xref: /openbmc/linux/tools/perf/util/evsel.c (revision 10c1d542)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 static struct {
45 	bool sample_id_all;
46 	bool exclude_guest;
47 	bool mmap2;
48 	bool cloexec;
49 	bool clockid;
50 	bool clockid_wrong;
51 	bool lbr_flags;
52 	bool write_backward;
53 	bool group_read;
54 } perf_missing_features;
55 
56 static clockid_t clockid;
57 
58 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
59 {
60 	return 0;
61 }
62 
63 void __weak test_attr__ready(void) { }
64 
65 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
66 {
67 }
68 
69 static struct {
70 	size_t	size;
71 	int	(*init)(struct perf_evsel *evsel);
72 	void	(*fini)(struct perf_evsel *evsel);
73 } perf_evsel__object = {
74 	.size = sizeof(struct perf_evsel),
75 	.init = perf_evsel__no_extra_init,
76 	.fini = perf_evsel__no_extra_fini,
77 };
78 
79 int perf_evsel__object_config(size_t object_size,
80 			      int (*init)(struct perf_evsel *evsel),
81 			      void (*fini)(struct perf_evsel *evsel))
82 {
83 
84 	if (object_size == 0)
85 		goto set_methods;
86 
87 	if (perf_evsel__object.size > object_size)
88 		return -EINVAL;
89 
90 	perf_evsel__object.size = object_size;
91 
92 set_methods:
93 	if (init != NULL)
94 		perf_evsel__object.init = init;
95 
96 	if (fini != NULL)
97 		perf_evsel__object.fini = fini;
98 
99 	return 0;
100 }
101 
102 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
103 
104 int __perf_evsel__sample_size(u64 sample_type)
105 {
106 	u64 mask = sample_type & PERF_SAMPLE_MASK;
107 	int size = 0;
108 	int i;
109 
110 	for (i = 0; i < 64; i++) {
111 		if (mask & (1ULL << i))
112 			size++;
113 	}
114 
115 	size *= sizeof(u64);
116 
117 	return size;
118 }
119 
120 /**
121  * __perf_evsel__calc_id_pos - calculate id_pos.
122  * @sample_type: sample type
123  *
124  * This function returns the position of the event id (PERF_SAMPLE_ID or
125  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
126  * sample_event.
127  */
128 static int __perf_evsel__calc_id_pos(u64 sample_type)
129 {
130 	int idx = 0;
131 
132 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
133 		return 0;
134 
135 	if (!(sample_type & PERF_SAMPLE_ID))
136 		return -1;
137 
138 	if (sample_type & PERF_SAMPLE_IP)
139 		idx += 1;
140 
141 	if (sample_type & PERF_SAMPLE_TID)
142 		idx += 1;
143 
144 	if (sample_type & PERF_SAMPLE_TIME)
145 		idx += 1;
146 
147 	if (sample_type & PERF_SAMPLE_ADDR)
148 		idx += 1;
149 
150 	return idx;
151 }
152 
153 /**
154  * __perf_evsel__calc_is_pos - calculate is_pos.
155  * @sample_type: sample type
156  *
157  * This function returns the position (counting backwards) of the event id
158  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
159  * sample_id_all is used there is an id sample appended to non-sample events.
160  */
161 static int __perf_evsel__calc_is_pos(u64 sample_type)
162 {
163 	int idx = 1;
164 
165 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
166 		return 1;
167 
168 	if (!(sample_type & PERF_SAMPLE_ID))
169 		return -1;
170 
171 	if (sample_type & PERF_SAMPLE_CPU)
172 		idx += 1;
173 
174 	if (sample_type & PERF_SAMPLE_STREAM_ID)
175 		idx += 1;
176 
177 	return idx;
178 }
179 
180 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
181 {
182 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
183 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
184 }
185 
186 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
187 				  enum perf_event_sample_format bit)
188 {
189 	if (!(evsel->attr.sample_type & bit)) {
190 		evsel->attr.sample_type |= bit;
191 		evsel->sample_size += sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
197 				    enum perf_event_sample_format bit)
198 {
199 	if (evsel->attr.sample_type & bit) {
200 		evsel->attr.sample_type &= ~bit;
201 		evsel->sample_size -= sizeof(u64);
202 		perf_evsel__calc_id_pos(evsel);
203 	}
204 }
205 
206 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
207 			       bool can_sample_identifier)
208 {
209 	if (can_sample_identifier) {
210 		perf_evsel__reset_sample_bit(evsel, ID);
211 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
212 	} else {
213 		perf_evsel__set_sample_bit(evsel, ID);
214 	}
215 	evsel->attr.read_format |= PERF_FORMAT_ID;
216 }
217 
218 /**
219  * perf_evsel__is_function_event - Return whether given evsel is a function
220  * trace event
221  *
222  * @evsel - evsel selector to be tested
223  *
224  * Return %true if event is function trace event
225  */
226 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
227 {
228 #define FUNCTION_EVENT "ftrace:function"
229 
230 	return evsel->name &&
231 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
232 
233 #undef FUNCTION_EVENT
234 }
235 
236 void perf_evsel__init(struct perf_evsel *evsel,
237 		      struct perf_event_attr *attr, int idx)
238 {
239 	evsel->idx	   = idx;
240 	evsel->tracking	   = !idx;
241 	evsel->attr	   = *attr;
242 	evsel->leader	   = evsel;
243 	evsel->unit	   = "";
244 	evsel->scale	   = 1.0;
245 	evsel->evlist	   = NULL;
246 	evsel->bpf_fd	   = -1;
247 	INIT_LIST_HEAD(&evsel->node);
248 	INIT_LIST_HEAD(&evsel->config_terms);
249 	perf_evsel__object.init(evsel);
250 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
251 	perf_evsel__calc_id_pos(evsel);
252 	evsel->cmdline_group_boundary = false;
253 	evsel->metric_expr   = NULL;
254 	evsel->metric_name   = NULL;
255 	evsel->metric_events = NULL;
256 	evsel->collect_stat  = false;
257 }
258 
259 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
260 {
261 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
262 
263 	if (evsel != NULL)
264 		perf_evsel__init(evsel, attr, idx);
265 
266 	if (perf_evsel__is_bpf_output(evsel)) {
267 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
268 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
269 		evsel->attr.sample_period = 1;
270 	}
271 
272 	return evsel;
273 }
274 
275 static bool perf_event_can_profile_kernel(void)
276 {
277 	return geteuid() == 0 || perf_event_paranoid() == -1;
278 }
279 
280 struct perf_evsel *perf_evsel__new_cycles(bool precise)
281 {
282 	struct perf_event_attr attr = {
283 		.type	= PERF_TYPE_HARDWARE,
284 		.config	= PERF_COUNT_HW_CPU_CYCLES,
285 		.exclude_kernel	= !perf_event_can_profile_kernel(),
286 	};
287 	struct perf_evsel *evsel;
288 
289 	event_attr_init(&attr);
290 
291 	if (!precise)
292 		goto new_event;
293 	/*
294 	 * Unnamed union member, not supported as struct member named
295 	 * initializer in older compilers such as gcc 4.4.7
296 	 *
297 	 * Just for probing the precise_ip:
298 	 */
299 	attr.sample_period = 1;
300 
301 	perf_event_attr__set_max_precise_ip(&attr);
302 	/*
303 	 * Now let the usual logic to set up the perf_event_attr defaults
304 	 * to kick in when we return and before perf_evsel__open() is called.
305 	 */
306 	attr.sample_period = 0;
307 new_event:
308 	evsel = perf_evsel__new(&attr);
309 	if (evsel == NULL)
310 		goto out;
311 
312 	/* use asprintf() because free(evsel) assumes name is allocated */
313 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
314 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
315 		     attr.exclude_kernel ? "u" : "",
316 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
317 		goto error_free;
318 out:
319 	return evsel;
320 error_free:
321 	perf_evsel__delete(evsel);
322 	evsel = NULL;
323 	goto out;
324 }
325 
326 /*
327  * Returns pointer with encoded error via <linux/err.h> interface.
328  */
329 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
330 {
331 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
332 	int err = -ENOMEM;
333 
334 	if (evsel == NULL) {
335 		goto out_err;
336 	} else {
337 		struct perf_event_attr attr = {
338 			.type	       = PERF_TYPE_TRACEPOINT,
339 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
340 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
341 		};
342 
343 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
344 			goto out_free;
345 
346 		evsel->tp_format = trace_event__tp_format(sys, name);
347 		if (IS_ERR(evsel->tp_format)) {
348 			err = PTR_ERR(evsel->tp_format);
349 			goto out_free;
350 		}
351 
352 		event_attr_init(&attr);
353 		attr.config = evsel->tp_format->id;
354 		attr.sample_period = 1;
355 		perf_evsel__init(evsel, &attr, idx);
356 	}
357 
358 	return evsel;
359 
360 out_free:
361 	zfree(&evsel->name);
362 	free(evsel);
363 out_err:
364 	return ERR_PTR(err);
365 }
366 
367 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
368 	"cycles",
369 	"instructions",
370 	"cache-references",
371 	"cache-misses",
372 	"branches",
373 	"branch-misses",
374 	"bus-cycles",
375 	"stalled-cycles-frontend",
376 	"stalled-cycles-backend",
377 	"ref-cycles",
378 };
379 
380 static const char *__perf_evsel__hw_name(u64 config)
381 {
382 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
383 		return perf_evsel__hw_names[config];
384 
385 	return "unknown-hardware";
386 }
387 
388 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
389 {
390 	int colon = 0, r = 0;
391 	struct perf_event_attr *attr = &evsel->attr;
392 	bool exclude_guest_default = false;
393 
394 #define MOD_PRINT(context, mod)	do {					\
395 		if (!attr->exclude_##context) {				\
396 			if (!colon) colon = ++r;			\
397 			r += scnprintf(bf + r, size - r, "%c", mod);	\
398 		} } while(0)
399 
400 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
401 		MOD_PRINT(kernel, 'k');
402 		MOD_PRINT(user, 'u');
403 		MOD_PRINT(hv, 'h');
404 		exclude_guest_default = true;
405 	}
406 
407 	if (attr->precise_ip) {
408 		if (!colon)
409 			colon = ++r;
410 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
411 		exclude_guest_default = true;
412 	}
413 
414 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
415 		MOD_PRINT(host, 'H');
416 		MOD_PRINT(guest, 'G');
417 	}
418 #undef MOD_PRINT
419 	if (colon)
420 		bf[colon - 1] = ':';
421 	return r;
422 }
423 
424 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
425 {
426 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
427 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
428 }
429 
430 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
431 	"cpu-clock",
432 	"task-clock",
433 	"page-faults",
434 	"context-switches",
435 	"cpu-migrations",
436 	"minor-faults",
437 	"major-faults",
438 	"alignment-faults",
439 	"emulation-faults",
440 	"dummy",
441 };
442 
443 static const char *__perf_evsel__sw_name(u64 config)
444 {
445 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
446 		return perf_evsel__sw_names[config];
447 	return "unknown-software";
448 }
449 
450 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
451 {
452 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
453 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
454 }
455 
456 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
457 {
458 	int r;
459 
460 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
461 
462 	if (type & HW_BREAKPOINT_R)
463 		r += scnprintf(bf + r, size - r, "r");
464 
465 	if (type & HW_BREAKPOINT_W)
466 		r += scnprintf(bf + r, size - r, "w");
467 
468 	if (type & HW_BREAKPOINT_X)
469 		r += scnprintf(bf + r, size - r, "x");
470 
471 	return r;
472 }
473 
474 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
475 {
476 	struct perf_event_attr *attr = &evsel->attr;
477 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
478 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
479 }
480 
481 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
482 				[PERF_EVSEL__MAX_ALIASES] = {
483  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
484  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
485  { "LLC",	"L2",							},
486  { "dTLB",	"d-tlb",	"Data-TLB",				},
487  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
488  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
489  { "node",								},
490 };
491 
492 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
493 				   [PERF_EVSEL__MAX_ALIASES] = {
494  { "load",	"loads",	"read",					},
495  { "store",	"stores",	"write",				},
496  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
497 };
498 
499 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
500 				       [PERF_EVSEL__MAX_ALIASES] = {
501  { "refs",	"Reference",	"ops",		"access",		},
502  { "misses",	"miss",							},
503 };
504 
505 #define C(x)		PERF_COUNT_HW_CACHE_##x
506 #define CACHE_READ	(1 << C(OP_READ))
507 #define CACHE_WRITE	(1 << C(OP_WRITE))
508 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
509 #define COP(x)		(1 << x)
510 
511 /*
512  * cache operartion stat
513  * L1I : Read and prefetch only
514  * ITLB and BPU : Read-only
515  */
516 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
517  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
519  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521  [C(ITLB)]	= (CACHE_READ),
522  [C(BPU)]	= (CACHE_READ),
523  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524 };
525 
526 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
527 {
528 	if (perf_evsel__hw_cache_stat[type] & COP(op))
529 		return true;	/* valid */
530 	else
531 		return false;	/* invalid */
532 }
533 
534 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
535 					    char *bf, size_t size)
536 {
537 	if (result) {
538 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
539 				 perf_evsel__hw_cache_op[op][0],
540 				 perf_evsel__hw_cache_result[result][0]);
541 	}
542 
543 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
544 			 perf_evsel__hw_cache_op[op][1]);
545 }
546 
547 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
548 {
549 	u8 op, result, type = (config >>  0) & 0xff;
550 	const char *err = "unknown-ext-hardware-cache-type";
551 
552 	if (type >= PERF_COUNT_HW_CACHE_MAX)
553 		goto out_err;
554 
555 	op = (config >>  8) & 0xff;
556 	err = "unknown-ext-hardware-cache-op";
557 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
558 		goto out_err;
559 
560 	result = (config >> 16) & 0xff;
561 	err = "unknown-ext-hardware-cache-result";
562 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
563 		goto out_err;
564 
565 	err = "invalid-cache";
566 	if (!perf_evsel__is_cache_op_valid(type, op))
567 		goto out_err;
568 
569 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
570 out_err:
571 	return scnprintf(bf, size, "%s", err);
572 }
573 
574 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
575 {
576 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
577 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
578 }
579 
580 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
581 {
582 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
583 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
584 }
585 
586 const char *perf_evsel__name(struct perf_evsel *evsel)
587 {
588 	char bf[128];
589 
590 	if (evsel->name)
591 		return evsel->name;
592 
593 	switch (evsel->attr.type) {
594 	case PERF_TYPE_RAW:
595 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
596 		break;
597 
598 	case PERF_TYPE_HARDWARE:
599 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
600 		break;
601 
602 	case PERF_TYPE_HW_CACHE:
603 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
604 		break;
605 
606 	case PERF_TYPE_SOFTWARE:
607 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
608 		break;
609 
610 	case PERF_TYPE_TRACEPOINT:
611 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
612 		break;
613 
614 	case PERF_TYPE_BREAKPOINT:
615 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
616 		break;
617 
618 	default:
619 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
620 			  evsel->attr.type);
621 		break;
622 	}
623 
624 	evsel->name = strdup(bf);
625 
626 	return evsel->name ?: "unknown";
627 }
628 
629 const char *perf_evsel__group_name(struct perf_evsel *evsel)
630 {
631 	return evsel->group_name ?: "anon group";
632 }
633 
634 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
635 {
636 	int ret;
637 	struct perf_evsel *pos;
638 	const char *group_name = perf_evsel__group_name(evsel);
639 
640 	ret = scnprintf(buf, size, "%s", group_name);
641 
642 	ret += scnprintf(buf + ret, size - ret, " { %s",
643 			 perf_evsel__name(evsel));
644 
645 	for_each_group_member(pos, evsel)
646 		ret += scnprintf(buf + ret, size - ret, ", %s",
647 				 perf_evsel__name(pos));
648 
649 	ret += scnprintf(buf + ret, size - ret, " }");
650 
651 	return ret;
652 }
653 
654 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
655 					   struct record_opts *opts,
656 					   struct callchain_param *param)
657 {
658 	bool function = perf_evsel__is_function_event(evsel);
659 	struct perf_event_attr *attr = &evsel->attr;
660 
661 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
662 
663 	attr->sample_max_stack = param->max_stack;
664 
665 	if (param->record_mode == CALLCHAIN_LBR) {
666 		if (!opts->branch_stack) {
667 			if (attr->exclude_user) {
668 				pr_warning("LBR callstack option is only available "
669 					   "to get user callchain information. "
670 					   "Falling back to framepointers.\n");
671 			} else {
672 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
673 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
674 							PERF_SAMPLE_BRANCH_CALL_STACK |
675 							PERF_SAMPLE_BRANCH_NO_CYCLES |
676 							PERF_SAMPLE_BRANCH_NO_FLAGS;
677 			}
678 		} else
679 			 pr_warning("Cannot use LBR callstack with branch stack. "
680 				    "Falling back to framepointers.\n");
681 	}
682 
683 	if (param->record_mode == CALLCHAIN_DWARF) {
684 		if (!function) {
685 			perf_evsel__set_sample_bit(evsel, REGS_USER);
686 			perf_evsel__set_sample_bit(evsel, STACK_USER);
687 			attr->sample_regs_user |= PERF_REGS_MASK;
688 			attr->sample_stack_user = param->dump_size;
689 			attr->exclude_callchain_user = 1;
690 		} else {
691 			pr_info("Cannot use DWARF unwind for function trace event,"
692 				" falling back to framepointers.\n");
693 		}
694 	}
695 
696 	if (function) {
697 		pr_info("Disabling user space callchains for function trace event.\n");
698 		attr->exclude_callchain_user = 1;
699 	}
700 }
701 
702 void perf_evsel__config_callchain(struct perf_evsel *evsel,
703 				  struct record_opts *opts,
704 				  struct callchain_param *param)
705 {
706 	if (param->enabled)
707 		return __perf_evsel__config_callchain(evsel, opts, param);
708 }
709 
710 static void
711 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
712 			    struct callchain_param *param)
713 {
714 	struct perf_event_attr *attr = &evsel->attr;
715 
716 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
717 	if (param->record_mode == CALLCHAIN_LBR) {
718 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
719 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
720 					      PERF_SAMPLE_BRANCH_CALL_STACK);
721 	}
722 	if (param->record_mode == CALLCHAIN_DWARF) {
723 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
724 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
725 	}
726 }
727 
728 static void apply_config_terms(struct perf_evsel *evsel,
729 			       struct record_opts *opts, bool track)
730 {
731 	struct perf_evsel_config_term *term;
732 	struct list_head *config_terms = &evsel->config_terms;
733 	struct perf_event_attr *attr = &evsel->attr;
734 	/* callgraph default */
735 	struct callchain_param param = {
736 		.record_mode = callchain_param.record_mode,
737 	};
738 	u32 dump_size = 0;
739 	int max_stack = 0;
740 	const char *callgraph_buf = NULL;
741 
742 	list_for_each_entry(term, config_terms, list) {
743 		switch (term->type) {
744 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
745 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
746 				attr->sample_period = term->val.period;
747 				attr->freq = 0;
748 				perf_evsel__reset_sample_bit(evsel, PERIOD);
749 			}
750 			break;
751 		case PERF_EVSEL__CONFIG_TERM_FREQ:
752 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
753 				attr->sample_freq = term->val.freq;
754 				attr->freq = 1;
755 				perf_evsel__set_sample_bit(evsel, PERIOD);
756 			}
757 			break;
758 		case PERF_EVSEL__CONFIG_TERM_TIME:
759 			if (term->val.time)
760 				perf_evsel__set_sample_bit(evsel, TIME);
761 			else
762 				perf_evsel__reset_sample_bit(evsel, TIME);
763 			break;
764 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
765 			callgraph_buf = term->val.callgraph;
766 			break;
767 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
768 			if (term->val.branch && strcmp(term->val.branch, "no")) {
769 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
770 				parse_branch_str(term->val.branch,
771 						 &attr->branch_sample_type);
772 			} else
773 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
774 			break;
775 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
776 			dump_size = term->val.stack_user;
777 			break;
778 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
779 			max_stack = term->val.max_stack;
780 			break;
781 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
782 			/*
783 			 * attr->inherit should has already been set by
784 			 * perf_evsel__config. If user explicitly set
785 			 * inherit using config terms, override global
786 			 * opt->no_inherit setting.
787 			 */
788 			attr->inherit = term->val.inherit ? 1 : 0;
789 			break;
790 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
791 			attr->write_backward = term->val.overwrite ? 1 : 0;
792 			break;
793 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
794 			break;
795 		default:
796 			break;
797 		}
798 	}
799 
800 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
801 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
802 		bool sample_address = false;
803 
804 		if (max_stack) {
805 			param.max_stack = max_stack;
806 			if (callgraph_buf == NULL)
807 				callgraph_buf = "fp";
808 		}
809 
810 		/* parse callgraph parameters */
811 		if (callgraph_buf != NULL) {
812 			if (!strcmp(callgraph_buf, "no")) {
813 				param.enabled = false;
814 				param.record_mode = CALLCHAIN_NONE;
815 			} else {
816 				param.enabled = true;
817 				if (parse_callchain_record(callgraph_buf, &param)) {
818 					pr_err("per-event callgraph setting for %s failed. "
819 					       "Apply callgraph global setting for it\n",
820 					       evsel->name);
821 					return;
822 				}
823 				if (param.record_mode == CALLCHAIN_DWARF)
824 					sample_address = true;
825 			}
826 		}
827 		if (dump_size > 0) {
828 			dump_size = round_up(dump_size, sizeof(u64));
829 			param.dump_size = dump_size;
830 		}
831 
832 		/* If global callgraph set, clear it */
833 		if (callchain_param.enabled)
834 			perf_evsel__reset_callgraph(evsel, &callchain_param);
835 
836 		/* set perf-event callgraph */
837 		if (param.enabled) {
838 			if (sample_address) {
839 				perf_evsel__set_sample_bit(evsel, ADDR);
840 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
841 				evsel->attr.mmap_data = track;
842 			}
843 			perf_evsel__config_callchain(evsel, opts, &param);
844 		}
845 	}
846 }
847 
848 /*
849  * The enable_on_exec/disabled value strategy:
850  *
851  *  1) For any type of traced program:
852  *    - all independent events and group leaders are disabled
853  *    - all group members are enabled
854  *
855  *     Group members are ruled by group leaders. They need to
856  *     be enabled, because the group scheduling relies on that.
857  *
858  *  2) For traced programs executed by perf:
859  *     - all independent events and group leaders have
860  *       enable_on_exec set
861  *     - we don't specifically enable or disable any event during
862  *       the record command
863  *
864  *     Independent events and group leaders are initially disabled
865  *     and get enabled by exec. Group members are ruled by group
866  *     leaders as stated in 1).
867  *
868  *  3) For traced programs attached by perf (pid/tid):
869  *     - we specifically enable or disable all events during
870  *       the record command
871  *
872  *     When attaching events to already running traced we
873  *     enable/disable events specifically, as there's no
874  *     initial traced exec call.
875  */
876 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
877 			struct callchain_param *callchain)
878 {
879 	struct perf_evsel *leader = evsel->leader;
880 	struct perf_event_attr *attr = &evsel->attr;
881 	int track = evsel->tracking;
882 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
883 
884 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
885 	attr->inherit	    = !opts->no_inherit;
886 	attr->write_backward = opts->overwrite ? 1 : 0;
887 
888 	perf_evsel__set_sample_bit(evsel, IP);
889 	perf_evsel__set_sample_bit(evsel, TID);
890 
891 	if (evsel->sample_read) {
892 		perf_evsel__set_sample_bit(evsel, READ);
893 
894 		/*
895 		 * We need ID even in case of single event, because
896 		 * PERF_SAMPLE_READ process ID specific data.
897 		 */
898 		perf_evsel__set_sample_id(evsel, false);
899 
900 		/*
901 		 * Apply group format only if we belong to group
902 		 * with more than one members.
903 		 */
904 		if (leader->nr_members > 1) {
905 			attr->read_format |= PERF_FORMAT_GROUP;
906 			attr->inherit = 0;
907 		}
908 	}
909 
910 	/*
911 	 * We default some events to have a default interval. But keep
912 	 * it a weak assumption overridable by the user.
913 	 */
914 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
915 				     opts->user_interval != ULLONG_MAX)) {
916 		if (opts->freq) {
917 			perf_evsel__set_sample_bit(evsel, PERIOD);
918 			attr->freq		= 1;
919 			attr->sample_freq	= opts->freq;
920 		} else {
921 			attr->sample_period = opts->default_interval;
922 		}
923 	}
924 
925 	/*
926 	 * Disable sampling for all group members other
927 	 * than leader in case leader 'leads' the sampling.
928 	 */
929 	if ((leader != evsel) && leader->sample_read) {
930 		attr->sample_freq   = 0;
931 		attr->sample_period = 0;
932 	}
933 
934 	if (opts->no_samples)
935 		attr->sample_freq = 0;
936 
937 	if (opts->inherit_stat) {
938 		evsel->attr.read_format |=
939 			PERF_FORMAT_TOTAL_TIME_ENABLED |
940 			PERF_FORMAT_TOTAL_TIME_RUNNING |
941 			PERF_FORMAT_ID;
942 		attr->inherit_stat = 1;
943 	}
944 
945 	if (opts->sample_address) {
946 		perf_evsel__set_sample_bit(evsel, ADDR);
947 		attr->mmap_data = track;
948 	}
949 
950 	/*
951 	 * We don't allow user space callchains for  function trace
952 	 * event, due to issues with page faults while tracing page
953 	 * fault handler and its overall trickiness nature.
954 	 */
955 	if (perf_evsel__is_function_event(evsel))
956 		evsel->attr.exclude_callchain_user = 1;
957 
958 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
959 		perf_evsel__config_callchain(evsel, opts, callchain);
960 
961 	if (opts->sample_intr_regs) {
962 		attr->sample_regs_intr = opts->sample_intr_regs;
963 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
964 	}
965 
966 	if (opts->sample_user_regs) {
967 		attr->sample_regs_user |= opts->sample_user_regs;
968 		perf_evsel__set_sample_bit(evsel, REGS_USER);
969 	}
970 
971 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
972 		perf_evsel__set_sample_bit(evsel, CPU);
973 
974 	/*
975 	 * When the user explicitly disabled time don't force it here.
976 	 */
977 	if (opts->sample_time &&
978 	    (!perf_missing_features.sample_id_all &&
979 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
980 	     opts->sample_time_set)))
981 		perf_evsel__set_sample_bit(evsel, TIME);
982 
983 	if (opts->raw_samples && !evsel->no_aux_samples) {
984 		perf_evsel__set_sample_bit(evsel, TIME);
985 		perf_evsel__set_sample_bit(evsel, RAW);
986 		perf_evsel__set_sample_bit(evsel, CPU);
987 	}
988 
989 	if (opts->sample_address)
990 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
991 
992 	if (opts->sample_phys_addr)
993 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
994 
995 	if (opts->no_buffering) {
996 		attr->watermark = 0;
997 		attr->wakeup_events = 1;
998 	}
999 	if (opts->branch_stack && !evsel->no_aux_samples) {
1000 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1001 		attr->branch_sample_type = opts->branch_stack;
1002 	}
1003 
1004 	if (opts->sample_weight)
1005 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1006 
1007 	attr->task  = track;
1008 	attr->mmap  = track;
1009 	attr->mmap2 = track && !perf_missing_features.mmap2;
1010 	attr->comm  = track;
1011 
1012 	if (opts->record_namespaces)
1013 		attr->namespaces  = track;
1014 
1015 	if (opts->record_switch_events)
1016 		attr->context_switch = track;
1017 
1018 	if (opts->sample_transaction)
1019 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1020 
1021 	if (opts->running_time) {
1022 		evsel->attr.read_format |=
1023 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1024 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1025 	}
1026 
1027 	/*
1028 	 * XXX see the function comment above
1029 	 *
1030 	 * Disabling only independent events or group leaders,
1031 	 * keeping group members enabled.
1032 	 */
1033 	if (perf_evsel__is_group_leader(evsel))
1034 		attr->disabled = 1;
1035 
1036 	/*
1037 	 * Setting enable_on_exec for independent events and
1038 	 * group leaders for traced executed by perf.
1039 	 */
1040 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1041 		!opts->initial_delay)
1042 		attr->enable_on_exec = 1;
1043 
1044 	if (evsel->immediate) {
1045 		attr->disabled = 0;
1046 		attr->enable_on_exec = 0;
1047 	}
1048 
1049 	clockid = opts->clockid;
1050 	if (opts->use_clockid) {
1051 		attr->use_clockid = 1;
1052 		attr->clockid = opts->clockid;
1053 	}
1054 
1055 	if (evsel->precise_max)
1056 		perf_event_attr__set_max_precise_ip(attr);
1057 
1058 	if (opts->all_user) {
1059 		attr->exclude_kernel = 1;
1060 		attr->exclude_user   = 0;
1061 	}
1062 
1063 	if (opts->all_kernel) {
1064 		attr->exclude_kernel = 0;
1065 		attr->exclude_user   = 1;
1066 	}
1067 
1068 	/*
1069 	 * Apply event specific term settings,
1070 	 * it overloads any global configuration.
1071 	 */
1072 	apply_config_terms(evsel, opts, track);
1073 
1074 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1075 
1076 	/* The --period option takes the precedence. */
1077 	if (opts->period_set) {
1078 		if (opts->period)
1079 			perf_evsel__set_sample_bit(evsel, PERIOD);
1080 		else
1081 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1082 	}
1083 }
1084 
1085 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1086 {
1087 	if (evsel->system_wide)
1088 		nthreads = 1;
1089 
1090 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1091 
1092 	if (evsel->fd) {
1093 		int cpu, thread;
1094 		for (cpu = 0; cpu < ncpus; cpu++) {
1095 			for (thread = 0; thread < nthreads; thread++) {
1096 				FD(evsel, cpu, thread) = -1;
1097 			}
1098 		}
1099 	}
1100 
1101 	return evsel->fd != NULL ? 0 : -ENOMEM;
1102 }
1103 
1104 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1105 			  int ioc,  void *arg)
1106 {
1107 	int cpu, thread;
1108 
1109 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1110 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1111 			int fd = FD(evsel, cpu, thread),
1112 			    err = ioctl(fd, ioc, arg);
1113 
1114 			if (err)
1115 				return err;
1116 		}
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1123 {
1124 	return perf_evsel__run_ioctl(evsel,
1125 				     PERF_EVENT_IOC_SET_FILTER,
1126 				     (void *)filter);
1127 }
1128 
1129 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1130 {
1131 	char *new_filter = strdup(filter);
1132 
1133 	if (new_filter != NULL) {
1134 		free(evsel->filter);
1135 		evsel->filter = new_filter;
1136 		return 0;
1137 	}
1138 
1139 	return -1;
1140 }
1141 
1142 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1143 				     const char *fmt, const char *filter)
1144 {
1145 	char *new_filter;
1146 
1147 	if (evsel->filter == NULL)
1148 		return perf_evsel__set_filter(evsel, filter);
1149 
1150 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1151 		free(evsel->filter);
1152 		evsel->filter = new_filter;
1153 		return 0;
1154 	}
1155 
1156 	return -1;
1157 }
1158 
1159 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1160 {
1161 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1162 }
1163 
1164 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1165 {
1166 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1167 }
1168 
1169 int perf_evsel__enable(struct perf_evsel *evsel)
1170 {
1171 	return perf_evsel__run_ioctl(evsel,
1172 				     PERF_EVENT_IOC_ENABLE,
1173 				     0);
1174 }
1175 
1176 int perf_evsel__disable(struct perf_evsel *evsel)
1177 {
1178 	return perf_evsel__run_ioctl(evsel,
1179 				     PERF_EVENT_IOC_DISABLE,
1180 				     0);
1181 }
1182 
1183 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1184 {
1185 	if (ncpus == 0 || nthreads == 0)
1186 		return 0;
1187 
1188 	if (evsel->system_wide)
1189 		nthreads = 1;
1190 
1191 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1192 	if (evsel->sample_id == NULL)
1193 		return -ENOMEM;
1194 
1195 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1196 	if (evsel->id == NULL) {
1197 		xyarray__delete(evsel->sample_id);
1198 		evsel->sample_id = NULL;
1199 		return -ENOMEM;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1206 {
1207 	xyarray__delete(evsel->fd);
1208 	evsel->fd = NULL;
1209 }
1210 
1211 static void perf_evsel__free_id(struct perf_evsel *evsel)
1212 {
1213 	xyarray__delete(evsel->sample_id);
1214 	evsel->sample_id = NULL;
1215 	zfree(&evsel->id);
1216 }
1217 
1218 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1219 {
1220 	struct perf_evsel_config_term *term, *h;
1221 
1222 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1223 		list_del(&term->list);
1224 		free(term);
1225 	}
1226 }
1227 
1228 void perf_evsel__close_fd(struct perf_evsel *evsel)
1229 {
1230 	int cpu, thread;
1231 
1232 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1233 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1234 			close(FD(evsel, cpu, thread));
1235 			FD(evsel, cpu, thread) = -1;
1236 		}
1237 }
1238 
1239 void perf_evsel__exit(struct perf_evsel *evsel)
1240 {
1241 	assert(list_empty(&evsel->node));
1242 	assert(evsel->evlist == NULL);
1243 	perf_evsel__free_fd(evsel);
1244 	perf_evsel__free_id(evsel);
1245 	perf_evsel__free_config_terms(evsel);
1246 	close_cgroup(evsel->cgrp);
1247 	cpu_map__put(evsel->cpus);
1248 	cpu_map__put(evsel->own_cpus);
1249 	thread_map__put(evsel->threads);
1250 	zfree(&evsel->group_name);
1251 	zfree(&evsel->name);
1252 	perf_evsel__object.fini(evsel);
1253 }
1254 
1255 void perf_evsel__delete(struct perf_evsel *evsel)
1256 {
1257 	perf_evsel__exit(evsel);
1258 	free(evsel);
1259 }
1260 
1261 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1262 				struct perf_counts_values *count)
1263 {
1264 	struct perf_counts_values tmp;
1265 
1266 	if (!evsel->prev_raw_counts)
1267 		return;
1268 
1269 	if (cpu == -1) {
1270 		tmp = evsel->prev_raw_counts->aggr;
1271 		evsel->prev_raw_counts->aggr = *count;
1272 	} else {
1273 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1274 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1275 	}
1276 
1277 	count->val = count->val - tmp.val;
1278 	count->ena = count->ena - tmp.ena;
1279 	count->run = count->run - tmp.run;
1280 }
1281 
1282 void perf_counts_values__scale(struct perf_counts_values *count,
1283 			       bool scale, s8 *pscaled)
1284 {
1285 	s8 scaled = 0;
1286 
1287 	if (scale) {
1288 		if (count->run == 0) {
1289 			scaled = -1;
1290 			count->val = 0;
1291 		} else if (count->run < count->ena) {
1292 			scaled = 1;
1293 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1294 		}
1295 	} else
1296 		count->ena = count->run = 0;
1297 
1298 	if (pscaled)
1299 		*pscaled = scaled;
1300 }
1301 
1302 static int perf_evsel__read_size(struct perf_evsel *evsel)
1303 {
1304 	u64 read_format = evsel->attr.read_format;
1305 	int entry = sizeof(u64); /* value */
1306 	int size = 0;
1307 	int nr = 1;
1308 
1309 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1310 		size += sizeof(u64);
1311 
1312 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1313 		size += sizeof(u64);
1314 
1315 	if (read_format & PERF_FORMAT_ID)
1316 		entry += sizeof(u64);
1317 
1318 	if (read_format & PERF_FORMAT_GROUP) {
1319 		nr = evsel->nr_members;
1320 		size += sizeof(u64);
1321 	}
1322 
1323 	size += entry * nr;
1324 	return size;
1325 }
1326 
1327 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1328 		     struct perf_counts_values *count)
1329 {
1330 	size_t size = perf_evsel__read_size(evsel);
1331 
1332 	memset(count, 0, sizeof(*count));
1333 
1334 	if (FD(evsel, cpu, thread) < 0)
1335 		return -EINVAL;
1336 
1337 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1338 		return -errno;
1339 
1340 	return 0;
1341 }
1342 
1343 static int
1344 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1345 {
1346 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1347 
1348 	return perf_evsel__read(evsel, cpu, thread, count);
1349 }
1350 
1351 static void
1352 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1353 		      u64 val, u64 ena, u64 run)
1354 {
1355 	struct perf_counts_values *count;
1356 
1357 	count = perf_counts(counter->counts, cpu, thread);
1358 
1359 	count->val    = val;
1360 	count->ena    = ena;
1361 	count->run    = run;
1362 	count->loaded = true;
1363 }
1364 
1365 static int
1366 perf_evsel__process_group_data(struct perf_evsel *leader,
1367 			       int cpu, int thread, u64 *data)
1368 {
1369 	u64 read_format = leader->attr.read_format;
1370 	struct sample_read_value *v;
1371 	u64 nr, ena = 0, run = 0, i;
1372 
1373 	nr = *data++;
1374 
1375 	if (nr != (u64) leader->nr_members)
1376 		return -EINVAL;
1377 
1378 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1379 		ena = *data++;
1380 
1381 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1382 		run = *data++;
1383 
1384 	v = (struct sample_read_value *) data;
1385 
1386 	perf_evsel__set_count(leader, cpu, thread,
1387 			      v[0].value, ena, run);
1388 
1389 	for (i = 1; i < nr; i++) {
1390 		struct perf_evsel *counter;
1391 
1392 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1393 		if (!counter)
1394 			return -EINVAL;
1395 
1396 		perf_evsel__set_count(counter, cpu, thread,
1397 				      v[i].value, ena, run);
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int
1404 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1405 {
1406 	struct perf_stat_evsel *ps = leader->stats;
1407 	u64 read_format = leader->attr.read_format;
1408 	int size = perf_evsel__read_size(leader);
1409 	u64 *data = ps->group_data;
1410 
1411 	if (!(read_format & PERF_FORMAT_ID))
1412 		return -EINVAL;
1413 
1414 	if (!perf_evsel__is_group_leader(leader))
1415 		return -EINVAL;
1416 
1417 	if (!data) {
1418 		data = zalloc(size);
1419 		if (!data)
1420 			return -ENOMEM;
1421 
1422 		ps->group_data = data;
1423 	}
1424 
1425 	if (FD(leader, cpu, thread) < 0)
1426 		return -EINVAL;
1427 
1428 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1429 		return -errno;
1430 
1431 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1432 }
1433 
1434 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1435 {
1436 	u64 read_format = evsel->attr.read_format;
1437 
1438 	if (read_format & PERF_FORMAT_GROUP)
1439 		return perf_evsel__read_group(evsel, cpu, thread);
1440 	else
1441 		return perf_evsel__read_one(evsel, cpu, thread);
1442 }
1443 
1444 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1445 			      int cpu, int thread, bool scale)
1446 {
1447 	struct perf_counts_values count;
1448 	size_t nv = scale ? 3 : 1;
1449 
1450 	if (FD(evsel, cpu, thread) < 0)
1451 		return -EINVAL;
1452 
1453 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1454 		return -ENOMEM;
1455 
1456 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1457 		return -errno;
1458 
1459 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1460 	perf_counts_values__scale(&count, scale, NULL);
1461 	*perf_counts(evsel->counts, cpu, thread) = count;
1462 	return 0;
1463 }
1464 
1465 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1466 {
1467 	struct perf_evsel *leader = evsel->leader;
1468 	int fd;
1469 
1470 	if (perf_evsel__is_group_leader(evsel))
1471 		return -1;
1472 
1473 	/*
1474 	 * Leader must be already processed/open,
1475 	 * if not it's a bug.
1476 	 */
1477 	BUG_ON(!leader->fd);
1478 
1479 	fd = FD(leader, cpu, thread);
1480 	BUG_ON(fd == -1);
1481 
1482 	return fd;
1483 }
1484 
1485 struct bit_names {
1486 	int bit;
1487 	const char *name;
1488 };
1489 
1490 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1491 {
1492 	bool first_bit = true;
1493 	int i = 0;
1494 
1495 	do {
1496 		if (value & bits[i].bit) {
1497 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1498 			first_bit = false;
1499 		}
1500 	} while (bits[++i].name != NULL);
1501 }
1502 
1503 static void __p_sample_type(char *buf, size_t size, u64 value)
1504 {
1505 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1506 	struct bit_names bits[] = {
1507 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1508 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1509 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1510 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1511 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1512 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1513 		{ .name = NULL, }
1514 	};
1515 #undef bit_name
1516 	__p_bits(buf, size, value, bits);
1517 }
1518 
1519 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1520 {
1521 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1522 	struct bit_names bits[] = {
1523 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1524 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1525 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1526 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1527 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1528 		{ .name = NULL, }
1529 	};
1530 #undef bit_name
1531 	__p_bits(buf, size, value, bits);
1532 }
1533 
1534 static void __p_read_format(char *buf, size_t size, u64 value)
1535 {
1536 #define bit_name(n) { PERF_FORMAT_##n, #n }
1537 	struct bit_names bits[] = {
1538 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1539 		bit_name(ID), bit_name(GROUP),
1540 		{ .name = NULL, }
1541 	};
1542 #undef bit_name
1543 	__p_bits(buf, size, value, bits);
1544 }
1545 
1546 #define BUF_SIZE		1024
1547 
1548 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1549 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1550 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1551 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1552 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1553 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1554 
1555 #define PRINT_ATTRn(_n, _f, _p)				\
1556 do {							\
1557 	if (attr->_f) {					\
1558 		_p(attr->_f);				\
1559 		ret += attr__fprintf(fp, _n, buf, priv);\
1560 	}						\
1561 } while (0)
1562 
1563 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1564 
1565 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1566 			     attr__fprintf_f attr__fprintf, void *priv)
1567 {
1568 	char buf[BUF_SIZE];
1569 	int ret = 0;
1570 
1571 	PRINT_ATTRf(type, p_unsigned);
1572 	PRINT_ATTRf(size, p_unsigned);
1573 	PRINT_ATTRf(config, p_hex);
1574 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1575 	PRINT_ATTRf(sample_type, p_sample_type);
1576 	PRINT_ATTRf(read_format, p_read_format);
1577 
1578 	PRINT_ATTRf(disabled, p_unsigned);
1579 	PRINT_ATTRf(inherit, p_unsigned);
1580 	PRINT_ATTRf(pinned, p_unsigned);
1581 	PRINT_ATTRf(exclusive, p_unsigned);
1582 	PRINT_ATTRf(exclude_user, p_unsigned);
1583 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1584 	PRINT_ATTRf(exclude_hv, p_unsigned);
1585 	PRINT_ATTRf(exclude_idle, p_unsigned);
1586 	PRINT_ATTRf(mmap, p_unsigned);
1587 	PRINT_ATTRf(comm, p_unsigned);
1588 	PRINT_ATTRf(freq, p_unsigned);
1589 	PRINT_ATTRf(inherit_stat, p_unsigned);
1590 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1591 	PRINT_ATTRf(task, p_unsigned);
1592 	PRINT_ATTRf(watermark, p_unsigned);
1593 	PRINT_ATTRf(precise_ip, p_unsigned);
1594 	PRINT_ATTRf(mmap_data, p_unsigned);
1595 	PRINT_ATTRf(sample_id_all, p_unsigned);
1596 	PRINT_ATTRf(exclude_host, p_unsigned);
1597 	PRINT_ATTRf(exclude_guest, p_unsigned);
1598 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1599 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1600 	PRINT_ATTRf(mmap2, p_unsigned);
1601 	PRINT_ATTRf(comm_exec, p_unsigned);
1602 	PRINT_ATTRf(use_clockid, p_unsigned);
1603 	PRINT_ATTRf(context_switch, p_unsigned);
1604 	PRINT_ATTRf(write_backward, p_unsigned);
1605 	PRINT_ATTRf(namespaces, p_unsigned);
1606 
1607 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1608 	PRINT_ATTRf(bp_type, p_unsigned);
1609 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1610 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1611 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1612 	PRINT_ATTRf(sample_regs_user, p_hex);
1613 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1614 	PRINT_ATTRf(clockid, p_signed);
1615 	PRINT_ATTRf(sample_regs_intr, p_hex);
1616 	PRINT_ATTRf(aux_watermark, p_unsigned);
1617 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1618 
1619 	return ret;
1620 }
1621 
1622 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1623 				void *priv __maybe_unused)
1624 {
1625 	return fprintf(fp, "  %-32s %s\n", name, val);
1626 }
1627 
1628 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1629 				  int nr_cpus, int nr_threads,
1630 				  int thread_idx)
1631 {
1632 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1633 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1634 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1635 }
1636 
1637 static int update_fds(struct perf_evsel *evsel,
1638 		      int nr_cpus, int cpu_idx,
1639 		      int nr_threads, int thread_idx)
1640 {
1641 	struct perf_evsel *pos;
1642 
1643 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1644 		return -EINVAL;
1645 
1646 	evlist__for_each_entry(evsel->evlist, pos) {
1647 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1648 
1649 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1650 
1651 		/*
1652 		 * Since fds for next evsel has not been created,
1653 		 * there is no need to iterate whole event list.
1654 		 */
1655 		if (pos == evsel)
1656 			break;
1657 	}
1658 	return 0;
1659 }
1660 
1661 static bool ignore_missing_thread(struct perf_evsel *evsel,
1662 				  int nr_cpus, int cpu,
1663 				  struct thread_map *threads,
1664 				  int thread, int err)
1665 {
1666 	pid_t ignore_pid = thread_map__pid(threads, thread);
1667 
1668 	if (!evsel->ignore_missing_thread)
1669 		return false;
1670 
1671 	/* The system wide setup does not work with threads. */
1672 	if (evsel->system_wide)
1673 		return false;
1674 
1675 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1676 	if (err != -ESRCH)
1677 		return false;
1678 
1679 	/* If there's only one thread, let it fail. */
1680 	if (threads->nr == 1)
1681 		return false;
1682 
1683 	/*
1684 	 * We should remove fd for missing_thread first
1685 	 * because thread_map__remove() will decrease threads->nr.
1686 	 */
1687 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1688 		return false;
1689 
1690 	if (thread_map__remove(threads, thread))
1691 		return false;
1692 
1693 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1694 		   ignore_pid);
1695 	return true;
1696 }
1697 
1698 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1699 		     struct thread_map *threads)
1700 {
1701 	int cpu, thread, nthreads;
1702 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1703 	int pid = -1, err;
1704 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1705 
1706 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1707 		return -EINVAL;
1708 
1709 	if (cpus == NULL) {
1710 		static struct cpu_map *empty_cpu_map;
1711 
1712 		if (empty_cpu_map == NULL) {
1713 			empty_cpu_map = cpu_map__dummy_new();
1714 			if (empty_cpu_map == NULL)
1715 				return -ENOMEM;
1716 		}
1717 
1718 		cpus = empty_cpu_map;
1719 	}
1720 
1721 	if (threads == NULL) {
1722 		static struct thread_map *empty_thread_map;
1723 
1724 		if (empty_thread_map == NULL) {
1725 			empty_thread_map = thread_map__new_by_tid(-1);
1726 			if (empty_thread_map == NULL)
1727 				return -ENOMEM;
1728 		}
1729 
1730 		threads = empty_thread_map;
1731 	}
1732 
1733 	if (evsel->system_wide)
1734 		nthreads = 1;
1735 	else
1736 		nthreads = threads->nr;
1737 
1738 	if (evsel->fd == NULL &&
1739 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1740 		return -ENOMEM;
1741 
1742 	if (evsel->cgrp) {
1743 		flags |= PERF_FLAG_PID_CGROUP;
1744 		pid = evsel->cgrp->fd;
1745 	}
1746 
1747 fallback_missing_features:
1748 	if (perf_missing_features.clockid_wrong)
1749 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1750 	if (perf_missing_features.clockid) {
1751 		evsel->attr.use_clockid = 0;
1752 		evsel->attr.clockid = 0;
1753 	}
1754 	if (perf_missing_features.cloexec)
1755 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1756 	if (perf_missing_features.mmap2)
1757 		evsel->attr.mmap2 = 0;
1758 	if (perf_missing_features.exclude_guest)
1759 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1760 	if (perf_missing_features.lbr_flags)
1761 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1762 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1763 	if (perf_missing_features.group_read && evsel->attr.inherit)
1764 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1765 retry_sample_id:
1766 	if (perf_missing_features.sample_id_all)
1767 		evsel->attr.sample_id_all = 0;
1768 
1769 	if (verbose >= 2) {
1770 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1771 		fprintf(stderr, "perf_event_attr:\n");
1772 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1773 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1774 	}
1775 
1776 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1777 
1778 		for (thread = 0; thread < nthreads; thread++) {
1779 			int fd, group_fd;
1780 
1781 			if (!evsel->cgrp && !evsel->system_wide)
1782 				pid = thread_map__pid(threads, thread);
1783 
1784 			group_fd = get_group_fd(evsel, cpu, thread);
1785 retry_open:
1786 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1787 				  pid, cpus->map[cpu], group_fd, flags);
1788 
1789 			test_attr__ready();
1790 
1791 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1792 						 group_fd, flags);
1793 
1794 			FD(evsel, cpu, thread) = fd;
1795 
1796 			if (fd < 0) {
1797 				err = -errno;
1798 
1799 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1800 					/*
1801 					 * We just removed 1 thread, so take a step
1802 					 * back on thread index and lower the upper
1803 					 * nthreads limit.
1804 					 */
1805 					nthreads--;
1806 					thread--;
1807 
1808 					/* ... and pretend like nothing have happened. */
1809 					err = 0;
1810 					continue;
1811 				}
1812 
1813 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1814 					  err);
1815 				goto try_fallback;
1816 			}
1817 
1818 			pr_debug2(" = %d\n", fd);
1819 
1820 			if (evsel->bpf_fd >= 0) {
1821 				int evt_fd = fd;
1822 				int bpf_fd = evsel->bpf_fd;
1823 
1824 				err = ioctl(evt_fd,
1825 					    PERF_EVENT_IOC_SET_BPF,
1826 					    bpf_fd);
1827 				if (err && errno != EEXIST) {
1828 					pr_err("failed to attach bpf fd %d: %s\n",
1829 					       bpf_fd, strerror(errno));
1830 					err = -EINVAL;
1831 					goto out_close;
1832 				}
1833 			}
1834 
1835 			set_rlimit = NO_CHANGE;
1836 
1837 			/*
1838 			 * If we succeeded but had to kill clockid, fail and
1839 			 * have perf_evsel__open_strerror() print us a nice
1840 			 * error.
1841 			 */
1842 			if (perf_missing_features.clockid ||
1843 			    perf_missing_features.clockid_wrong) {
1844 				err = -EINVAL;
1845 				goto out_close;
1846 			}
1847 		}
1848 	}
1849 
1850 	return 0;
1851 
1852 try_fallback:
1853 	/*
1854 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1855 	 * of them try to increase the limits.
1856 	 */
1857 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1858 		struct rlimit l;
1859 		int old_errno = errno;
1860 
1861 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1862 			if (set_rlimit == NO_CHANGE)
1863 				l.rlim_cur = l.rlim_max;
1864 			else {
1865 				l.rlim_cur = l.rlim_max + 1000;
1866 				l.rlim_max = l.rlim_cur;
1867 			}
1868 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1869 				set_rlimit++;
1870 				errno = old_errno;
1871 				goto retry_open;
1872 			}
1873 		}
1874 		errno = old_errno;
1875 	}
1876 
1877 	if (err != -EINVAL || cpu > 0 || thread > 0)
1878 		goto out_close;
1879 
1880 	/*
1881 	 * Must probe features in the order they were added to the
1882 	 * perf_event_attr interface.
1883 	 */
1884 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1885 		perf_missing_features.write_backward = true;
1886 		pr_debug2("switching off write_backward\n");
1887 		goto out_close;
1888 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1889 		perf_missing_features.clockid_wrong = true;
1890 		pr_debug2("switching off clockid\n");
1891 		goto fallback_missing_features;
1892 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1893 		perf_missing_features.clockid = true;
1894 		pr_debug2("switching off use_clockid\n");
1895 		goto fallback_missing_features;
1896 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1897 		perf_missing_features.cloexec = true;
1898 		pr_debug2("switching off cloexec flag\n");
1899 		goto fallback_missing_features;
1900 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1901 		perf_missing_features.mmap2 = true;
1902 		pr_debug2("switching off mmap2\n");
1903 		goto fallback_missing_features;
1904 	} else if (!perf_missing_features.exclude_guest &&
1905 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1906 		perf_missing_features.exclude_guest = true;
1907 		pr_debug2("switching off exclude_guest, exclude_host\n");
1908 		goto fallback_missing_features;
1909 	} else if (!perf_missing_features.sample_id_all) {
1910 		perf_missing_features.sample_id_all = true;
1911 		pr_debug2("switching off sample_id_all\n");
1912 		goto retry_sample_id;
1913 	} else if (!perf_missing_features.lbr_flags &&
1914 			(evsel->attr.branch_sample_type &
1915 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1916 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1917 		perf_missing_features.lbr_flags = true;
1918 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1919 		goto fallback_missing_features;
1920 	} else if (!perf_missing_features.group_read &&
1921 		    evsel->attr.inherit &&
1922 		   (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1923 		perf_missing_features.group_read = true;
1924 		pr_debug2("switching off group read\n");
1925 		goto fallback_missing_features;
1926 	}
1927 out_close:
1928 	do {
1929 		while (--thread >= 0) {
1930 			close(FD(evsel, cpu, thread));
1931 			FD(evsel, cpu, thread) = -1;
1932 		}
1933 		thread = nthreads;
1934 	} while (--cpu >= 0);
1935 	return err;
1936 }
1937 
1938 void perf_evsel__close(struct perf_evsel *evsel)
1939 {
1940 	if (evsel->fd == NULL)
1941 		return;
1942 
1943 	perf_evsel__close_fd(evsel);
1944 	perf_evsel__free_fd(evsel);
1945 }
1946 
1947 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1948 			     struct cpu_map *cpus)
1949 {
1950 	return perf_evsel__open(evsel, cpus, NULL);
1951 }
1952 
1953 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1954 				struct thread_map *threads)
1955 {
1956 	return perf_evsel__open(evsel, NULL, threads);
1957 }
1958 
1959 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1960 				       const union perf_event *event,
1961 				       struct perf_sample *sample)
1962 {
1963 	u64 type = evsel->attr.sample_type;
1964 	const u64 *array = event->sample.array;
1965 	bool swapped = evsel->needs_swap;
1966 	union u64_swap u;
1967 
1968 	array += ((event->header.size -
1969 		   sizeof(event->header)) / sizeof(u64)) - 1;
1970 
1971 	if (type & PERF_SAMPLE_IDENTIFIER) {
1972 		sample->id = *array;
1973 		array--;
1974 	}
1975 
1976 	if (type & PERF_SAMPLE_CPU) {
1977 		u.val64 = *array;
1978 		if (swapped) {
1979 			/* undo swap of u64, then swap on individual u32s */
1980 			u.val64 = bswap_64(u.val64);
1981 			u.val32[0] = bswap_32(u.val32[0]);
1982 		}
1983 
1984 		sample->cpu = u.val32[0];
1985 		array--;
1986 	}
1987 
1988 	if (type & PERF_SAMPLE_STREAM_ID) {
1989 		sample->stream_id = *array;
1990 		array--;
1991 	}
1992 
1993 	if (type & PERF_SAMPLE_ID) {
1994 		sample->id = *array;
1995 		array--;
1996 	}
1997 
1998 	if (type & PERF_SAMPLE_TIME) {
1999 		sample->time = *array;
2000 		array--;
2001 	}
2002 
2003 	if (type & PERF_SAMPLE_TID) {
2004 		u.val64 = *array;
2005 		if (swapped) {
2006 			/* undo swap of u64, then swap on individual u32s */
2007 			u.val64 = bswap_64(u.val64);
2008 			u.val32[0] = bswap_32(u.val32[0]);
2009 			u.val32[1] = bswap_32(u.val32[1]);
2010 		}
2011 
2012 		sample->pid = u.val32[0];
2013 		sample->tid = u.val32[1];
2014 		array--;
2015 	}
2016 
2017 	return 0;
2018 }
2019 
2020 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2021 			    u64 size)
2022 {
2023 	return size > max_size || offset + size > endp;
2024 }
2025 
2026 #define OVERFLOW_CHECK(offset, size, max_size)				\
2027 	do {								\
2028 		if (overflow(endp, (max_size), (offset), (size)))	\
2029 			return -EFAULT;					\
2030 	} while (0)
2031 
2032 #define OVERFLOW_CHECK_u64(offset) \
2033 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2034 
2035 static int
2036 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2037 {
2038 	/*
2039 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2040 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2041 	 * check the format does not go past the end of the event.
2042 	 */
2043 	if (sample_size + sizeof(event->header) > event->header.size)
2044 		return -EFAULT;
2045 
2046 	return 0;
2047 }
2048 
2049 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2050 			     struct perf_sample *data)
2051 {
2052 	u64 type = evsel->attr.sample_type;
2053 	bool swapped = evsel->needs_swap;
2054 	const u64 *array;
2055 	u16 max_size = event->header.size;
2056 	const void *endp = (void *)event + max_size;
2057 	u64 sz;
2058 
2059 	/*
2060 	 * used for cross-endian analysis. See git commit 65014ab3
2061 	 * for why this goofiness is needed.
2062 	 */
2063 	union u64_swap u;
2064 
2065 	memset(data, 0, sizeof(*data));
2066 	data->cpu = data->pid = data->tid = -1;
2067 	data->stream_id = data->id = data->time = -1ULL;
2068 	data->period = evsel->attr.sample_period;
2069 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2070 	data->misc    = event->header.misc;
2071 	data->id = -1ULL;
2072 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2073 
2074 	if (event->header.type != PERF_RECORD_SAMPLE) {
2075 		if (!evsel->attr.sample_id_all)
2076 			return 0;
2077 		return perf_evsel__parse_id_sample(evsel, event, data);
2078 	}
2079 
2080 	array = event->sample.array;
2081 
2082 	if (perf_event__check_size(event, evsel->sample_size))
2083 		return -EFAULT;
2084 
2085 	if (type & PERF_SAMPLE_IDENTIFIER) {
2086 		data->id = *array;
2087 		array++;
2088 	}
2089 
2090 	if (type & PERF_SAMPLE_IP) {
2091 		data->ip = *array;
2092 		array++;
2093 	}
2094 
2095 	if (type & PERF_SAMPLE_TID) {
2096 		u.val64 = *array;
2097 		if (swapped) {
2098 			/* undo swap of u64, then swap on individual u32s */
2099 			u.val64 = bswap_64(u.val64);
2100 			u.val32[0] = bswap_32(u.val32[0]);
2101 			u.val32[1] = bswap_32(u.val32[1]);
2102 		}
2103 
2104 		data->pid = u.val32[0];
2105 		data->tid = u.val32[1];
2106 		array++;
2107 	}
2108 
2109 	if (type & PERF_SAMPLE_TIME) {
2110 		data->time = *array;
2111 		array++;
2112 	}
2113 
2114 	if (type & PERF_SAMPLE_ADDR) {
2115 		data->addr = *array;
2116 		array++;
2117 	}
2118 
2119 	if (type & PERF_SAMPLE_ID) {
2120 		data->id = *array;
2121 		array++;
2122 	}
2123 
2124 	if (type & PERF_SAMPLE_STREAM_ID) {
2125 		data->stream_id = *array;
2126 		array++;
2127 	}
2128 
2129 	if (type & PERF_SAMPLE_CPU) {
2130 
2131 		u.val64 = *array;
2132 		if (swapped) {
2133 			/* undo swap of u64, then swap on individual u32s */
2134 			u.val64 = bswap_64(u.val64);
2135 			u.val32[0] = bswap_32(u.val32[0]);
2136 		}
2137 
2138 		data->cpu = u.val32[0];
2139 		array++;
2140 	}
2141 
2142 	if (type & PERF_SAMPLE_PERIOD) {
2143 		data->period = *array;
2144 		array++;
2145 	}
2146 
2147 	if (type & PERF_SAMPLE_READ) {
2148 		u64 read_format = evsel->attr.read_format;
2149 
2150 		OVERFLOW_CHECK_u64(array);
2151 		if (read_format & PERF_FORMAT_GROUP)
2152 			data->read.group.nr = *array;
2153 		else
2154 			data->read.one.value = *array;
2155 
2156 		array++;
2157 
2158 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2159 			OVERFLOW_CHECK_u64(array);
2160 			data->read.time_enabled = *array;
2161 			array++;
2162 		}
2163 
2164 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2165 			OVERFLOW_CHECK_u64(array);
2166 			data->read.time_running = *array;
2167 			array++;
2168 		}
2169 
2170 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2171 		if (read_format & PERF_FORMAT_GROUP) {
2172 			const u64 max_group_nr = UINT64_MAX /
2173 					sizeof(struct sample_read_value);
2174 
2175 			if (data->read.group.nr > max_group_nr)
2176 				return -EFAULT;
2177 			sz = data->read.group.nr *
2178 			     sizeof(struct sample_read_value);
2179 			OVERFLOW_CHECK(array, sz, max_size);
2180 			data->read.group.values =
2181 					(struct sample_read_value *)array;
2182 			array = (void *)array + sz;
2183 		} else {
2184 			OVERFLOW_CHECK_u64(array);
2185 			data->read.one.id = *array;
2186 			array++;
2187 		}
2188 	}
2189 
2190 	if (type & PERF_SAMPLE_CALLCHAIN) {
2191 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2192 
2193 		OVERFLOW_CHECK_u64(array);
2194 		data->callchain = (struct ip_callchain *)array++;
2195 		if (data->callchain->nr > max_callchain_nr)
2196 			return -EFAULT;
2197 		sz = data->callchain->nr * sizeof(u64);
2198 		OVERFLOW_CHECK(array, sz, max_size);
2199 		array = (void *)array + sz;
2200 	}
2201 
2202 	if (type & PERF_SAMPLE_RAW) {
2203 		OVERFLOW_CHECK_u64(array);
2204 		u.val64 = *array;
2205 
2206 		/*
2207 		 * Undo swap of u64, then swap on individual u32s,
2208 		 * get the size of the raw area and undo all of the
2209 		 * swap. The pevent interface handles endianity by
2210 		 * itself.
2211 		 */
2212 		if (swapped) {
2213 			u.val64 = bswap_64(u.val64);
2214 			u.val32[0] = bswap_32(u.val32[0]);
2215 			u.val32[1] = bswap_32(u.val32[1]);
2216 		}
2217 		data->raw_size = u.val32[0];
2218 
2219 		/*
2220 		 * The raw data is aligned on 64bits including the
2221 		 * u32 size, so it's safe to use mem_bswap_64.
2222 		 */
2223 		if (swapped)
2224 			mem_bswap_64((void *) array, data->raw_size);
2225 
2226 		array = (void *)array + sizeof(u32);
2227 
2228 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2229 		data->raw_data = (void *)array;
2230 		array = (void *)array + data->raw_size;
2231 	}
2232 
2233 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2234 		const u64 max_branch_nr = UINT64_MAX /
2235 					  sizeof(struct branch_entry);
2236 
2237 		OVERFLOW_CHECK_u64(array);
2238 		data->branch_stack = (struct branch_stack *)array++;
2239 
2240 		if (data->branch_stack->nr > max_branch_nr)
2241 			return -EFAULT;
2242 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2243 		OVERFLOW_CHECK(array, sz, max_size);
2244 		array = (void *)array + sz;
2245 	}
2246 
2247 	if (type & PERF_SAMPLE_REGS_USER) {
2248 		OVERFLOW_CHECK_u64(array);
2249 		data->user_regs.abi = *array;
2250 		array++;
2251 
2252 		if (data->user_regs.abi) {
2253 			u64 mask = evsel->attr.sample_regs_user;
2254 
2255 			sz = hweight_long(mask) * sizeof(u64);
2256 			OVERFLOW_CHECK(array, sz, max_size);
2257 			data->user_regs.mask = mask;
2258 			data->user_regs.regs = (u64 *)array;
2259 			array = (void *)array + sz;
2260 		}
2261 	}
2262 
2263 	if (type & PERF_SAMPLE_STACK_USER) {
2264 		OVERFLOW_CHECK_u64(array);
2265 		sz = *array++;
2266 
2267 		data->user_stack.offset = ((char *)(array - 1)
2268 					  - (char *) event);
2269 
2270 		if (!sz) {
2271 			data->user_stack.size = 0;
2272 		} else {
2273 			OVERFLOW_CHECK(array, sz, max_size);
2274 			data->user_stack.data = (char *)array;
2275 			array = (void *)array + sz;
2276 			OVERFLOW_CHECK_u64(array);
2277 			data->user_stack.size = *array++;
2278 			if (WARN_ONCE(data->user_stack.size > sz,
2279 				      "user stack dump failure\n"))
2280 				return -EFAULT;
2281 		}
2282 	}
2283 
2284 	if (type & PERF_SAMPLE_WEIGHT) {
2285 		OVERFLOW_CHECK_u64(array);
2286 		data->weight = *array;
2287 		array++;
2288 	}
2289 
2290 	if (type & PERF_SAMPLE_DATA_SRC) {
2291 		OVERFLOW_CHECK_u64(array);
2292 		data->data_src = *array;
2293 		array++;
2294 	}
2295 
2296 	if (type & PERF_SAMPLE_TRANSACTION) {
2297 		OVERFLOW_CHECK_u64(array);
2298 		data->transaction = *array;
2299 		array++;
2300 	}
2301 
2302 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2303 	if (type & PERF_SAMPLE_REGS_INTR) {
2304 		OVERFLOW_CHECK_u64(array);
2305 		data->intr_regs.abi = *array;
2306 		array++;
2307 
2308 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2309 			u64 mask = evsel->attr.sample_regs_intr;
2310 
2311 			sz = hweight_long(mask) * sizeof(u64);
2312 			OVERFLOW_CHECK(array, sz, max_size);
2313 			data->intr_regs.mask = mask;
2314 			data->intr_regs.regs = (u64 *)array;
2315 			array = (void *)array + sz;
2316 		}
2317 	}
2318 
2319 	data->phys_addr = 0;
2320 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2321 		data->phys_addr = *array;
2322 		array++;
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2329 				       union perf_event *event,
2330 				       u64 *timestamp)
2331 {
2332 	u64 type = evsel->attr.sample_type;
2333 	const u64 *array;
2334 
2335 	if (!(type & PERF_SAMPLE_TIME))
2336 		return -1;
2337 
2338 	if (event->header.type != PERF_RECORD_SAMPLE) {
2339 		struct perf_sample data = {
2340 			.time = -1ULL,
2341 		};
2342 
2343 		if (!evsel->attr.sample_id_all)
2344 			return -1;
2345 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2346 			return -1;
2347 
2348 		*timestamp = data.time;
2349 		return 0;
2350 	}
2351 
2352 	array = event->sample.array;
2353 
2354 	if (perf_event__check_size(event, evsel->sample_size))
2355 		return -EFAULT;
2356 
2357 	if (type & PERF_SAMPLE_IDENTIFIER)
2358 		array++;
2359 
2360 	if (type & PERF_SAMPLE_IP)
2361 		array++;
2362 
2363 	if (type & PERF_SAMPLE_TID)
2364 		array++;
2365 
2366 	if (type & PERF_SAMPLE_TIME)
2367 		*timestamp = *array;
2368 
2369 	return 0;
2370 }
2371 
2372 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2373 				     u64 read_format)
2374 {
2375 	size_t sz, result = sizeof(struct sample_event);
2376 
2377 	if (type & PERF_SAMPLE_IDENTIFIER)
2378 		result += sizeof(u64);
2379 
2380 	if (type & PERF_SAMPLE_IP)
2381 		result += sizeof(u64);
2382 
2383 	if (type & PERF_SAMPLE_TID)
2384 		result += sizeof(u64);
2385 
2386 	if (type & PERF_SAMPLE_TIME)
2387 		result += sizeof(u64);
2388 
2389 	if (type & PERF_SAMPLE_ADDR)
2390 		result += sizeof(u64);
2391 
2392 	if (type & PERF_SAMPLE_ID)
2393 		result += sizeof(u64);
2394 
2395 	if (type & PERF_SAMPLE_STREAM_ID)
2396 		result += sizeof(u64);
2397 
2398 	if (type & PERF_SAMPLE_CPU)
2399 		result += sizeof(u64);
2400 
2401 	if (type & PERF_SAMPLE_PERIOD)
2402 		result += sizeof(u64);
2403 
2404 	if (type & PERF_SAMPLE_READ) {
2405 		result += sizeof(u64);
2406 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2407 			result += sizeof(u64);
2408 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2409 			result += sizeof(u64);
2410 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2411 		if (read_format & PERF_FORMAT_GROUP) {
2412 			sz = sample->read.group.nr *
2413 			     sizeof(struct sample_read_value);
2414 			result += sz;
2415 		} else {
2416 			result += sizeof(u64);
2417 		}
2418 	}
2419 
2420 	if (type & PERF_SAMPLE_CALLCHAIN) {
2421 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2422 		result += sz;
2423 	}
2424 
2425 	if (type & PERF_SAMPLE_RAW) {
2426 		result += sizeof(u32);
2427 		result += sample->raw_size;
2428 	}
2429 
2430 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2431 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2432 		sz += sizeof(u64);
2433 		result += sz;
2434 	}
2435 
2436 	if (type & PERF_SAMPLE_REGS_USER) {
2437 		if (sample->user_regs.abi) {
2438 			result += sizeof(u64);
2439 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2440 			result += sz;
2441 		} else {
2442 			result += sizeof(u64);
2443 		}
2444 	}
2445 
2446 	if (type & PERF_SAMPLE_STACK_USER) {
2447 		sz = sample->user_stack.size;
2448 		result += sizeof(u64);
2449 		if (sz) {
2450 			result += sz;
2451 			result += sizeof(u64);
2452 		}
2453 	}
2454 
2455 	if (type & PERF_SAMPLE_WEIGHT)
2456 		result += sizeof(u64);
2457 
2458 	if (type & PERF_SAMPLE_DATA_SRC)
2459 		result += sizeof(u64);
2460 
2461 	if (type & PERF_SAMPLE_TRANSACTION)
2462 		result += sizeof(u64);
2463 
2464 	if (type & PERF_SAMPLE_REGS_INTR) {
2465 		if (sample->intr_regs.abi) {
2466 			result += sizeof(u64);
2467 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2468 			result += sz;
2469 		} else {
2470 			result += sizeof(u64);
2471 		}
2472 	}
2473 
2474 	if (type & PERF_SAMPLE_PHYS_ADDR)
2475 		result += sizeof(u64);
2476 
2477 	return result;
2478 }
2479 
2480 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2481 				  u64 read_format,
2482 				  const struct perf_sample *sample)
2483 {
2484 	u64 *array;
2485 	size_t sz;
2486 	/*
2487 	 * used for cross-endian analysis. See git commit 65014ab3
2488 	 * for why this goofiness is needed.
2489 	 */
2490 	union u64_swap u;
2491 
2492 	array = event->sample.array;
2493 
2494 	if (type & PERF_SAMPLE_IDENTIFIER) {
2495 		*array = sample->id;
2496 		array++;
2497 	}
2498 
2499 	if (type & PERF_SAMPLE_IP) {
2500 		*array = sample->ip;
2501 		array++;
2502 	}
2503 
2504 	if (type & PERF_SAMPLE_TID) {
2505 		u.val32[0] = sample->pid;
2506 		u.val32[1] = sample->tid;
2507 		*array = u.val64;
2508 		array++;
2509 	}
2510 
2511 	if (type & PERF_SAMPLE_TIME) {
2512 		*array = sample->time;
2513 		array++;
2514 	}
2515 
2516 	if (type & PERF_SAMPLE_ADDR) {
2517 		*array = sample->addr;
2518 		array++;
2519 	}
2520 
2521 	if (type & PERF_SAMPLE_ID) {
2522 		*array = sample->id;
2523 		array++;
2524 	}
2525 
2526 	if (type & PERF_SAMPLE_STREAM_ID) {
2527 		*array = sample->stream_id;
2528 		array++;
2529 	}
2530 
2531 	if (type & PERF_SAMPLE_CPU) {
2532 		u.val32[0] = sample->cpu;
2533 		u.val32[1] = 0;
2534 		*array = u.val64;
2535 		array++;
2536 	}
2537 
2538 	if (type & PERF_SAMPLE_PERIOD) {
2539 		*array = sample->period;
2540 		array++;
2541 	}
2542 
2543 	if (type & PERF_SAMPLE_READ) {
2544 		if (read_format & PERF_FORMAT_GROUP)
2545 			*array = sample->read.group.nr;
2546 		else
2547 			*array = sample->read.one.value;
2548 		array++;
2549 
2550 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2551 			*array = sample->read.time_enabled;
2552 			array++;
2553 		}
2554 
2555 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2556 			*array = sample->read.time_running;
2557 			array++;
2558 		}
2559 
2560 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2561 		if (read_format & PERF_FORMAT_GROUP) {
2562 			sz = sample->read.group.nr *
2563 			     sizeof(struct sample_read_value);
2564 			memcpy(array, sample->read.group.values, sz);
2565 			array = (void *)array + sz;
2566 		} else {
2567 			*array = sample->read.one.id;
2568 			array++;
2569 		}
2570 	}
2571 
2572 	if (type & PERF_SAMPLE_CALLCHAIN) {
2573 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2574 		memcpy(array, sample->callchain, sz);
2575 		array = (void *)array + sz;
2576 	}
2577 
2578 	if (type & PERF_SAMPLE_RAW) {
2579 		u.val32[0] = sample->raw_size;
2580 		*array = u.val64;
2581 		array = (void *)array + sizeof(u32);
2582 
2583 		memcpy(array, sample->raw_data, sample->raw_size);
2584 		array = (void *)array + sample->raw_size;
2585 	}
2586 
2587 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2588 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2589 		sz += sizeof(u64);
2590 		memcpy(array, sample->branch_stack, sz);
2591 		array = (void *)array + sz;
2592 	}
2593 
2594 	if (type & PERF_SAMPLE_REGS_USER) {
2595 		if (sample->user_regs.abi) {
2596 			*array++ = sample->user_regs.abi;
2597 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2598 			memcpy(array, sample->user_regs.regs, sz);
2599 			array = (void *)array + sz;
2600 		} else {
2601 			*array++ = 0;
2602 		}
2603 	}
2604 
2605 	if (type & PERF_SAMPLE_STACK_USER) {
2606 		sz = sample->user_stack.size;
2607 		*array++ = sz;
2608 		if (sz) {
2609 			memcpy(array, sample->user_stack.data, sz);
2610 			array = (void *)array + sz;
2611 			*array++ = sz;
2612 		}
2613 	}
2614 
2615 	if (type & PERF_SAMPLE_WEIGHT) {
2616 		*array = sample->weight;
2617 		array++;
2618 	}
2619 
2620 	if (type & PERF_SAMPLE_DATA_SRC) {
2621 		*array = sample->data_src;
2622 		array++;
2623 	}
2624 
2625 	if (type & PERF_SAMPLE_TRANSACTION) {
2626 		*array = sample->transaction;
2627 		array++;
2628 	}
2629 
2630 	if (type & PERF_SAMPLE_REGS_INTR) {
2631 		if (sample->intr_regs.abi) {
2632 			*array++ = sample->intr_regs.abi;
2633 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2634 			memcpy(array, sample->intr_regs.regs, sz);
2635 			array = (void *)array + sz;
2636 		} else {
2637 			*array++ = 0;
2638 		}
2639 	}
2640 
2641 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2642 		*array = sample->phys_addr;
2643 		array++;
2644 	}
2645 
2646 	return 0;
2647 }
2648 
2649 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2650 {
2651 	return pevent_find_field(evsel->tp_format, name);
2652 }
2653 
2654 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2655 			 const char *name)
2656 {
2657 	struct format_field *field = perf_evsel__field(evsel, name);
2658 	int offset;
2659 
2660 	if (!field)
2661 		return NULL;
2662 
2663 	offset = field->offset;
2664 
2665 	if (field->flags & FIELD_IS_DYNAMIC) {
2666 		offset = *(int *)(sample->raw_data + field->offset);
2667 		offset &= 0xffff;
2668 	}
2669 
2670 	return sample->raw_data + offset;
2671 }
2672 
2673 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2674 			 bool needs_swap)
2675 {
2676 	u64 value;
2677 	void *ptr = sample->raw_data + field->offset;
2678 
2679 	switch (field->size) {
2680 	case 1:
2681 		return *(u8 *)ptr;
2682 	case 2:
2683 		value = *(u16 *)ptr;
2684 		break;
2685 	case 4:
2686 		value = *(u32 *)ptr;
2687 		break;
2688 	case 8:
2689 		memcpy(&value, ptr, sizeof(u64));
2690 		break;
2691 	default:
2692 		return 0;
2693 	}
2694 
2695 	if (!needs_swap)
2696 		return value;
2697 
2698 	switch (field->size) {
2699 	case 2:
2700 		return bswap_16(value);
2701 	case 4:
2702 		return bswap_32(value);
2703 	case 8:
2704 		return bswap_64(value);
2705 	default:
2706 		return 0;
2707 	}
2708 
2709 	return 0;
2710 }
2711 
2712 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2713 		       const char *name)
2714 {
2715 	struct format_field *field = perf_evsel__field(evsel, name);
2716 
2717 	if (!field)
2718 		return 0;
2719 
2720 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2721 }
2722 
2723 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2724 			  char *msg, size_t msgsize)
2725 {
2726 	int paranoid;
2727 
2728 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2729 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2730 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2731 		/*
2732 		 * If it's cycles then fall back to hrtimer based
2733 		 * cpu-clock-tick sw counter, which is always available even if
2734 		 * no PMU support.
2735 		 *
2736 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2737 		 * b0a873e).
2738 		 */
2739 		scnprintf(msg, msgsize, "%s",
2740 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2741 
2742 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2743 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2744 
2745 		zfree(&evsel->name);
2746 		return true;
2747 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2748 		   (paranoid = perf_event_paranoid()) > 1) {
2749 		const char *name = perf_evsel__name(evsel);
2750 		char *new_name;
2751 
2752 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2753 			return false;
2754 
2755 		if (evsel->name)
2756 			free(evsel->name);
2757 		evsel->name = new_name;
2758 		scnprintf(msg, msgsize,
2759 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2760 		evsel->attr.exclude_kernel = 1;
2761 
2762 		return true;
2763 	}
2764 
2765 	return false;
2766 }
2767 
2768 static bool find_process(const char *name)
2769 {
2770 	size_t len = strlen(name);
2771 	DIR *dir;
2772 	struct dirent *d;
2773 	int ret = -1;
2774 
2775 	dir = opendir(procfs__mountpoint());
2776 	if (!dir)
2777 		return false;
2778 
2779 	/* Walk through the directory. */
2780 	while (ret && (d = readdir(dir)) != NULL) {
2781 		char path[PATH_MAX];
2782 		char *data;
2783 		size_t size;
2784 
2785 		if ((d->d_type != DT_DIR) ||
2786 		     !strcmp(".", d->d_name) ||
2787 		     !strcmp("..", d->d_name))
2788 			continue;
2789 
2790 		scnprintf(path, sizeof(path), "%s/%s/comm",
2791 			  procfs__mountpoint(), d->d_name);
2792 
2793 		if (filename__read_str(path, &data, &size))
2794 			continue;
2795 
2796 		ret = strncmp(name, data, len);
2797 		free(data);
2798 	}
2799 
2800 	closedir(dir);
2801 	return ret ? false : true;
2802 }
2803 
2804 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2805 			      int err, char *msg, size_t size)
2806 {
2807 	char sbuf[STRERR_BUFSIZE];
2808 	int printed = 0;
2809 
2810 	switch (err) {
2811 	case EPERM:
2812 	case EACCES:
2813 		if (err == EPERM)
2814 			printed = scnprintf(msg, size,
2815 				"No permission to enable %s event.\n\n",
2816 				perf_evsel__name(evsel));
2817 
2818 		return scnprintf(msg + printed, size - printed,
2819 		 "You may not have permission to collect %sstats.\n\n"
2820 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2821 		 "which controls use of the performance events system by\n"
2822 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2823 		 "The current value is %d:\n\n"
2824 		 "  -1: Allow use of (almost) all events by all users\n"
2825 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2826 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2827 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2828 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2829 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2830 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2831 		 "	kernel.perf_event_paranoid = -1\n" ,
2832 				 target->system_wide ? "system-wide " : "",
2833 				 perf_event_paranoid());
2834 	case ENOENT:
2835 		return scnprintf(msg, size, "The %s event is not supported.",
2836 				 perf_evsel__name(evsel));
2837 	case EMFILE:
2838 		return scnprintf(msg, size, "%s",
2839 			 "Too many events are opened.\n"
2840 			 "Probably the maximum number of open file descriptors has been reached.\n"
2841 			 "Hint: Try again after reducing the number of events.\n"
2842 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2843 	case ENOMEM:
2844 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2845 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2846 			return scnprintf(msg, size,
2847 					 "Not enough memory to setup event with callchain.\n"
2848 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2849 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2850 		break;
2851 	case ENODEV:
2852 		if (target->cpu_list)
2853 			return scnprintf(msg, size, "%s",
2854 	 "No such device - did you specify an out-of-range profile CPU?");
2855 		break;
2856 	case EOPNOTSUPP:
2857 		if (evsel->attr.sample_period != 0)
2858 			return scnprintf(msg, size,
2859 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2860 					 perf_evsel__name(evsel));
2861 		if (evsel->attr.precise_ip)
2862 			return scnprintf(msg, size, "%s",
2863 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2864 #if defined(__i386__) || defined(__x86_64__)
2865 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2866 			return scnprintf(msg, size, "%s",
2867 	"No hardware sampling interrupt available.\n"
2868 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2869 #endif
2870 		break;
2871 	case EBUSY:
2872 		if (find_process("oprofiled"))
2873 			return scnprintf(msg, size,
2874 	"The PMU counters are busy/taken by another profiler.\n"
2875 	"We found oprofile daemon running, please stop it and try again.");
2876 		break;
2877 	case EINVAL:
2878 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2879 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2880 		if (perf_missing_features.clockid)
2881 			return scnprintf(msg, size, "clockid feature not supported.");
2882 		if (perf_missing_features.clockid_wrong)
2883 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2884 		break;
2885 	default:
2886 		break;
2887 	}
2888 
2889 	return scnprintf(msg, size,
2890 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2891 	"/bin/dmesg may provide additional information.\n"
2892 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2893 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2894 			 perf_evsel__name(evsel));
2895 }
2896 
2897 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2898 {
2899 	if (evsel && evsel->evlist)
2900 		return evsel->evlist->env;
2901 	return NULL;
2902 }
2903