1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <linux/bitops.h> 12 #include <api/fs/tracing_path.h> 13 #include <traceevent/event-parse.h> 14 #include <linux/hw_breakpoint.h> 15 #include <linux/perf_event.h> 16 #include <linux/err.h> 17 #include <sys/resource.h> 18 #include "asm/bug.h" 19 #include "callchain.h" 20 #include "cgroup.h" 21 #include "evsel.h" 22 #include "evlist.h" 23 #include "util.h" 24 #include "cpumap.h" 25 #include "thread_map.h" 26 #include "target.h" 27 #include "perf_regs.h" 28 #include "debug.h" 29 #include "trace-event.h" 30 #include "stat.h" 31 32 static struct { 33 bool sample_id_all; 34 bool exclude_guest; 35 bool mmap2; 36 bool cloexec; 37 bool clockid; 38 bool clockid_wrong; 39 bool lbr_flags; 40 bool write_backward; 41 } perf_missing_features; 42 43 static clockid_t clockid; 44 45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 46 { 47 return 0; 48 } 49 50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 51 { 52 } 53 54 static struct { 55 size_t size; 56 int (*init)(struct perf_evsel *evsel); 57 void (*fini)(struct perf_evsel *evsel); 58 } perf_evsel__object = { 59 .size = sizeof(struct perf_evsel), 60 .init = perf_evsel__no_extra_init, 61 .fini = perf_evsel__no_extra_fini, 62 }; 63 64 int perf_evsel__object_config(size_t object_size, 65 int (*init)(struct perf_evsel *evsel), 66 void (*fini)(struct perf_evsel *evsel)) 67 { 68 69 if (object_size == 0) 70 goto set_methods; 71 72 if (perf_evsel__object.size > object_size) 73 return -EINVAL; 74 75 perf_evsel__object.size = object_size; 76 77 set_methods: 78 if (init != NULL) 79 perf_evsel__object.init = init; 80 81 if (fini != NULL) 82 perf_evsel__object.fini = fini; 83 84 return 0; 85 } 86 87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 88 89 int __perf_evsel__sample_size(u64 sample_type) 90 { 91 u64 mask = sample_type & PERF_SAMPLE_MASK; 92 int size = 0; 93 int i; 94 95 for (i = 0; i < 64; i++) { 96 if (mask & (1ULL << i)) 97 size++; 98 } 99 100 size *= sizeof(u64); 101 102 return size; 103 } 104 105 /** 106 * __perf_evsel__calc_id_pos - calculate id_pos. 107 * @sample_type: sample type 108 * 109 * This function returns the position of the event id (PERF_SAMPLE_ID or 110 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 111 * sample_event. 112 */ 113 static int __perf_evsel__calc_id_pos(u64 sample_type) 114 { 115 int idx = 0; 116 117 if (sample_type & PERF_SAMPLE_IDENTIFIER) 118 return 0; 119 120 if (!(sample_type & PERF_SAMPLE_ID)) 121 return -1; 122 123 if (sample_type & PERF_SAMPLE_IP) 124 idx += 1; 125 126 if (sample_type & PERF_SAMPLE_TID) 127 idx += 1; 128 129 if (sample_type & PERF_SAMPLE_TIME) 130 idx += 1; 131 132 if (sample_type & PERF_SAMPLE_ADDR) 133 idx += 1; 134 135 return idx; 136 } 137 138 /** 139 * __perf_evsel__calc_is_pos - calculate is_pos. 140 * @sample_type: sample type 141 * 142 * This function returns the position (counting backwards) of the event id 143 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 144 * sample_id_all is used there is an id sample appended to non-sample events. 145 */ 146 static int __perf_evsel__calc_is_pos(u64 sample_type) 147 { 148 int idx = 1; 149 150 if (sample_type & PERF_SAMPLE_IDENTIFIER) 151 return 1; 152 153 if (!(sample_type & PERF_SAMPLE_ID)) 154 return -1; 155 156 if (sample_type & PERF_SAMPLE_CPU) 157 idx += 1; 158 159 if (sample_type & PERF_SAMPLE_STREAM_ID) 160 idx += 1; 161 162 return idx; 163 } 164 165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 166 { 167 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 168 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 169 } 170 171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 172 enum perf_event_sample_format bit) 173 { 174 if (!(evsel->attr.sample_type & bit)) { 175 evsel->attr.sample_type |= bit; 176 evsel->sample_size += sizeof(u64); 177 perf_evsel__calc_id_pos(evsel); 178 } 179 } 180 181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 182 enum perf_event_sample_format bit) 183 { 184 if (evsel->attr.sample_type & bit) { 185 evsel->attr.sample_type &= ~bit; 186 evsel->sample_size -= sizeof(u64); 187 perf_evsel__calc_id_pos(evsel); 188 } 189 } 190 191 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 192 bool can_sample_identifier) 193 { 194 if (can_sample_identifier) { 195 perf_evsel__reset_sample_bit(evsel, ID); 196 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 197 } else { 198 perf_evsel__set_sample_bit(evsel, ID); 199 } 200 evsel->attr.read_format |= PERF_FORMAT_ID; 201 } 202 203 void perf_evsel__init(struct perf_evsel *evsel, 204 struct perf_event_attr *attr, int idx) 205 { 206 evsel->idx = idx; 207 evsel->tracking = !idx; 208 evsel->attr = *attr; 209 evsel->leader = evsel; 210 evsel->unit = ""; 211 evsel->scale = 1.0; 212 evsel->evlist = NULL; 213 evsel->bpf_fd = -1; 214 INIT_LIST_HEAD(&evsel->node); 215 INIT_LIST_HEAD(&evsel->config_terms); 216 perf_evsel__object.init(evsel); 217 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 218 perf_evsel__calc_id_pos(evsel); 219 evsel->cmdline_group_boundary = false; 220 } 221 222 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 223 { 224 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 225 226 if (evsel != NULL) 227 perf_evsel__init(evsel, attr, idx); 228 229 if (perf_evsel__is_bpf_output(evsel)) { 230 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 231 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 232 evsel->attr.sample_period = 1; 233 } 234 235 return evsel; 236 } 237 238 /* 239 * Returns pointer with encoded error via <linux/err.h> interface. 240 */ 241 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 242 { 243 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 244 int err = -ENOMEM; 245 246 if (evsel == NULL) { 247 goto out_err; 248 } else { 249 struct perf_event_attr attr = { 250 .type = PERF_TYPE_TRACEPOINT, 251 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 252 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 253 }; 254 255 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 256 goto out_free; 257 258 evsel->tp_format = trace_event__tp_format(sys, name); 259 if (IS_ERR(evsel->tp_format)) { 260 err = PTR_ERR(evsel->tp_format); 261 goto out_free; 262 } 263 264 event_attr_init(&attr); 265 attr.config = evsel->tp_format->id; 266 attr.sample_period = 1; 267 perf_evsel__init(evsel, &attr, idx); 268 } 269 270 return evsel; 271 272 out_free: 273 zfree(&evsel->name); 274 free(evsel); 275 out_err: 276 return ERR_PTR(err); 277 } 278 279 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 280 "cycles", 281 "instructions", 282 "cache-references", 283 "cache-misses", 284 "branches", 285 "branch-misses", 286 "bus-cycles", 287 "stalled-cycles-frontend", 288 "stalled-cycles-backend", 289 "ref-cycles", 290 }; 291 292 static const char *__perf_evsel__hw_name(u64 config) 293 { 294 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 295 return perf_evsel__hw_names[config]; 296 297 return "unknown-hardware"; 298 } 299 300 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 301 { 302 int colon = 0, r = 0; 303 struct perf_event_attr *attr = &evsel->attr; 304 bool exclude_guest_default = false; 305 306 #define MOD_PRINT(context, mod) do { \ 307 if (!attr->exclude_##context) { \ 308 if (!colon) colon = ++r; \ 309 r += scnprintf(bf + r, size - r, "%c", mod); \ 310 } } while(0) 311 312 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 313 MOD_PRINT(kernel, 'k'); 314 MOD_PRINT(user, 'u'); 315 MOD_PRINT(hv, 'h'); 316 exclude_guest_default = true; 317 } 318 319 if (attr->precise_ip) { 320 if (!colon) 321 colon = ++r; 322 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 323 exclude_guest_default = true; 324 } 325 326 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 327 MOD_PRINT(host, 'H'); 328 MOD_PRINT(guest, 'G'); 329 } 330 #undef MOD_PRINT 331 if (colon) 332 bf[colon - 1] = ':'; 333 return r; 334 } 335 336 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 337 { 338 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 339 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 340 } 341 342 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 343 "cpu-clock", 344 "task-clock", 345 "page-faults", 346 "context-switches", 347 "cpu-migrations", 348 "minor-faults", 349 "major-faults", 350 "alignment-faults", 351 "emulation-faults", 352 "dummy", 353 }; 354 355 static const char *__perf_evsel__sw_name(u64 config) 356 { 357 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 358 return perf_evsel__sw_names[config]; 359 return "unknown-software"; 360 } 361 362 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 363 { 364 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 365 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 366 } 367 368 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 369 { 370 int r; 371 372 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 373 374 if (type & HW_BREAKPOINT_R) 375 r += scnprintf(bf + r, size - r, "r"); 376 377 if (type & HW_BREAKPOINT_W) 378 r += scnprintf(bf + r, size - r, "w"); 379 380 if (type & HW_BREAKPOINT_X) 381 r += scnprintf(bf + r, size - r, "x"); 382 383 return r; 384 } 385 386 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 387 { 388 struct perf_event_attr *attr = &evsel->attr; 389 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 390 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 391 } 392 393 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 394 [PERF_EVSEL__MAX_ALIASES] = { 395 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 396 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 397 { "LLC", "L2", }, 398 { "dTLB", "d-tlb", "Data-TLB", }, 399 { "iTLB", "i-tlb", "Instruction-TLB", }, 400 { "branch", "branches", "bpu", "btb", "bpc", }, 401 { "node", }, 402 }; 403 404 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 405 [PERF_EVSEL__MAX_ALIASES] = { 406 { "load", "loads", "read", }, 407 { "store", "stores", "write", }, 408 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 409 }; 410 411 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 412 [PERF_EVSEL__MAX_ALIASES] = { 413 { "refs", "Reference", "ops", "access", }, 414 { "misses", "miss", }, 415 }; 416 417 #define C(x) PERF_COUNT_HW_CACHE_##x 418 #define CACHE_READ (1 << C(OP_READ)) 419 #define CACHE_WRITE (1 << C(OP_WRITE)) 420 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 421 #define COP(x) (1 << x) 422 423 /* 424 * cache operartion stat 425 * L1I : Read and prefetch only 426 * ITLB and BPU : Read-only 427 */ 428 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 429 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 430 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 431 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 432 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 433 [C(ITLB)] = (CACHE_READ), 434 [C(BPU)] = (CACHE_READ), 435 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 436 }; 437 438 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 439 { 440 if (perf_evsel__hw_cache_stat[type] & COP(op)) 441 return true; /* valid */ 442 else 443 return false; /* invalid */ 444 } 445 446 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 447 char *bf, size_t size) 448 { 449 if (result) { 450 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 451 perf_evsel__hw_cache_op[op][0], 452 perf_evsel__hw_cache_result[result][0]); 453 } 454 455 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 456 perf_evsel__hw_cache_op[op][1]); 457 } 458 459 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 460 { 461 u8 op, result, type = (config >> 0) & 0xff; 462 const char *err = "unknown-ext-hardware-cache-type"; 463 464 if (type > PERF_COUNT_HW_CACHE_MAX) 465 goto out_err; 466 467 op = (config >> 8) & 0xff; 468 err = "unknown-ext-hardware-cache-op"; 469 if (op > PERF_COUNT_HW_CACHE_OP_MAX) 470 goto out_err; 471 472 result = (config >> 16) & 0xff; 473 err = "unknown-ext-hardware-cache-result"; 474 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX) 475 goto out_err; 476 477 err = "invalid-cache"; 478 if (!perf_evsel__is_cache_op_valid(type, op)) 479 goto out_err; 480 481 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 482 out_err: 483 return scnprintf(bf, size, "%s", err); 484 } 485 486 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 487 { 488 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 489 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 490 } 491 492 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 493 { 494 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 495 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 496 } 497 498 const char *perf_evsel__name(struct perf_evsel *evsel) 499 { 500 char bf[128]; 501 502 if (evsel->name) 503 return evsel->name; 504 505 switch (evsel->attr.type) { 506 case PERF_TYPE_RAW: 507 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 508 break; 509 510 case PERF_TYPE_HARDWARE: 511 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 512 break; 513 514 case PERF_TYPE_HW_CACHE: 515 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 516 break; 517 518 case PERF_TYPE_SOFTWARE: 519 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 520 break; 521 522 case PERF_TYPE_TRACEPOINT: 523 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 524 break; 525 526 case PERF_TYPE_BREAKPOINT: 527 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 528 break; 529 530 default: 531 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 532 evsel->attr.type); 533 break; 534 } 535 536 evsel->name = strdup(bf); 537 538 return evsel->name ?: "unknown"; 539 } 540 541 const char *perf_evsel__group_name(struct perf_evsel *evsel) 542 { 543 return evsel->group_name ?: "anon group"; 544 } 545 546 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 547 { 548 int ret; 549 struct perf_evsel *pos; 550 const char *group_name = perf_evsel__group_name(evsel); 551 552 ret = scnprintf(buf, size, "%s", group_name); 553 554 ret += scnprintf(buf + ret, size - ret, " { %s", 555 perf_evsel__name(evsel)); 556 557 for_each_group_member(pos, evsel) 558 ret += scnprintf(buf + ret, size - ret, ", %s", 559 perf_evsel__name(pos)); 560 561 ret += scnprintf(buf + ret, size - ret, " }"); 562 563 return ret; 564 } 565 566 void perf_evsel__config_callchain(struct perf_evsel *evsel, 567 struct record_opts *opts, 568 struct callchain_param *param) 569 { 570 bool function = perf_evsel__is_function_event(evsel); 571 struct perf_event_attr *attr = &evsel->attr; 572 573 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 574 575 if (param->record_mode == CALLCHAIN_LBR) { 576 if (!opts->branch_stack) { 577 if (attr->exclude_user) { 578 pr_warning("LBR callstack option is only available " 579 "to get user callchain information. " 580 "Falling back to framepointers.\n"); 581 } else { 582 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 583 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 584 PERF_SAMPLE_BRANCH_CALL_STACK | 585 PERF_SAMPLE_BRANCH_NO_CYCLES | 586 PERF_SAMPLE_BRANCH_NO_FLAGS; 587 } 588 } else 589 pr_warning("Cannot use LBR callstack with branch stack. " 590 "Falling back to framepointers.\n"); 591 } 592 593 if (param->record_mode == CALLCHAIN_DWARF) { 594 if (!function) { 595 perf_evsel__set_sample_bit(evsel, REGS_USER); 596 perf_evsel__set_sample_bit(evsel, STACK_USER); 597 attr->sample_regs_user = PERF_REGS_MASK; 598 attr->sample_stack_user = param->dump_size; 599 attr->exclude_callchain_user = 1; 600 } else { 601 pr_info("Cannot use DWARF unwind for function trace event," 602 " falling back to framepointers.\n"); 603 } 604 } 605 606 if (function) { 607 pr_info("Disabling user space callchains for function trace event.\n"); 608 attr->exclude_callchain_user = 1; 609 } 610 } 611 612 static void 613 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 614 struct callchain_param *param) 615 { 616 struct perf_event_attr *attr = &evsel->attr; 617 618 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 619 if (param->record_mode == CALLCHAIN_LBR) { 620 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 621 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 622 PERF_SAMPLE_BRANCH_CALL_STACK); 623 } 624 if (param->record_mode == CALLCHAIN_DWARF) { 625 perf_evsel__reset_sample_bit(evsel, REGS_USER); 626 perf_evsel__reset_sample_bit(evsel, STACK_USER); 627 } 628 } 629 630 static void apply_config_terms(struct perf_evsel *evsel, 631 struct record_opts *opts) 632 { 633 struct perf_evsel_config_term *term; 634 struct list_head *config_terms = &evsel->config_terms; 635 struct perf_event_attr *attr = &evsel->attr; 636 struct callchain_param param; 637 u32 dump_size = 0; 638 char *callgraph_buf = NULL; 639 640 /* callgraph default */ 641 param.record_mode = callchain_param.record_mode; 642 643 list_for_each_entry(term, config_terms, list) { 644 switch (term->type) { 645 case PERF_EVSEL__CONFIG_TERM_PERIOD: 646 attr->sample_period = term->val.period; 647 attr->freq = 0; 648 break; 649 case PERF_EVSEL__CONFIG_TERM_FREQ: 650 attr->sample_freq = term->val.freq; 651 attr->freq = 1; 652 break; 653 case PERF_EVSEL__CONFIG_TERM_TIME: 654 if (term->val.time) 655 perf_evsel__set_sample_bit(evsel, TIME); 656 else 657 perf_evsel__reset_sample_bit(evsel, TIME); 658 break; 659 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 660 callgraph_buf = term->val.callgraph; 661 break; 662 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 663 dump_size = term->val.stack_user; 664 break; 665 case PERF_EVSEL__CONFIG_TERM_INHERIT: 666 /* 667 * attr->inherit should has already been set by 668 * perf_evsel__config. If user explicitly set 669 * inherit using config terms, override global 670 * opt->no_inherit setting. 671 */ 672 attr->inherit = term->val.inherit ? 1 : 0; 673 break; 674 default: 675 break; 676 } 677 } 678 679 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 680 if ((callgraph_buf != NULL) || (dump_size > 0)) { 681 682 /* parse callgraph parameters */ 683 if (callgraph_buf != NULL) { 684 if (!strcmp(callgraph_buf, "no")) { 685 param.enabled = false; 686 param.record_mode = CALLCHAIN_NONE; 687 } else { 688 param.enabled = true; 689 if (parse_callchain_record(callgraph_buf, ¶m)) { 690 pr_err("per-event callgraph setting for %s failed. " 691 "Apply callgraph global setting for it\n", 692 evsel->name); 693 return; 694 } 695 } 696 } 697 if (dump_size > 0) { 698 dump_size = round_up(dump_size, sizeof(u64)); 699 param.dump_size = dump_size; 700 } 701 702 /* If global callgraph set, clear it */ 703 if (callchain_param.enabled) 704 perf_evsel__reset_callgraph(evsel, &callchain_param); 705 706 /* set perf-event callgraph */ 707 if (param.enabled) 708 perf_evsel__config_callchain(evsel, opts, ¶m); 709 } 710 } 711 712 /* 713 * The enable_on_exec/disabled value strategy: 714 * 715 * 1) For any type of traced program: 716 * - all independent events and group leaders are disabled 717 * - all group members are enabled 718 * 719 * Group members are ruled by group leaders. They need to 720 * be enabled, because the group scheduling relies on that. 721 * 722 * 2) For traced programs executed by perf: 723 * - all independent events and group leaders have 724 * enable_on_exec set 725 * - we don't specifically enable or disable any event during 726 * the record command 727 * 728 * Independent events and group leaders are initially disabled 729 * and get enabled by exec. Group members are ruled by group 730 * leaders as stated in 1). 731 * 732 * 3) For traced programs attached by perf (pid/tid): 733 * - we specifically enable or disable all events during 734 * the record command 735 * 736 * When attaching events to already running traced we 737 * enable/disable events specifically, as there's no 738 * initial traced exec call. 739 */ 740 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 741 struct callchain_param *callchain) 742 { 743 struct perf_evsel *leader = evsel->leader; 744 struct perf_event_attr *attr = &evsel->attr; 745 int track = evsel->tracking; 746 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 747 748 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 749 attr->inherit = !opts->no_inherit; 750 751 perf_evsel__set_sample_bit(evsel, IP); 752 perf_evsel__set_sample_bit(evsel, TID); 753 754 if (evsel->sample_read) { 755 perf_evsel__set_sample_bit(evsel, READ); 756 757 /* 758 * We need ID even in case of single event, because 759 * PERF_SAMPLE_READ process ID specific data. 760 */ 761 perf_evsel__set_sample_id(evsel, false); 762 763 /* 764 * Apply group format only if we belong to group 765 * with more than one members. 766 */ 767 if (leader->nr_members > 1) { 768 attr->read_format |= PERF_FORMAT_GROUP; 769 attr->inherit = 0; 770 } 771 } 772 773 /* 774 * We default some events to have a default interval. But keep 775 * it a weak assumption overridable by the user. 776 */ 777 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 778 opts->user_interval != ULLONG_MAX)) { 779 if (opts->freq) { 780 perf_evsel__set_sample_bit(evsel, PERIOD); 781 attr->freq = 1; 782 attr->sample_freq = opts->freq; 783 } else { 784 attr->sample_period = opts->default_interval; 785 } 786 } 787 788 /* 789 * Disable sampling for all group members other 790 * than leader in case leader 'leads' the sampling. 791 */ 792 if ((leader != evsel) && leader->sample_read) { 793 attr->sample_freq = 0; 794 attr->sample_period = 0; 795 } 796 797 if (opts->no_samples) 798 attr->sample_freq = 0; 799 800 if (opts->inherit_stat) 801 attr->inherit_stat = 1; 802 803 if (opts->sample_address) { 804 perf_evsel__set_sample_bit(evsel, ADDR); 805 attr->mmap_data = track; 806 } 807 808 /* 809 * We don't allow user space callchains for function trace 810 * event, due to issues with page faults while tracing page 811 * fault handler and its overall trickiness nature. 812 */ 813 if (perf_evsel__is_function_event(evsel)) 814 evsel->attr.exclude_callchain_user = 1; 815 816 if (callchain && callchain->enabled && !evsel->no_aux_samples) 817 perf_evsel__config_callchain(evsel, opts, callchain); 818 819 if (opts->sample_intr_regs) { 820 attr->sample_regs_intr = opts->sample_intr_regs; 821 perf_evsel__set_sample_bit(evsel, REGS_INTR); 822 } 823 824 if (target__has_cpu(&opts->target)) 825 perf_evsel__set_sample_bit(evsel, CPU); 826 827 if (opts->period) 828 perf_evsel__set_sample_bit(evsel, PERIOD); 829 830 /* 831 * When the user explicitly disabled time don't force it here. 832 */ 833 if (opts->sample_time && 834 (!perf_missing_features.sample_id_all && 835 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 836 opts->sample_time_set))) 837 perf_evsel__set_sample_bit(evsel, TIME); 838 839 if (opts->raw_samples && !evsel->no_aux_samples) { 840 perf_evsel__set_sample_bit(evsel, TIME); 841 perf_evsel__set_sample_bit(evsel, RAW); 842 perf_evsel__set_sample_bit(evsel, CPU); 843 } 844 845 if (opts->sample_address) 846 perf_evsel__set_sample_bit(evsel, DATA_SRC); 847 848 if (opts->no_buffering) { 849 attr->watermark = 0; 850 attr->wakeup_events = 1; 851 } 852 if (opts->branch_stack && !evsel->no_aux_samples) { 853 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 854 attr->branch_sample_type = opts->branch_stack; 855 } 856 857 if (opts->sample_weight) 858 perf_evsel__set_sample_bit(evsel, WEIGHT); 859 860 attr->task = track; 861 attr->mmap = track; 862 attr->mmap2 = track && !perf_missing_features.mmap2; 863 attr->comm = track; 864 865 if (opts->record_switch_events) 866 attr->context_switch = track; 867 868 if (opts->sample_transaction) 869 perf_evsel__set_sample_bit(evsel, TRANSACTION); 870 871 if (opts->running_time) { 872 evsel->attr.read_format |= 873 PERF_FORMAT_TOTAL_TIME_ENABLED | 874 PERF_FORMAT_TOTAL_TIME_RUNNING; 875 } 876 877 /* 878 * XXX see the function comment above 879 * 880 * Disabling only independent events or group leaders, 881 * keeping group members enabled. 882 */ 883 if (perf_evsel__is_group_leader(evsel)) 884 attr->disabled = 1; 885 886 /* 887 * Setting enable_on_exec for independent events and 888 * group leaders for traced executed by perf. 889 */ 890 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 891 !opts->initial_delay) 892 attr->enable_on_exec = 1; 893 894 if (evsel->immediate) { 895 attr->disabled = 0; 896 attr->enable_on_exec = 0; 897 } 898 899 clockid = opts->clockid; 900 if (opts->use_clockid) { 901 attr->use_clockid = 1; 902 attr->clockid = opts->clockid; 903 } 904 905 if (evsel->precise_max) 906 perf_event_attr__set_max_precise_ip(attr); 907 908 if (opts->all_user) { 909 attr->exclude_kernel = 1; 910 attr->exclude_user = 0; 911 } 912 913 if (opts->all_kernel) { 914 attr->exclude_kernel = 0; 915 attr->exclude_user = 1; 916 } 917 918 /* 919 * Apply event specific term settings, 920 * it overloads any global configuration. 921 */ 922 apply_config_terms(evsel, opts); 923 } 924 925 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 926 { 927 int cpu, thread; 928 929 if (evsel->system_wide) 930 nthreads = 1; 931 932 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 933 934 if (evsel->fd) { 935 for (cpu = 0; cpu < ncpus; cpu++) { 936 for (thread = 0; thread < nthreads; thread++) { 937 FD(evsel, cpu, thread) = -1; 938 } 939 } 940 } 941 942 return evsel->fd != NULL ? 0 : -ENOMEM; 943 } 944 945 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads, 946 int ioc, void *arg) 947 { 948 int cpu, thread; 949 950 if (evsel->system_wide) 951 nthreads = 1; 952 953 for (cpu = 0; cpu < ncpus; cpu++) { 954 for (thread = 0; thread < nthreads; thread++) { 955 int fd = FD(evsel, cpu, thread), 956 err = ioctl(fd, ioc, arg); 957 958 if (err) 959 return err; 960 } 961 } 962 963 return 0; 964 } 965 966 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads, 967 const char *filter) 968 { 969 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 970 PERF_EVENT_IOC_SET_FILTER, 971 (void *)filter); 972 } 973 974 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 975 { 976 char *new_filter = strdup(filter); 977 978 if (new_filter != NULL) { 979 free(evsel->filter); 980 evsel->filter = new_filter; 981 return 0; 982 } 983 984 return -1; 985 } 986 987 int perf_evsel__append_filter(struct perf_evsel *evsel, 988 const char *op, const char *filter) 989 { 990 char *new_filter; 991 992 if (evsel->filter == NULL) 993 return perf_evsel__set_filter(evsel, filter); 994 995 if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) { 996 free(evsel->filter); 997 evsel->filter = new_filter; 998 return 0; 999 } 1000 1001 return -1; 1002 } 1003 1004 int perf_evsel__enable(struct perf_evsel *evsel) 1005 { 1006 int nthreads = thread_map__nr(evsel->threads); 1007 int ncpus = cpu_map__nr(evsel->cpus); 1008 1009 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1010 PERF_EVENT_IOC_ENABLE, 1011 0); 1012 } 1013 1014 int perf_evsel__disable(struct perf_evsel *evsel) 1015 { 1016 int nthreads = thread_map__nr(evsel->threads); 1017 int ncpus = cpu_map__nr(evsel->cpus); 1018 1019 return perf_evsel__run_ioctl(evsel, ncpus, nthreads, 1020 PERF_EVENT_IOC_DISABLE, 1021 0); 1022 } 1023 1024 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1025 { 1026 if (ncpus == 0 || nthreads == 0) 1027 return 0; 1028 1029 if (evsel->system_wide) 1030 nthreads = 1; 1031 1032 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1033 if (evsel->sample_id == NULL) 1034 return -ENOMEM; 1035 1036 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1037 if (evsel->id == NULL) { 1038 xyarray__delete(evsel->sample_id); 1039 evsel->sample_id = NULL; 1040 return -ENOMEM; 1041 } 1042 1043 return 0; 1044 } 1045 1046 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1047 { 1048 xyarray__delete(evsel->fd); 1049 evsel->fd = NULL; 1050 } 1051 1052 static void perf_evsel__free_id(struct perf_evsel *evsel) 1053 { 1054 xyarray__delete(evsel->sample_id); 1055 evsel->sample_id = NULL; 1056 zfree(&evsel->id); 1057 } 1058 1059 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1060 { 1061 struct perf_evsel_config_term *term, *h; 1062 1063 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1064 list_del(&term->list); 1065 free(term); 1066 } 1067 } 1068 1069 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1070 { 1071 int cpu, thread; 1072 1073 if (evsel->system_wide) 1074 nthreads = 1; 1075 1076 for (cpu = 0; cpu < ncpus; cpu++) 1077 for (thread = 0; thread < nthreads; ++thread) { 1078 close(FD(evsel, cpu, thread)); 1079 FD(evsel, cpu, thread) = -1; 1080 } 1081 } 1082 1083 void perf_evsel__exit(struct perf_evsel *evsel) 1084 { 1085 assert(list_empty(&evsel->node)); 1086 assert(evsel->evlist == NULL); 1087 perf_evsel__free_fd(evsel); 1088 perf_evsel__free_id(evsel); 1089 perf_evsel__free_config_terms(evsel); 1090 close_cgroup(evsel->cgrp); 1091 cpu_map__put(evsel->cpus); 1092 cpu_map__put(evsel->own_cpus); 1093 thread_map__put(evsel->threads); 1094 zfree(&evsel->group_name); 1095 zfree(&evsel->name); 1096 perf_evsel__object.fini(evsel); 1097 } 1098 1099 void perf_evsel__delete(struct perf_evsel *evsel) 1100 { 1101 perf_evsel__exit(evsel); 1102 free(evsel); 1103 } 1104 1105 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1106 struct perf_counts_values *count) 1107 { 1108 struct perf_counts_values tmp; 1109 1110 if (!evsel->prev_raw_counts) 1111 return; 1112 1113 if (cpu == -1) { 1114 tmp = evsel->prev_raw_counts->aggr; 1115 evsel->prev_raw_counts->aggr = *count; 1116 } else { 1117 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1118 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1119 } 1120 1121 count->val = count->val - tmp.val; 1122 count->ena = count->ena - tmp.ena; 1123 count->run = count->run - tmp.run; 1124 } 1125 1126 void perf_counts_values__scale(struct perf_counts_values *count, 1127 bool scale, s8 *pscaled) 1128 { 1129 s8 scaled = 0; 1130 1131 if (scale) { 1132 if (count->run == 0) { 1133 scaled = -1; 1134 count->val = 0; 1135 } else if (count->run < count->ena) { 1136 scaled = 1; 1137 count->val = (u64)((double) count->val * count->ena / count->run + 0.5); 1138 } 1139 } else 1140 count->ena = count->run = 0; 1141 1142 if (pscaled) 1143 *pscaled = scaled; 1144 } 1145 1146 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1147 struct perf_counts_values *count) 1148 { 1149 memset(count, 0, sizeof(*count)); 1150 1151 if (FD(evsel, cpu, thread) < 0) 1152 return -EINVAL; 1153 1154 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0) 1155 return -errno; 1156 1157 return 0; 1158 } 1159 1160 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1161 int cpu, int thread, bool scale) 1162 { 1163 struct perf_counts_values count; 1164 size_t nv = scale ? 3 : 1; 1165 1166 if (FD(evsel, cpu, thread) < 0) 1167 return -EINVAL; 1168 1169 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1170 return -ENOMEM; 1171 1172 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) 1173 return -errno; 1174 1175 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1176 perf_counts_values__scale(&count, scale, NULL); 1177 *perf_counts(evsel->counts, cpu, thread) = count; 1178 return 0; 1179 } 1180 1181 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1182 { 1183 struct perf_evsel *leader = evsel->leader; 1184 int fd; 1185 1186 if (perf_evsel__is_group_leader(evsel)) 1187 return -1; 1188 1189 /* 1190 * Leader must be already processed/open, 1191 * if not it's a bug. 1192 */ 1193 BUG_ON(!leader->fd); 1194 1195 fd = FD(leader, cpu, thread); 1196 BUG_ON(fd == -1); 1197 1198 return fd; 1199 } 1200 1201 struct bit_names { 1202 int bit; 1203 const char *name; 1204 }; 1205 1206 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1207 { 1208 bool first_bit = true; 1209 int i = 0; 1210 1211 do { 1212 if (value & bits[i].bit) { 1213 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1214 first_bit = false; 1215 } 1216 } while (bits[++i].name != NULL); 1217 } 1218 1219 static void __p_sample_type(char *buf, size_t size, u64 value) 1220 { 1221 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1222 struct bit_names bits[] = { 1223 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1224 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1225 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1226 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1227 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1228 bit_name(WEIGHT), 1229 { .name = NULL, } 1230 }; 1231 #undef bit_name 1232 __p_bits(buf, size, value, bits); 1233 } 1234 1235 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1236 { 1237 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1238 struct bit_names bits[] = { 1239 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1240 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1241 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1242 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1243 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1244 { .name = NULL, } 1245 }; 1246 #undef bit_name 1247 __p_bits(buf, size, value, bits); 1248 } 1249 1250 static void __p_read_format(char *buf, size_t size, u64 value) 1251 { 1252 #define bit_name(n) { PERF_FORMAT_##n, #n } 1253 struct bit_names bits[] = { 1254 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1255 bit_name(ID), bit_name(GROUP), 1256 { .name = NULL, } 1257 }; 1258 #undef bit_name 1259 __p_bits(buf, size, value, bits); 1260 } 1261 1262 #define BUF_SIZE 1024 1263 1264 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1265 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1266 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1267 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1268 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1269 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1270 1271 #define PRINT_ATTRn(_n, _f, _p) \ 1272 do { \ 1273 if (attr->_f) { \ 1274 _p(attr->_f); \ 1275 ret += attr__fprintf(fp, _n, buf, priv);\ 1276 } \ 1277 } while (0) 1278 1279 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1280 1281 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1282 attr__fprintf_f attr__fprintf, void *priv) 1283 { 1284 char buf[BUF_SIZE]; 1285 int ret = 0; 1286 1287 PRINT_ATTRf(type, p_unsigned); 1288 PRINT_ATTRf(size, p_unsigned); 1289 PRINT_ATTRf(config, p_hex); 1290 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1291 PRINT_ATTRf(sample_type, p_sample_type); 1292 PRINT_ATTRf(read_format, p_read_format); 1293 1294 PRINT_ATTRf(disabled, p_unsigned); 1295 PRINT_ATTRf(inherit, p_unsigned); 1296 PRINT_ATTRf(pinned, p_unsigned); 1297 PRINT_ATTRf(exclusive, p_unsigned); 1298 PRINT_ATTRf(exclude_user, p_unsigned); 1299 PRINT_ATTRf(exclude_kernel, p_unsigned); 1300 PRINT_ATTRf(exclude_hv, p_unsigned); 1301 PRINT_ATTRf(exclude_idle, p_unsigned); 1302 PRINT_ATTRf(mmap, p_unsigned); 1303 PRINT_ATTRf(comm, p_unsigned); 1304 PRINT_ATTRf(freq, p_unsigned); 1305 PRINT_ATTRf(inherit_stat, p_unsigned); 1306 PRINT_ATTRf(enable_on_exec, p_unsigned); 1307 PRINT_ATTRf(task, p_unsigned); 1308 PRINT_ATTRf(watermark, p_unsigned); 1309 PRINT_ATTRf(precise_ip, p_unsigned); 1310 PRINT_ATTRf(mmap_data, p_unsigned); 1311 PRINT_ATTRf(sample_id_all, p_unsigned); 1312 PRINT_ATTRf(exclude_host, p_unsigned); 1313 PRINT_ATTRf(exclude_guest, p_unsigned); 1314 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1315 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1316 PRINT_ATTRf(mmap2, p_unsigned); 1317 PRINT_ATTRf(comm_exec, p_unsigned); 1318 PRINT_ATTRf(use_clockid, p_unsigned); 1319 PRINT_ATTRf(context_switch, p_unsigned); 1320 PRINT_ATTRf(write_backward, p_unsigned); 1321 1322 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1323 PRINT_ATTRf(bp_type, p_unsigned); 1324 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1325 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1326 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1327 PRINT_ATTRf(sample_regs_user, p_hex); 1328 PRINT_ATTRf(sample_stack_user, p_unsigned); 1329 PRINT_ATTRf(clockid, p_signed); 1330 PRINT_ATTRf(sample_regs_intr, p_hex); 1331 PRINT_ATTRf(aux_watermark, p_unsigned); 1332 1333 return ret; 1334 } 1335 1336 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1337 void *priv __attribute__((unused))) 1338 { 1339 return fprintf(fp, " %-32s %s\n", name, val); 1340 } 1341 1342 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1343 struct thread_map *threads) 1344 { 1345 int cpu, thread, nthreads; 1346 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1347 int pid = -1, err; 1348 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1349 1350 if (evsel->system_wide) 1351 nthreads = 1; 1352 else 1353 nthreads = threads->nr; 1354 1355 if (evsel->fd == NULL && 1356 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1357 return -ENOMEM; 1358 1359 if (evsel->cgrp) { 1360 flags |= PERF_FLAG_PID_CGROUP; 1361 pid = evsel->cgrp->fd; 1362 } 1363 1364 fallback_missing_features: 1365 if (perf_missing_features.clockid_wrong) 1366 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1367 if (perf_missing_features.clockid) { 1368 evsel->attr.use_clockid = 0; 1369 evsel->attr.clockid = 0; 1370 } 1371 if (perf_missing_features.cloexec) 1372 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1373 if (perf_missing_features.mmap2) 1374 evsel->attr.mmap2 = 0; 1375 if (perf_missing_features.exclude_guest) 1376 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1377 if (perf_missing_features.lbr_flags) 1378 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1379 PERF_SAMPLE_BRANCH_NO_CYCLES); 1380 if (perf_missing_features.write_backward) 1381 evsel->attr.write_backward = false; 1382 retry_sample_id: 1383 if (perf_missing_features.sample_id_all) 1384 evsel->attr.sample_id_all = 0; 1385 1386 if (verbose >= 2) { 1387 fprintf(stderr, "%.60s\n", graph_dotted_line); 1388 fprintf(stderr, "perf_event_attr:\n"); 1389 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL); 1390 fprintf(stderr, "%.60s\n", graph_dotted_line); 1391 } 1392 1393 for (cpu = 0; cpu < cpus->nr; cpu++) { 1394 1395 for (thread = 0; thread < nthreads; thread++) { 1396 int group_fd; 1397 1398 if (!evsel->cgrp && !evsel->system_wide) 1399 pid = thread_map__pid(threads, thread); 1400 1401 group_fd = get_group_fd(evsel, cpu, thread); 1402 retry_open: 1403 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n", 1404 pid, cpus->map[cpu], group_fd, flags); 1405 1406 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr, 1407 pid, 1408 cpus->map[cpu], 1409 group_fd, flags); 1410 if (FD(evsel, cpu, thread) < 0) { 1411 err = -errno; 1412 pr_debug2("sys_perf_event_open failed, error %d\n", 1413 err); 1414 goto try_fallback; 1415 } 1416 1417 if (evsel->bpf_fd >= 0) { 1418 int evt_fd = FD(evsel, cpu, thread); 1419 int bpf_fd = evsel->bpf_fd; 1420 1421 err = ioctl(evt_fd, 1422 PERF_EVENT_IOC_SET_BPF, 1423 bpf_fd); 1424 if (err && errno != EEXIST) { 1425 pr_err("failed to attach bpf fd %d: %s\n", 1426 bpf_fd, strerror(errno)); 1427 err = -EINVAL; 1428 goto out_close; 1429 } 1430 } 1431 1432 set_rlimit = NO_CHANGE; 1433 1434 /* 1435 * If we succeeded but had to kill clockid, fail and 1436 * have perf_evsel__open_strerror() print us a nice 1437 * error. 1438 */ 1439 if (perf_missing_features.clockid || 1440 perf_missing_features.clockid_wrong) { 1441 err = -EINVAL; 1442 goto out_close; 1443 } 1444 1445 if (evsel->overwrite && 1446 perf_missing_features.write_backward) { 1447 err = -EINVAL; 1448 goto out_close; 1449 } 1450 } 1451 } 1452 1453 return 0; 1454 1455 try_fallback: 1456 /* 1457 * perf stat needs between 5 and 22 fds per CPU. When we run out 1458 * of them try to increase the limits. 1459 */ 1460 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1461 struct rlimit l; 1462 int old_errno = errno; 1463 1464 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1465 if (set_rlimit == NO_CHANGE) 1466 l.rlim_cur = l.rlim_max; 1467 else { 1468 l.rlim_cur = l.rlim_max + 1000; 1469 l.rlim_max = l.rlim_cur; 1470 } 1471 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1472 set_rlimit++; 1473 errno = old_errno; 1474 goto retry_open; 1475 } 1476 } 1477 errno = old_errno; 1478 } 1479 1480 if (err != -EINVAL || cpu > 0 || thread > 0) 1481 goto out_close; 1482 1483 /* 1484 * Must probe features in the order they were added to the 1485 * perf_event_attr interface. 1486 */ 1487 if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 1488 perf_missing_features.clockid_wrong = true; 1489 goto fallback_missing_features; 1490 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 1491 perf_missing_features.clockid = true; 1492 goto fallback_missing_features; 1493 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 1494 perf_missing_features.cloexec = true; 1495 goto fallback_missing_features; 1496 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 1497 perf_missing_features.mmap2 = true; 1498 goto fallback_missing_features; 1499 } else if (!perf_missing_features.exclude_guest && 1500 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 1501 perf_missing_features.exclude_guest = true; 1502 goto fallback_missing_features; 1503 } else if (!perf_missing_features.sample_id_all) { 1504 perf_missing_features.sample_id_all = true; 1505 goto retry_sample_id; 1506 } else if (!perf_missing_features.lbr_flags && 1507 (evsel->attr.branch_sample_type & 1508 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1509 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1510 perf_missing_features.lbr_flags = true; 1511 goto fallback_missing_features; 1512 } else if (!perf_missing_features.write_backward && 1513 evsel->attr.write_backward) { 1514 perf_missing_features.write_backward = true; 1515 goto fallback_missing_features; 1516 } 1517 1518 out_close: 1519 do { 1520 while (--thread >= 0) { 1521 close(FD(evsel, cpu, thread)); 1522 FD(evsel, cpu, thread) = -1; 1523 } 1524 thread = nthreads; 1525 } while (--cpu >= 0); 1526 return err; 1527 } 1528 1529 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads) 1530 { 1531 if (evsel->fd == NULL) 1532 return; 1533 1534 perf_evsel__close_fd(evsel, ncpus, nthreads); 1535 perf_evsel__free_fd(evsel); 1536 } 1537 1538 static struct { 1539 struct cpu_map map; 1540 int cpus[1]; 1541 } empty_cpu_map = { 1542 .map.nr = 1, 1543 .cpus = { -1, }, 1544 }; 1545 1546 static struct { 1547 struct thread_map map; 1548 int threads[1]; 1549 } empty_thread_map = { 1550 .map.nr = 1, 1551 .threads = { -1, }, 1552 }; 1553 1554 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1555 struct thread_map *threads) 1556 { 1557 if (cpus == NULL) { 1558 /* Work around old compiler warnings about strict aliasing */ 1559 cpus = &empty_cpu_map.map; 1560 } 1561 1562 if (threads == NULL) 1563 threads = &empty_thread_map.map; 1564 1565 return __perf_evsel__open(evsel, cpus, threads); 1566 } 1567 1568 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 1569 struct cpu_map *cpus) 1570 { 1571 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map); 1572 } 1573 1574 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 1575 struct thread_map *threads) 1576 { 1577 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads); 1578 } 1579 1580 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 1581 const union perf_event *event, 1582 struct perf_sample *sample) 1583 { 1584 u64 type = evsel->attr.sample_type; 1585 const u64 *array = event->sample.array; 1586 bool swapped = evsel->needs_swap; 1587 union u64_swap u; 1588 1589 array += ((event->header.size - 1590 sizeof(event->header)) / sizeof(u64)) - 1; 1591 1592 if (type & PERF_SAMPLE_IDENTIFIER) { 1593 sample->id = *array; 1594 array--; 1595 } 1596 1597 if (type & PERF_SAMPLE_CPU) { 1598 u.val64 = *array; 1599 if (swapped) { 1600 /* undo swap of u64, then swap on individual u32s */ 1601 u.val64 = bswap_64(u.val64); 1602 u.val32[0] = bswap_32(u.val32[0]); 1603 } 1604 1605 sample->cpu = u.val32[0]; 1606 array--; 1607 } 1608 1609 if (type & PERF_SAMPLE_STREAM_ID) { 1610 sample->stream_id = *array; 1611 array--; 1612 } 1613 1614 if (type & PERF_SAMPLE_ID) { 1615 sample->id = *array; 1616 array--; 1617 } 1618 1619 if (type & PERF_SAMPLE_TIME) { 1620 sample->time = *array; 1621 array--; 1622 } 1623 1624 if (type & PERF_SAMPLE_TID) { 1625 u.val64 = *array; 1626 if (swapped) { 1627 /* undo swap of u64, then swap on individual u32s */ 1628 u.val64 = bswap_64(u.val64); 1629 u.val32[0] = bswap_32(u.val32[0]); 1630 u.val32[1] = bswap_32(u.val32[1]); 1631 } 1632 1633 sample->pid = u.val32[0]; 1634 sample->tid = u.val32[1]; 1635 array--; 1636 } 1637 1638 return 0; 1639 } 1640 1641 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 1642 u64 size) 1643 { 1644 return size > max_size || offset + size > endp; 1645 } 1646 1647 #define OVERFLOW_CHECK(offset, size, max_size) \ 1648 do { \ 1649 if (overflow(endp, (max_size), (offset), (size))) \ 1650 return -EFAULT; \ 1651 } while (0) 1652 1653 #define OVERFLOW_CHECK_u64(offset) \ 1654 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 1655 1656 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 1657 struct perf_sample *data) 1658 { 1659 u64 type = evsel->attr.sample_type; 1660 bool swapped = evsel->needs_swap; 1661 const u64 *array; 1662 u16 max_size = event->header.size; 1663 const void *endp = (void *)event + max_size; 1664 u64 sz; 1665 1666 /* 1667 * used for cross-endian analysis. See git commit 65014ab3 1668 * for why this goofiness is needed. 1669 */ 1670 union u64_swap u; 1671 1672 memset(data, 0, sizeof(*data)); 1673 data->cpu = data->pid = data->tid = -1; 1674 data->stream_id = data->id = data->time = -1ULL; 1675 data->period = evsel->attr.sample_period; 1676 data->weight = 0; 1677 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1678 1679 if (event->header.type != PERF_RECORD_SAMPLE) { 1680 if (!evsel->attr.sample_id_all) 1681 return 0; 1682 return perf_evsel__parse_id_sample(evsel, event, data); 1683 } 1684 1685 array = event->sample.array; 1686 1687 /* 1688 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 1689 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 1690 * check the format does not go past the end of the event. 1691 */ 1692 if (evsel->sample_size + sizeof(event->header) > event->header.size) 1693 return -EFAULT; 1694 1695 data->id = -1ULL; 1696 if (type & PERF_SAMPLE_IDENTIFIER) { 1697 data->id = *array; 1698 array++; 1699 } 1700 1701 if (type & PERF_SAMPLE_IP) { 1702 data->ip = *array; 1703 array++; 1704 } 1705 1706 if (type & PERF_SAMPLE_TID) { 1707 u.val64 = *array; 1708 if (swapped) { 1709 /* undo swap of u64, then swap on individual u32s */ 1710 u.val64 = bswap_64(u.val64); 1711 u.val32[0] = bswap_32(u.val32[0]); 1712 u.val32[1] = bswap_32(u.val32[1]); 1713 } 1714 1715 data->pid = u.val32[0]; 1716 data->tid = u.val32[1]; 1717 array++; 1718 } 1719 1720 if (type & PERF_SAMPLE_TIME) { 1721 data->time = *array; 1722 array++; 1723 } 1724 1725 data->addr = 0; 1726 if (type & PERF_SAMPLE_ADDR) { 1727 data->addr = *array; 1728 array++; 1729 } 1730 1731 if (type & PERF_SAMPLE_ID) { 1732 data->id = *array; 1733 array++; 1734 } 1735 1736 if (type & PERF_SAMPLE_STREAM_ID) { 1737 data->stream_id = *array; 1738 array++; 1739 } 1740 1741 if (type & PERF_SAMPLE_CPU) { 1742 1743 u.val64 = *array; 1744 if (swapped) { 1745 /* undo swap of u64, then swap on individual u32s */ 1746 u.val64 = bswap_64(u.val64); 1747 u.val32[0] = bswap_32(u.val32[0]); 1748 } 1749 1750 data->cpu = u.val32[0]; 1751 array++; 1752 } 1753 1754 if (type & PERF_SAMPLE_PERIOD) { 1755 data->period = *array; 1756 array++; 1757 } 1758 1759 if (type & PERF_SAMPLE_READ) { 1760 u64 read_format = evsel->attr.read_format; 1761 1762 OVERFLOW_CHECK_u64(array); 1763 if (read_format & PERF_FORMAT_GROUP) 1764 data->read.group.nr = *array; 1765 else 1766 data->read.one.value = *array; 1767 1768 array++; 1769 1770 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 1771 OVERFLOW_CHECK_u64(array); 1772 data->read.time_enabled = *array; 1773 array++; 1774 } 1775 1776 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 1777 OVERFLOW_CHECK_u64(array); 1778 data->read.time_running = *array; 1779 array++; 1780 } 1781 1782 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1783 if (read_format & PERF_FORMAT_GROUP) { 1784 const u64 max_group_nr = UINT64_MAX / 1785 sizeof(struct sample_read_value); 1786 1787 if (data->read.group.nr > max_group_nr) 1788 return -EFAULT; 1789 sz = data->read.group.nr * 1790 sizeof(struct sample_read_value); 1791 OVERFLOW_CHECK(array, sz, max_size); 1792 data->read.group.values = 1793 (struct sample_read_value *)array; 1794 array = (void *)array + sz; 1795 } else { 1796 OVERFLOW_CHECK_u64(array); 1797 data->read.one.id = *array; 1798 array++; 1799 } 1800 } 1801 1802 if (type & PERF_SAMPLE_CALLCHAIN) { 1803 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 1804 1805 OVERFLOW_CHECK_u64(array); 1806 data->callchain = (struct ip_callchain *)array++; 1807 if (data->callchain->nr > max_callchain_nr) 1808 return -EFAULT; 1809 sz = data->callchain->nr * sizeof(u64); 1810 OVERFLOW_CHECK(array, sz, max_size); 1811 array = (void *)array + sz; 1812 } 1813 1814 if (type & PERF_SAMPLE_RAW) { 1815 OVERFLOW_CHECK_u64(array); 1816 u.val64 = *array; 1817 if (WARN_ONCE(swapped, 1818 "Endianness of raw data not corrected!\n")) { 1819 /* undo swap of u64, then swap on individual u32s */ 1820 u.val64 = bswap_64(u.val64); 1821 u.val32[0] = bswap_32(u.val32[0]); 1822 u.val32[1] = bswap_32(u.val32[1]); 1823 } 1824 data->raw_size = u.val32[0]; 1825 array = (void *)array + sizeof(u32); 1826 1827 OVERFLOW_CHECK(array, data->raw_size, max_size); 1828 data->raw_data = (void *)array; 1829 array = (void *)array + data->raw_size; 1830 } 1831 1832 if (type & PERF_SAMPLE_BRANCH_STACK) { 1833 const u64 max_branch_nr = UINT64_MAX / 1834 sizeof(struct branch_entry); 1835 1836 OVERFLOW_CHECK_u64(array); 1837 data->branch_stack = (struct branch_stack *)array++; 1838 1839 if (data->branch_stack->nr > max_branch_nr) 1840 return -EFAULT; 1841 sz = data->branch_stack->nr * sizeof(struct branch_entry); 1842 OVERFLOW_CHECK(array, sz, max_size); 1843 array = (void *)array + sz; 1844 } 1845 1846 if (type & PERF_SAMPLE_REGS_USER) { 1847 OVERFLOW_CHECK_u64(array); 1848 data->user_regs.abi = *array; 1849 array++; 1850 1851 if (data->user_regs.abi) { 1852 u64 mask = evsel->attr.sample_regs_user; 1853 1854 sz = hweight_long(mask) * sizeof(u64); 1855 OVERFLOW_CHECK(array, sz, max_size); 1856 data->user_regs.mask = mask; 1857 data->user_regs.regs = (u64 *)array; 1858 array = (void *)array + sz; 1859 } 1860 } 1861 1862 if (type & PERF_SAMPLE_STACK_USER) { 1863 OVERFLOW_CHECK_u64(array); 1864 sz = *array++; 1865 1866 data->user_stack.offset = ((char *)(array - 1) 1867 - (char *) event); 1868 1869 if (!sz) { 1870 data->user_stack.size = 0; 1871 } else { 1872 OVERFLOW_CHECK(array, sz, max_size); 1873 data->user_stack.data = (char *)array; 1874 array = (void *)array + sz; 1875 OVERFLOW_CHECK_u64(array); 1876 data->user_stack.size = *array++; 1877 if (WARN_ONCE(data->user_stack.size > sz, 1878 "user stack dump failure\n")) 1879 return -EFAULT; 1880 } 1881 } 1882 1883 data->weight = 0; 1884 if (type & PERF_SAMPLE_WEIGHT) { 1885 OVERFLOW_CHECK_u64(array); 1886 data->weight = *array; 1887 array++; 1888 } 1889 1890 data->data_src = PERF_MEM_DATA_SRC_NONE; 1891 if (type & PERF_SAMPLE_DATA_SRC) { 1892 OVERFLOW_CHECK_u64(array); 1893 data->data_src = *array; 1894 array++; 1895 } 1896 1897 data->transaction = 0; 1898 if (type & PERF_SAMPLE_TRANSACTION) { 1899 OVERFLOW_CHECK_u64(array); 1900 data->transaction = *array; 1901 array++; 1902 } 1903 1904 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 1905 if (type & PERF_SAMPLE_REGS_INTR) { 1906 OVERFLOW_CHECK_u64(array); 1907 data->intr_regs.abi = *array; 1908 array++; 1909 1910 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 1911 u64 mask = evsel->attr.sample_regs_intr; 1912 1913 sz = hweight_long(mask) * sizeof(u64); 1914 OVERFLOW_CHECK(array, sz, max_size); 1915 data->intr_regs.mask = mask; 1916 data->intr_regs.regs = (u64 *)array; 1917 array = (void *)array + sz; 1918 } 1919 } 1920 1921 return 0; 1922 } 1923 1924 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 1925 u64 read_format) 1926 { 1927 size_t sz, result = sizeof(struct sample_event); 1928 1929 if (type & PERF_SAMPLE_IDENTIFIER) 1930 result += sizeof(u64); 1931 1932 if (type & PERF_SAMPLE_IP) 1933 result += sizeof(u64); 1934 1935 if (type & PERF_SAMPLE_TID) 1936 result += sizeof(u64); 1937 1938 if (type & PERF_SAMPLE_TIME) 1939 result += sizeof(u64); 1940 1941 if (type & PERF_SAMPLE_ADDR) 1942 result += sizeof(u64); 1943 1944 if (type & PERF_SAMPLE_ID) 1945 result += sizeof(u64); 1946 1947 if (type & PERF_SAMPLE_STREAM_ID) 1948 result += sizeof(u64); 1949 1950 if (type & PERF_SAMPLE_CPU) 1951 result += sizeof(u64); 1952 1953 if (type & PERF_SAMPLE_PERIOD) 1954 result += sizeof(u64); 1955 1956 if (type & PERF_SAMPLE_READ) { 1957 result += sizeof(u64); 1958 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1959 result += sizeof(u64); 1960 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1961 result += sizeof(u64); 1962 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 1963 if (read_format & PERF_FORMAT_GROUP) { 1964 sz = sample->read.group.nr * 1965 sizeof(struct sample_read_value); 1966 result += sz; 1967 } else { 1968 result += sizeof(u64); 1969 } 1970 } 1971 1972 if (type & PERF_SAMPLE_CALLCHAIN) { 1973 sz = (sample->callchain->nr + 1) * sizeof(u64); 1974 result += sz; 1975 } 1976 1977 if (type & PERF_SAMPLE_RAW) { 1978 result += sizeof(u32); 1979 result += sample->raw_size; 1980 } 1981 1982 if (type & PERF_SAMPLE_BRANCH_STACK) { 1983 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 1984 sz += sizeof(u64); 1985 result += sz; 1986 } 1987 1988 if (type & PERF_SAMPLE_REGS_USER) { 1989 if (sample->user_regs.abi) { 1990 result += sizeof(u64); 1991 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 1992 result += sz; 1993 } else { 1994 result += sizeof(u64); 1995 } 1996 } 1997 1998 if (type & PERF_SAMPLE_STACK_USER) { 1999 sz = sample->user_stack.size; 2000 result += sizeof(u64); 2001 if (sz) { 2002 result += sz; 2003 result += sizeof(u64); 2004 } 2005 } 2006 2007 if (type & PERF_SAMPLE_WEIGHT) 2008 result += sizeof(u64); 2009 2010 if (type & PERF_SAMPLE_DATA_SRC) 2011 result += sizeof(u64); 2012 2013 if (type & PERF_SAMPLE_TRANSACTION) 2014 result += sizeof(u64); 2015 2016 if (type & PERF_SAMPLE_REGS_INTR) { 2017 if (sample->intr_regs.abi) { 2018 result += sizeof(u64); 2019 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2020 result += sz; 2021 } else { 2022 result += sizeof(u64); 2023 } 2024 } 2025 2026 return result; 2027 } 2028 2029 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2030 u64 read_format, 2031 const struct perf_sample *sample, 2032 bool swapped) 2033 { 2034 u64 *array; 2035 size_t sz; 2036 /* 2037 * used for cross-endian analysis. See git commit 65014ab3 2038 * for why this goofiness is needed. 2039 */ 2040 union u64_swap u; 2041 2042 array = event->sample.array; 2043 2044 if (type & PERF_SAMPLE_IDENTIFIER) { 2045 *array = sample->id; 2046 array++; 2047 } 2048 2049 if (type & PERF_SAMPLE_IP) { 2050 *array = sample->ip; 2051 array++; 2052 } 2053 2054 if (type & PERF_SAMPLE_TID) { 2055 u.val32[0] = sample->pid; 2056 u.val32[1] = sample->tid; 2057 if (swapped) { 2058 /* 2059 * Inverse of what is done in perf_evsel__parse_sample 2060 */ 2061 u.val32[0] = bswap_32(u.val32[0]); 2062 u.val32[1] = bswap_32(u.val32[1]); 2063 u.val64 = bswap_64(u.val64); 2064 } 2065 2066 *array = u.val64; 2067 array++; 2068 } 2069 2070 if (type & PERF_SAMPLE_TIME) { 2071 *array = sample->time; 2072 array++; 2073 } 2074 2075 if (type & PERF_SAMPLE_ADDR) { 2076 *array = sample->addr; 2077 array++; 2078 } 2079 2080 if (type & PERF_SAMPLE_ID) { 2081 *array = sample->id; 2082 array++; 2083 } 2084 2085 if (type & PERF_SAMPLE_STREAM_ID) { 2086 *array = sample->stream_id; 2087 array++; 2088 } 2089 2090 if (type & PERF_SAMPLE_CPU) { 2091 u.val32[0] = sample->cpu; 2092 if (swapped) { 2093 /* 2094 * Inverse of what is done in perf_evsel__parse_sample 2095 */ 2096 u.val32[0] = bswap_32(u.val32[0]); 2097 u.val64 = bswap_64(u.val64); 2098 } 2099 *array = u.val64; 2100 array++; 2101 } 2102 2103 if (type & PERF_SAMPLE_PERIOD) { 2104 *array = sample->period; 2105 array++; 2106 } 2107 2108 if (type & PERF_SAMPLE_READ) { 2109 if (read_format & PERF_FORMAT_GROUP) 2110 *array = sample->read.group.nr; 2111 else 2112 *array = sample->read.one.value; 2113 array++; 2114 2115 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2116 *array = sample->read.time_enabled; 2117 array++; 2118 } 2119 2120 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2121 *array = sample->read.time_running; 2122 array++; 2123 } 2124 2125 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2126 if (read_format & PERF_FORMAT_GROUP) { 2127 sz = sample->read.group.nr * 2128 sizeof(struct sample_read_value); 2129 memcpy(array, sample->read.group.values, sz); 2130 array = (void *)array + sz; 2131 } else { 2132 *array = sample->read.one.id; 2133 array++; 2134 } 2135 } 2136 2137 if (type & PERF_SAMPLE_CALLCHAIN) { 2138 sz = (sample->callchain->nr + 1) * sizeof(u64); 2139 memcpy(array, sample->callchain, sz); 2140 array = (void *)array + sz; 2141 } 2142 2143 if (type & PERF_SAMPLE_RAW) { 2144 u.val32[0] = sample->raw_size; 2145 if (WARN_ONCE(swapped, 2146 "Endianness of raw data not corrected!\n")) { 2147 /* 2148 * Inverse of what is done in perf_evsel__parse_sample 2149 */ 2150 u.val32[0] = bswap_32(u.val32[0]); 2151 u.val32[1] = bswap_32(u.val32[1]); 2152 u.val64 = bswap_64(u.val64); 2153 } 2154 *array = u.val64; 2155 array = (void *)array + sizeof(u32); 2156 2157 memcpy(array, sample->raw_data, sample->raw_size); 2158 array = (void *)array + sample->raw_size; 2159 } 2160 2161 if (type & PERF_SAMPLE_BRANCH_STACK) { 2162 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2163 sz += sizeof(u64); 2164 memcpy(array, sample->branch_stack, sz); 2165 array = (void *)array + sz; 2166 } 2167 2168 if (type & PERF_SAMPLE_REGS_USER) { 2169 if (sample->user_regs.abi) { 2170 *array++ = sample->user_regs.abi; 2171 sz = hweight_long(sample->user_regs.mask) * sizeof(u64); 2172 memcpy(array, sample->user_regs.regs, sz); 2173 array = (void *)array + sz; 2174 } else { 2175 *array++ = 0; 2176 } 2177 } 2178 2179 if (type & PERF_SAMPLE_STACK_USER) { 2180 sz = sample->user_stack.size; 2181 *array++ = sz; 2182 if (sz) { 2183 memcpy(array, sample->user_stack.data, sz); 2184 array = (void *)array + sz; 2185 *array++ = sz; 2186 } 2187 } 2188 2189 if (type & PERF_SAMPLE_WEIGHT) { 2190 *array = sample->weight; 2191 array++; 2192 } 2193 2194 if (type & PERF_SAMPLE_DATA_SRC) { 2195 *array = sample->data_src; 2196 array++; 2197 } 2198 2199 if (type & PERF_SAMPLE_TRANSACTION) { 2200 *array = sample->transaction; 2201 array++; 2202 } 2203 2204 if (type & PERF_SAMPLE_REGS_INTR) { 2205 if (sample->intr_regs.abi) { 2206 *array++ = sample->intr_regs.abi; 2207 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64); 2208 memcpy(array, sample->intr_regs.regs, sz); 2209 array = (void *)array + sz; 2210 } else { 2211 *array++ = 0; 2212 } 2213 } 2214 2215 return 0; 2216 } 2217 2218 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2219 { 2220 return pevent_find_field(evsel->tp_format, name); 2221 } 2222 2223 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2224 const char *name) 2225 { 2226 struct format_field *field = perf_evsel__field(evsel, name); 2227 int offset; 2228 2229 if (!field) 2230 return NULL; 2231 2232 offset = field->offset; 2233 2234 if (field->flags & FIELD_IS_DYNAMIC) { 2235 offset = *(int *)(sample->raw_data + field->offset); 2236 offset &= 0xffff; 2237 } 2238 2239 return sample->raw_data + offset; 2240 } 2241 2242 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2243 const char *name) 2244 { 2245 struct format_field *field = perf_evsel__field(evsel, name); 2246 void *ptr; 2247 u64 value; 2248 2249 if (!field) 2250 return 0; 2251 2252 ptr = sample->raw_data + field->offset; 2253 2254 switch (field->size) { 2255 case 1: 2256 return *(u8 *)ptr; 2257 case 2: 2258 value = *(u16 *)ptr; 2259 break; 2260 case 4: 2261 value = *(u32 *)ptr; 2262 break; 2263 case 8: 2264 memcpy(&value, ptr, sizeof(u64)); 2265 break; 2266 default: 2267 return 0; 2268 } 2269 2270 if (!evsel->needs_swap) 2271 return value; 2272 2273 switch (field->size) { 2274 case 2: 2275 return bswap_16(value); 2276 case 4: 2277 return bswap_32(value); 2278 case 8: 2279 return bswap_64(value); 2280 default: 2281 return 0; 2282 } 2283 2284 return 0; 2285 } 2286 2287 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2288 char *msg, size_t msgsize) 2289 { 2290 int paranoid; 2291 2292 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2293 evsel->attr.type == PERF_TYPE_HARDWARE && 2294 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2295 /* 2296 * If it's cycles then fall back to hrtimer based 2297 * cpu-clock-tick sw counter, which is always available even if 2298 * no PMU support. 2299 * 2300 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2301 * b0a873e). 2302 */ 2303 scnprintf(msg, msgsize, "%s", 2304 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2305 2306 evsel->attr.type = PERF_TYPE_SOFTWARE; 2307 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2308 2309 zfree(&evsel->name); 2310 return true; 2311 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2312 (paranoid = perf_event_paranoid()) > 1) { 2313 const char *name = perf_evsel__name(evsel); 2314 char *new_name; 2315 2316 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0) 2317 return false; 2318 2319 if (evsel->name) 2320 free(evsel->name); 2321 evsel->name = new_name; 2322 scnprintf(msg, msgsize, 2323 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2324 evsel->attr.exclude_kernel = 1; 2325 2326 return true; 2327 } 2328 2329 return false; 2330 } 2331 2332 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2333 int err, char *msg, size_t size) 2334 { 2335 char sbuf[STRERR_BUFSIZE]; 2336 2337 switch (err) { 2338 case EPERM: 2339 case EACCES: 2340 return scnprintf(msg, size, 2341 "You may not have permission to collect %sstats.\n\n" 2342 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2343 "which controls use of the performance events system by\n" 2344 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2345 "The current value is %d:\n\n" 2346 " -1: Allow use of (almost) all events by all users\n" 2347 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n" 2348 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2349 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN", 2350 target->system_wide ? "system-wide " : "", 2351 perf_event_paranoid()); 2352 case ENOENT: 2353 return scnprintf(msg, size, "The %s event is not supported.", 2354 perf_evsel__name(evsel)); 2355 case EMFILE: 2356 return scnprintf(msg, size, "%s", 2357 "Too many events are opened.\n" 2358 "Probably the maximum number of open file descriptors has been reached.\n" 2359 "Hint: Try again after reducing the number of events.\n" 2360 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2361 case ENOMEM: 2362 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 && 2363 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2364 return scnprintf(msg, size, 2365 "Not enough memory to setup event with callchain.\n" 2366 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2367 "Hint: Current value: %d", sysctl_perf_event_max_stack); 2368 break; 2369 case ENODEV: 2370 if (target->cpu_list) 2371 return scnprintf(msg, size, "%s", 2372 "No such device - did you specify an out-of-range profile CPU?"); 2373 break; 2374 case EOPNOTSUPP: 2375 if (evsel->attr.precise_ip) 2376 return scnprintf(msg, size, "%s", 2377 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2378 #if defined(__i386__) || defined(__x86_64__) 2379 if (evsel->attr.type == PERF_TYPE_HARDWARE) 2380 return scnprintf(msg, size, "%s", 2381 "No hardware sampling interrupt available.\n" 2382 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it."); 2383 #endif 2384 break; 2385 case EBUSY: 2386 if (find_process("oprofiled")) 2387 return scnprintf(msg, size, 2388 "The PMU counters are busy/taken by another profiler.\n" 2389 "We found oprofile daemon running, please stop it and try again."); 2390 break; 2391 case EINVAL: 2392 if (perf_missing_features.clockid) 2393 return scnprintf(msg, size, "clockid feature not supported."); 2394 if (perf_missing_features.clockid_wrong) 2395 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2396 break; 2397 default: 2398 break; 2399 } 2400 2401 return scnprintf(msg, size, 2402 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2403 "/bin/dmesg may provide additional information.\n" 2404 "No CONFIG_PERF_EVENTS=y kernel support configured?", 2405 err, strerror_r(err, sbuf, sizeof(sbuf)), 2406 perf_evsel__name(evsel)); 2407 } 2408