xref: /openbmc/linux/tools/perf/util/evsel.c (revision 1c2dd16a)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/err.h>
19 #include <sys/ioctl.h>
20 #include <sys/resource.h>
21 #include "asm/bug.h"
22 #include "callchain.h"
23 #include "cgroup.h"
24 #include "evsel.h"
25 #include "evlist.h"
26 #include "util.h"
27 #include "cpumap.h"
28 #include "thread_map.h"
29 #include "target.h"
30 #include "perf_regs.h"
31 #include "debug.h"
32 #include "trace-event.h"
33 #include "stat.h"
34 #include "util/parse-branch-options.h"
35 
36 #include "sane_ctype.h"
37 
38 static struct {
39 	bool sample_id_all;
40 	bool exclude_guest;
41 	bool mmap2;
42 	bool cloexec;
43 	bool clockid;
44 	bool clockid_wrong;
45 	bool lbr_flags;
46 	bool write_backward;
47 } perf_missing_features;
48 
49 static clockid_t clockid;
50 
51 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
52 {
53 	return 0;
54 }
55 
56 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
57 {
58 }
59 
60 static struct {
61 	size_t	size;
62 	int	(*init)(struct perf_evsel *evsel);
63 	void	(*fini)(struct perf_evsel *evsel);
64 } perf_evsel__object = {
65 	.size = sizeof(struct perf_evsel),
66 	.init = perf_evsel__no_extra_init,
67 	.fini = perf_evsel__no_extra_fini,
68 };
69 
70 int perf_evsel__object_config(size_t object_size,
71 			      int (*init)(struct perf_evsel *evsel),
72 			      void (*fini)(struct perf_evsel *evsel))
73 {
74 
75 	if (object_size == 0)
76 		goto set_methods;
77 
78 	if (perf_evsel__object.size > object_size)
79 		return -EINVAL;
80 
81 	perf_evsel__object.size = object_size;
82 
83 set_methods:
84 	if (init != NULL)
85 		perf_evsel__object.init = init;
86 
87 	if (fini != NULL)
88 		perf_evsel__object.fini = fini;
89 
90 	return 0;
91 }
92 
93 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
94 
95 int __perf_evsel__sample_size(u64 sample_type)
96 {
97 	u64 mask = sample_type & PERF_SAMPLE_MASK;
98 	int size = 0;
99 	int i;
100 
101 	for (i = 0; i < 64; i++) {
102 		if (mask & (1ULL << i))
103 			size++;
104 	}
105 
106 	size *= sizeof(u64);
107 
108 	return size;
109 }
110 
111 /**
112  * __perf_evsel__calc_id_pos - calculate id_pos.
113  * @sample_type: sample type
114  *
115  * This function returns the position of the event id (PERF_SAMPLE_ID or
116  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
117  * sample_event.
118  */
119 static int __perf_evsel__calc_id_pos(u64 sample_type)
120 {
121 	int idx = 0;
122 
123 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
124 		return 0;
125 
126 	if (!(sample_type & PERF_SAMPLE_ID))
127 		return -1;
128 
129 	if (sample_type & PERF_SAMPLE_IP)
130 		idx += 1;
131 
132 	if (sample_type & PERF_SAMPLE_TID)
133 		idx += 1;
134 
135 	if (sample_type & PERF_SAMPLE_TIME)
136 		idx += 1;
137 
138 	if (sample_type & PERF_SAMPLE_ADDR)
139 		idx += 1;
140 
141 	return idx;
142 }
143 
144 /**
145  * __perf_evsel__calc_is_pos - calculate is_pos.
146  * @sample_type: sample type
147  *
148  * This function returns the position (counting backwards) of the event id
149  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
150  * sample_id_all is used there is an id sample appended to non-sample events.
151  */
152 static int __perf_evsel__calc_is_pos(u64 sample_type)
153 {
154 	int idx = 1;
155 
156 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
157 		return 1;
158 
159 	if (!(sample_type & PERF_SAMPLE_ID))
160 		return -1;
161 
162 	if (sample_type & PERF_SAMPLE_CPU)
163 		idx += 1;
164 
165 	if (sample_type & PERF_SAMPLE_STREAM_ID)
166 		idx += 1;
167 
168 	return idx;
169 }
170 
171 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
172 {
173 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
174 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
175 }
176 
177 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
178 				  enum perf_event_sample_format bit)
179 {
180 	if (!(evsel->attr.sample_type & bit)) {
181 		evsel->attr.sample_type |= bit;
182 		evsel->sample_size += sizeof(u64);
183 		perf_evsel__calc_id_pos(evsel);
184 	}
185 }
186 
187 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
188 				    enum perf_event_sample_format bit)
189 {
190 	if (evsel->attr.sample_type & bit) {
191 		evsel->attr.sample_type &= ~bit;
192 		evsel->sample_size -= sizeof(u64);
193 		perf_evsel__calc_id_pos(evsel);
194 	}
195 }
196 
197 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
198 			       bool can_sample_identifier)
199 {
200 	if (can_sample_identifier) {
201 		perf_evsel__reset_sample_bit(evsel, ID);
202 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
203 	} else {
204 		perf_evsel__set_sample_bit(evsel, ID);
205 	}
206 	evsel->attr.read_format |= PERF_FORMAT_ID;
207 }
208 
209 /**
210  * perf_evsel__is_function_event - Return whether given evsel is a function
211  * trace event
212  *
213  * @evsel - evsel selector to be tested
214  *
215  * Return %true if event is function trace event
216  */
217 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
218 {
219 #define FUNCTION_EVENT "ftrace:function"
220 
221 	return evsel->name &&
222 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
223 
224 #undef FUNCTION_EVENT
225 }
226 
227 void perf_evsel__init(struct perf_evsel *evsel,
228 		      struct perf_event_attr *attr, int idx)
229 {
230 	evsel->idx	   = idx;
231 	evsel->tracking	   = !idx;
232 	evsel->attr	   = *attr;
233 	evsel->leader	   = evsel;
234 	evsel->unit	   = "";
235 	evsel->scale	   = 1.0;
236 	evsel->evlist	   = NULL;
237 	evsel->bpf_fd	   = -1;
238 	INIT_LIST_HEAD(&evsel->node);
239 	INIT_LIST_HEAD(&evsel->config_terms);
240 	perf_evsel__object.init(evsel);
241 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
242 	perf_evsel__calc_id_pos(evsel);
243 	evsel->cmdline_group_boundary = false;
244 	evsel->metric_expr   = NULL;
245 	evsel->metric_name   = NULL;
246 	evsel->metric_events = NULL;
247 	evsel->collect_stat  = false;
248 }
249 
250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 {
252 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253 
254 	if (evsel != NULL)
255 		perf_evsel__init(evsel, attr, idx);
256 
257 	if (perf_evsel__is_bpf_output(evsel)) {
258 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
259 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
260 		evsel->attr.sample_period = 1;
261 	}
262 
263 	return evsel;
264 }
265 
266 struct perf_evsel *perf_evsel__new_cycles(void)
267 {
268 	struct perf_event_attr attr = {
269 		.type	= PERF_TYPE_HARDWARE,
270 		.config	= PERF_COUNT_HW_CPU_CYCLES,
271 	};
272 	struct perf_evsel *evsel;
273 
274 	event_attr_init(&attr);
275 
276 	perf_event_attr__set_max_precise_ip(&attr);
277 
278 	evsel = perf_evsel__new(&attr);
279 	if (evsel == NULL)
280 		goto out;
281 
282 	/* use asprintf() because free(evsel) assumes name is allocated */
283 	if (asprintf(&evsel->name, "cycles%.*s",
284 		     attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
285 		goto error_free;
286 out:
287 	return evsel;
288 error_free:
289 	perf_evsel__delete(evsel);
290 	evsel = NULL;
291 	goto out;
292 }
293 
294 /*
295  * Returns pointer with encoded error via <linux/err.h> interface.
296  */
297 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
298 {
299 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
300 	int err = -ENOMEM;
301 
302 	if (evsel == NULL) {
303 		goto out_err;
304 	} else {
305 		struct perf_event_attr attr = {
306 			.type	       = PERF_TYPE_TRACEPOINT,
307 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
308 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
309 		};
310 
311 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
312 			goto out_free;
313 
314 		evsel->tp_format = trace_event__tp_format(sys, name);
315 		if (IS_ERR(evsel->tp_format)) {
316 			err = PTR_ERR(evsel->tp_format);
317 			goto out_free;
318 		}
319 
320 		event_attr_init(&attr);
321 		attr.config = evsel->tp_format->id;
322 		attr.sample_period = 1;
323 		perf_evsel__init(evsel, &attr, idx);
324 	}
325 
326 	return evsel;
327 
328 out_free:
329 	zfree(&evsel->name);
330 	free(evsel);
331 out_err:
332 	return ERR_PTR(err);
333 }
334 
335 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
336 	"cycles",
337 	"instructions",
338 	"cache-references",
339 	"cache-misses",
340 	"branches",
341 	"branch-misses",
342 	"bus-cycles",
343 	"stalled-cycles-frontend",
344 	"stalled-cycles-backend",
345 	"ref-cycles",
346 };
347 
348 static const char *__perf_evsel__hw_name(u64 config)
349 {
350 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
351 		return perf_evsel__hw_names[config];
352 
353 	return "unknown-hardware";
354 }
355 
356 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
357 {
358 	int colon = 0, r = 0;
359 	struct perf_event_attr *attr = &evsel->attr;
360 	bool exclude_guest_default = false;
361 
362 #define MOD_PRINT(context, mod)	do {					\
363 		if (!attr->exclude_##context) {				\
364 			if (!colon) colon = ++r;			\
365 			r += scnprintf(bf + r, size - r, "%c", mod);	\
366 		} } while(0)
367 
368 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
369 		MOD_PRINT(kernel, 'k');
370 		MOD_PRINT(user, 'u');
371 		MOD_PRINT(hv, 'h');
372 		exclude_guest_default = true;
373 	}
374 
375 	if (attr->precise_ip) {
376 		if (!colon)
377 			colon = ++r;
378 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
379 		exclude_guest_default = true;
380 	}
381 
382 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
383 		MOD_PRINT(host, 'H');
384 		MOD_PRINT(guest, 'G');
385 	}
386 #undef MOD_PRINT
387 	if (colon)
388 		bf[colon - 1] = ':';
389 	return r;
390 }
391 
392 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
393 {
394 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
395 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
396 }
397 
398 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
399 	"cpu-clock",
400 	"task-clock",
401 	"page-faults",
402 	"context-switches",
403 	"cpu-migrations",
404 	"minor-faults",
405 	"major-faults",
406 	"alignment-faults",
407 	"emulation-faults",
408 	"dummy",
409 };
410 
411 static const char *__perf_evsel__sw_name(u64 config)
412 {
413 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
414 		return perf_evsel__sw_names[config];
415 	return "unknown-software";
416 }
417 
418 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
419 {
420 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
421 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
422 }
423 
424 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
425 {
426 	int r;
427 
428 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
429 
430 	if (type & HW_BREAKPOINT_R)
431 		r += scnprintf(bf + r, size - r, "r");
432 
433 	if (type & HW_BREAKPOINT_W)
434 		r += scnprintf(bf + r, size - r, "w");
435 
436 	if (type & HW_BREAKPOINT_X)
437 		r += scnprintf(bf + r, size - r, "x");
438 
439 	return r;
440 }
441 
442 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
443 {
444 	struct perf_event_attr *attr = &evsel->attr;
445 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
446 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
447 }
448 
449 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
450 				[PERF_EVSEL__MAX_ALIASES] = {
451  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
452  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
453  { "LLC",	"L2",							},
454  { "dTLB",	"d-tlb",	"Data-TLB",				},
455  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
456  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
457  { "node",								},
458 };
459 
460 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
461 				   [PERF_EVSEL__MAX_ALIASES] = {
462  { "load",	"loads",	"read",					},
463  { "store",	"stores",	"write",				},
464  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
465 };
466 
467 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
468 				       [PERF_EVSEL__MAX_ALIASES] = {
469  { "refs",	"Reference",	"ops",		"access",		},
470  { "misses",	"miss",							},
471 };
472 
473 #define C(x)		PERF_COUNT_HW_CACHE_##x
474 #define CACHE_READ	(1 << C(OP_READ))
475 #define CACHE_WRITE	(1 << C(OP_WRITE))
476 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
477 #define COP(x)		(1 << x)
478 
479 /*
480  * cache operartion stat
481  * L1I : Read and prefetch only
482  * ITLB and BPU : Read-only
483  */
484 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
485  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
486  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
487  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
488  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
489  [C(ITLB)]	= (CACHE_READ),
490  [C(BPU)]	= (CACHE_READ),
491  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
492 };
493 
494 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
495 {
496 	if (perf_evsel__hw_cache_stat[type] & COP(op))
497 		return true;	/* valid */
498 	else
499 		return false;	/* invalid */
500 }
501 
502 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
503 					    char *bf, size_t size)
504 {
505 	if (result) {
506 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
507 				 perf_evsel__hw_cache_op[op][0],
508 				 perf_evsel__hw_cache_result[result][0]);
509 	}
510 
511 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
512 			 perf_evsel__hw_cache_op[op][1]);
513 }
514 
515 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
516 {
517 	u8 op, result, type = (config >>  0) & 0xff;
518 	const char *err = "unknown-ext-hardware-cache-type";
519 
520 	if (type >= PERF_COUNT_HW_CACHE_MAX)
521 		goto out_err;
522 
523 	op = (config >>  8) & 0xff;
524 	err = "unknown-ext-hardware-cache-op";
525 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
526 		goto out_err;
527 
528 	result = (config >> 16) & 0xff;
529 	err = "unknown-ext-hardware-cache-result";
530 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
531 		goto out_err;
532 
533 	err = "invalid-cache";
534 	if (!perf_evsel__is_cache_op_valid(type, op))
535 		goto out_err;
536 
537 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
538 out_err:
539 	return scnprintf(bf, size, "%s", err);
540 }
541 
542 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
543 {
544 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
545 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
546 }
547 
548 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
549 {
550 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
551 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
552 }
553 
554 const char *perf_evsel__name(struct perf_evsel *evsel)
555 {
556 	char bf[128];
557 
558 	if (evsel->name)
559 		return evsel->name;
560 
561 	switch (evsel->attr.type) {
562 	case PERF_TYPE_RAW:
563 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
564 		break;
565 
566 	case PERF_TYPE_HARDWARE:
567 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
568 		break;
569 
570 	case PERF_TYPE_HW_CACHE:
571 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
572 		break;
573 
574 	case PERF_TYPE_SOFTWARE:
575 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
576 		break;
577 
578 	case PERF_TYPE_TRACEPOINT:
579 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
580 		break;
581 
582 	case PERF_TYPE_BREAKPOINT:
583 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
584 		break;
585 
586 	default:
587 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
588 			  evsel->attr.type);
589 		break;
590 	}
591 
592 	evsel->name = strdup(bf);
593 
594 	return evsel->name ?: "unknown";
595 }
596 
597 const char *perf_evsel__group_name(struct perf_evsel *evsel)
598 {
599 	return evsel->group_name ?: "anon group";
600 }
601 
602 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
603 {
604 	int ret;
605 	struct perf_evsel *pos;
606 	const char *group_name = perf_evsel__group_name(evsel);
607 
608 	ret = scnprintf(buf, size, "%s", group_name);
609 
610 	ret += scnprintf(buf + ret, size - ret, " { %s",
611 			 perf_evsel__name(evsel));
612 
613 	for_each_group_member(pos, evsel)
614 		ret += scnprintf(buf + ret, size - ret, ", %s",
615 				 perf_evsel__name(pos));
616 
617 	ret += scnprintf(buf + ret, size - ret, " }");
618 
619 	return ret;
620 }
621 
622 void perf_evsel__config_callchain(struct perf_evsel *evsel,
623 				  struct record_opts *opts,
624 				  struct callchain_param *param)
625 {
626 	bool function = perf_evsel__is_function_event(evsel);
627 	struct perf_event_attr *attr = &evsel->attr;
628 
629 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
630 
631 	attr->sample_max_stack = param->max_stack;
632 
633 	if (param->record_mode == CALLCHAIN_LBR) {
634 		if (!opts->branch_stack) {
635 			if (attr->exclude_user) {
636 				pr_warning("LBR callstack option is only available "
637 					   "to get user callchain information. "
638 					   "Falling back to framepointers.\n");
639 			} else {
640 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
641 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
642 							PERF_SAMPLE_BRANCH_CALL_STACK |
643 							PERF_SAMPLE_BRANCH_NO_CYCLES |
644 							PERF_SAMPLE_BRANCH_NO_FLAGS;
645 			}
646 		} else
647 			 pr_warning("Cannot use LBR callstack with branch stack. "
648 				    "Falling back to framepointers.\n");
649 	}
650 
651 	if (param->record_mode == CALLCHAIN_DWARF) {
652 		if (!function) {
653 			perf_evsel__set_sample_bit(evsel, REGS_USER);
654 			perf_evsel__set_sample_bit(evsel, STACK_USER);
655 			attr->sample_regs_user = PERF_REGS_MASK;
656 			attr->sample_stack_user = param->dump_size;
657 			attr->exclude_callchain_user = 1;
658 		} else {
659 			pr_info("Cannot use DWARF unwind for function trace event,"
660 				" falling back to framepointers.\n");
661 		}
662 	}
663 
664 	if (function) {
665 		pr_info("Disabling user space callchains for function trace event.\n");
666 		attr->exclude_callchain_user = 1;
667 	}
668 }
669 
670 static void
671 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
672 			    struct callchain_param *param)
673 {
674 	struct perf_event_attr *attr = &evsel->attr;
675 
676 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
677 	if (param->record_mode == CALLCHAIN_LBR) {
678 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
679 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
680 					      PERF_SAMPLE_BRANCH_CALL_STACK);
681 	}
682 	if (param->record_mode == CALLCHAIN_DWARF) {
683 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
684 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
685 	}
686 }
687 
688 static void apply_config_terms(struct perf_evsel *evsel,
689 			       struct record_opts *opts)
690 {
691 	struct perf_evsel_config_term *term;
692 	struct list_head *config_terms = &evsel->config_terms;
693 	struct perf_event_attr *attr = &evsel->attr;
694 	struct callchain_param param;
695 	u32 dump_size = 0;
696 	int max_stack = 0;
697 	const char *callgraph_buf = NULL;
698 
699 	/* callgraph default */
700 	param.record_mode = callchain_param.record_mode;
701 
702 	list_for_each_entry(term, config_terms, list) {
703 		switch (term->type) {
704 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
705 			attr->sample_period = term->val.period;
706 			attr->freq = 0;
707 			break;
708 		case PERF_EVSEL__CONFIG_TERM_FREQ:
709 			attr->sample_freq = term->val.freq;
710 			attr->freq = 1;
711 			break;
712 		case PERF_EVSEL__CONFIG_TERM_TIME:
713 			if (term->val.time)
714 				perf_evsel__set_sample_bit(evsel, TIME);
715 			else
716 				perf_evsel__reset_sample_bit(evsel, TIME);
717 			break;
718 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
719 			callgraph_buf = term->val.callgraph;
720 			break;
721 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
722 			if (term->val.branch && strcmp(term->val.branch, "no")) {
723 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
724 				parse_branch_str(term->val.branch,
725 						 &attr->branch_sample_type);
726 			} else
727 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
728 			break;
729 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
730 			dump_size = term->val.stack_user;
731 			break;
732 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
733 			max_stack = term->val.max_stack;
734 			break;
735 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
736 			/*
737 			 * attr->inherit should has already been set by
738 			 * perf_evsel__config. If user explicitly set
739 			 * inherit using config terms, override global
740 			 * opt->no_inherit setting.
741 			 */
742 			attr->inherit = term->val.inherit ? 1 : 0;
743 			break;
744 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
745 			attr->write_backward = term->val.overwrite ? 1 : 0;
746 			break;
747 		default:
748 			break;
749 		}
750 	}
751 
752 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
753 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
754 		if (max_stack) {
755 			param.max_stack = max_stack;
756 			if (callgraph_buf == NULL)
757 				callgraph_buf = "fp";
758 		}
759 
760 		/* parse callgraph parameters */
761 		if (callgraph_buf != NULL) {
762 			if (!strcmp(callgraph_buf, "no")) {
763 				param.enabled = false;
764 				param.record_mode = CALLCHAIN_NONE;
765 			} else {
766 				param.enabled = true;
767 				if (parse_callchain_record(callgraph_buf, &param)) {
768 					pr_err("per-event callgraph setting for %s failed. "
769 					       "Apply callgraph global setting for it\n",
770 					       evsel->name);
771 					return;
772 				}
773 			}
774 		}
775 		if (dump_size > 0) {
776 			dump_size = round_up(dump_size, sizeof(u64));
777 			param.dump_size = dump_size;
778 		}
779 
780 		/* If global callgraph set, clear it */
781 		if (callchain_param.enabled)
782 			perf_evsel__reset_callgraph(evsel, &callchain_param);
783 
784 		/* set perf-event callgraph */
785 		if (param.enabled)
786 			perf_evsel__config_callchain(evsel, opts, &param);
787 	}
788 }
789 
790 /*
791  * The enable_on_exec/disabled value strategy:
792  *
793  *  1) For any type of traced program:
794  *    - all independent events and group leaders are disabled
795  *    - all group members are enabled
796  *
797  *     Group members are ruled by group leaders. They need to
798  *     be enabled, because the group scheduling relies on that.
799  *
800  *  2) For traced programs executed by perf:
801  *     - all independent events and group leaders have
802  *       enable_on_exec set
803  *     - we don't specifically enable or disable any event during
804  *       the record command
805  *
806  *     Independent events and group leaders are initially disabled
807  *     and get enabled by exec. Group members are ruled by group
808  *     leaders as stated in 1).
809  *
810  *  3) For traced programs attached by perf (pid/tid):
811  *     - we specifically enable or disable all events during
812  *       the record command
813  *
814  *     When attaching events to already running traced we
815  *     enable/disable events specifically, as there's no
816  *     initial traced exec call.
817  */
818 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
819 			struct callchain_param *callchain)
820 {
821 	struct perf_evsel *leader = evsel->leader;
822 	struct perf_event_attr *attr = &evsel->attr;
823 	int track = evsel->tracking;
824 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
825 
826 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
827 	attr->inherit	    = !opts->no_inherit;
828 	attr->write_backward = opts->overwrite ? 1 : 0;
829 
830 	perf_evsel__set_sample_bit(evsel, IP);
831 	perf_evsel__set_sample_bit(evsel, TID);
832 
833 	if (evsel->sample_read) {
834 		perf_evsel__set_sample_bit(evsel, READ);
835 
836 		/*
837 		 * We need ID even in case of single event, because
838 		 * PERF_SAMPLE_READ process ID specific data.
839 		 */
840 		perf_evsel__set_sample_id(evsel, false);
841 
842 		/*
843 		 * Apply group format only if we belong to group
844 		 * with more than one members.
845 		 */
846 		if (leader->nr_members > 1) {
847 			attr->read_format |= PERF_FORMAT_GROUP;
848 			attr->inherit = 0;
849 		}
850 	}
851 
852 	/*
853 	 * We default some events to have a default interval. But keep
854 	 * it a weak assumption overridable by the user.
855 	 */
856 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
857 				     opts->user_interval != ULLONG_MAX)) {
858 		if (opts->freq) {
859 			perf_evsel__set_sample_bit(evsel, PERIOD);
860 			attr->freq		= 1;
861 			attr->sample_freq	= opts->freq;
862 		} else {
863 			attr->sample_period = opts->default_interval;
864 		}
865 	}
866 
867 	/*
868 	 * Disable sampling for all group members other
869 	 * than leader in case leader 'leads' the sampling.
870 	 */
871 	if ((leader != evsel) && leader->sample_read) {
872 		attr->sample_freq   = 0;
873 		attr->sample_period = 0;
874 	}
875 
876 	if (opts->no_samples)
877 		attr->sample_freq = 0;
878 
879 	if (opts->inherit_stat)
880 		attr->inherit_stat = 1;
881 
882 	if (opts->sample_address) {
883 		perf_evsel__set_sample_bit(evsel, ADDR);
884 		attr->mmap_data = track;
885 	}
886 
887 	/*
888 	 * We don't allow user space callchains for  function trace
889 	 * event, due to issues with page faults while tracing page
890 	 * fault handler and its overall trickiness nature.
891 	 */
892 	if (perf_evsel__is_function_event(evsel))
893 		evsel->attr.exclude_callchain_user = 1;
894 
895 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
896 		perf_evsel__config_callchain(evsel, opts, callchain);
897 
898 	if (opts->sample_intr_regs) {
899 		attr->sample_regs_intr = opts->sample_intr_regs;
900 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
901 	}
902 
903 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
904 		perf_evsel__set_sample_bit(evsel, CPU);
905 
906 	if (opts->period)
907 		perf_evsel__set_sample_bit(evsel, PERIOD);
908 
909 	/*
910 	 * When the user explicitly disabled time don't force it here.
911 	 */
912 	if (opts->sample_time &&
913 	    (!perf_missing_features.sample_id_all &&
914 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
915 	     opts->sample_time_set)))
916 		perf_evsel__set_sample_bit(evsel, TIME);
917 
918 	if (opts->raw_samples && !evsel->no_aux_samples) {
919 		perf_evsel__set_sample_bit(evsel, TIME);
920 		perf_evsel__set_sample_bit(evsel, RAW);
921 		perf_evsel__set_sample_bit(evsel, CPU);
922 	}
923 
924 	if (opts->sample_address)
925 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
926 
927 	if (opts->no_buffering) {
928 		attr->watermark = 0;
929 		attr->wakeup_events = 1;
930 	}
931 	if (opts->branch_stack && !evsel->no_aux_samples) {
932 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
933 		attr->branch_sample_type = opts->branch_stack;
934 	}
935 
936 	if (opts->sample_weight)
937 		perf_evsel__set_sample_bit(evsel, WEIGHT);
938 
939 	attr->task  = track;
940 	attr->mmap  = track;
941 	attr->mmap2 = track && !perf_missing_features.mmap2;
942 	attr->comm  = track;
943 
944 	if (opts->record_namespaces)
945 		attr->namespaces  = track;
946 
947 	if (opts->record_switch_events)
948 		attr->context_switch = track;
949 
950 	if (opts->sample_transaction)
951 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
952 
953 	if (opts->running_time) {
954 		evsel->attr.read_format |=
955 			PERF_FORMAT_TOTAL_TIME_ENABLED |
956 			PERF_FORMAT_TOTAL_TIME_RUNNING;
957 	}
958 
959 	/*
960 	 * XXX see the function comment above
961 	 *
962 	 * Disabling only independent events or group leaders,
963 	 * keeping group members enabled.
964 	 */
965 	if (perf_evsel__is_group_leader(evsel))
966 		attr->disabled = 1;
967 
968 	/*
969 	 * Setting enable_on_exec for independent events and
970 	 * group leaders for traced executed by perf.
971 	 */
972 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
973 		!opts->initial_delay)
974 		attr->enable_on_exec = 1;
975 
976 	if (evsel->immediate) {
977 		attr->disabled = 0;
978 		attr->enable_on_exec = 0;
979 	}
980 
981 	clockid = opts->clockid;
982 	if (opts->use_clockid) {
983 		attr->use_clockid = 1;
984 		attr->clockid = opts->clockid;
985 	}
986 
987 	if (evsel->precise_max)
988 		perf_event_attr__set_max_precise_ip(attr);
989 
990 	if (opts->all_user) {
991 		attr->exclude_kernel = 1;
992 		attr->exclude_user   = 0;
993 	}
994 
995 	if (opts->all_kernel) {
996 		attr->exclude_kernel = 0;
997 		attr->exclude_user   = 1;
998 	}
999 
1000 	/*
1001 	 * Apply event specific term settings,
1002 	 * it overloads any global configuration.
1003 	 */
1004 	apply_config_terms(evsel, opts);
1005 
1006 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1007 }
1008 
1009 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1010 {
1011 	if (evsel->system_wide)
1012 		nthreads = 1;
1013 
1014 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1015 
1016 	if (evsel->fd) {
1017 		int cpu, thread;
1018 		for (cpu = 0; cpu < ncpus; cpu++) {
1019 			for (thread = 0; thread < nthreads; thread++) {
1020 				FD(evsel, cpu, thread) = -1;
1021 			}
1022 		}
1023 	}
1024 
1025 	return evsel->fd != NULL ? 0 : -ENOMEM;
1026 }
1027 
1028 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1029 			  int ioc,  void *arg)
1030 {
1031 	int cpu, thread;
1032 
1033 	if (evsel->system_wide)
1034 		nthreads = 1;
1035 
1036 	for (cpu = 0; cpu < ncpus; cpu++) {
1037 		for (thread = 0; thread < nthreads; thread++) {
1038 			int fd = FD(evsel, cpu, thread),
1039 			    err = ioctl(fd, ioc, arg);
1040 
1041 			if (err)
1042 				return err;
1043 		}
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1050 			     const char *filter)
1051 {
1052 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1053 				     PERF_EVENT_IOC_SET_FILTER,
1054 				     (void *)filter);
1055 }
1056 
1057 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1058 {
1059 	char *new_filter = strdup(filter);
1060 
1061 	if (new_filter != NULL) {
1062 		free(evsel->filter);
1063 		evsel->filter = new_filter;
1064 		return 0;
1065 	}
1066 
1067 	return -1;
1068 }
1069 
1070 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1071 				     const char *fmt, const char *filter)
1072 {
1073 	char *new_filter;
1074 
1075 	if (evsel->filter == NULL)
1076 		return perf_evsel__set_filter(evsel, filter);
1077 
1078 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1079 		free(evsel->filter);
1080 		evsel->filter = new_filter;
1081 		return 0;
1082 	}
1083 
1084 	return -1;
1085 }
1086 
1087 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1088 {
1089 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1090 }
1091 
1092 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1093 {
1094 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1095 }
1096 
1097 int perf_evsel__enable(struct perf_evsel *evsel)
1098 {
1099 	int nthreads = thread_map__nr(evsel->threads);
1100 	int ncpus = cpu_map__nr(evsel->cpus);
1101 
1102 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1103 				     PERF_EVENT_IOC_ENABLE,
1104 				     0);
1105 }
1106 
1107 int perf_evsel__disable(struct perf_evsel *evsel)
1108 {
1109 	int nthreads = thread_map__nr(evsel->threads);
1110 	int ncpus = cpu_map__nr(evsel->cpus);
1111 
1112 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1113 				     PERF_EVENT_IOC_DISABLE,
1114 				     0);
1115 }
1116 
1117 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1118 {
1119 	if (ncpus == 0 || nthreads == 0)
1120 		return 0;
1121 
1122 	if (evsel->system_wide)
1123 		nthreads = 1;
1124 
1125 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1126 	if (evsel->sample_id == NULL)
1127 		return -ENOMEM;
1128 
1129 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1130 	if (evsel->id == NULL) {
1131 		xyarray__delete(evsel->sample_id);
1132 		evsel->sample_id = NULL;
1133 		return -ENOMEM;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1140 {
1141 	xyarray__delete(evsel->fd);
1142 	evsel->fd = NULL;
1143 }
1144 
1145 static void perf_evsel__free_id(struct perf_evsel *evsel)
1146 {
1147 	xyarray__delete(evsel->sample_id);
1148 	evsel->sample_id = NULL;
1149 	zfree(&evsel->id);
1150 }
1151 
1152 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1153 {
1154 	struct perf_evsel_config_term *term, *h;
1155 
1156 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1157 		list_del(&term->list);
1158 		free(term);
1159 	}
1160 }
1161 
1162 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1163 {
1164 	int cpu, thread;
1165 
1166 	if (evsel->system_wide)
1167 		nthreads = 1;
1168 
1169 	for (cpu = 0; cpu < ncpus; cpu++)
1170 		for (thread = 0; thread < nthreads; ++thread) {
1171 			close(FD(evsel, cpu, thread));
1172 			FD(evsel, cpu, thread) = -1;
1173 		}
1174 }
1175 
1176 void perf_evsel__exit(struct perf_evsel *evsel)
1177 {
1178 	assert(list_empty(&evsel->node));
1179 	assert(evsel->evlist == NULL);
1180 	perf_evsel__free_fd(evsel);
1181 	perf_evsel__free_id(evsel);
1182 	perf_evsel__free_config_terms(evsel);
1183 	close_cgroup(evsel->cgrp);
1184 	cpu_map__put(evsel->cpus);
1185 	cpu_map__put(evsel->own_cpus);
1186 	thread_map__put(evsel->threads);
1187 	zfree(&evsel->group_name);
1188 	zfree(&evsel->name);
1189 	perf_evsel__object.fini(evsel);
1190 }
1191 
1192 void perf_evsel__delete(struct perf_evsel *evsel)
1193 {
1194 	perf_evsel__exit(evsel);
1195 	free(evsel);
1196 }
1197 
1198 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1199 				struct perf_counts_values *count)
1200 {
1201 	struct perf_counts_values tmp;
1202 
1203 	if (!evsel->prev_raw_counts)
1204 		return;
1205 
1206 	if (cpu == -1) {
1207 		tmp = evsel->prev_raw_counts->aggr;
1208 		evsel->prev_raw_counts->aggr = *count;
1209 	} else {
1210 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1211 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1212 	}
1213 
1214 	count->val = count->val - tmp.val;
1215 	count->ena = count->ena - tmp.ena;
1216 	count->run = count->run - tmp.run;
1217 }
1218 
1219 void perf_counts_values__scale(struct perf_counts_values *count,
1220 			       bool scale, s8 *pscaled)
1221 {
1222 	s8 scaled = 0;
1223 
1224 	if (scale) {
1225 		if (count->run == 0) {
1226 			scaled = -1;
1227 			count->val = 0;
1228 		} else if (count->run < count->ena) {
1229 			scaled = 1;
1230 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1231 		}
1232 	} else
1233 		count->ena = count->run = 0;
1234 
1235 	if (pscaled)
1236 		*pscaled = scaled;
1237 }
1238 
1239 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1240 		     struct perf_counts_values *count)
1241 {
1242 	memset(count, 0, sizeof(*count));
1243 
1244 	if (FD(evsel, cpu, thread) < 0)
1245 		return -EINVAL;
1246 
1247 	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0)
1248 		return -errno;
1249 
1250 	return 0;
1251 }
1252 
1253 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1254 			      int cpu, int thread, bool scale)
1255 {
1256 	struct perf_counts_values count;
1257 	size_t nv = scale ? 3 : 1;
1258 
1259 	if (FD(evsel, cpu, thread) < 0)
1260 		return -EINVAL;
1261 
1262 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1263 		return -ENOMEM;
1264 
1265 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1266 		return -errno;
1267 
1268 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1269 	perf_counts_values__scale(&count, scale, NULL);
1270 	*perf_counts(evsel->counts, cpu, thread) = count;
1271 	return 0;
1272 }
1273 
1274 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1275 {
1276 	struct perf_evsel *leader = evsel->leader;
1277 	int fd;
1278 
1279 	if (perf_evsel__is_group_leader(evsel))
1280 		return -1;
1281 
1282 	/*
1283 	 * Leader must be already processed/open,
1284 	 * if not it's a bug.
1285 	 */
1286 	BUG_ON(!leader->fd);
1287 
1288 	fd = FD(leader, cpu, thread);
1289 	BUG_ON(fd == -1);
1290 
1291 	return fd;
1292 }
1293 
1294 struct bit_names {
1295 	int bit;
1296 	const char *name;
1297 };
1298 
1299 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1300 {
1301 	bool first_bit = true;
1302 	int i = 0;
1303 
1304 	do {
1305 		if (value & bits[i].bit) {
1306 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1307 			first_bit = false;
1308 		}
1309 	} while (bits[++i].name != NULL);
1310 }
1311 
1312 static void __p_sample_type(char *buf, size_t size, u64 value)
1313 {
1314 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1315 	struct bit_names bits[] = {
1316 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1317 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1318 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1319 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1320 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1321 		bit_name(WEIGHT),
1322 		{ .name = NULL, }
1323 	};
1324 #undef bit_name
1325 	__p_bits(buf, size, value, bits);
1326 }
1327 
1328 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1329 {
1330 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1331 	struct bit_names bits[] = {
1332 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1333 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1334 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1335 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1336 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1337 		{ .name = NULL, }
1338 	};
1339 #undef bit_name
1340 	__p_bits(buf, size, value, bits);
1341 }
1342 
1343 static void __p_read_format(char *buf, size_t size, u64 value)
1344 {
1345 #define bit_name(n) { PERF_FORMAT_##n, #n }
1346 	struct bit_names bits[] = {
1347 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1348 		bit_name(ID), bit_name(GROUP),
1349 		{ .name = NULL, }
1350 	};
1351 #undef bit_name
1352 	__p_bits(buf, size, value, bits);
1353 }
1354 
1355 #define BUF_SIZE		1024
1356 
1357 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1358 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1359 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1360 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1361 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1362 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1363 
1364 #define PRINT_ATTRn(_n, _f, _p)				\
1365 do {							\
1366 	if (attr->_f) {					\
1367 		_p(attr->_f);				\
1368 		ret += attr__fprintf(fp, _n, buf, priv);\
1369 	}						\
1370 } while (0)
1371 
1372 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1373 
1374 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1375 			     attr__fprintf_f attr__fprintf, void *priv)
1376 {
1377 	char buf[BUF_SIZE];
1378 	int ret = 0;
1379 
1380 	PRINT_ATTRf(type, p_unsigned);
1381 	PRINT_ATTRf(size, p_unsigned);
1382 	PRINT_ATTRf(config, p_hex);
1383 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1384 	PRINT_ATTRf(sample_type, p_sample_type);
1385 	PRINT_ATTRf(read_format, p_read_format);
1386 
1387 	PRINT_ATTRf(disabled, p_unsigned);
1388 	PRINT_ATTRf(inherit, p_unsigned);
1389 	PRINT_ATTRf(pinned, p_unsigned);
1390 	PRINT_ATTRf(exclusive, p_unsigned);
1391 	PRINT_ATTRf(exclude_user, p_unsigned);
1392 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1393 	PRINT_ATTRf(exclude_hv, p_unsigned);
1394 	PRINT_ATTRf(exclude_idle, p_unsigned);
1395 	PRINT_ATTRf(mmap, p_unsigned);
1396 	PRINT_ATTRf(comm, p_unsigned);
1397 	PRINT_ATTRf(freq, p_unsigned);
1398 	PRINT_ATTRf(inherit_stat, p_unsigned);
1399 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1400 	PRINT_ATTRf(task, p_unsigned);
1401 	PRINT_ATTRf(watermark, p_unsigned);
1402 	PRINT_ATTRf(precise_ip, p_unsigned);
1403 	PRINT_ATTRf(mmap_data, p_unsigned);
1404 	PRINT_ATTRf(sample_id_all, p_unsigned);
1405 	PRINT_ATTRf(exclude_host, p_unsigned);
1406 	PRINT_ATTRf(exclude_guest, p_unsigned);
1407 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1408 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1409 	PRINT_ATTRf(mmap2, p_unsigned);
1410 	PRINT_ATTRf(comm_exec, p_unsigned);
1411 	PRINT_ATTRf(use_clockid, p_unsigned);
1412 	PRINT_ATTRf(context_switch, p_unsigned);
1413 	PRINT_ATTRf(write_backward, p_unsigned);
1414 
1415 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1416 	PRINT_ATTRf(bp_type, p_unsigned);
1417 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1418 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1419 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1420 	PRINT_ATTRf(sample_regs_user, p_hex);
1421 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1422 	PRINT_ATTRf(clockid, p_signed);
1423 	PRINT_ATTRf(sample_regs_intr, p_hex);
1424 	PRINT_ATTRf(aux_watermark, p_unsigned);
1425 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1426 
1427 	return ret;
1428 }
1429 
1430 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1431 				void *priv __attribute__((unused)))
1432 {
1433 	return fprintf(fp, "  %-32s %s\n", name, val);
1434 }
1435 
1436 static bool ignore_missing_thread(struct perf_evsel *evsel,
1437 				  struct thread_map *threads,
1438 				  int thread, int err)
1439 {
1440 	if (!evsel->ignore_missing_thread)
1441 		return false;
1442 
1443 	/* The system wide setup does not work with threads. */
1444 	if (evsel->system_wide)
1445 		return false;
1446 
1447 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1448 	if (err != -ESRCH)
1449 		return false;
1450 
1451 	/* If there's only one thread, let it fail. */
1452 	if (threads->nr == 1)
1453 		return false;
1454 
1455 	if (thread_map__remove(threads, thread))
1456 		return false;
1457 
1458 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1459 		   thread_map__pid(threads, thread));
1460 	return true;
1461 }
1462 
1463 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1464 		     struct thread_map *threads)
1465 {
1466 	int cpu, thread, nthreads;
1467 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1468 	int pid = -1, err;
1469 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1470 
1471 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1472 		return -EINVAL;
1473 
1474 	if (cpus == NULL) {
1475 		static struct cpu_map *empty_cpu_map;
1476 
1477 		if (empty_cpu_map == NULL) {
1478 			empty_cpu_map = cpu_map__dummy_new();
1479 			if (empty_cpu_map == NULL)
1480 				return -ENOMEM;
1481 		}
1482 
1483 		cpus = empty_cpu_map;
1484 	}
1485 
1486 	if (threads == NULL) {
1487 		static struct thread_map *empty_thread_map;
1488 
1489 		if (empty_thread_map == NULL) {
1490 			empty_thread_map = thread_map__new_by_tid(-1);
1491 			if (empty_thread_map == NULL)
1492 				return -ENOMEM;
1493 		}
1494 
1495 		threads = empty_thread_map;
1496 	}
1497 
1498 	if (evsel->system_wide)
1499 		nthreads = 1;
1500 	else
1501 		nthreads = threads->nr;
1502 
1503 	if (evsel->fd == NULL &&
1504 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1505 		return -ENOMEM;
1506 
1507 	if (evsel->cgrp) {
1508 		flags |= PERF_FLAG_PID_CGROUP;
1509 		pid = evsel->cgrp->fd;
1510 	}
1511 
1512 fallback_missing_features:
1513 	if (perf_missing_features.clockid_wrong)
1514 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1515 	if (perf_missing_features.clockid) {
1516 		evsel->attr.use_clockid = 0;
1517 		evsel->attr.clockid = 0;
1518 	}
1519 	if (perf_missing_features.cloexec)
1520 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1521 	if (perf_missing_features.mmap2)
1522 		evsel->attr.mmap2 = 0;
1523 	if (perf_missing_features.exclude_guest)
1524 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1525 	if (perf_missing_features.lbr_flags)
1526 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1527 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1528 retry_sample_id:
1529 	if (perf_missing_features.sample_id_all)
1530 		evsel->attr.sample_id_all = 0;
1531 
1532 	if (verbose >= 2) {
1533 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1534 		fprintf(stderr, "perf_event_attr:\n");
1535 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1536 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1537 	}
1538 
1539 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1540 
1541 		for (thread = 0; thread < nthreads; thread++) {
1542 			int fd, group_fd;
1543 
1544 			if (!evsel->cgrp && !evsel->system_wide)
1545 				pid = thread_map__pid(threads, thread);
1546 
1547 			group_fd = get_group_fd(evsel, cpu, thread);
1548 retry_open:
1549 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1550 				  pid, cpus->map[cpu], group_fd, flags);
1551 
1552 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1553 						 group_fd, flags);
1554 
1555 			FD(evsel, cpu, thread) = fd;
1556 
1557 			if (fd < 0) {
1558 				err = -errno;
1559 
1560 				if (ignore_missing_thread(evsel, threads, thread, err)) {
1561 					/*
1562 					 * We just removed 1 thread, so take a step
1563 					 * back on thread index and lower the upper
1564 					 * nthreads limit.
1565 					 */
1566 					nthreads--;
1567 					thread--;
1568 
1569 					/* ... and pretend like nothing have happened. */
1570 					err = 0;
1571 					continue;
1572 				}
1573 
1574 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1575 					  err);
1576 				goto try_fallback;
1577 			}
1578 
1579 			pr_debug2(" = %d\n", fd);
1580 
1581 			if (evsel->bpf_fd >= 0) {
1582 				int evt_fd = fd;
1583 				int bpf_fd = evsel->bpf_fd;
1584 
1585 				err = ioctl(evt_fd,
1586 					    PERF_EVENT_IOC_SET_BPF,
1587 					    bpf_fd);
1588 				if (err && errno != EEXIST) {
1589 					pr_err("failed to attach bpf fd %d: %s\n",
1590 					       bpf_fd, strerror(errno));
1591 					err = -EINVAL;
1592 					goto out_close;
1593 				}
1594 			}
1595 
1596 			set_rlimit = NO_CHANGE;
1597 
1598 			/*
1599 			 * If we succeeded but had to kill clockid, fail and
1600 			 * have perf_evsel__open_strerror() print us a nice
1601 			 * error.
1602 			 */
1603 			if (perf_missing_features.clockid ||
1604 			    perf_missing_features.clockid_wrong) {
1605 				err = -EINVAL;
1606 				goto out_close;
1607 			}
1608 		}
1609 	}
1610 
1611 	return 0;
1612 
1613 try_fallback:
1614 	/*
1615 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1616 	 * of them try to increase the limits.
1617 	 */
1618 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1619 		struct rlimit l;
1620 		int old_errno = errno;
1621 
1622 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1623 			if (set_rlimit == NO_CHANGE)
1624 				l.rlim_cur = l.rlim_max;
1625 			else {
1626 				l.rlim_cur = l.rlim_max + 1000;
1627 				l.rlim_max = l.rlim_cur;
1628 			}
1629 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1630 				set_rlimit++;
1631 				errno = old_errno;
1632 				goto retry_open;
1633 			}
1634 		}
1635 		errno = old_errno;
1636 	}
1637 
1638 	if (err != -EINVAL || cpu > 0 || thread > 0)
1639 		goto out_close;
1640 
1641 	/*
1642 	 * Must probe features in the order they were added to the
1643 	 * perf_event_attr interface.
1644 	 */
1645 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1646 		perf_missing_features.write_backward = true;
1647 		goto out_close;
1648 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1649 		perf_missing_features.clockid_wrong = true;
1650 		goto fallback_missing_features;
1651 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1652 		perf_missing_features.clockid = true;
1653 		goto fallback_missing_features;
1654 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1655 		perf_missing_features.cloexec = true;
1656 		goto fallback_missing_features;
1657 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1658 		perf_missing_features.mmap2 = true;
1659 		goto fallback_missing_features;
1660 	} else if (!perf_missing_features.exclude_guest &&
1661 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1662 		perf_missing_features.exclude_guest = true;
1663 		goto fallback_missing_features;
1664 	} else if (!perf_missing_features.sample_id_all) {
1665 		perf_missing_features.sample_id_all = true;
1666 		goto retry_sample_id;
1667 	} else if (!perf_missing_features.lbr_flags &&
1668 			(evsel->attr.branch_sample_type &
1669 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1670 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1671 		perf_missing_features.lbr_flags = true;
1672 		goto fallback_missing_features;
1673 	}
1674 out_close:
1675 	do {
1676 		while (--thread >= 0) {
1677 			close(FD(evsel, cpu, thread));
1678 			FD(evsel, cpu, thread) = -1;
1679 		}
1680 		thread = nthreads;
1681 	} while (--cpu >= 0);
1682 	return err;
1683 }
1684 
1685 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1686 {
1687 	if (evsel->fd == NULL)
1688 		return;
1689 
1690 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1691 	perf_evsel__free_fd(evsel);
1692 }
1693 
1694 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1695 			     struct cpu_map *cpus)
1696 {
1697 	return perf_evsel__open(evsel, cpus, NULL);
1698 }
1699 
1700 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1701 				struct thread_map *threads)
1702 {
1703 	return perf_evsel__open(evsel, NULL, threads);
1704 }
1705 
1706 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1707 				       const union perf_event *event,
1708 				       struct perf_sample *sample)
1709 {
1710 	u64 type = evsel->attr.sample_type;
1711 	const u64 *array = event->sample.array;
1712 	bool swapped = evsel->needs_swap;
1713 	union u64_swap u;
1714 
1715 	array += ((event->header.size -
1716 		   sizeof(event->header)) / sizeof(u64)) - 1;
1717 
1718 	if (type & PERF_SAMPLE_IDENTIFIER) {
1719 		sample->id = *array;
1720 		array--;
1721 	}
1722 
1723 	if (type & PERF_SAMPLE_CPU) {
1724 		u.val64 = *array;
1725 		if (swapped) {
1726 			/* undo swap of u64, then swap on individual u32s */
1727 			u.val64 = bswap_64(u.val64);
1728 			u.val32[0] = bswap_32(u.val32[0]);
1729 		}
1730 
1731 		sample->cpu = u.val32[0];
1732 		array--;
1733 	}
1734 
1735 	if (type & PERF_SAMPLE_STREAM_ID) {
1736 		sample->stream_id = *array;
1737 		array--;
1738 	}
1739 
1740 	if (type & PERF_SAMPLE_ID) {
1741 		sample->id = *array;
1742 		array--;
1743 	}
1744 
1745 	if (type & PERF_SAMPLE_TIME) {
1746 		sample->time = *array;
1747 		array--;
1748 	}
1749 
1750 	if (type & PERF_SAMPLE_TID) {
1751 		u.val64 = *array;
1752 		if (swapped) {
1753 			/* undo swap of u64, then swap on individual u32s */
1754 			u.val64 = bswap_64(u.val64);
1755 			u.val32[0] = bswap_32(u.val32[0]);
1756 			u.val32[1] = bswap_32(u.val32[1]);
1757 		}
1758 
1759 		sample->pid = u.val32[0];
1760 		sample->tid = u.val32[1];
1761 		array--;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1768 			    u64 size)
1769 {
1770 	return size > max_size || offset + size > endp;
1771 }
1772 
1773 #define OVERFLOW_CHECK(offset, size, max_size)				\
1774 	do {								\
1775 		if (overflow(endp, (max_size), (offset), (size)))	\
1776 			return -EFAULT;					\
1777 	} while (0)
1778 
1779 #define OVERFLOW_CHECK_u64(offset) \
1780 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1781 
1782 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1783 			     struct perf_sample *data)
1784 {
1785 	u64 type = evsel->attr.sample_type;
1786 	bool swapped = evsel->needs_swap;
1787 	const u64 *array;
1788 	u16 max_size = event->header.size;
1789 	const void *endp = (void *)event + max_size;
1790 	u64 sz;
1791 
1792 	/*
1793 	 * used for cross-endian analysis. See git commit 65014ab3
1794 	 * for why this goofiness is needed.
1795 	 */
1796 	union u64_swap u;
1797 
1798 	memset(data, 0, sizeof(*data));
1799 	data->cpu = data->pid = data->tid = -1;
1800 	data->stream_id = data->id = data->time = -1ULL;
1801 	data->period = evsel->attr.sample_period;
1802 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1803 
1804 	if (event->header.type != PERF_RECORD_SAMPLE) {
1805 		if (!evsel->attr.sample_id_all)
1806 			return 0;
1807 		return perf_evsel__parse_id_sample(evsel, event, data);
1808 	}
1809 
1810 	array = event->sample.array;
1811 
1812 	/*
1813 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1814 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1815 	 * check the format does not go past the end of the event.
1816 	 */
1817 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1818 		return -EFAULT;
1819 
1820 	data->id = -1ULL;
1821 	if (type & PERF_SAMPLE_IDENTIFIER) {
1822 		data->id = *array;
1823 		array++;
1824 	}
1825 
1826 	if (type & PERF_SAMPLE_IP) {
1827 		data->ip = *array;
1828 		array++;
1829 	}
1830 
1831 	if (type & PERF_SAMPLE_TID) {
1832 		u.val64 = *array;
1833 		if (swapped) {
1834 			/* undo swap of u64, then swap on individual u32s */
1835 			u.val64 = bswap_64(u.val64);
1836 			u.val32[0] = bswap_32(u.val32[0]);
1837 			u.val32[1] = bswap_32(u.val32[1]);
1838 		}
1839 
1840 		data->pid = u.val32[0];
1841 		data->tid = u.val32[1];
1842 		array++;
1843 	}
1844 
1845 	if (type & PERF_SAMPLE_TIME) {
1846 		data->time = *array;
1847 		array++;
1848 	}
1849 
1850 	data->addr = 0;
1851 	if (type & PERF_SAMPLE_ADDR) {
1852 		data->addr = *array;
1853 		array++;
1854 	}
1855 
1856 	if (type & PERF_SAMPLE_ID) {
1857 		data->id = *array;
1858 		array++;
1859 	}
1860 
1861 	if (type & PERF_SAMPLE_STREAM_ID) {
1862 		data->stream_id = *array;
1863 		array++;
1864 	}
1865 
1866 	if (type & PERF_SAMPLE_CPU) {
1867 
1868 		u.val64 = *array;
1869 		if (swapped) {
1870 			/* undo swap of u64, then swap on individual u32s */
1871 			u.val64 = bswap_64(u.val64);
1872 			u.val32[0] = bswap_32(u.val32[0]);
1873 		}
1874 
1875 		data->cpu = u.val32[0];
1876 		array++;
1877 	}
1878 
1879 	if (type & PERF_SAMPLE_PERIOD) {
1880 		data->period = *array;
1881 		array++;
1882 	}
1883 
1884 	if (type & PERF_SAMPLE_READ) {
1885 		u64 read_format = evsel->attr.read_format;
1886 
1887 		OVERFLOW_CHECK_u64(array);
1888 		if (read_format & PERF_FORMAT_GROUP)
1889 			data->read.group.nr = *array;
1890 		else
1891 			data->read.one.value = *array;
1892 
1893 		array++;
1894 
1895 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1896 			OVERFLOW_CHECK_u64(array);
1897 			data->read.time_enabled = *array;
1898 			array++;
1899 		}
1900 
1901 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1902 			OVERFLOW_CHECK_u64(array);
1903 			data->read.time_running = *array;
1904 			array++;
1905 		}
1906 
1907 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1908 		if (read_format & PERF_FORMAT_GROUP) {
1909 			const u64 max_group_nr = UINT64_MAX /
1910 					sizeof(struct sample_read_value);
1911 
1912 			if (data->read.group.nr > max_group_nr)
1913 				return -EFAULT;
1914 			sz = data->read.group.nr *
1915 			     sizeof(struct sample_read_value);
1916 			OVERFLOW_CHECK(array, sz, max_size);
1917 			data->read.group.values =
1918 					(struct sample_read_value *)array;
1919 			array = (void *)array + sz;
1920 		} else {
1921 			OVERFLOW_CHECK_u64(array);
1922 			data->read.one.id = *array;
1923 			array++;
1924 		}
1925 	}
1926 
1927 	if (type & PERF_SAMPLE_CALLCHAIN) {
1928 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1929 
1930 		OVERFLOW_CHECK_u64(array);
1931 		data->callchain = (struct ip_callchain *)array++;
1932 		if (data->callchain->nr > max_callchain_nr)
1933 			return -EFAULT;
1934 		sz = data->callchain->nr * sizeof(u64);
1935 		OVERFLOW_CHECK(array, sz, max_size);
1936 		array = (void *)array + sz;
1937 	}
1938 
1939 	if (type & PERF_SAMPLE_RAW) {
1940 		OVERFLOW_CHECK_u64(array);
1941 		u.val64 = *array;
1942 		if (WARN_ONCE(swapped,
1943 			      "Endianness of raw data not corrected!\n")) {
1944 			/* undo swap of u64, then swap on individual u32s */
1945 			u.val64 = bswap_64(u.val64);
1946 			u.val32[0] = bswap_32(u.val32[0]);
1947 			u.val32[1] = bswap_32(u.val32[1]);
1948 		}
1949 		data->raw_size = u.val32[0];
1950 		array = (void *)array + sizeof(u32);
1951 
1952 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1953 		data->raw_data = (void *)array;
1954 		array = (void *)array + data->raw_size;
1955 	}
1956 
1957 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1958 		const u64 max_branch_nr = UINT64_MAX /
1959 					  sizeof(struct branch_entry);
1960 
1961 		OVERFLOW_CHECK_u64(array);
1962 		data->branch_stack = (struct branch_stack *)array++;
1963 
1964 		if (data->branch_stack->nr > max_branch_nr)
1965 			return -EFAULT;
1966 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1967 		OVERFLOW_CHECK(array, sz, max_size);
1968 		array = (void *)array + sz;
1969 	}
1970 
1971 	if (type & PERF_SAMPLE_REGS_USER) {
1972 		OVERFLOW_CHECK_u64(array);
1973 		data->user_regs.abi = *array;
1974 		array++;
1975 
1976 		if (data->user_regs.abi) {
1977 			u64 mask = evsel->attr.sample_regs_user;
1978 
1979 			sz = hweight_long(mask) * sizeof(u64);
1980 			OVERFLOW_CHECK(array, sz, max_size);
1981 			data->user_regs.mask = mask;
1982 			data->user_regs.regs = (u64 *)array;
1983 			array = (void *)array + sz;
1984 		}
1985 	}
1986 
1987 	if (type & PERF_SAMPLE_STACK_USER) {
1988 		OVERFLOW_CHECK_u64(array);
1989 		sz = *array++;
1990 
1991 		data->user_stack.offset = ((char *)(array - 1)
1992 					  - (char *) event);
1993 
1994 		if (!sz) {
1995 			data->user_stack.size = 0;
1996 		} else {
1997 			OVERFLOW_CHECK(array, sz, max_size);
1998 			data->user_stack.data = (char *)array;
1999 			array = (void *)array + sz;
2000 			OVERFLOW_CHECK_u64(array);
2001 			data->user_stack.size = *array++;
2002 			if (WARN_ONCE(data->user_stack.size > sz,
2003 				      "user stack dump failure\n"))
2004 				return -EFAULT;
2005 		}
2006 	}
2007 
2008 	if (type & PERF_SAMPLE_WEIGHT) {
2009 		OVERFLOW_CHECK_u64(array);
2010 		data->weight = *array;
2011 		array++;
2012 	}
2013 
2014 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2015 	if (type & PERF_SAMPLE_DATA_SRC) {
2016 		OVERFLOW_CHECK_u64(array);
2017 		data->data_src = *array;
2018 		array++;
2019 	}
2020 
2021 	data->transaction = 0;
2022 	if (type & PERF_SAMPLE_TRANSACTION) {
2023 		OVERFLOW_CHECK_u64(array);
2024 		data->transaction = *array;
2025 		array++;
2026 	}
2027 
2028 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2029 	if (type & PERF_SAMPLE_REGS_INTR) {
2030 		OVERFLOW_CHECK_u64(array);
2031 		data->intr_regs.abi = *array;
2032 		array++;
2033 
2034 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2035 			u64 mask = evsel->attr.sample_regs_intr;
2036 
2037 			sz = hweight_long(mask) * sizeof(u64);
2038 			OVERFLOW_CHECK(array, sz, max_size);
2039 			data->intr_regs.mask = mask;
2040 			data->intr_regs.regs = (u64 *)array;
2041 			array = (void *)array + sz;
2042 		}
2043 	}
2044 
2045 	return 0;
2046 }
2047 
2048 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2049 				     u64 read_format)
2050 {
2051 	size_t sz, result = sizeof(struct sample_event);
2052 
2053 	if (type & PERF_SAMPLE_IDENTIFIER)
2054 		result += sizeof(u64);
2055 
2056 	if (type & PERF_SAMPLE_IP)
2057 		result += sizeof(u64);
2058 
2059 	if (type & PERF_SAMPLE_TID)
2060 		result += sizeof(u64);
2061 
2062 	if (type & PERF_SAMPLE_TIME)
2063 		result += sizeof(u64);
2064 
2065 	if (type & PERF_SAMPLE_ADDR)
2066 		result += sizeof(u64);
2067 
2068 	if (type & PERF_SAMPLE_ID)
2069 		result += sizeof(u64);
2070 
2071 	if (type & PERF_SAMPLE_STREAM_ID)
2072 		result += sizeof(u64);
2073 
2074 	if (type & PERF_SAMPLE_CPU)
2075 		result += sizeof(u64);
2076 
2077 	if (type & PERF_SAMPLE_PERIOD)
2078 		result += sizeof(u64);
2079 
2080 	if (type & PERF_SAMPLE_READ) {
2081 		result += sizeof(u64);
2082 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2083 			result += sizeof(u64);
2084 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2085 			result += sizeof(u64);
2086 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2087 		if (read_format & PERF_FORMAT_GROUP) {
2088 			sz = sample->read.group.nr *
2089 			     sizeof(struct sample_read_value);
2090 			result += sz;
2091 		} else {
2092 			result += sizeof(u64);
2093 		}
2094 	}
2095 
2096 	if (type & PERF_SAMPLE_CALLCHAIN) {
2097 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2098 		result += sz;
2099 	}
2100 
2101 	if (type & PERF_SAMPLE_RAW) {
2102 		result += sizeof(u32);
2103 		result += sample->raw_size;
2104 	}
2105 
2106 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2107 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2108 		sz += sizeof(u64);
2109 		result += sz;
2110 	}
2111 
2112 	if (type & PERF_SAMPLE_REGS_USER) {
2113 		if (sample->user_regs.abi) {
2114 			result += sizeof(u64);
2115 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2116 			result += sz;
2117 		} else {
2118 			result += sizeof(u64);
2119 		}
2120 	}
2121 
2122 	if (type & PERF_SAMPLE_STACK_USER) {
2123 		sz = sample->user_stack.size;
2124 		result += sizeof(u64);
2125 		if (sz) {
2126 			result += sz;
2127 			result += sizeof(u64);
2128 		}
2129 	}
2130 
2131 	if (type & PERF_SAMPLE_WEIGHT)
2132 		result += sizeof(u64);
2133 
2134 	if (type & PERF_SAMPLE_DATA_SRC)
2135 		result += sizeof(u64);
2136 
2137 	if (type & PERF_SAMPLE_TRANSACTION)
2138 		result += sizeof(u64);
2139 
2140 	if (type & PERF_SAMPLE_REGS_INTR) {
2141 		if (sample->intr_regs.abi) {
2142 			result += sizeof(u64);
2143 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2144 			result += sz;
2145 		} else {
2146 			result += sizeof(u64);
2147 		}
2148 	}
2149 
2150 	return result;
2151 }
2152 
2153 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2154 				  u64 read_format,
2155 				  const struct perf_sample *sample,
2156 				  bool swapped)
2157 {
2158 	u64 *array;
2159 	size_t sz;
2160 	/*
2161 	 * used for cross-endian analysis. See git commit 65014ab3
2162 	 * for why this goofiness is needed.
2163 	 */
2164 	union u64_swap u;
2165 
2166 	array = event->sample.array;
2167 
2168 	if (type & PERF_SAMPLE_IDENTIFIER) {
2169 		*array = sample->id;
2170 		array++;
2171 	}
2172 
2173 	if (type & PERF_SAMPLE_IP) {
2174 		*array = sample->ip;
2175 		array++;
2176 	}
2177 
2178 	if (type & PERF_SAMPLE_TID) {
2179 		u.val32[0] = sample->pid;
2180 		u.val32[1] = sample->tid;
2181 		if (swapped) {
2182 			/*
2183 			 * Inverse of what is done in perf_evsel__parse_sample
2184 			 */
2185 			u.val32[0] = bswap_32(u.val32[0]);
2186 			u.val32[1] = bswap_32(u.val32[1]);
2187 			u.val64 = bswap_64(u.val64);
2188 		}
2189 
2190 		*array = u.val64;
2191 		array++;
2192 	}
2193 
2194 	if (type & PERF_SAMPLE_TIME) {
2195 		*array = sample->time;
2196 		array++;
2197 	}
2198 
2199 	if (type & PERF_SAMPLE_ADDR) {
2200 		*array = sample->addr;
2201 		array++;
2202 	}
2203 
2204 	if (type & PERF_SAMPLE_ID) {
2205 		*array = sample->id;
2206 		array++;
2207 	}
2208 
2209 	if (type & PERF_SAMPLE_STREAM_ID) {
2210 		*array = sample->stream_id;
2211 		array++;
2212 	}
2213 
2214 	if (type & PERF_SAMPLE_CPU) {
2215 		u.val32[0] = sample->cpu;
2216 		if (swapped) {
2217 			/*
2218 			 * Inverse of what is done in perf_evsel__parse_sample
2219 			 */
2220 			u.val32[0] = bswap_32(u.val32[0]);
2221 			u.val64 = bswap_64(u.val64);
2222 		}
2223 		*array = u.val64;
2224 		array++;
2225 	}
2226 
2227 	if (type & PERF_SAMPLE_PERIOD) {
2228 		*array = sample->period;
2229 		array++;
2230 	}
2231 
2232 	if (type & PERF_SAMPLE_READ) {
2233 		if (read_format & PERF_FORMAT_GROUP)
2234 			*array = sample->read.group.nr;
2235 		else
2236 			*array = sample->read.one.value;
2237 		array++;
2238 
2239 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2240 			*array = sample->read.time_enabled;
2241 			array++;
2242 		}
2243 
2244 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2245 			*array = sample->read.time_running;
2246 			array++;
2247 		}
2248 
2249 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2250 		if (read_format & PERF_FORMAT_GROUP) {
2251 			sz = sample->read.group.nr *
2252 			     sizeof(struct sample_read_value);
2253 			memcpy(array, sample->read.group.values, sz);
2254 			array = (void *)array + sz;
2255 		} else {
2256 			*array = sample->read.one.id;
2257 			array++;
2258 		}
2259 	}
2260 
2261 	if (type & PERF_SAMPLE_CALLCHAIN) {
2262 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2263 		memcpy(array, sample->callchain, sz);
2264 		array = (void *)array + sz;
2265 	}
2266 
2267 	if (type & PERF_SAMPLE_RAW) {
2268 		u.val32[0] = sample->raw_size;
2269 		if (WARN_ONCE(swapped,
2270 			      "Endianness of raw data not corrected!\n")) {
2271 			/*
2272 			 * Inverse of what is done in perf_evsel__parse_sample
2273 			 */
2274 			u.val32[0] = bswap_32(u.val32[0]);
2275 			u.val32[1] = bswap_32(u.val32[1]);
2276 			u.val64 = bswap_64(u.val64);
2277 		}
2278 		*array = u.val64;
2279 		array = (void *)array + sizeof(u32);
2280 
2281 		memcpy(array, sample->raw_data, sample->raw_size);
2282 		array = (void *)array + sample->raw_size;
2283 	}
2284 
2285 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2286 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2287 		sz += sizeof(u64);
2288 		memcpy(array, sample->branch_stack, sz);
2289 		array = (void *)array + sz;
2290 	}
2291 
2292 	if (type & PERF_SAMPLE_REGS_USER) {
2293 		if (sample->user_regs.abi) {
2294 			*array++ = sample->user_regs.abi;
2295 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2296 			memcpy(array, sample->user_regs.regs, sz);
2297 			array = (void *)array + sz;
2298 		} else {
2299 			*array++ = 0;
2300 		}
2301 	}
2302 
2303 	if (type & PERF_SAMPLE_STACK_USER) {
2304 		sz = sample->user_stack.size;
2305 		*array++ = sz;
2306 		if (sz) {
2307 			memcpy(array, sample->user_stack.data, sz);
2308 			array = (void *)array + sz;
2309 			*array++ = sz;
2310 		}
2311 	}
2312 
2313 	if (type & PERF_SAMPLE_WEIGHT) {
2314 		*array = sample->weight;
2315 		array++;
2316 	}
2317 
2318 	if (type & PERF_SAMPLE_DATA_SRC) {
2319 		*array = sample->data_src;
2320 		array++;
2321 	}
2322 
2323 	if (type & PERF_SAMPLE_TRANSACTION) {
2324 		*array = sample->transaction;
2325 		array++;
2326 	}
2327 
2328 	if (type & PERF_SAMPLE_REGS_INTR) {
2329 		if (sample->intr_regs.abi) {
2330 			*array++ = sample->intr_regs.abi;
2331 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2332 			memcpy(array, sample->intr_regs.regs, sz);
2333 			array = (void *)array + sz;
2334 		} else {
2335 			*array++ = 0;
2336 		}
2337 	}
2338 
2339 	return 0;
2340 }
2341 
2342 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2343 {
2344 	return pevent_find_field(evsel->tp_format, name);
2345 }
2346 
2347 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2348 			 const char *name)
2349 {
2350 	struct format_field *field = perf_evsel__field(evsel, name);
2351 	int offset;
2352 
2353 	if (!field)
2354 		return NULL;
2355 
2356 	offset = field->offset;
2357 
2358 	if (field->flags & FIELD_IS_DYNAMIC) {
2359 		offset = *(int *)(sample->raw_data + field->offset);
2360 		offset &= 0xffff;
2361 	}
2362 
2363 	return sample->raw_data + offset;
2364 }
2365 
2366 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2367 			 bool needs_swap)
2368 {
2369 	u64 value;
2370 	void *ptr = sample->raw_data + field->offset;
2371 
2372 	switch (field->size) {
2373 	case 1:
2374 		return *(u8 *)ptr;
2375 	case 2:
2376 		value = *(u16 *)ptr;
2377 		break;
2378 	case 4:
2379 		value = *(u32 *)ptr;
2380 		break;
2381 	case 8:
2382 		memcpy(&value, ptr, sizeof(u64));
2383 		break;
2384 	default:
2385 		return 0;
2386 	}
2387 
2388 	if (!needs_swap)
2389 		return value;
2390 
2391 	switch (field->size) {
2392 	case 2:
2393 		return bswap_16(value);
2394 	case 4:
2395 		return bswap_32(value);
2396 	case 8:
2397 		return bswap_64(value);
2398 	default:
2399 		return 0;
2400 	}
2401 
2402 	return 0;
2403 }
2404 
2405 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2406 		       const char *name)
2407 {
2408 	struct format_field *field = perf_evsel__field(evsel, name);
2409 
2410 	if (!field)
2411 		return 0;
2412 
2413 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2414 }
2415 
2416 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2417 			  char *msg, size_t msgsize)
2418 {
2419 	int paranoid;
2420 
2421 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2422 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2423 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2424 		/*
2425 		 * If it's cycles then fall back to hrtimer based
2426 		 * cpu-clock-tick sw counter, which is always available even if
2427 		 * no PMU support.
2428 		 *
2429 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2430 		 * b0a873e).
2431 		 */
2432 		scnprintf(msg, msgsize, "%s",
2433 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2434 
2435 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2436 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2437 
2438 		zfree(&evsel->name);
2439 		return true;
2440 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2441 		   (paranoid = perf_event_paranoid()) > 1) {
2442 		const char *name = perf_evsel__name(evsel);
2443 		char *new_name;
2444 
2445 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2446 			return false;
2447 
2448 		if (evsel->name)
2449 			free(evsel->name);
2450 		evsel->name = new_name;
2451 		scnprintf(msg, msgsize,
2452 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2453 		evsel->attr.exclude_kernel = 1;
2454 
2455 		return true;
2456 	}
2457 
2458 	return false;
2459 }
2460 
2461 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2462 			      int err, char *msg, size_t size)
2463 {
2464 	char sbuf[STRERR_BUFSIZE];
2465 	int printed = 0;
2466 
2467 	switch (err) {
2468 	case EPERM:
2469 	case EACCES:
2470 		if (err == EPERM)
2471 			printed = scnprintf(msg, size,
2472 				"No permission to enable %s event.\n\n",
2473 				perf_evsel__name(evsel));
2474 
2475 		return scnprintf(msg + printed, size - printed,
2476 		 "You may not have permission to collect %sstats.\n\n"
2477 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2478 		 "which controls use of the performance events system by\n"
2479 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2480 		 "The current value is %d:\n\n"
2481 		 "  -1: Allow use of (almost) all events by all users\n"
2482 		 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2483 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2484 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2485 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2486 		 "	kernel.perf_event_paranoid = -1\n" ,
2487 				 target->system_wide ? "system-wide " : "",
2488 				 perf_event_paranoid());
2489 	case ENOENT:
2490 		return scnprintf(msg, size, "The %s event is not supported.",
2491 				 perf_evsel__name(evsel));
2492 	case EMFILE:
2493 		return scnprintf(msg, size, "%s",
2494 			 "Too many events are opened.\n"
2495 			 "Probably the maximum number of open file descriptors has been reached.\n"
2496 			 "Hint: Try again after reducing the number of events.\n"
2497 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2498 	case ENOMEM:
2499 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2500 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2501 			return scnprintf(msg, size,
2502 					 "Not enough memory to setup event with callchain.\n"
2503 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2504 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2505 		break;
2506 	case ENODEV:
2507 		if (target->cpu_list)
2508 			return scnprintf(msg, size, "%s",
2509 	 "No such device - did you specify an out-of-range profile CPU?");
2510 		break;
2511 	case EOPNOTSUPP:
2512 		if (evsel->attr.sample_period != 0)
2513 			return scnprintf(msg, size, "%s",
2514 	"PMU Hardware doesn't support sampling/overflow-interrupts.");
2515 		if (evsel->attr.precise_ip)
2516 			return scnprintf(msg, size, "%s",
2517 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2518 #if defined(__i386__) || defined(__x86_64__)
2519 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2520 			return scnprintf(msg, size, "%s",
2521 	"No hardware sampling interrupt available.\n"
2522 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2523 #endif
2524 		break;
2525 	case EBUSY:
2526 		if (find_process("oprofiled"))
2527 			return scnprintf(msg, size,
2528 	"The PMU counters are busy/taken by another profiler.\n"
2529 	"We found oprofile daemon running, please stop it and try again.");
2530 		break;
2531 	case EINVAL:
2532 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2533 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2534 		if (perf_missing_features.clockid)
2535 			return scnprintf(msg, size, "clockid feature not supported.");
2536 		if (perf_missing_features.clockid_wrong)
2537 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2538 		break;
2539 	default:
2540 		break;
2541 	}
2542 
2543 	return scnprintf(msg, size,
2544 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2545 	"/bin/dmesg may provide additional information.\n"
2546 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2547 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2548 			 perf_evsel__name(evsel));
2549 }
2550 
2551 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2552 {
2553 	if (evsel && evsel->evlist && evsel->evlist->env)
2554 		return evsel->evlist->env->arch;
2555 	return NULL;
2556 }
2557