xref: /openbmc/linux/tools/perf/util/evsel.c (revision 0b003749)
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41 
42 #include "sane_ctype.h"
43 
44 struct perf_missing_features perf_missing_features;
45 
46 static clockid_t clockid;
47 
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 	return 0;
51 }
52 
53 void __weak test_attr__ready(void) { }
54 
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58 
59 static struct {
60 	size_t	size;
61 	int	(*init)(struct perf_evsel *evsel);
62 	void	(*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 	.size = sizeof(struct perf_evsel),
65 	.init = perf_evsel__no_extra_init,
66 	.fini = perf_evsel__no_extra_fini,
67 };
68 
69 int perf_evsel__object_config(size_t object_size,
70 			      int (*init)(struct perf_evsel *evsel),
71 			      void (*fini)(struct perf_evsel *evsel))
72 {
73 
74 	if (object_size == 0)
75 		goto set_methods;
76 
77 	if (perf_evsel__object.size > object_size)
78 		return -EINVAL;
79 
80 	perf_evsel__object.size = object_size;
81 
82 set_methods:
83 	if (init != NULL)
84 		perf_evsel__object.init = init;
85 
86 	if (fini != NULL)
87 		perf_evsel__object.fini = fini;
88 
89 	return 0;
90 }
91 
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93 
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 	u64 mask = sample_type & PERF_SAMPLE_MASK;
97 	int size = 0;
98 	int i;
99 
100 	for (i = 0; i < 64; i++) {
101 		if (mask & (1ULL << i))
102 			size++;
103 	}
104 
105 	size *= sizeof(u64);
106 
107 	return size;
108 }
109 
110 /**
111  * __perf_evsel__calc_id_pos - calculate id_pos.
112  * @sample_type: sample type
113  *
114  * This function returns the position of the event id (PERF_SAMPLE_ID or
115  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116  * sample_event.
117  */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 	int idx = 0;
121 
122 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 		return 0;
124 
125 	if (!(sample_type & PERF_SAMPLE_ID))
126 		return -1;
127 
128 	if (sample_type & PERF_SAMPLE_IP)
129 		idx += 1;
130 
131 	if (sample_type & PERF_SAMPLE_TID)
132 		idx += 1;
133 
134 	if (sample_type & PERF_SAMPLE_TIME)
135 		idx += 1;
136 
137 	if (sample_type & PERF_SAMPLE_ADDR)
138 		idx += 1;
139 
140 	return idx;
141 }
142 
143 /**
144  * __perf_evsel__calc_is_pos - calculate is_pos.
145  * @sample_type: sample type
146  *
147  * This function returns the position (counting backwards) of the event id
148  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149  * sample_id_all is used there is an id sample appended to non-sample events.
150  */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 	int idx = 1;
154 
155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 		return 1;
157 
158 	if (!(sample_type & PERF_SAMPLE_ID))
159 		return -1;
160 
161 	if (sample_type & PERF_SAMPLE_CPU)
162 		idx += 1;
163 
164 	if (sample_type & PERF_SAMPLE_STREAM_ID)
165 		idx += 1;
166 
167 	return idx;
168 }
169 
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175 
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 				  enum perf_event_sample_format bit)
178 {
179 	if (!(evsel->attr.sample_type & bit)) {
180 		evsel->attr.sample_type |= bit;
181 		evsel->sample_size += sizeof(u64);
182 		perf_evsel__calc_id_pos(evsel);
183 	}
184 }
185 
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 				    enum perf_event_sample_format bit)
188 {
189 	if (evsel->attr.sample_type & bit) {
190 		evsel->attr.sample_type &= ~bit;
191 		evsel->sample_size -= sizeof(u64);
192 		perf_evsel__calc_id_pos(evsel);
193 	}
194 }
195 
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 			       bool can_sample_identifier)
198 {
199 	if (can_sample_identifier) {
200 		perf_evsel__reset_sample_bit(evsel, ID);
201 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 	} else {
203 		perf_evsel__set_sample_bit(evsel, ID);
204 	}
205 	evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207 
208 /**
209  * perf_evsel__is_function_event - Return whether given evsel is a function
210  * trace event
211  *
212  * @evsel - evsel selector to be tested
213  *
214  * Return %true if event is function trace event
215  */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219 
220 	return evsel->name &&
221 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222 
223 #undef FUNCTION_EVENT
224 }
225 
226 void perf_evsel__init(struct perf_evsel *evsel,
227 		      struct perf_event_attr *attr, int idx)
228 {
229 	evsel->idx	   = idx;
230 	evsel->tracking	   = !idx;
231 	evsel->attr	   = *attr;
232 	evsel->leader	   = evsel;
233 	evsel->unit	   = "";
234 	evsel->scale	   = 1.0;
235 	evsel->max_events  = ULONG_MAX;
236 	evsel->evlist	   = NULL;
237 	evsel->bpf_fd	   = -1;
238 	INIT_LIST_HEAD(&evsel->node);
239 	INIT_LIST_HEAD(&evsel->config_terms);
240 	perf_evsel__object.init(evsel);
241 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
242 	perf_evsel__calc_id_pos(evsel);
243 	evsel->cmdline_group_boundary = false;
244 	evsel->metric_expr   = NULL;
245 	evsel->metric_name   = NULL;
246 	evsel->metric_events = NULL;
247 	evsel->collect_stat  = false;
248 	evsel->pmu_name      = NULL;
249 }
250 
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254 
255 	if (!evsel)
256 		return NULL;
257 	perf_evsel__init(evsel, attr, idx);
258 
259 	if (perf_evsel__is_bpf_output(evsel)) {
260 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
261 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
262 		evsel->attr.sample_period = 1;
263 	}
264 
265 	if (perf_evsel__is_clock(evsel)) {
266 		/*
267 		 * The evsel->unit points to static alias->unit
268 		 * so it's ok to use static string in here.
269 		 */
270 		static const char *unit = "msec";
271 
272 		evsel->unit = unit;
273 		evsel->scale = 1e-6;
274 	}
275 
276 	return evsel;
277 }
278 
279 static bool perf_event_can_profile_kernel(void)
280 {
281 	return geteuid() == 0 || perf_event_paranoid() == -1;
282 }
283 
284 struct perf_evsel *perf_evsel__new_cycles(bool precise)
285 {
286 	struct perf_event_attr attr = {
287 		.type	= PERF_TYPE_HARDWARE,
288 		.config	= PERF_COUNT_HW_CPU_CYCLES,
289 		.exclude_kernel	= !perf_event_can_profile_kernel(),
290 	};
291 	struct perf_evsel *evsel;
292 
293 	event_attr_init(&attr);
294 
295 	if (!precise)
296 		goto new_event;
297 	/*
298 	 * Unnamed union member, not supported as struct member named
299 	 * initializer in older compilers such as gcc 4.4.7
300 	 *
301 	 * Just for probing the precise_ip:
302 	 */
303 	attr.sample_period = 1;
304 
305 	perf_event_attr__set_max_precise_ip(&attr);
306 	/*
307 	 * Now let the usual logic to set up the perf_event_attr defaults
308 	 * to kick in when we return and before perf_evsel__open() is called.
309 	 */
310 	attr.sample_period = 0;
311 new_event:
312 	evsel = perf_evsel__new(&attr);
313 	if (evsel == NULL)
314 		goto out;
315 
316 	/* use asprintf() because free(evsel) assumes name is allocated */
317 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
318 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
319 		     attr.exclude_kernel ? "u" : "",
320 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
321 		goto error_free;
322 out:
323 	return evsel;
324 error_free:
325 	perf_evsel__delete(evsel);
326 	evsel = NULL;
327 	goto out;
328 }
329 
330 /*
331  * Returns pointer with encoded error via <linux/err.h> interface.
332  */
333 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
334 {
335 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
336 	int err = -ENOMEM;
337 
338 	if (evsel == NULL) {
339 		goto out_err;
340 	} else {
341 		struct perf_event_attr attr = {
342 			.type	       = PERF_TYPE_TRACEPOINT,
343 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
344 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
345 		};
346 
347 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
348 			goto out_free;
349 
350 		evsel->tp_format = trace_event__tp_format(sys, name);
351 		if (IS_ERR(evsel->tp_format)) {
352 			err = PTR_ERR(evsel->tp_format);
353 			goto out_free;
354 		}
355 
356 		event_attr_init(&attr);
357 		attr.config = evsel->tp_format->id;
358 		attr.sample_period = 1;
359 		perf_evsel__init(evsel, &attr, idx);
360 	}
361 
362 	return evsel;
363 
364 out_free:
365 	zfree(&evsel->name);
366 	free(evsel);
367 out_err:
368 	return ERR_PTR(err);
369 }
370 
371 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
372 	"cycles",
373 	"instructions",
374 	"cache-references",
375 	"cache-misses",
376 	"branches",
377 	"branch-misses",
378 	"bus-cycles",
379 	"stalled-cycles-frontend",
380 	"stalled-cycles-backend",
381 	"ref-cycles",
382 };
383 
384 static const char *__perf_evsel__hw_name(u64 config)
385 {
386 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
387 		return perf_evsel__hw_names[config];
388 
389 	return "unknown-hardware";
390 }
391 
392 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
393 {
394 	int colon = 0, r = 0;
395 	struct perf_event_attr *attr = &evsel->attr;
396 	bool exclude_guest_default = false;
397 
398 #define MOD_PRINT(context, mod)	do {					\
399 		if (!attr->exclude_##context) {				\
400 			if (!colon) colon = ++r;			\
401 			r += scnprintf(bf + r, size - r, "%c", mod);	\
402 		} } while(0)
403 
404 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
405 		MOD_PRINT(kernel, 'k');
406 		MOD_PRINT(user, 'u');
407 		MOD_PRINT(hv, 'h');
408 		exclude_guest_default = true;
409 	}
410 
411 	if (attr->precise_ip) {
412 		if (!colon)
413 			colon = ++r;
414 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
415 		exclude_guest_default = true;
416 	}
417 
418 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
419 		MOD_PRINT(host, 'H');
420 		MOD_PRINT(guest, 'G');
421 	}
422 #undef MOD_PRINT
423 	if (colon)
424 		bf[colon - 1] = ':';
425 	return r;
426 }
427 
428 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
429 {
430 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
431 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
432 }
433 
434 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
435 	"cpu-clock",
436 	"task-clock",
437 	"page-faults",
438 	"context-switches",
439 	"cpu-migrations",
440 	"minor-faults",
441 	"major-faults",
442 	"alignment-faults",
443 	"emulation-faults",
444 	"dummy",
445 };
446 
447 static const char *__perf_evsel__sw_name(u64 config)
448 {
449 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
450 		return perf_evsel__sw_names[config];
451 	return "unknown-software";
452 }
453 
454 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
455 {
456 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
457 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
458 }
459 
460 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
461 {
462 	int r;
463 
464 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
465 
466 	if (type & HW_BREAKPOINT_R)
467 		r += scnprintf(bf + r, size - r, "r");
468 
469 	if (type & HW_BREAKPOINT_W)
470 		r += scnprintf(bf + r, size - r, "w");
471 
472 	if (type & HW_BREAKPOINT_X)
473 		r += scnprintf(bf + r, size - r, "x");
474 
475 	return r;
476 }
477 
478 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
479 {
480 	struct perf_event_attr *attr = &evsel->attr;
481 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
482 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
483 }
484 
485 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
486 				[PERF_EVSEL__MAX_ALIASES] = {
487  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
488  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
489  { "LLC",	"L2",							},
490  { "dTLB",	"d-tlb",	"Data-TLB",				},
491  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
492  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
493  { "node",								},
494 };
495 
496 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
497 				   [PERF_EVSEL__MAX_ALIASES] = {
498  { "load",	"loads",	"read",					},
499  { "store",	"stores",	"write",				},
500  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
501 };
502 
503 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
504 				       [PERF_EVSEL__MAX_ALIASES] = {
505  { "refs",	"Reference",	"ops",		"access",		},
506  { "misses",	"miss",							},
507 };
508 
509 #define C(x)		PERF_COUNT_HW_CACHE_##x
510 #define CACHE_READ	(1 << C(OP_READ))
511 #define CACHE_WRITE	(1 << C(OP_WRITE))
512 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
513 #define COP(x)		(1 << x)
514 
515 /*
516  * cache operartion stat
517  * L1I : Read and prefetch only
518  * ITLB and BPU : Read-only
519  */
520 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
521  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
522  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
523  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
524  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
525  [C(ITLB)]	= (CACHE_READ),
526  [C(BPU)]	= (CACHE_READ),
527  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
528 };
529 
530 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
531 {
532 	if (perf_evsel__hw_cache_stat[type] & COP(op))
533 		return true;	/* valid */
534 	else
535 		return false;	/* invalid */
536 }
537 
538 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
539 					    char *bf, size_t size)
540 {
541 	if (result) {
542 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
543 				 perf_evsel__hw_cache_op[op][0],
544 				 perf_evsel__hw_cache_result[result][0]);
545 	}
546 
547 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
548 			 perf_evsel__hw_cache_op[op][1]);
549 }
550 
551 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
552 {
553 	u8 op, result, type = (config >>  0) & 0xff;
554 	const char *err = "unknown-ext-hardware-cache-type";
555 
556 	if (type >= PERF_COUNT_HW_CACHE_MAX)
557 		goto out_err;
558 
559 	op = (config >>  8) & 0xff;
560 	err = "unknown-ext-hardware-cache-op";
561 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
562 		goto out_err;
563 
564 	result = (config >> 16) & 0xff;
565 	err = "unknown-ext-hardware-cache-result";
566 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
567 		goto out_err;
568 
569 	err = "invalid-cache";
570 	if (!perf_evsel__is_cache_op_valid(type, op))
571 		goto out_err;
572 
573 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
574 out_err:
575 	return scnprintf(bf, size, "%s", err);
576 }
577 
578 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
579 {
580 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
581 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
582 }
583 
584 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
585 {
586 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
587 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
588 }
589 
590 const char *perf_evsel__name(struct perf_evsel *evsel)
591 {
592 	char bf[128];
593 
594 	if (evsel->name)
595 		return evsel->name;
596 
597 	switch (evsel->attr.type) {
598 	case PERF_TYPE_RAW:
599 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
600 		break;
601 
602 	case PERF_TYPE_HARDWARE:
603 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
604 		break;
605 
606 	case PERF_TYPE_HW_CACHE:
607 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
608 		break;
609 
610 	case PERF_TYPE_SOFTWARE:
611 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
612 		break;
613 
614 	case PERF_TYPE_TRACEPOINT:
615 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
616 		break;
617 
618 	case PERF_TYPE_BREAKPOINT:
619 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
620 		break;
621 
622 	default:
623 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
624 			  evsel->attr.type);
625 		break;
626 	}
627 
628 	evsel->name = strdup(bf);
629 
630 	return evsel->name ?: "unknown";
631 }
632 
633 const char *perf_evsel__group_name(struct perf_evsel *evsel)
634 {
635 	return evsel->group_name ?: "anon group";
636 }
637 
638 /*
639  * Returns the group details for the specified leader,
640  * with following rules.
641  *
642  *  For record -e '{cycles,instructions}'
643  *    'anon group { cycles:u, instructions:u }'
644  *
645  *  For record -e 'cycles,instructions' and report --group
646  *    'cycles:u, instructions:u'
647  */
648 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
649 {
650 	int ret = 0;
651 	struct perf_evsel *pos;
652 	const char *group_name = perf_evsel__group_name(evsel);
653 
654 	if (!evsel->forced_leader)
655 		ret = scnprintf(buf, size, "%s { ", group_name);
656 
657 	ret += scnprintf(buf + ret, size - ret, "%s",
658 			 perf_evsel__name(evsel));
659 
660 	for_each_group_member(pos, evsel)
661 		ret += scnprintf(buf + ret, size - ret, ", %s",
662 				 perf_evsel__name(pos));
663 
664 	if (!evsel->forced_leader)
665 		ret += scnprintf(buf + ret, size - ret, " }");
666 
667 	return ret;
668 }
669 
670 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
671 					   struct record_opts *opts,
672 					   struct callchain_param *param)
673 {
674 	bool function = perf_evsel__is_function_event(evsel);
675 	struct perf_event_attr *attr = &evsel->attr;
676 
677 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
678 
679 	attr->sample_max_stack = param->max_stack;
680 
681 	if (param->record_mode == CALLCHAIN_LBR) {
682 		if (!opts->branch_stack) {
683 			if (attr->exclude_user) {
684 				pr_warning("LBR callstack option is only available "
685 					   "to get user callchain information. "
686 					   "Falling back to framepointers.\n");
687 			} else {
688 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
689 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
690 							PERF_SAMPLE_BRANCH_CALL_STACK |
691 							PERF_SAMPLE_BRANCH_NO_CYCLES |
692 							PERF_SAMPLE_BRANCH_NO_FLAGS;
693 			}
694 		} else
695 			 pr_warning("Cannot use LBR callstack with branch stack. "
696 				    "Falling back to framepointers.\n");
697 	}
698 
699 	if (param->record_mode == CALLCHAIN_DWARF) {
700 		if (!function) {
701 			perf_evsel__set_sample_bit(evsel, REGS_USER);
702 			perf_evsel__set_sample_bit(evsel, STACK_USER);
703 			attr->sample_regs_user |= PERF_REGS_MASK;
704 			attr->sample_stack_user = param->dump_size;
705 			attr->exclude_callchain_user = 1;
706 		} else {
707 			pr_info("Cannot use DWARF unwind for function trace event,"
708 				" falling back to framepointers.\n");
709 		}
710 	}
711 
712 	if (function) {
713 		pr_info("Disabling user space callchains for function trace event.\n");
714 		attr->exclude_callchain_user = 1;
715 	}
716 }
717 
718 void perf_evsel__config_callchain(struct perf_evsel *evsel,
719 				  struct record_opts *opts,
720 				  struct callchain_param *param)
721 {
722 	if (param->enabled)
723 		return __perf_evsel__config_callchain(evsel, opts, param);
724 }
725 
726 static void
727 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
728 			    struct callchain_param *param)
729 {
730 	struct perf_event_attr *attr = &evsel->attr;
731 
732 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
733 	if (param->record_mode == CALLCHAIN_LBR) {
734 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
735 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
736 					      PERF_SAMPLE_BRANCH_CALL_STACK);
737 	}
738 	if (param->record_mode == CALLCHAIN_DWARF) {
739 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
740 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
741 	}
742 }
743 
744 static void apply_config_terms(struct perf_evsel *evsel,
745 			       struct record_opts *opts, bool track)
746 {
747 	struct perf_evsel_config_term *term;
748 	struct list_head *config_terms = &evsel->config_terms;
749 	struct perf_event_attr *attr = &evsel->attr;
750 	/* callgraph default */
751 	struct callchain_param param = {
752 		.record_mode = callchain_param.record_mode,
753 	};
754 	u32 dump_size = 0;
755 	int max_stack = 0;
756 	const char *callgraph_buf = NULL;
757 
758 	list_for_each_entry(term, config_terms, list) {
759 		switch (term->type) {
760 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
761 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
762 				attr->sample_period = term->val.period;
763 				attr->freq = 0;
764 				perf_evsel__reset_sample_bit(evsel, PERIOD);
765 			}
766 			break;
767 		case PERF_EVSEL__CONFIG_TERM_FREQ:
768 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
769 				attr->sample_freq = term->val.freq;
770 				attr->freq = 1;
771 				perf_evsel__set_sample_bit(evsel, PERIOD);
772 			}
773 			break;
774 		case PERF_EVSEL__CONFIG_TERM_TIME:
775 			if (term->val.time)
776 				perf_evsel__set_sample_bit(evsel, TIME);
777 			else
778 				perf_evsel__reset_sample_bit(evsel, TIME);
779 			break;
780 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
781 			callgraph_buf = term->val.callgraph;
782 			break;
783 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
784 			if (term->val.branch && strcmp(term->val.branch, "no")) {
785 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
786 				parse_branch_str(term->val.branch,
787 						 &attr->branch_sample_type);
788 			} else
789 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
790 			break;
791 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
792 			dump_size = term->val.stack_user;
793 			break;
794 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
795 			max_stack = term->val.max_stack;
796 			break;
797 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
798 			evsel->max_events = term->val.max_events;
799 			break;
800 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
801 			/*
802 			 * attr->inherit should has already been set by
803 			 * perf_evsel__config. If user explicitly set
804 			 * inherit using config terms, override global
805 			 * opt->no_inherit setting.
806 			 */
807 			attr->inherit = term->val.inherit ? 1 : 0;
808 			break;
809 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
810 			attr->write_backward = term->val.overwrite ? 1 : 0;
811 			break;
812 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
813 			break;
814 		default:
815 			break;
816 		}
817 	}
818 
819 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
820 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
821 		bool sample_address = false;
822 
823 		if (max_stack) {
824 			param.max_stack = max_stack;
825 			if (callgraph_buf == NULL)
826 				callgraph_buf = "fp";
827 		}
828 
829 		/* parse callgraph parameters */
830 		if (callgraph_buf != NULL) {
831 			if (!strcmp(callgraph_buf, "no")) {
832 				param.enabled = false;
833 				param.record_mode = CALLCHAIN_NONE;
834 			} else {
835 				param.enabled = true;
836 				if (parse_callchain_record(callgraph_buf, &param)) {
837 					pr_err("per-event callgraph setting for %s failed. "
838 					       "Apply callgraph global setting for it\n",
839 					       evsel->name);
840 					return;
841 				}
842 				if (param.record_mode == CALLCHAIN_DWARF)
843 					sample_address = true;
844 			}
845 		}
846 		if (dump_size > 0) {
847 			dump_size = round_up(dump_size, sizeof(u64));
848 			param.dump_size = dump_size;
849 		}
850 
851 		/* If global callgraph set, clear it */
852 		if (callchain_param.enabled)
853 			perf_evsel__reset_callgraph(evsel, &callchain_param);
854 
855 		/* set perf-event callgraph */
856 		if (param.enabled) {
857 			if (sample_address) {
858 				perf_evsel__set_sample_bit(evsel, ADDR);
859 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
860 				evsel->attr.mmap_data = track;
861 			}
862 			perf_evsel__config_callchain(evsel, opts, &param);
863 		}
864 	}
865 }
866 
867 static bool is_dummy_event(struct perf_evsel *evsel)
868 {
869 	return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
870 	       (evsel->attr.config == PERF_COUNT_SW_DUMMY);
871 }
872 
873 /*
874  * The enable_on_exec/disabled value strategy:
875  *
876  *  1) For any type of traced program:
877  *    - all independent events and group leaders are disabled
878  *    - all group members are enabled
879  *
880  *     Group members are ruled by group leaders. They need to
881  *     be enabled, because the group scheduling relies on that.
882  *
883  *  2) For traced programs executed by perf:
884  *     - all independent events and group leaders have
885  *       enable_on_exec set
886  *     - we don't specifically enable or disable any event during
887  *       the record command
888  *
889  *     Independent events and group leaders are initially disabled
890  *     and get enabled by exec. Group members are ruled by group
891  *     leaders as stated in 1).
892  *
893  *  3) For traced programs attached by perf (pid/tid):
894  *     - we specifically enable or disable all events during
895  *       the record command
896  *
897  *     When attaching events to already running traced we
898  *     enable/disable events specifically, as there's no
899  *     initial traced exec call.
900  */
901 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
902 			struct callchain_param *callchain)
903 {
904 	struct perf_evsel *leader = evsel->leader;
905 	struct perf_event_attr *attr = &evsel->attr;
906 	int track = evsel->tracking;
907 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
908 
909 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
910 	attr->inherit	    = !opts->no_inherit;
911 	attr->write_backward = opts->overwrite ? 1 : 0;
912 
913 	perf_evsel__set_sample_bit(evsel, IP);
914 	perf_evsel__set_sample_bit(evsel, TID);
915 
916 	if (evsel->sample_read) {
917 		perf_evsel__set_sample_bit(evsel, READ);
918 
919 		/*
920 		 * We need ID even in case of single event, because
921 		 * PERF_SAMPLE_READ process ID specific data.
922 		 */
923 		perf_evsel__set_sample_id(evsel, false);
924 
925 		/*
926 		 * Apply group format only if we belong to group
927 		 * with more than one members.
928 		 */
929 		if (leader->nr_members > 1) {
930 			attr->read_format |= PERF_FORMAT_GROUP;
931 			attr->inherit = 0;
932 		}
933 	}
934 
935 	/*
936 	 * We default some events to have a default interval. But keep
937 	 * it a weak assumption overridable by the user.
938 	 */
939 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
940 				     opts->user_interval != ULLONG_MAX)) {
941 		if (opts->freq) {
942 			perf_evsel__set_sample_bit(evsel, PERIOD);
943 			attr->freq		= 1;
944 			attr->sample_freq	= opts->freq;
945 		} else {
946 			attr->sample_period = opts->default_interval;
947 		}
948 	}
949 
950 	/*
951 	 * Disable sampling for all group members other
952 	 * than leader in case leader 'leads' the sampling.
953 	 */
954 	if ((leader != evsel) && leader->sample_read) {
955 		attr->freq           = 0;
956 		attr->sample_freq    = 0;
957 		attr->sample_period  = 0;
958 		attr->write_backward = 0;
959 		attr->sample_id_all  = 0;
960 	}
961 
962 	if (opts->no_samples)
963 		attr->sample_freq = 0;
964 
965 	if (opts->inherit_stat) {
966 		evsel->attr.read_format |=
967 			PERF_FORMAT_TOTAL_TIME_ENABLED |
968 			PERF_FORMAT_TOTAL_TIME_RUNNING |
969 			PERF_FORMAT_ID;
970 		attr->inherit_stat = 1;
971 	}
972 
973 	if (opts->sample_address) {
974 		perf_evsel__set_sample_bit(evsel, ADDR);
975 		attr->mmap_data = track;
976 	}
977 
978 	/*
979 	 * We don't allow user space callchains for  function trace
980 	 * event, due to issues with page faults while tracing page
981 	 * fault handler and its overall trickiness nature.
982 	 */
983 	if (perf_evsel__is_function_event(evsel))
984 		evsel->attr.exclude_callchain_user = 1;
985 
986 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
987 		perf_evsel__config_callchain(evsel, opts, callchain);
988 
989 	if (opts->sample_intr_regs) {
990 		attr->sample_regs_intr = opts->sample_intr_regs;
991 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
992 	}
993 
994 	if (opts->sample_user_regs) {
995 		attr->sample_regs_user |= opts->sample_user_regs;
996 		perf_evsel__set_sample_bit(evsel, REGS_USER);
997 	}
998 
999 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1000 		perf_evsel__set_sample_bit(evsel, CPU);
1001 
1002 	/*
1003 	 * When the user explicitly disabled time don't force it here.
1004 	 */
1005 	if (opts->sample_time &&
1006 	    (!perf_missing_features.sample_id_all &&
1007 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1008 	     opts->sample_time_set)))
1009 		perf_evsel__set_sample_bit(evsel, TIME);
1010 
1011 	if (opts->raw_samples && !evsel->no_aux_samples) {
1012 		perf_evsel__set_sample_bit(evsel, TIME);
1013 		perf_evsel__set_sample_bit(evsel, RAW);
1014 		perf_evsel__set_sample_bit(evsel, CPU);
1015 	}
1016 
1017 	if (opts->sample_address)
1018 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1019 
1020 	if (opts->sample_phys_addr)
1021 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1022 
1023 	if (opts->no_buffering) {
1024 		attr->watermark = 0;
1025 		attr->wakeup_events = 1;
1026 	}
1027 	if (opts->branch_stack && !evsel->no_aux_samples) {
1028 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1029 		attr->branch_sample_type = opts->branch_stack;
1030 	}
1031 
1032 	if (opts->sample_weight)
1033 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1034 
1035 	attr->task  = track;
1036 	attr->mmap  = track;
1037 	attr->mmap2 = track && !perf_missing_features.mmap2;
1038 	attr->comm  = track;
1039 
1040 	if (opts->record_namespaces)
1041 		attr->namespaces  = track;
1042 
1043 	if (opts->record_switch_events)
1044 		attr->context_switch = track;
1045 
1046 	if (opts->sample_transaction)
1047 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1048 
1049 	if (opts->running_time) {
1050 		evsel->attr.read_format |=
1051 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1052 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1053 	}
1054 
1055 	/*
1056 	 * XXX see the function comment above
1057 	 *
1058 	 * Disabling only independent events or group leaders,
1059 	 * keeping group members enabled.
1060 	 */
1061 	if (perf_evsel__is_group_leader(evsel))
1062 		attr->disabled = 1;
1063 
1064 	/*
1065 	 * Setting enable_on_exec for independent events and
1066 	 * group leaders for traced executed by perf.
1067 	 */
1068 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1069 		!opts->initial_delay)
1070 		attr->enable_on_exec = 1;
1071 
1072 	if (evsel->immediate) {
1073 		attr->disabled = 0;
1074 		attr->enable_on_exec = 0;
1075 	}
1076 
1077 	clockid = opts->clockid;
1078 	if (opts->use_clockid) {
1079 		attr->use_clockid = 1;
1080 		attr->clockid = opts->clockid;
1081 	}
1082 
1083 	if (evsel->precise_max)
1084 		perf_event_attr__set_max_precise_ip(attr);
1085 
1086 	if (opts->all_user) {
1087 		attr->exclude_kernel = 1;
1088 		attr->exclude_user   = 0;
1089 	}
1090 
1091 	if (opts->all_kernel) {
1092 		attr->exclude_kernel = 0;
1093 		attr->exclude_user   = 1;
1094 	}
1095 
1096 	if (evsel->own_cpus)
1097 		evsel->attr.read_format |= PERF_FORMAT_ID;
1098 
1099 	/*
1100 	 * Apply event specific term settings,
1101 	 * it overloads any global configuration.
1102 	 */
1103 	apply_config_terms(evsel, opts, track);
1104 
1105 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1106 
1107 	/* The --period option takes the precedence. */
1108 	if (opts->period_set) {
1109 		if (opts->period)
1110 			perf_evsel__set_sample_bit(evsel, PERIOD);
1111 		else
1112 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1113 	}
1114 
1115 	/*
1116 	 * For initial_delay, a dummy event is added implicitly.
1117 	 * The software event will trigger -EOPNOTSUPP error out,
1118 	 * if BRANCH_STACK bit is set.
1119 	 */
1120 	if (opts->initial_delay && is_dummy_event(evsel))
1121 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1122 }
1123 
1124 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1125 {
1126 	if (evsel->system_wide)
1127 		nthreads = 1;
1128 
1129 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1130 
1131 	if (evsel->fd) {
1132 		int cpu, thread;
1133 		for (cpu = 0; cpu < ncpus; cpu++) {
1134 			for (thread = 0; thread < nthreads; thread++) {
1135 				FD(evsel, cpu, thread) = -1;
1136 			}
1137 		}
1138 	}
1139 
1140 	return evsel->fd != NULL ? 0 : -ENOMEM;
1141 }
1142 
1143 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1144 			  int ioc,  void *arg)
1145 {
1146 	int cpu, thread;
1147 
1148 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1149 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1150 			int fd = FD(evsel, cpu, thread),
1151 			    err = ioctl(fd, ioc, arg);
1152 
1153 			if (err)
1154 				return err;
1155 		}
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1162 {
1163 	return perf_evsel__run_ioctl(evsel,
1164 				     PERF_EVENT_IOC_SET_FILTER,
1165 				     (void *)filter);
1166 }
1167 
1168 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1169 {
1170 	char *new_filter = strdup(filter);
1171 
1172 	if (new_filter != NULL) {
1173 		free(evsel->filter);
1174 		evsel->filter = new_filter;
1175 		return 0;
1176 	}
1177 
1178 	return -1;
1179 }
1180 
1181 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1182 				     const char *fmt, const char *filter)
1183 {
1184 	char *new_filter;
1185 
1186 	if (evsel->filter == NULL)
1187 		return perf_evsel__set_filter(evsel, filter);
1188 
1189 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1190 		free(evsel->filter);
1191 		evsel->filter = new_filter;
1192 		return 0;
1193 	}
1194 
1195 	return -1;
1196 }
1197 
1198 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1199 {
1200 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1201 }
1202 
1203 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1204 {
1205 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1206 }
1207 
1208 int perf_evsel__enable(struct perf_evsel *evsel)
1209 {
1210 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1211 
1212 	if (!err)
1213 		evsel->disabled = false;
1214 
1215 	return err;
1216 }
1217 
1218 int perf_evsel__disable(struct perf_evsel *evsel)
1219 {
1220 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1221 	/*
1222 	 * We mark it disabled here so that tools that disable a event can
1223 	 * ignore events after they disable it. I.e. the ring buffer may have
1224 	 * already a few more events queued up before the kernel got the stop
1225 	 * request.
1226 	 */
1227 	if (!err)
1228 		evsel->disabled = true;
1229 
1230 	return err;
1231 }
1232 
1233 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1234 {
1235 	if (ncpus == 0 || nthreads == 0)
1236 		return 0;
1237 
1238 	if (evsel->system_wide)
1239 		nthreads = 1;
1240 
1241 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1242 	if (evsel->sample_id == NULL)
1243 		return -ENOMEM;
1244 
1245 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1246 	if (evsel->id == NULL) {
1247 		xyarray__delete(evsel->sample_id);
1248 		evsel->sample_id = NULL;
1249 		return -ENOMEM;
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1256 {
1257 	xyarray__delete(evsel->fd);
1258 	evsel->fd = NULL;
1259 }
1260 
1261 static void perf_evsel__free_id(struct perf_evsel *evsel)
1262 {
1263 	xyarray__delete(evsel->sample_id);
1264 	evsel->sample_id = NULL;
1265 	zfree(&evsel->id);
1266 }
1267 
1268 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1269 {
1270 	struct perf_evsel_config_term *term, *h;
1271 
1272 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1273 		list_del(&term->list);
1274 		free(term);
1275 	}
1276 }
1277 
1278 void perf_evsel__close_fd(struct perf_evsel *evsel)
1279 {
1280 	int cpu, thread;
1281 
1282 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1283 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1284 			close(FD(evsel, cpu, thread));
1285 			FD(evsel, cpu, thread) = -1;
1286 		}
1287 }
1288 
1289 void perf_evsel__exit(struct perf_evsel *evsel)
1290 {
1291 	assert(list_empty(&evsel->node));
1292 	assert(evsel->evlist == NULL);
1293 	perf_evsel__free_fd(evsel);
1294 	perf_evsel__free_id(evsel);
1295 	perf_evsel__free_config_terms(evsel);
1296 	cgroup__put(evsel->cgrp);
1297 	cpu_map__put(evsel->cpus);
1298 	cpu_map__put(evsel->own_cpus);
1299 	thread_map__put(evsel->threads);
1300 	zfree(&evsel->group_name);
1301 	zfree(&evsel->name);
1302 	perf_evsel__object.fini(evsel);
1303 }
1304 
1305 void perf_evsel__delete(struct perf_evsel *evsel)
1306 {
1307 	perf_evsel__exit(evsel);
1308 	free(evsel);
1309 }
1310 
1311 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1312 				struct perf_counts_values *count)
1313 {
1314 	struct perf_counts_values tmp;
1315 
1316 	if (!evsel->prev_raw_counts)
1317 		return;
1318 
1319 	if (cpu == -1) {
1320 		tmp = evsel->prev_raw_counts->aggr;
1321 		evsel->prev_raw_counts->aggr = *count;
1322 	} else {
1323 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1324 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1325 	}
1326 
1327 	count->val = count->val - tmp.val;
1328 	count->ena = count->ena - tmp.ena;
1329 	count->run = count->run - tmp.run;
1330 }
1331 
1332 void perf_counts_values__scale(struct perf_counts_values *count,
1333 			       bool scale, s8 *pscaled)
1334 {
1335 	s8 scaled = 0;
1336 
1337 	if (scale) {
1338 		if (count->run == 0) {
1339 			scaled = -1;
1340 			count->val = 0;
1341 		} else if (count->run < count->ena) {
1342 			scaled = 1;
1343 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1344 		}
1345 	} else
1346 		count->ena = count->run = 0;
1347 
1348 	if (pscaled)
1349 		*pscaled = scaled;
1350 }
1351 
1352 static int perf_evsel__read_size(struct perf_evsel *evsel)
1353 {
1354 	u64 read_format = evsel->attr.read_format;
1355 	int entry = sizeof(u64); /* value */
1356 	int size = 0;
1357 	int nr = 1;
1358 
1359 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1360 		size += sizeof(u64);
1361 
1362 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1363 		size += sizeof(u64);
1364 
1365 	if (read_format & PERF_FORMAT_ID)
1366 		entry += sizeof(u64);
1367 
1368 	if (read_format & PERF_FORMAT_GROUP) {
1369 		nr = evsel->nr_members;
1370 		size += sizeof(u64);
1371 	}
1372 
1373 	size += entry * nr;
1374 	return size;
1375 }
1376 
1377 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1378 		     struct perf_counts_values *count)
1379 {
1380 	size_t size = perf_evsel__read_size(evsel);
1381 
1382 	memset(count, 0, sizeof(*count));
1383 
1384 	if (FD(evsel, cpu, thread) < 0)
1385 		return -EINVAL;
1386 
1387 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1388 		return -errno;
1389 
1390 	return 0;
1391 }
1392 
1393 static int
1394 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1395 {
1396 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1397 
1398 	return perf_evsel__read(evsel, cpu, thread, count);
1399 }
1400 
1401 static void
1402 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1403 		      u64 val, u64 ena, u64 run)
1404 {
1405 	struct perf_counts_values *count;
1406 
1407 	count = perf_counts(counter->counts, cpu, thread);
1408 
1409 	count->val    = val;
1410 	count->ena    = ena;
1411 	count->run    = run;
1412 	count->loaded = true;
1413 }
1414 
1415 static int
1416 perf_evsel__process_group_data(struct perf_evsel *leader,
1417 			       int cpu, int thread, u64 *data)
1418 {
1419 	u64 read_format = leader->attr.read_format;
1420 	struct sample_read_value *v;
1421 	u64 nr, ena = 0, run = 0, i;
1422 
1423 	nr = *data++;
1424 
1425 	if (nr != (u64) leader->nr_members)
1426 		return -EINVAL;
1427 
1428 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1429 		ena = *data++;
1430 
1431 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1432 		run = *data++;
1433 
1434 	v = (struct sample_read_value *) data;
1435 
1436 	perf_evsel__set_count(leader, cpu, thread,
1437 			      v[0].value, ena, run);
1438 
1439 	for (i = 1; i < nr; i++) {
1440 		struct perf_evsel *counter;
1441 
1442 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1443 		if (!counter)
1444 			return -EINVAL;
1445 
1446 		perf_evsel__set_count(counter, cpu, thread,
1447 				      v[i].value, ena, run);
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 static int
1454 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1455 {
1456 	struct perf_stat_evsel *ps = leader->stats;
1457 	u64 read_format = leader->attr.read_format;
1458 	int size = perf_evsel__read_size(leader);
1459 	u64 *data = ps->group_data;
1460 
1461 	if (!(read_format & PERF_FORMAT_ID))
1462 		return -EINVAL;
1463 
1464 	if (!perf_evsel__is_group_leader(leader))
1465 		return -EINVAL;
1466 
1467 	if (!data) {
1468 		data = zalloc(size);
1469 		if (!data)
1470 			return -ENOMEM;
1471 
1472 		ps->group_data = data;
1473 	}
1474 
1475 	if (FD(leader, cpu, thread) < 0)
1476 		return -EINVAL;
1477 
1478 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1479 		return -errno;
1480 
1481 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1482 }
1483 
1484 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1485 {
1486 	u64 read_format = evsel->attr.read_format;
1487 
1488 	if (read_format & PERF_FORMAT_GROUP)
1489 		return perf_evsel__read_group(evsel, cpu, thread);
1490 	else
1491 		return perf_evsel__read_one(evsel, cpu, thread);
1492 }
1493 
1494 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1495 			      int cpu, int thread, bool scale)
1496 {
1497 	struct perf_counts_values count;
1498 	size_t nv = scale ? 3 : 1;
1499 
1500 	if (FD(evsel, cpu, thread) < 0)
1501 		return -EINVAL;
1502 
1503 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1504 		return -ENOMEM;
1505 
1506 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1507 		return -errno;
1508 
1509 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1510 	perf_counts_values__scale(&count, scale, NULL);
1511 	*perf_counts(evsel->counts, cpu, thread) = count;
1512 	return 0;
1513 }
1514 
1515 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1516 {
1517 	struct perf_evsel *leader = evsel->leader;
1518 	int fd;
1519 
1520 	if (perf_evsel__is_group_leader(evsel))
1521 		return -1;
1522 
1523 	/*
1524 	 * Leader must be already processed/open,
1525 	 * if not it's a bug.
1526 	 */
1527 	BUG_ON(!leader->fd);
1528 
1529 	fd = FD(leader, cpu, thread);
1530 	BUG_ON(fd == -1);
1531 
1532 	return fd;
1533 }
1534 
1535 struct bit_names {
1536 	int bit;
1537 	const char *name;
1538 };
1539 
1540 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1541 {
1542 	bool first_bit = true;
1543 	int i = 0;
1544 
1545 	do {
1546 		if (value & bits[i].bit) {
1547 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1548 			first_bit = false;
1549 		}
1550 	} while (bits[++i].name != NULL);
1551 }
1552 
1553 static void __p_sample_type(char *buf, size_t size, u64 value)
1554 {
1555 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1556 	struct bit_names bits[] = {
1557 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1558 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1559 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1560 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1561 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1562 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1563 		{ .name = NULL, }
1564 	};
1565 #undef bit_name
1566 	__p_bits(buf, size, value, bits);
1567 }
1568 
1569 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1570 {
1571 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1572 	struct bit_names bits[] = {
1573 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1574 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1575 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1576 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1577 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1578 		{ .name = NULL, }
1579 	};
1580 #undef bit_name
1581 	__p_bits(buf, size, value, bits);
1582 }
1583 
1584 static void __p_read_format(char *buf, size_t size, u64 value)
1585 {
1586 #define bit_name(n) { PERF_FORMAT_##n, #n }
1587 	struct bit_names bits[] = {
1588 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1589 		bit_name(ID), bit_name(GROUP),
1590 		{ .name = NULL, }
1591 	};
1592 #undef bit_name
1593 	__p_bits(buf, size, value, bits);
1594 }
1595 
1596 #define BUF_SIZE		1024
1597 
1598 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1599 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1600 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1601 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1602 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1603 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1604 
1605 #define PRINT_ATTRn(_n, _f, _p)				\
1606 do {							\
1607 	if (attr->_f) {					\
1608 		_p(attr->_f);				\
1609 		ret += attr__fprintf(fp, _n, buf, priv);\
1610 	}						\
1611 } while (0)
1612 
1613 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1614 
1615 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1616 			     attr__fprintf_f attr__fprintf, void *priv)
1617 {
1618 	char buf[BUF_SIZE];
1619 	int ret = 0;
1620 
1621 	PRINT_ATTRf(type, p_unsigned);
1622 	PRINT_ATTRf(size, p_unsigned);
1623 	PRINT_ATTRf(config, p_hex);
1624 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1625 	PRINT_ATTRf(sample_type, p_sample_type);
1626 	PRINT_ATTRf(read_format, p_read_format);
1627 
1628 	PRINT_ATTRf(disabled, p_unsigned);
1629 	PRINT_ATTRf(inherit, p_unsigned);
1630 	PRINT_ATTRf(pinned, p_unsigned);
1631 	PRINT_ATTRf(exclusive, p_unsigned);
1632 	PRINT_ATTRf(exclude_user, p_unsigned);
1633 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1634 	PRINT_ATTRf(exclude_hv, p_unsigned);
1635 	PRINT_ATTRf(exclude_idle, p_unsigned);
1636 	PRINT_ATTRf(mmap, p_unsigned);
1637 	PRINT_ATTRf(comm, p_unsigned);
1638 	PRINT_ATTRf(freq, p_unsigned);
1639 	PRINT_ATTRf(inherit_stat, p_unsigned);
1640 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1641 	PRINT_ATTRf(task, p_unsigned);
1642 	PRINT_ATTRf(watermark, p_unsigned);
1643 	PRINT_ATTRf(precise_ip, p_unsigned);
1644 	PRINT_ATTRf(mmap_data, p_unsigned);
1645 	PRINT_ATTRf(sample_id_all, p_unsigned);
1646 	PRINT_ATTRf(exclude_host, p_unsigned);
1647 	PRINT_ATTRf(exclude_guest, p_unsigned);
1648 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1649 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1650 	PRINT_ATTRf(mmap2, p_unsigned);
1651 	PRINT_ATTRf(comm_exec, p_unsigned);
1652 	PRINT_ATTRf(use_clockid, p_unsigned);
1653 	PRINT_ATTRf(context_switch, p_unsigned);
1654 	PRINT_ATTRf(write_backward, p_unsigned);
1655 	PRINT_ATTRf(namespaces, p_unsigned);
1656 
1657 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1658 	PRINT_ATTRf(bp_type, p_unsigned);
1659 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1660 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1661 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1662 	PRINT_ATTRf(sample_regs_user, p_hex);
1663 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1664 	PRINT_ATTRf(clockid, p_signed);
1665 	PRINT_ATTRf(sample_regs_intr, p_hex);
1666 	PRINT_ATTRf(aux_watermark, p_unsigned);
1667 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1668 
1669 	return ret;
1670 }
1671 
1672 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1673 				void *priv __maybe_unused)
1674 {
1675 	return fprintf(fp, "  %-32s %s\n", name, val);
1676 }
1677 
1678 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1679 				  int nr_cpus, int nr_threads,
1680 				  int thread_idx)
1681 {
1682 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1683 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1684 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1685 }
1686 
1687 static int update_fds(struct perf_evsel *evsel,
1688 		      int nr_cpus, int cpu_idx,
1689 		      int nr_threads, int thread_idx)
1690 {
1691 	struct perf_evsel *pos;
1692 
1693 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1694 		return -EINVAL;
1695 
1696 	evlist__for_each_entry(evsel->evlist, pos) {
1697 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1698 
1699 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1700 
1701 		/*
1702 		 * Since fds for next evsel has not been created,
1703 		 * there is no need to iterate whole event list.
1704 		 */
1705 		if (pos == evsel)
1706 			break;
1707 	}
1708 	return 0;
1709 }
1710 
1711 static bool ignore_missing_thread(struct perf_evsel *evsel,
1712 				  int nr_cpus, int cpu,
1713 				  struct thread_map *threads,
1714 				  int thread, int err)
1715 {
1716 	pid_t ignore_pid = thread_map__pid(threads, thread);
1717 
1718 	if (!evsel->ignore_missing_thread)
1719 		return false;
1720 
1721 	/* The system wide setup does not work with threads. */
1722 	if (evsel->system_wide)
1723 		return false;
1724 
1725 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1726 	if (err != -ESRCH)
1727 		return false;
1728 
1729 	/* If there's only one thread, let it fail. */
1730 	if (threads->nr == 1)
1731 		return false;
1732 
1733 	/*
1734 	 * We should remove fd for missing_thread first
1735 	 * because thread_map__remove() will decrease threads->nr.
1736 	 */
1737 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1738 		return false;
1739 
1740 	if (thread_map__remove(threads, thread))
1741 		return false;
1742 
1743 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1744 		   ignore_pid);
1745 	return true;
1746 }
1747 
1748 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1749 		     struct thread_map *threads)
1750 {
1751 	int cpu, thread, nthreads;
1752 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1753 	int pid = -1, err;
1754 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1755 
1756 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1757 		return -EINVAL;
1758 
1759 	if (cpus == NULL) {
1760 		static struct cpu_map *empty_cpu_map;
1761 
1762 		if (empty_cpu_map == NULL) {
1763 			empty_cpu_map = cpu_map__dummy_new();
1764 			if (empty_cpu_map == NULL)
1765 				return -ENOMEM;
1766 		}
1767 
1768 		cpus = empty_cpu_map;
1769 	}
1770 
1771 	if (threads == NULL) {
1772 		static struct thread_map *empty_thread_map;
1773 
1774 		if (empty_thread_map == NULL) {
1775 			empty_thread_map = thread_map__new_by_tid(-1);
1776 			if (empty_thread_map == NULL)
1777 				return -ENOMEM;
1778 		}
1779 
1780 		threads = empty_thread_map;
1781 	}
1782 
1783 	if (evsel->system_wide)
1784 		nthreads = 1;
1785 	else
1786 		nthreads = threads->nr;
1787 
1788 	if (evsel->fd == NULL &&
1789 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1790 		return -ENOMEM;
1791 
1792 	if (evsel->cgrp) {
1793 		flags |= PERF_FLAG_PID_CGROUP;
1794 		pid = evsel->cgrp->fd;
1795 	}
1796 
1797 fallback_missing_features:
1798 	if (perf_missing_features.clockid_wrong)
1799 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1800 	if (perf_missing_features.clockid) {
1801 		evsel->attr.use_clockid = 0;
1802 		evsel->attr.clockid = 0;
1803 	}
1804 	if (perf_missing_features.cloexec)
1805 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1806 	if (perf_missing_features.mmap2)
1807 		evsel->attr.mmap2 = 0;
1808 	if (perf_missing_features.exclude_guest)
1809 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1810 	if (perf_missing_features.lbr_flags)
1811 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1812 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1813 	if (perf_missing_features.group_read && evsel->attr.inherit)
1814 		evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1815 retry_sample_id:
1816 	if (perf_missing_features.sample_id_all)
1817 		evsel->attr.sample_id_all = 0;
1818 
1819 	if (verbose >= 2) {
1820 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1821 		fprintf(stderr, "perf_event_attr:\n");
1822 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1823 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1824 	}
1825 
1826 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1827 
1828 		for (thread = 0; thread < nthreads; thread++) {
1829 			int fd, group_fd;
1830 
1831 			if (!evsel->cgrp && !evsel->system_wide)
1832 				pid = thread_map__pid(threads, thread);
1833 
1834 			group_fd = get_group_fd(evsel, cpu, thread);
1835 retry_open:
1836 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1837 				  pid, cpus->map[cpu], group_fd, flags);
1838 
1839 			test_attr__ready();
1840 
1841 			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1842 						 group_fd, flags);
1843 
1844 			FD(evsel, cpu, thread) = fd;
1845 
1846 			if (fd < 0) {
1847 				err = -errno;
1848 
1849 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1850 					/*
1851 					 * We just removed 1 thread, so take a step
1852 					 * back on thread index and lower the upper
1853 					 * nthreads limit.
1854 					 */
1855 					nthreads--;
1856 					thread--;
1857 
1858 					/* ... and pretend like nothing have happened. */
1859 					err = 0;
1860 					continue;
1861 				}
1862 
1863 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1864 					  err);
1865 				goto try_fallback;
1866 			}
1867 
1868 			pr_debug2(" = %d\n", fd);
1869 
1870 			if (evsel->bpf_fd >= 0) {
1871 				int evt_fd = fd;
1872 				int bpf_fd = evsel->bpf_fd;
1873 
1874 				err = ioctl(evt_fd,
1875 					    PERF_EVENT_IOC_SET_BPF,
1876 					    bpf_fd);
1877 				if (err && errno != EEXIST) {
1878 					pr_err("failed to attach bpf fd %d: %s\n",
1879 					       bpf_fd, strerror(errno));
1880 					err = -EINVAL;
1881 					goto out_close;
1882 				}
1883 			}
1884 
1885 			set_rlimit = NO_CHANGE;
1886 
1887 			/*
1888 			 * If we succeeded but had to kill clockid, fail and
1889 			 * have perf_evsel__open_strerror() print us a nice
1890 			 * error.
1891 			 */
1892 			if (perf_missing_features.clockid ||
1893 			    perf_missing_features.clockid_wrong) {
1894 				err = -EINVAL;
1895 				goto out_close;
1896 			}
1897 		}
1898 	}
1899 
1900 	return 0;
1901 
1902 try_fallback:
1903 	/*
1904 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1905 	 * of them try to increase the limits.
1906 	 */
1907 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1908 		struct rlimit l;
1909 		int old_errno = errno;
1910 
1911 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1912 			if (set_rlimit == NO_CHANGE)
1913 				l.rlim_cur = l.rlim_max;
1914 			else {
1915 				l.rlim_cur = l.rlim_max + 1000;
1916 				l.rlim_max = l.rlim_cur;
1917 			}
1918 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1919 				set_rlimit++;
1920 				errno = old_errno;
1921 				goto retry_open;
1922 			}
1923 		}
1924 		errno = old_errno;
1925 	}
1926 
1927 	if (err != -EINVAL || cpu > 0 || thread > 0)
1928 		goto out_close;
1929 
1930 	/*
1931 	 * Must probe features in the order they were added to the
1932 	 * perf_event_attr interface.
1933 	 */
1934 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1935 		perf_missing_features.write_backward = true;
1936 		pr_debug2("switching off write_backward\n");
1937 		goto out_close;
1938 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1939 		perf_missing_features.clockid_wrong = true;
1940 		pr_debug2("switching off clockid\n");
1941 		goto fallback_missing_features;
1942 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1943 		perf_missing_features.clockid = true;
1944 		pr_debug2("switching off use_clockid\n");
1945 		goto fallback_missing_features;
1946 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1947 		perf_missing_features.cloexec = true;
1948 		pr_debug2("switching off cloexec flag\n");
1949 		goto fallback_missing_features;
1950 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1951 		perf_missing_features.mmap2 = true;
1952 		pr_debug2("switching off mmap2\n");
1953 		goto fallback_missing_features;
1954 	} else if (!perf_missing_features.exclude_guest &&
1955 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1956 		perf_missing_features.exclude_guest = true;
1957 		pr_debug2("switching off exclude_guest, exclude_host\n");
1958 		goto fallback_missing_features;
1959 	} else if (!perf_missing_features.sample_id_all) {
1960 		perf_missing_features.sample_id_all = true;
1961 		pr_debug2("switching off sample_id_all\n");
1962 		goto retry_sample_id;
1963 	} else if (!perf_missing_features.lbr_flags &&
1964 			(evsel->attr.branch_sample_type &
1965 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1966 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1967 		perf_missing_features.lbr_flags = true;
1968 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
1969 		goto fallback_missing_features;
1970 	} else if (!perf_missing_features.group_read &&
1971 		    evsel->attr.inherit &&
1972 		   (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
1973 		   perf_evsel__is_group_leader(evsel)) {
1974 		perf_missing_features.group_read = true;
1975 		pr_debug2("switching off group read\n");
1976 		goto fallback_missing_features;
1977 	}
1978 out_close:
1979 	if (err)
1980 		threads->err_thread = thread;
1981 
1982 	do {
1983 		while (--thread >= 0) {
1984 			close(FD(evsel, cpu, thread));
1985 			FD(evsel, cpu, thread) = -1;
1986 		}
1987 		thread = nthreads;
1988 	} while (--cpu >= 0);
1989 	return err;
1990 }
1991 
1992 void perf_evsel__close(struct perf_evsel *evsel)
1993 {
1994 	if (evsel->fd == NULL)
1995 		return;
1996 
1997 	perf_evsel__close_fd(evsel);
1998 	perf_evsel__free_fd(evsel);
1999 }
2000 
2001 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2002 			     struct cpu_map *cpus)
2003 {
2004 	return perf_evsel__open(evsel, cpus, NULL);
2005 }
2006 
2007 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2008 				struct thread_map *threads)
2009 {
2010 	return perf_evsel__open(evsel, NULL, threads);
2011 }
2012 
2013 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2014 				       const union perf_event *event,
2015 				       struct perf_sample *sample)
2016 {
2017 	u64 type = evsel->attr.sample_type;
2018 	const u64 *array = event->sample.array;
2019 	bool swapped = evsel->needs_swap;
2020 	union u64_swap u;
2021 
2022 	array += ((event->header.size -
2023 		   sizeof(event->header)) / sizeof(u64)) - 1;
2024 
2025 	if (type & PERF_SAMPLE_IDENTIFIER) {
2026 		sample->id = *array;
2027 		array--;
2028 	}
2029 
2030 	if (type & PERF_SAMPLE_CPU) {
2031 		u.val64 = *array;
2032 		if (swapped) {
2033 			/* undo swap of u64, then swap on individual u32s */
2034 			u.val64 = bswap_64(u.val64);
2035 			u.val32[0] = bswap_32(u.val32[0]);
2036 		}
2037 
2038 		sample->cpu = u.val32[0];
2039 		array--;
2040 	}
2041 
2042 	if (type & PERF_SAMPLE_STREAM_ID) {
2043 		sample->stream_id = *array;
2044 		array--;
2045 	}
2046 
2047 	if (type & PERF_SAMPLE_ID) {
2048 		sample->id = *array;
2049 		array--;
2050 	}
2051 
2052 	if (type & PERF_SAMPLE_TIME) {
2053 		sample->time = *array;
2054 		array--;
2055 	}
2056 
2057 	if (type & PERF_SAMPLE_TID) {
2058 		u.val64 = *array;
2059 		if (swapped) {
2060 			/* undo swap of u64, then swap on individual u32s */
2061 			u.val64 = bswap_64(u.val64);
2062 			u.val32[0] = bswap_32(u.val32[0]);
2063 			u.val32[1] = bswap_32(u.val32[1]);
2064 		}
2065 
2066 		sample->pid = u.val32[0];
2067 		sample->tid = u.val32[1];
2068 		array--;
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2075 			    u64 size)
2076 {
2077 	return size > max_size || offset + size > endp;
2078 }
2079 
2080 #define OVERFLOW_CHECK(offset, size, max_size)				\
2081 	do {								\
2082 		if (overflow(endp, (max_size), (offset), (size)))	\
2083 			return -EFAULT;					\
2084 	} while (0)
2085 
2086 #define OVERFLOW_CHECK_u64(offset) \
2087 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2088 
2089 static int
2090 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2091 {
2092 	/*
2093 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2094 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2095 	 * check the format does not go past the end of the event.
2096 	 */
2097 	if (sample_size + sizeof(event->header) > event->header.size)
2098 		return -EFAULT;
2099 
2100 	return 0;
2101 }
2102 
2103 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2104 			     struct perf_sample *data)
2105 {
2106 	u64 type = evsel->attr.sample_type;
2107 	bool swapped = evsel->needs_swap;
2108 	const u64 *array;
2109 	u16 max_size = event->header.size;
2110 	const void *endp = (void *)event + max_size;
2111 	u64 sz;
2112 
2113 	/*
2114 	 * used for cross-endian analysis. See git commit 65014ab3
2115 	 * for why this goofiness is needed.
2116 	 */
2117 	union u64_swap u;
2118 
2119 	memset(data, 0, sizeof(*data));
2120 	data->cpu = data->pid = data->tid = -1;
2121 	data->stream_id = data->id = data->time = -1ULL;
2122 	data->period = evsel->attr.sample_period;
2123 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2124 	data->misc    = event->header.misc;
2125 	data->id = -1ULL;
2126 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2127 
2128 	if (event->header.type != PERF_RECORD_SAMPLE) {
2129 		if (!evsel->attr.sample_id_all)
2130 			return 0;
2131 		return perf_evsel__parse_id_sample(evsel, event, data);
2132 	}
2133 
2134 	array = event->sample.array;
2135 
2136 	if (perf_event__check_size(event, evsel->sample_size))
2137 		return -EFAULT;
2138 
2139 	if (type & PERF_SAMPLE_IDENTIFIER) {
2140 		data->id = *array;
2141 		array++;
2142 	}
2143 
2144 	if (type & PERF_SAMPLE_IP) {
2145 		data->ip = *array;
2146 		array++;
2147 	}
2148 
2149 	if (type & PERF_SAMPLE_TID) {
2150 		u.val64 = *array;
2151 		if (swapped) {
2152 			/* undo swap of u64, then swap on individual u32s */
2153 			u.val64 = bswap_64(u.val64);
2154 			u.val32[0] = bswap_32(u.val32[0]);
2155 			u.val32[1] = bswap_32(u.val32[1]);
2156 		}
2157 
2158 		data->pid = u.val32[0];
2159 		data->tid = u.val32[1];
2160 		array++;
2161 	}
2162 
2163 	if (type & PERF_SAMPLE_TIME) {
2164 		data->time = *array;
2165 		array++;
2166 	}
2167 
2168 	if (type & PERF_SAMPLE_ADDR) {
2169 		data->addr = *array;
2170 		array++;
2171 	}
2172 
2173 	if (type & PERF_SAMPLE_ID) {
2174 		data->id = *array;
2175 		array++;
2176 	}
2177 
2178 	if (type & PERF_SAMPLE_STREAM_ID) {
2179 		data->stream_id = *array;
2180 		array++;
2181 	}
2182 
2183 	if (type & PERF_SAMPLE_CPU) {
2184 
2185 		u.val64 = *array;
2186 		if (swapped) {
2187 			/* undo swap of u64, then swap on individual u32s */
2188 			u.val64 = bswap_64(u.val64);
2189 			u.val32[0] = bswap_32(u.val32[0]);
2190 		}
2191 
2192 		data->cpu = u.val32[0];
2193 		array++;
2194 	}
2195 
2196 	if (type & PERF_SAMPLE_PERIOD) {
2197 		data->period = *array;
2198 		array++;
2199 	}
2200 
2201 	if (type & PERF_SAMPLE_READ) {
2202 		u64 read_format = evsel->attr.read_format;
2203 
2204 		OVERFLOW_CHECK_u64(array);
2205 		if (read_format & PERF_FORMAT_GROUP)
2206 			data->read.group.nr = *array;
2207 		else
2208 			data->read.one.value = *array;
2209 
2210 		array++;
2211 
2212 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2213 			OVERFLOW_CHECK_u64(array);
2214 			data->read.time_enabled = *array;
2215 			array++;
2216 		}
2217 
2218 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2219 			OVERFLOW_CHECK_u64(array);
2220 			data->read.time_running = *array;
2221 			array++;
2222 		}
2223 
2224 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2225 		if (read_format & PERF_FORMAT_GROUP) {
2226 			const u64 max_group_nr = UINT64_MAX /
2227 					sizeof(struct sample_read_value);
2228 
2229 			if (data->read.group.nr > max_group_nr)
2230 				return -EFAULT;
2231 			sz = data->read.group.nr *
2232 			     sizeof(struct sample_read_value);
2233 			OVERFLOW_CHECK(array, sz, max_size);
2234 			data->read.group.values =
2235 					(struct sample_read_value *)array;
2236 			array = (void *)array + sz;
2237 		} else {
2238 			OVERFLOW_CHECK_u64(array);
2239 			data->read.one.id = *array;
2240 			array++;
2241 		}
2242 	}
2243 
2244 	if (evsel__has_callchain(evsel)) {
2245 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2246 
2247 		OVERFLOW_CHECK_u64(array);
2248 		data->callchain = (struct ip_callchain *)array++;
2249 		if (data->callchain->nr > max_callchain_nr)
2250 			return -EFAULT;
2251 		sz = data->callchain->nr * sizeof(u64);
2252 		OVERFLOW_CHECK(array, sz, max_size);
2253 		array = (void *)array + sz;
2254 	}
2255 
2256 	if (type & PERF_SAMPLE_RAW) {
2257 		OVERFLOW_CHECK_u64(array);
2258 		u.val64 = *array;
2259 
2260 		/*
2261 		 * Undo swap of u64, then swap on individual u32s,
2262 		 * get the size of the raw area and undo all of the
2263 		 * swap. The pevent interface handles endianity by
2264 		 * itself.
2265 		 */
2266 		if (swapped) {
2267 			u.val64 = bswap_64(u.val64);
2268 			u.val32[0] = bswap_32(u.val32[0]);
2269 			u.val32[1] = bswap_32(u.val32[1]);
2270 		}
2271 		data->raw_size = u.val32[0];
2272 
2273 		/*
2274 		 * The raw data is aligned on 64bits including the
2275 		 * u32 size, so it's safe to use mem_bswap_64.
2276 		 */
2277 		if (swapped)
2278 			mem_bswap_64((void *) array, data->raw_size);
2279 
2280 		array = (void *)array + sizeof(u32);
2281 
2282 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2283 		data->raw_data = (void *)array;
2284 		array = (void *)array + data->raw_size;
2285 	}
2286 
2287 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2288 		const u64 max_branch_nr = UINT64_MAX /
2289 					  sizeof(struct branch_entry);
2290 
2291 		OVERFLOW_CHECK_u64(array);
2292 		data->branch_stack = (struct branch_stack *)array++;
2293 
2294 		if (data->branch_stack->nr > max_branch_nr)
2295 			return -EFAULT;
2296 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2297 		OVERFLOW_CHECK(array, sz, max_size);
2298 		array = (void *)array + sz;
2299 	}
2300 
2301 	if (type & PERF_SAMPLE_REGS_USER) {
2302 		OVERFLOW_CHECK_u64(array);
2303 		data->user_regs.abi = *array;
2304 		array++;
2305 
2306 		if (data->user_regs.abi) {
2307 			u64 mask = evsel->attr.sample_regs_user;
2308 
2309 			sz = hweight_long(mask) * sizeof(u64);
2310 			OVERFLOW_CHECK(array, sz, max_size);
2311 			data->user_regs.mask = mask;
2312 			data->user_regs.regs = (u64 *)array;
2313 			array = (void *)array + sz;
2314 		}
2315 	}
2316 
2317 	if (type & PERF_SAMPLE_STACK_USER) {
2318 		OVERFLOW_CHECK_u64(array);
2319 		sz = *array++;
2320 
2321 		data->user_stack.offset = ((char *)(array - 1)
2322 					  - (char *) event);
2323 
2324 		if (!sz) {
2325 			data->user_stack.size = 0;
2326 		} else {
2327 			OVERFLOW_CHECK(array, sz, max_size);
2328 			data->user_stack.data = (char *)array;
2329 			array = (void *)array + sz;
2330 			OVERFLOW_CHECK_u64(array);
2331 			data->user_stack.size = *array++;
2332 			if (WARN_ONCE(data->user_stack.size > sz,
2333 				      "user stack dump failure\n"))
2334 				return -EFAULT;
2335 		}
2336 	}
2337 
2338 	if (type & PERF_SAMPLE_WEIGHT) {
2339 		OVERFLOW_CHECK_u64(array);
2340 		data->weight = *array;
2341 		array++;
2342 	}
2343 
2344 	if (type & PERF_SAMPLE_DATA_SRC) {
2345 		OVERFLOW_CHECK_u64(array);
2346 		data->data_src = *array;
2347 		array++;
2348 	}
2349 
2350 	if (type & PERF_SAMPLE_TRANSACTION) {
2351 		OVERFLOW_CHECK_u64(array);
2352 		data->transaction = *array;
2353 		array++;
2354 	}
2355 
2356 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2357 	if (type & PERF_SAMPLE_REGS_INTR) {
2358 		OVERFLOW_CHECK_u64(array);
2359 		data->intr_regs.abi = *array;
2360 		array++;
2361 
2362 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2363 			u64 mask = evsel->attr.sample_regs_intr;
2364 
2365 			sz = hweight_long(mask) * sizeof(u64);
2366 			OVERFLOW_CHECK(array, sz, max_size);
2367 			data->intr_regs.mask = mask;
2368 			data->intr_regs.regs = (u64 *)array;
2369 			array = (void *)array + sz;
2370 		}
2371 	}
2372 
2373 	data->phys_addr = 0;
2374 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2375 		data->phys_addr = *array;
2376 		array++;
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2383 				       union perf_event *event,
2384 				       u64 *timestamp)
2385 {
2386 	u64 type = evsel->attr.sample_type;
2387 	const u64 *array;
2388 
2389 	if (!(type & PERF_SAMPLE_TIME))
2390 		return -1;
2391 
2392 	if (event->header.type != PERF_RECORD_SAMPLE) {
2393 		struct perf_sample data = {
2394 			.time = -1ULL,
2395 		};
2396 
2397 		if (!evsel->attr.sample_id_all)
2398 			return -1;
2399 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2400 			return -1;
2401 
2402 		*timestamp = data.time;
2403 		return 0;
2404 	}
2405 
2406 	array = event->sample.array;
2407 
2408 	if (perf_event__check_size(event, evsel->sample_size))
2409 		return -EFAULT;
2410 
2411 	if (type & PERF_SAMPLE_IDENTIFIER)
2412 		array++;
2413 
2414 	if (type & PERF_SAMPLE_IP)
2415 		array++;
2416 
2417 	if (type & PERF_SAMPLE_TID)
2418 		array++;
2419 
2420 	if (type & PERF_SAMPLE_TIME)
2421 		*timestamp = *array;
2422 
2423 	return 0;
2424 }
2425 
2426 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2427 				     u64 read_format)
2428 {
2429 	size_t sz, result = sizeof(struct sample_event);
2430 
2431 	if (type & PERF_SAMPLE_IDENTIFIER)
2432 		result += sizeof(u64);
2433 
2434 	if (type & PERF_SAMPLE_IP)
2435 		result += sizeof(u64);
2436 
2437 	if (type & PERF_SAMPLE_TID)
2438 		result += sizeof(u64);
2439 
2440 	if (type & PERF_SAMPLE_TIME)
2441 		result += sizeof(u64);
2442 
2443 	if (type & PERF_SAMPLE_ADDR)
2444 		result += sizeof(u64);
2445 
2446 	if (type & PERF_SAMPLE_ID)
2447 		result += sizeof(u64);
2448 
2449 	if (type & PERF_SAMPLE_STREAM_ID)
2450 		result += sizeof(u64);
2451 
2452 	if (type & PERF_SAMPLE_CPU)
2453 		result += sizeof(u64);
2454 
2455 	if (type & PERF_SAMPLE_PERIOD)
2456 		result += sizeof(u64);
2457 
2458 	if (type & PERF_SAMPLE_READ) {
2459 		result += sizeof(u64);
2460 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2461 			result += sizeof(u64);
2462 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2463 			result += sizeof(u64);
2464 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2465 		if (read_format & PERF_FORMAT_GROUP) {
2466 			sz = sample->read.group.nr *
2467 			     sizeof(struct sample_read_value);
2468 			result += sz;
2469 		} else {
2470 			result += sizeof(u64);
2471 		}
2472 	}
2473 
2474 	if (type & PERF_SAMPLE_CALLCHAIN) {
2475 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2476 		result += sz;
2477 	}
2478 
2479 	if (type & PERF_SAMPLE_RAW) {
2480 		result += sizeof(u32);
2481 		result += sample->raw_size;
2482 	}
2483 
2484 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2485 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2486 		sz += sizeof(u64);
2487 		result += sz;
2488 	}
2489 
2490 	if (type & PERF_SAMPLE_REGS_USER) {
2491 		if (sample->user_regs.abi) {
2492 			result += sizeof(u64);
2493 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2494 			result += sz;
2495 		} else {
2496 			result += sizeof(u64);
2497 		}
2498 	}
2499 
2500 	if (type & PERF_SAMPLE_STACK_USER) {
2501 		sz = sample->user_stack.size;
2502 		result += sizeof(u64);
2503 		if (sz) {
2504 			result += sz;
2505 			result += sizeof(u64);
2506 		}
2507 	}
2508 
2509 	if (type & PERF_SAMPLE_WEIGHT)
2510 		result += sizeof(u64);
2511 
2512 	if (type & PERF_SAMPLE_DATA_SRC)
2513 		result += sizeof(u64);
2514 
2515 	if (type & PERF_SAMPLE_TRANSACTION)
2516 		result += sizeof(u64);
2517 
2518 	if (type & PERF_SAMPLE_REGS_INTR) {
2519 		if (sample->intr_regs.abi) {
2520 			result += sizeof(u64);
2521 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2522 			result += sz;
2523 		} else {
2524 			result += sizeof(u64);
2525 		}
2526 	}
2527 
2528 	if (type & PERF_SAMPLE_PHYS_ADDR)
2529 		result += sizeof(u64);
2530 
2531 	return result;
2532 }
2533 
2534 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2535 				  u64 read_format,
2536 				  const struct perf_sample *sample)
2537 {
2538 	u64 *array;
2539 	size_t sz;
2540 	/*
2541 	 * used for cross-endian analysis. See git commit 65014ab3
2542 	 * for why this goofiness is needed.
2543 	 */
2544 	union u64_swap u;
2545 
2546 	array = event->sample.array;
2547 
2548 	if (type & PERF_SAMPLE_IDENTIFIER) {
2549 		*array = sample->id;
2550 		array++;
2551 	}
2552 
2553 	if (type & PERF_SAMPLE_IP) {
2554 		*array = sample->ip;
2555 		array++;
2556 	}
2557 
2558 	if (type & PERF_SAMPLE_TID) {
2559 		u.val32[0] = sample->pid;
2560 		u.val32[1] = sample->tid;
2561 		*array = u.val64;
2562 		array++;
2563 	}
2564 
2565 	if (type & PERF_SAMPLE_TIME) {
2566 		*array = sample->time;
2567 		array++;
2568 	}
2569 
2570 	if (type & PERF_SAMPLE_ADDR) {
2571 		*array = sample->addr;
2572 		array++;
2573 	}
2574 
2575 	if (type & PERF_SAMPLE_ID) {
2576 		*array = sample->id;
2577 		array++;
2578 	}
2579 
2580 	if (type & PERF_SAMPLE_STREAM_ID) {
2581 		*array = sample->stream_id;
2582 		array++;
2583 	}
2584 
2585 	if (type & PERF_SAMPLE_CPU) {
2586 		u.val32[0] = sample->cpu;
2587 		u.val32[1] = 0;
2588 		*array = u.val64;
2589 		array++;
2590 	}
2591 
2592 	if (type & PERF_SAMPLE_PERIOD) {
2593 		*array = sample->period;
2594 		array++;
2595 	}
2596 
2597 	if (type & PERF_SAMPLE_READ) {
2598 		if (read_format & PERF_FORMAT_GROUP)
2599 			*array = sample->read.group.nr;
2600 		else
2601 			*array = sample->read.one.value;
2602 		array++;
2603 
2604 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2605 			*array = sample->read.time_enabled;
2606 			array++;
2607 		}
2608 
2609 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2610 			*array = sample->read.time_running;
2611 			array++;
2612 		}
2613 
2614 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2615 		if (read_format & PERF_FORMAT_GROUP) {
2616 			sz = sample->read.group.nr *
2617 			     sizeof(struct sample_read_value);
2618 			memcpy(array, sample->read.group.values, sz);
2619 			array = (void *)array + sz;
2620 		} else {
2621 			*array = sample->read.one.id;
2622 			array++;
2623 		}
2624 	}
2625 
2626 	if (type & PERF_SAMPLE_CALLCHAIN) {
2627 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2628 		memcpy(array, sample->callchain, sz);
2629 		array = (void *)array + sz;
2630 	}
2631 
2632 	if (type & PERF_SAMPLE_RAW) {
2633 		u.val32[0] = sample->raw_size;
2634 		*array = u.val64;
2635 		array = (void *)array + sizeof(u32);
2636 
2637 		memcpy(array, sample->raw_data, sample->raw_size);
2638 		array = (void *)array + sample->raw_size;
2639 	}
2640 
2641 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2642 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2643 		sz += sizeof(u64);
2644 		memcpy(array, sample->branch_stack, sz);
2645 		array = (void *)array + sz;
2646 	}
2647 
2648 	if (type & PERF_SAMPLE_REGS_USER) {
2649 		if (sample->user_regs.abi) {
2650 			*array++ = sample->user_regs.abi;
2651 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2652 			memcpy(array, sample->user_regs.regs, sz);
2653 			array = (void *)array + sz;
2654 		} else {
2655 			*array++ = 0;
2656 		}
2657 	}
2658 
2659 	if (type & PERF_SAMPLE_STACK_USER) {
2660 		sz = sample->user_stack.size;
2661 		*array++ = sz;
2662 		if (sz) {
2663 			memcpy(array, sample->user_stack.data, sz);
2664 			array = (void *)array + sz;
2665 			*array++ = sz;
2666 		}
2667 	}
2668 
2669 	if (type & PERF_SAMPLE_WEIGHT) {
2670 		*array = sample->weight;
2671 		array++;
2672 	}
2673 
2674 	if (type & PERF_SAMPLE_DATA_SRC) {
2675 		*array = sample->data_src;
2676 		array++;
2677 	}
2678 
2679 	if (type & PERF_SAMPLE_TRANSACTION) {
2680 		*array = sample->transaction;
2681 		array++;
2682 	}
2683 
2684 	if (type & PERF_SAMPLE_REGS_INTR) {
2685 		if (sample->intr_regs.abi) {
2686 			*array++ = sample->intr_regs.abi;
2687 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2688 			memcpy(array, sample->intr_regs.regs, sz);
2689 			array = (void *)array + sz;
2690 		} else {
2691 			*array++ = 0;
2692 		}
2693 	}
2694 
2695 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2696 		*array = sample->phys_addr;
2697 		array++;
2698 	}
2699 
2700 	return 0;
2701 }
2702 
2703 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2704 {
2705 	return tep_find_field(evsel->tp_format, name);
2706 }
2707 
2708 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2709 			 const char *name)
2710 {
2711 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2712 	int offset;
2713 
2714 	if (!field)
2715 		return NULL;
2716 
2717 	offset = field->offset;
2718 
2719 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2720 		offset = *(int *)(sample->raw_data + field->offset);
2721 		offset &= 0xffff;
2722 	}
2723 
2724 	return sample->raw_data + offset;
2725 }
2726 
2727 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2728 			 bool needs_swap)
2729 {
2730 	u64 value;
2731 	void *ptr = sample->raw_data + field->offset;
2732 
2733 	switch (field->size) {
2734 	case 1:
2735 		return *(u8 *)ptr;
2736 	case 2:
2737 		value = *(u16 *)ptr;
2738 		break;
2739 	case 4:
2740 		value = *(u32 *)ptr;
2741 		break;
2742 	case 8:
2743 		memcpy(&value, ptr, sizeof(u64));
2744 		break;
2745 	default:
2746 		return 0;
2747 	}
2748 
2749 	if (!needs_swap)
2750 		return value;
2751 
2752 	switch (field->size) {
2753 	case 2:
2754 		return bswap_16(value);
2755 	case 4:
2756 		return bswap_32(value);
2757 	case 8:
2758 		return bswap_64(value);
2759 	default:
2760 		return 0;
2761 	}
2762 
2763 	return 0;
2764 }
2765 
2766 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2767 		       const char *name)
2768 {
2769 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2770 
2771 	if (!field)
2772 		return 0;
2773 
2774 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2775 }
2776 
2777 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2778 			  char *msg, size_t msgsize)
2779 {
2780 	int paranoid;
2781 
2782 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2783 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2784 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2785 		/*
2786 		 * If it's cycles then fall back to hrtimer based
2787 		 * cpu-clock-tick sw counter, which is always available even if
2788 		 * no PMU support.
2789 		 *
2790 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2791 		 * b0a873e).
2792 		 */
2793 		scnprintf(msg, msgsize, "%s",
2794 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2795 
2796 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2797 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2798 
2799 		zfree(&evsel->name);
2800 		return true;
2801 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2802 		   (paranoid = perf_event_paranoid()) > 1) {
2803 		const char *name = perf_evsel__name(evsel);
2804 		char *new_name;
2805 		const char *sep = ":";
2806 
2807 		/* Is there already the separator in the name. */
2808 		if (strchr(name, '/') ||
2809 		    strchr(name, ':'))
2810 			sep = "";
2811 
2812 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2813 			return false;
2814 
2815 		if (evsel->name)
2816 			free(evsel->name);
2817 		evsel->name = new_name;
2818 		scnprintf(msg, msgsize,
2819 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2820 		evsel->attr.exclude_kernel = 1;
2821 
2822 		return true;
2823 	}
2824 
2825 	return false;
2826 }
2827 
2828 static bool find_process(const char *name)
2829 {
2830 	size_t len = strlen(name);
2831 	DIR *dir;
2832 	struct dirent *d;
2833 	int ret = -1;
2834 
2835 	dir = opendir(procfs__mountpoint());
2836 	if (!dir)
2837 		return false;
2838 
2839 	/* Walk through the directory. */
2840 	while (ret && (d = readdir(dir)) != NULL) {
2841 		char path[PATH_MAX];
2842 		char *data;
2843 		size_t size;
2844 
2845 		if ((d->d_type != DT_DIR) ||
2846 		     !strcmp(".", d->d_name) ||
2847 		     !strcmp("..", d->d_name))
2848 			continue;
2849 
2850 		scnprintf(path, sizeof(path), "%s/%s/comm",
2851 			  procfs__mountpoint(), d->d_name);
2852 
2853 		if (filename__read_str(path, &data, &size))
2854 			continue;
2855 
2856 		ret = strncmp(name, data, len);
2857 		free(data);
2858 	}
2859 
2860 	closedir(dir);
2861 	return ret ? false : true;
2862 }
2863 
2864 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2865 			      int err, char *msg, size_t size)
2866 {
2867 	char sbuf[STRERR_BUFSIZE];
2868 	int printed = 0;
2869 
2870 	switch (err) {
2871 	case EPERM:
2872 	case EACCES:
2873 		if (err == EPERM)
2874 			printed = scnprintf(msg, size,
2875 				"No permission to enable %s event.\n\n",
2876 				perf_evsel__name(evsel));
2877 
2878 		return scnprintf(msg + printed, size - printed,
2879 		 "You may not have permission to collect %sstats.\n\n"
2880 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2881 		 "which controls use of the performance events system by\n"
2882 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2883 		 "The current value is %d:\n\n"
2884 		 "  -1: Allow use of (almost) all events by all users\n"
2885 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2886 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2887 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2888 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2889 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2890 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2891 		 "	kernel.perf_event_paranoid = -1\n" ,
2892 				 target->system_wide ? "system-wide " : "",
2893 				 perf_event_paranoid());
2894 	case ENOENT:
2895 		return scnprintf(msg, size, "The %s event is not supported.",
2896 				 perf_evsel__name(evsel));
2897 	case EMFILE:
2898 		return scnprintf(msg, size, "%s",
2899 			 "Too many events are opened.\n"
2900 			 "Probably the maximum number of open file descriptors has been reached.\n"
2901 			 "Hint: Try again after reducing the number of events.\n"
2902 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2903 	case ENOMEM:
2904 		if (evsel__has_callchain(evsel) &&
2905 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2906 			return scnprintf(msg, size,
2907 					 "Not enough memory to setup event with callchain.\n"
2908 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2909 					 "Hint: Current value: %d", sysctl__max_stack());
2910 		break;
2911 	case ENODEV:
2912 		if (target->cpu_list)
2913 			return scnprintf(msg, size, "%s",
2914 	 "No such device - did you specify an out-of-range profile CPU?");
2915 		break;
2916 	case EOPNOTSUPP:
2917 		if (evsel->attr.sample_period != 0)
2918 			return scnprintf(msg, size,
2919 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2920 					 perf_evsel__name(evsel));
2921 		if (evsel->attr.precise_ip)
2922 			return scnprintf(msg, size, "%s",
2923 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2924 #if defined(__i386__) || defined(__x86_64__)
2925 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2926 			return scnprintf(msg, size, "%s",
2927 	"No hardware sampling interrupt available.\n");
2928 #endif
2929 		break;
2930 	case EBUSY:
2931 		if (find_process("oprofiled"))
2932 			return scnprintf(msg, size,
2933 	"The PMU counters are busy/taken by another profiler.\n"
2934 	"We found oprofile daemon running, please stop it and try again.");
2935 		break;
2936 	case EINVAL:
2937 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2938 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2939 		if (perf_missing_features.clockid)
2940 			return scnprintf(msg, size, "clockid feature not supported.");
2941 		if (perf_missing_features.clockid_wrong)
2942 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2943 		break;
2944 	default:
2945 		break;
2946 	}
2947 
2948 	return scnprintf(msg, size,
2949 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2950 	"/bin/dmesg | grep -i perf may provide additional information.\n",
2951 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2952 			 perf_evsel__name(evsel));
2953 }
2954 
2955 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
2956 {
2957 	if (evsel && evsel->evlist)
2958 		return evsel->evlist->env;
2959 	return NULL;
2960 }
2961 
2962 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
2963 {
2964 	int cpu, thread;
2965 
2966 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
2967 		for (thread = 0; thread < xyarray__max_y(evsel->fd);
2968 		     thread++) {
2969 			int fd = FD(evsel, cpu, thread);
2970 
2971 			if (perf_evlist__id_add_fd(evlist, evsel,
2972 						   cpu, thread, fd) < 0)
2973 				return -1;
2974 		}
2975 	}
2976 
2977 	return 0;
2978 }
2979 
2980 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
2981 {
2982 	struct cpu_map *cpus = evsel->cpus;
2983 	struct thread_map *threads = evsel->threads;
2984 
2985 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
2986 		return -ENOMEM;
2987 
2988 	return store_evsel_ids(evsel, evlist);
2989 }
2990