof(u64); 2263 memcpy(array, sample->callchain, sz); 2264 array = (void *)array + sz; 2265 } 2266 2267 if (type & PERF_SAMPLE_RAW) { 2268 u.val32[0] = sample->raw_size; 2269 if (WARN_ONCE(swapped, 2270 "Endianness of raw data not corrected!\n")) { 2271 /* 2272 * Inverse of what is done in perf_evsel__parse_sample 2273 */ 2274 u.val32[0] = bswap_32(u.val32[0]); 2275 u.val32[1] = bswap_32(u.val32[1]); 2276 u.val64 = bswap_64(u.val64); 2277 } 2278 *array = u.val64; 2279 array = (void *)array + sizeof(u32); 2280 2281 memcpy(array, sample->raw_data, sample->raw_size); 2282 array = (void *)array + sample->raw_size; 2283 } 2284 2285 if (type & PERF_SAMPLE_BRANCH_STACK) { 2286 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2287 sz += sizeof(u64); 2288 memcpy(array, sample->branch_stack, sz); 2289 array = (void *)array + sz; 2290 } 2291 2292 if (type & PERF_SAMPLE_REGS_USER) { 2293 if (sample->user_regs.abi) { 2294 *array++ = sample->user_regs.abi; 2295 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2296 memcpy(array, sample->user_regs.regs, sz); 2297 array = (void *)array + sz; 2298 } else { 2299 *array++ = 0; 2300 } 2301 } 2302 2303 if (type & PERF_SAMPLE_STACK_USER) { 2304 sz = sample->user_stack.size; 2305 *array++ = sz; 2306 if (sz) { 2307 memcpy(array, sample->user_stack.data, sz); 2308 array = (void *)array + sz; 2309 *array++ = sz; 2310 } 2311 } 2312 2313 if (type & PERF_SAMPLE_WEIGHT) { 2314 *array = sample->weight; 2315 array++; 2316 } 2317 2318 if (type & PERF_SAMPLE_DATA_SRC) { 2319 *array = sample->data_src; 2320 array++; 2321 } 2322 2323 if (type & PERF_SAMPLE_TRANSACTION) { 2324 *array = sample->transaction; 2325 array++; 2326 } 2327 2328 if (type & PERF_SAMPLE_REGS_INTR) { 2329 if (sample->intr_regs.abi) { 2330 *array++ = sample->intr_regs.abi; 2331 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2332 memcpy(array, sample->intr_regs.regs, sz); 2333 array = (void *)array + sz; 2334 } else { 2335 *array++ = 0; 2336 } 2337 } 2338 2339 return 0; 2340 } 2341 2342 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2343 { 2344 return pevent_find_field(evsel->tp_format, name); 2345 } 2346 2347 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2348 const char *name) 2349 { 2350 struct format_field *field = perf_evsel__field(evsel, name); 2351 int offset; 2352 2353 if (!field) 2354 return NULL; 2355 2356 offset = field->offset; 2357 2358 if (field->flags & FIELD_IS_DYNAMIC) { 2359 offset = *(int *)(sample->raw_data + field->offset); 2360 offset &= 0xffff; 2361 } 2362 2363 return sample->raw_data + offset; 2364 } 2365 2366 u64 format_field__intval(struct format_field *field, struct perf_sample *sample, 2367 bool needs_swap) 2368 { 2369 u64 value; 2370 void *ptr = sample->raw_data + field->offset; 2371 2372 switch (field->size) { 2373 case 1: 2374 return *(u8 *)ptr; 2375 case 2: 2376 value = *(u16 *)ptr; 2377 break; 2378 case 4: 2379 value = *(u32 *)ptr; 2380 break; 2381 case 8: 2382 memcpy(&value, ptr, sizeof(u64)); 2383 break; 2384 default: 2385 return 0; 2386 } 2387 2388 if (!needs_swap) 2389 return value; 2390 2391 switch (field->size) { 2392 case 2: 2393 return bswap_16(value); 2394 case 4: 2395 return bswap_32(value); 2396 case 8: 2397 return bswap_64(value); 2398 default: 2399 return 0; 2400 } 2401 2402 return 0; 2403 } 2404 2405 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2406 const char *name) 2407 { 2408 struct format_field *field = perf_evsel__field(evsel, name); 2409 2410 if (!field) 2411 return 0; 2412 2413 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2414 } 2415 2416 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2417 char *msg, size_t msgsize) 2418 { 2419 int paranoid; 2420 2421 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2422 evsel->attr.type == PERF_TYPE_HARDWARE && 2423 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2424 /* 2425 * If it's cycles then fall back to hrtimer based 2426 * cpu-clock-tick sw counter, which is always available even if 2427 * no PMU support. 2428 * 2429 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2430 * b0a873e). 2431 */ 2432 scnprintf(msg, msgsize, "%s", 2433 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2434 2435 evsel->attr.type = PERF_TYPE_SOFTWARE; 2436 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2437 2438 zfree(&evsel->name); 2439 return true; 2440 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2441 (paranoid = perf_event_paranoid()) > 1) { 2442 const char *name = perf_evsel__name(evsel); 2443 char *new_name; 2444 2445 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2446 return false; 2447 2448 if (evsel->name) 2449 free(evsel->name); 2450 evsel->name = new_name; 2451 scnprintf(msg, msgsize, 2452 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2453 evsel->attr.exclude_kernel = 1; 2454 2455 return true; 2456 } 2457 2458 return false; 2459 } 2460 2461 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2462 int err, char *msg, size_t size) 2463 { 2464 char sbuf[STRERR_BUFSIZE]; 2465 int printed = 0; 2466 2467 switch (err) { 2468 case EPERM: 2469 case EACCES: 2470 if (err == EPERM) 2471 printed = scnprintf(msg, size, 2472 "No permission to enable %s event.\n\n", 2473 perf_evsel__name(evsel)); 2474 2475 return scnprintf(msg + printed, size - printed, 2476 "You may not have permission to collect %sstats.\n\n" 2477 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2478 "which controls use of the performance events system by\n" 2479 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2480 "The current value is %d:\n\n" 2481 " -1: Allow use of (almost) all events by all users\n" 2482 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2483 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2484 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2485 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2486 " kernel.perf_event_paranoid = -1\n" , 2487 target->system_wide ? "system-wide " : "", 2488 perf_event_paranoid()); 2489 case ENOENT: 2490 return scnprintf(msg, size, "The %s event is not supported.", 2491 perf_evsel__name(evsel)); 2492 case EMFILE: 2493 return scnprintf(msg, size, "%s", 2494 "Too many events are opened.\n" 2495 "Probably the maximum number of open file descriptors has been reached.\n" 2496 "Hint: Try again after reducing the number of events.\n" 2497 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2498 case ENOMEM: 2499 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2500 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2501 return scnprintf(msg, size, 2502 "Not enough memory to setup event with callchain.\n" 2503 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2504 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2505 break; 2506 case ENODEV: 2507 if (target->cpu_list) 2508 return scnprintf(msg, size, "%s", 2509 "No such device - did you specify an out-of-range profile CPU?"); 2510 break; 2511 case EOPNOTSUPP: 2512 if (evsel->attr.sample_period != 0) 2513 return scnprintf(msg, size, "%s", 2514 "PMU Hardware doesn't support sampling/overflow-interrupts."); 2515 if (evsel->attr.precise_ip) 2516 return scnprintf(msg, size, "%s", 2517 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2518 #if defined(__i386__) || defined(__x86_64__) 2519 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2520 return scnprintf(msg, size, "%s", 2521 "No hardware sampling interrupt available.\n" 2522 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2523 #endif 2524 break; 2525 case EBUSY: 2526 if (find_process("oprofiled")) 2527 return scnprintf(msg, size, 2528 "The PMU counters are busy/taken by another profiler.\n" 2529 "We found oprofile daemon running, please stop it and try again."); 2530 break; 2531 case EINVAL: 2532 if (evsel->attr.write_backward && perf_missing_features.write_backward) 2533 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2534 if (perf_missing_features.clockid) 2535 return scnprintf(msg, size, "clockid feature not supported."); 2536 if (perf_missing_features.clockid_wrong) 2537 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2538 break; 2539 default: 2540 break; 2541 } 2542 2543 return scnprintf(msg, size, 2544 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2545 "/bin/dmesg may provide additional information.\n" 2546 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2547 err, str_error_r(err, sbuf, sizeof(sbuf)), 2548 perf_evsel__name(evsel)); 2549 } 2550 2551 char *perf_evsel__env_arch(struct perf_evsel *evsel) 2552 { 2553 if (evsel && evsel->evlist && evsel->evlist->env) 2554 return evsel->evlist->env->arch; 2555 return NULL; 2556 } 2557