1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 #include "util.h" 10 #include <api/fs/fs.h> 11 #include <poll.h> 12 #include "cpumap.h" 13 #include "thread_map.h" 14 #include "target.h" 15 #include "evlist.h" 16 #include "evsel.h" 17 #include "debug.h" 18 #include "asm/bug.h" 19 #include <unistd.h> 20 21 #include "parse-events.h" 22 #include <subcmd/parse-options.h> 23 24 #include <sys/mman.h> 25 26 #include <linux/bitops.h> 27 #include <linux/hash.h> 28 #include <linux/log2.h> 29 #include <linux/err.h> 30 31 static void perf_mmap__munmap(struct perf_mmap *map); 32 static void perf_mmap__put(struct perf_mmap *map); 33 34 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 35 #define SID(e, x, y) xyarray__entry(e->sample_id, x, y) 36 37 void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus, 38 struct thread_map *threads) 39 { 40 int i; 41 42 for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i) 43 INIT_HLIST_HEAD(&evlist->heads[i]); 44 INIT_LIST_HEAD(&evlist->entries); 45 perf_evlist__set_maps(evlist, cpus, threads); 46 fdarray__init(&evlist->pollfd, 64); 47 evlist->workload.pid = -1; 48 evlist->bkw_mmap_state = BKW_MMAP_NOTREADY; 49 } 50 51 struct perf_evlist *perf_evlist__new(void) 52 { 53 struct perf_evlist *evlist = zalloc(sizeof(*evlist)); 54 55 if (evlist != NULL) 56 perf_evlist__init(evlist, NULL, NULL); 57 58 return evlist; 59 } 60 61 struct perf_evlist *perf_evlist__new_default(void) 62 { 63 struct perf_evlist *evlist = perf_evlist__new(); 64 65 if (evlist && perf_evlist__add_default(evlist)) { 66 perf_evlist__delete(evlist); 67 evlist = NULL; 68 } 69 70 return evlist; 71 } 72 73 struct perf_evlist *perf_evlist__new_dummy(void) 74 { 75 struct perf_evlist *evlist = perf_evlist__new(); 76 77 if (evlist && perf_evlist__add_dummy(evlist)) { 78 perf_evlist__delete(evlist); 79 evlist = NULL; 80 } 81 82 return evlist; 83 } 84 85 /** 86 * perf_evlist__set_id_pos - set the positions of event ids. 87 * @evlist: selected event list 88 * 89 * Events with compatible sample types all have the same id_pos 90 * and is_pos. For convenience, put a copy on evlist. 91 */ 92 void perf_evlist__set_id_pos(struct perf_evlist *evlist) 93 { 94 struct perf_evsel *first = perf_evlist__first(evlist); 95 96 evlist->id_pos = first->id_pos; 97 evlist->is_pos = first->is_pos; 98 } 99 100 static void perf_evlist__update_id_pos(struct perf_evlist *evlist) 101 { 102 struct perf_evsel *evsel; 103 104 evlist__for_each_entry(evlist, evsel) 105 perf_evsel__calc_id_pos(evsel); 106 107 perf_evlist__set_id_pos(evlist); 108 } 109 110 static void perf_evlist__purge(struct perf_evlist *evlist) 111 { 112 struct perf_evsel *pos, *n; 113 114 evlist__for_each_entry_safe(evlist, n, pos) { 115 list_del_init(&pos->node); 116 pos->evlist = NULL; 117 perf_evsel__delete(pos); 118 } 119 120 evlist->nr_entries = 0; 121 } 122 123 void perf_evlist__exit(struct perf_evlist *evlist) 124 { 125 zfree(&evlist->mmap); 126 zfree(&evlist->backward_mmap); 127 fdarray__exit(&evlist->pollfd); 128 } 129 130 void perf_evlist__delete(struct perf_evlist *evlist) 131 { 132 if (evlist == NULL) 133 return; 134 135 perf_evlist__munmap(evlist); 136 perf_evlist__close(evlist); 137 cpu_map__put(evlist->cpus); 138 thread_map__put(evlist->threads); 139 evlist->cpus = NULL; 140 evlist->threads = NULL; 141 perf_evlist__purge(evlist); 142 perf_evlist__exit(evlist); 143 free(evlist); 144 } 145 146 static void __perf_evlist__propagate_maps(struct perf_evlist *evlist, 147 struct perf_evsel *evsel) 148 { 149 /* 150 * We already have cpus for evsel (via PMU sysfs) so 151 * keep it, if there's no target cpu list defined. 152 */ 153 if (!evsel->own_cpus || evlist->has_user_cpus) { 154 cpu_map__put(evsel->cpus); 155 evsel->cpus = cpu_map__get(evlist->cpus); 156 } else if (evsel->cpus != evsel->own_cpus) { 157 cpu_map__put(evsel->cpus); 158 evsel->cpus = cpu_map__get(evsel->own_cpus); 159 } 160 161 thread_map__put(evsel->threads); 162 evsel->threads = thread_map__get(evlist->threads); 163 } 164 165 static void perf_evlist__propagate_maps(struct perf_evlist *evlist) 166 { 167 struct perf_evsel *evsel; 168 169 evlist__for_each_entry(evlist, evsel) 170 __perf_evlist__propagate_maps(evlist, evsel); 171 } 172 173 void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry) 174 { 175 entry->evlist = evlist; 176 list_add_tail(&entry->node, &evlist->entries); 177 entry->idx = evlist->nr_entries; 178 entry->tracking = !entry->idx; 179 180 if (!evlist->nr_entries++) 181 perf_evlist__set_id_pos(evlist); 182 183 __perf_evlist__propagate_maps(evlist, entry); 184 } 185 186 void perf_evlist__remove(struct perf_evlist *evlist, struct perf_evsel *evsel) 187 { 188 evsel->evlist = NULL; 189 list_del_init(&evsel->node); 190 evlist->nr_entries -= 1; 191 } 192 193 void perf_evlist__splice_list_tail(struct perf_evlist *evlist, 194 struct list_head *list) 195 { 196 struct perf_evsel *evsel, *temp; 197 198 __evlist__for_each_entry_safe(list, temp, evsel) { 199 list_del_init(&evsel->node); 200 perf_evlist__add(evlist, evsel); 201 } 202 } 203 204 void __perf_evlist__set_leader(struct list_head *list) 205 { 206 struct perf_evsel *evsel, *leader; 207 208 leader = list_entry(list->next, struct perf_evsel, node); 209 evsel = list_entry(list->prev, struct perf_evsel, node); 210 211 leader->nr_members = evsel->idx - leader->idx + 1; 212 213 __evlist__for_each_entry(list, evsel) { 214 evsel->leader = leader; 215 } 216 } 217 218 void perf_evlist__set_leader(struct perf_evlist *evlist) 219 { 220 if (evlist->nr_entries) { 221 evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0; 222 __perf_evlist__set_leader(&evlist->entries); 223 } 224 } 225 226 void perf_event_attr__set_max_precise_ip(struct perf_event_attr *attr) 227 { 228 attr->precise_ip = 3; 229 230 while (attr->precise_ip != 0) { 231 int fd = sys_perf_event_open(attr, 0, -1, -1, 0); 232 if (fd != -1) { 233 close(fd); 234 break; 235 } 236 --attr->precise_ip; 237 } 238 } 239 240 int perf_evlist__add_default(struct perf_evlist *evlist) 241 { 242 struct perf_evsel *evsel = perf_evsel__new_cycles(); 243 244 if (evsel == NULL) 245 return -ENOMEM; 246 247 perf_evlist__add(evlist, evsel); 248 return 0; 249 } 250 251 int perf_evlist__add_dummy(struct perf_evlist *evlist) 252 { 253 struct perf_event_attr attr = { 254 .type = PERF_TYPE_SOFTWARE, 255 .config = PERF_COUNT_SW_DUMMY, 256 .size = sizeof(attr), /* to capture ABI version */ 257 }; 258 struct perf_evsel *evsel = perf_evsel__new(&attr); 259 260 if (evsel == NULL) 261 return -ENOMEM; 262 263 perf_evlist__add(evlist, evsel); 264 return 0; 265 } 266 267 static int perf_evlist__add_attrs(struct perf_evlist *evlist, 268 struct perf_event_attr *attrs, size_t nr_attrs) 269 { 270 struct perf_evsel *evsel, *n; 271 LIST_HEAD(head); 272 size_t i; 273 274 for (i = 0; i < nr_attrs; i++) { 275 evsel = perf_evsel__new_idx(attrs + i, evlist->nr_entries + i); 276 if (evsel == NULL) 277 goto out_delete_partial_list; 278 list_add_tail(&evsel->node, &head); 279 } 280 281 perf_evlist__splice_list_tail(evlist, &head); 282 283 return 0; 284 285 out_delete_partial_list: 286 __evlist__for_each_entry_safe(&head, n, evsel) 287 perf_evsel__delete(evsel); 288 return -1; 289 } 290 291 int __perf_evlist__add_default_attrs(struct perf_evlist *evlist, 292 struct perf_event_attr *attrs, size_t nr_attrs) 293 { 294 size_t i; 295 296 for (i = 0; i < nr_attrs; i++) 297 event_attr_init(attrs + i); 298 299 return perf_evlist__add_attrs(evlist, attrs, nr_attrs); 300 } 301 302 struct perf_evsel * 303 perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id) 304 { 305 struct perf_evsel *evsel; 306 307 evlist__for_each_entry(evlist, evsel) { 308 if (evsel->attr.type == PERF_TYPE_TRACEPOINT && 309 (int)evsel->attr.config == id) 310 return evsel; 311 } 312 313 return NULL; 314 } 315 316 struct perf_evsel * 317 perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist, 318 const char *name) 319 { 320 struct perf_evsel *evsel; 321 322 evlist__for_each_entry(evlist, evsel) { 323 if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) && 324 (strcmp(evsel->name, name) == 0)) 325 return evsel; 326 } 327 328 return NULL; 329 } 330 331 int perf_evlist__add_newtp(struct perf_evlist *evlist, 332 const char *sys, const char *name, void *handler) 333 { 334 struct perf_evsel *evsel = perf_evsel__newtp(sys, name); 335 336 if (IS_ERR(evsel)) 337 return -1; 338 339 evsel->handler = handler; 340 perf_evlist__add(evlist, evsel); 341 return 0; 342 } 343 344 static int perf_evlist__nr_threads(struct perf_evlist *evlist, 345 struct perf_evsel *evsel) 346 { 347 if (evsel->system_wide) 348 return 1; 349 else 350 return thread_map__nr(evlist->threads); 351 } 352 353 void perf_evlist__disable(struct perf_evlist *evlist) 354 { 355 struct perf_evsel *pos; 356 357 evlist__for_each_entry(evlist, pos) { 358 if (!perf_evsel__is_group_leader(pos) || !pos->fd) 359 continue; 360 perf_evsel__disable(pos); 361 } 362 363 evlist->enabled = false; 364 } 365 366 void perf_evlist__enable(struct perf_evlist *evlist) 367 { 368 struct perf_evsel *pos; 369 370 evlist__for_each_entry(evlist, pos) { 371 if (!perf_evsel__is_group_leader(pos) || !pos->fd) 372 continue; 373 perf_evsel__enable(pos); 374 } 375 376 evlist->enabled = true; 377 } 378 379 void perf_evlist__toggle_enable(struct perf_evlist *evlist) 380 { 381 (evlist->enabled ? perf_evlist__disable : perf_evlist__enable)(evlist); 382 } 383 384 static int perf_evlist__enable_event_cpu(struct perf_evlist *evlist, 385 struct perf_evsel *evsel, int cpu) 386 { 387 int thread, err; 388 int nr_threads = perf_evlist__nr_threads(evlist, evsel); 389 390 if (!evsel->fd) 391 return -EINVAL; 392 393 for (thread = 0; thread < nr_threads; thread++) { 394 err = ioctl(FD(evsel, cpu, thread), 395 PERF_EVENT_IOC_ENABLE, 0); 396 if (err) 397 return err; 398 } 399 return 0; 400 } 401 402 static int perf_evlist__enable_event_thread(struct perf_evlist *evlist, 403 struct perf_evsel *evsel, 404 int thread) 405 { 406 int cpu, err; 407 int nr_cpus = cpu_map__nr(evlist->cpus); 408 409 if (!evsel->fd) 410 return -EINVAL; 411 412 for (cpu = 0; cpu < nr_cpus; cpu++) { 413 err = ioctl(FD(evsel, cpu, thread), PERF_EVENT_IOC_ENABLE, 0); 414 if (err) 415 return err; 416 } 417 return 0; 418 } 419 420 int perf_evlist__enable_event_idx(struct perf_evlist *evlist, 421 struct perf_evsel *evsel, int idx) 422 { 423 bool per_cpu_mmaps = !cpu_map__empty(evlist->cpus); 424 425 if (per_cpu_mmaps) 426 return perf_evlist__enable_event_cpu(evlist, evsel, idx); 427 else 428 return perf_evlist__enable_event_thread(evlist, evsel, idx); 429 } 430 431 int perf_evlist__alloc_pollfd(struct perf_evlist *evlist) 432 { 433 int nr_cpus = cpu_map__nr(evlist->cpus); 434 int nr_threads = thread_map__nr(evlist->threads); 435 int nfds = 0; 436 struct perf_evsel *evsel; 437 438 evlist__for_each_entry(evlist, evsel) { 439 if (evsel->system_wide) 440 nfds += nr_cpus; 441 else 442 nfds += nr_cpus * nr_threads; 443 } 444 445 if (fdarray__available_entries(&evlist->pollfd) < nfds && 446 fdarray__grow(&evlist->pollfd, nfds) < 0) 447 return -ENOMEM; 448 449 return 0; 450 } 451 452 static int __perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd, 453 struct perf_mmap *map, short revent) 454 { 455 int pos = fdarray__add(&evlist->pollfd, fd, revent | POLLERR | POLLHUP); 456 /* 457 * Save the idx so that when we filter out fds POLLHUP'ed we can 458 * close the associated evlist->mmap[] entry. 459 */ 460 if (pos >= 0) { 461 evlist->pollfd.priv[pos].ptr = map; 462 463 fcntl(fd, F_SETFL, O_NONBLOCK); 464 } 465 466 return pos; 467 } 468 469 int perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd) 470 { 471 return __perf_evlist__add_pollfd(evlist, fd, NULL, POLLIN); 472 } 473 474 static void perf_evlist__munmap_filtered(struct fdarray *fda, int fd, 475 void *arg __maybe_unused) 476 { 477 struct perf_mmap *map = fda->priv[fd].ptr; 478 479 if (map) 480 perf_mmap__put(map); 481 } 482 483 int perf_evlist__filter_pollfd(struct perf_evlist *evlist, short revents_and_mask) 484 { 485 return fdarray__filter(&evlist->pollfd, revents_and_mask, 486 perf_evlist__munmap_filtered, NULL); 487 } 488 489 int perf_evlist__poll(struct perf_evlist *evlist, int timeout) 490 { 491 return fdarray__poll(&evlist->pollfd, timeout); 492 } 493 494 static void perf_evlist__id_hash(struct perf_evlist *evlist, 495 struct perf_evsel *evsel, 496 int cpu, int thread, u64 id) 497 { 498 int hash; 499 struct perf_sample_id *sid = SID(evsel, cpu, thread); 500 501 sid->id = id; 502 sid->evsel = evsel; 503 hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS); 504 hlist_add_head(&sid->node, &evlist->heads[hash]); 505 } 506 507 void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel, 508 int cpu, int thread, u64 id) 509 { 510 perf_evlist__id_hash(evlist, evsel, cpu, thread, id); 511 evsel->id[evsel->ids++] = id; 512 } 513 514 int perf_evlist__id_add_fd(struct perf_evlist *evlist, 515 struct perf_evsel *evsel, 516 int cpu, int thread, int fd) 517 { 518 u64 read_data[4] = { 0, }; 519 int id_idx = 1; /* The first entry is the counter value */ 520 u64 id; 521 int ret; 522 523 ret = ioctl(fd, PERF_EVENT_IOC_ID, &id); 524 if (!ret) 525 goto add; 526 527 if (errno != ENOTTY) 528 return -1; 529 530 /* Legacy way to get event id.. All hail to old kernels! */ 531 532 /* 533 * This way does not work with group format read, so bail 534 * out in that case. 535 */ 536 if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP) 537 return -1; 538 539 if (!(evsel->attr.read_format & PERF_FORMAT_ID) || 540 read(fd, &read_data, sizeof(read_data)) == -1) 541 return -1; 542 543 if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 544 ++id_idx; 545 if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 546 ++id_idx; 547 548 id = read_data[id_idx]; 549 550 add: 551 perf_evlist__id_add(evlist, evsel, cpu, thread, id); 552 return 0; 553 } 554 555 static void perf_evlist__set_sid_idx(struct perf_evlist *evlist, 556 struct perf_evsel *evsel, int idx, int cpu, 557 int thread) 558 { 559 struct perf_sample_id *sid = SID(evsel, cpu, thread); 560 sid->idx = idx; 561 if (evlist->cpus && cpu >= 0) 562 sid->cpu = evlist->cpus->map[cpu]; 563 else 564 sid->cpu = -1; 565 if (!evsel->system_wide && evlist->threads && thread >= 0) 566 sid->tid = thread_map__pid(evlist->threads, thread); 567 else 568 sid->tid = -1; 569 } 570 571 struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id) 572 { 573 struct hlist_head *head; 574 struct perf_sample_id *sid; 575 int hash; 576 577 hash = hash_64(id, PERF_EVLIST__HLIST_BITS); 578 head = &evlist->heads[hash]; 579 580 hlist_for_each_entry(sid, head, node) 581 if (sid->id == id) 582 return sid; 583 584 return NULL; 585 } 586 587 struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id) 588 { 589 struct perf_sample_id *sid; 590 591 if (evlist->nr_entries == 1 || !id) 592 return perf_evlist__first(evlist); 593 594 sid = perf_evlist__id2sid(evlist, id); 595 if (sid) 596 return sid->evsel; 597 598 if (!perf_evlist__sample_id_all(evlist)) 599 return perf_evlist__first(evlist); 600 601 return NULL; 602 } 603 604 struct perf_evsel *perf_evlist__id2evsel_strict(struct perf_evlist *evlist, 605 u64 id) 606 { 607 struct perf_sample_id *sid; 608 609 if (!id) 610 return NULL; 611 612 sid = perf_evlist__id2sid(evlist, id); 613 if (sid) 614 return sid->evsel; 615 616 return NULL; 617 } 618 619 static int perf_evlist__event2id(struct perf_evlist *evlist, 620 union perf_event *event, u64 *id) 621 { 622 const u64 *array = event->sample.array; 623 ssize_t n; 624 625 n = (event->header.size - sizeof(event->header)) >> 3; 626 627 if (event->header.type == PERF_RECORD_SAMPLE) { 628 if (evlist->id_pos >= n) 629 return -1; 630 *id = array[evlist->id_pos]; 631 } else { 632 if (evlist->is_pos > n) 633 return -1; 634 n -= evlist->is_pos; 635 *id = array[n]; 636 } 637 return 0; 638 } 639 640 struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist, 641 union perf_event *event) 642 { 643 struct perf_evsel *first = perf_evlist__first(evlist); 644 struct hlist_head *head; 645 struct perf_sample_id *sid; 646 int hash; 647 u64 id; 648 649 if (evlist->nr_entries == 1) 650 return first; 651 652 if (!first->attr.sample_id_all && 653 event->header.type != PERF_RECORD_SAMPLE) 654 return first; 655 656 if (perf_evlist__event2id(evlist, event, &id)) 657 return NULL; 658 659 /* Synthesized events have an id of zero */ 660 if (!id) 661 return first; 662 663 hash = hash_64(id, PERF_EVLIST__HLIST_BITS); 664 head = &evlist->heads[hash]; 665 666 hlist_for_each_entry(sid, head, node) { 667 if (sid->id == id) 668 return sid->evsel; 669 } 670 return NULL; 671 } 672 673 static int perf_evlist__set_paused(struct perf_evlist *evlist, bool value) 674 { 675 int i; 676 677 if (!evlist->backward_mmap) 678 return 0; 679 680 for (i = 0; i < evlist->nr_mmaps; i++) { 681 int fd = evlist->backward_mmap[i].fd; 682 int err; 683 684 if (fd < 0) 685 continue; 686 err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0); 687 if (err) 688 return err; 689 } 690 return 0; 691 } 692 693 static int perf_evlist__pause(struct perf_evlist *evlist) 694 { 695 return perf_evlist__set_paused(evlist, true); 696 } 697 698 static int perf_evlist__resume(struct perf_evlist *evlist) 699 { 700 return perf_evlist__set_paused(evlist, false); 701 } 702 703 /* When check_messup is true, 'end' must points to a good entry */ 704 static union perf_event * 705 perf_mmap__read(struct perf_mmap *md, bool check_messup, u64 start, 706 u64 end, u64 *prev) 707 { 708 unsigned char *data = md->base + page_size; 709 union perf_event *event = NULL; 710 int diff = end - start; 711 712 if (check_messup) { 713 /* 714 * If we're further behind than half the buffer, there's a chance 715 * the writer will bite our tail and mess up the samples under us. 716 * 717 * If we somehow ended up ahead of the 'end', we got messed up. 718 * 719 * In either case, truncate and restart at 'end'. 720 */ 721 if (diff > md->mask / 2 || diff < 0) { 722 fprintf(stderr, "WARNING: failed to keep up with mmap data.\n"); 723 724 /* 725 * 'end' points to a known good entry, start there. 726 */ 727 start = end; 728 diff = 0; 729 } 730 } 731 732 if (diff >= (int)sizeof(event->header)) { 733 size_t size; 734 735 event = (union perf_event *)&data[start & md->mask]; 736 size = event->header.size; 737 738 if (size < sizeof(event->header) || diff < (int)size) { 739 event = NULL; 740 goto broken_event; 741 } 742 743 /* 744 * Event straddles the mmap boundary -- header should always 745 * be inside due to u64 alignment of output. 746 */ 747 if ((start & md->mask) + size != ((start + size) & md->mask)) { 748 unsigned int offset = start; 749 unsigned int len = min(sizeof(*event), size), cpy; 750 void *dst = md->event_copy; 751 752 do { 753 cpy = min(md->mask + 1 - (offset & md->mask), len); 754 memcpy(dst, &data[offset & md->mask], cpy); 755 offset += cpy; 756 dst += cpy; 757 len -= cpy; 758 } while (len); 759 760 event = (union perf_event *) md->event_copy; 761 } 762 763 start += size; 764 } 765 766 broken_event: 767 if (prev) 768 *prev = start; 769 770 return event; 771 } 772 773 union perf_event *perf_mmap__read_forward(struct perf_mmap *md, bool check_messup) 774 { 775 u64 head; 776 u64 old = md->prev; 777 778 /* 779 * Check if event was unmapped due to a POLLHUP/POLLERR. 780 */ 781 if (!atomic_read(&md->refcnt)) 782 return NULL; 783 784 head = perf_mmap__read_head(md); 785 786 return perf_mmap__read(md, check_messup, old, head, &md->prev); 787 } 788 789 union perf_event * 790 perf_mmap__read_backward(struct perf_mmap *md) 791 { 792 u64 head, end; 793 u64 start = md->prev; 794 795 /* 796 * Check if event was unmapped due to a POLLHUP/POLLERR. 797 */ 798 if (!atomic_read(&md->refcnt)) 799 return NULL; 800 801 head = perf_mmap__read_head(md); 802 if (!head) 803 return NULL; 804 805 /* 806 * 'head' pointer starts from 0. Kernel minus sizeof(record) form 807 * it each time when kernel writes to it, so in fact 'head' is 808 * negative. 'end' pointer is made manually by adding the size of 809 * the ring buffer to 'head' pointer, means the validate data can 810 * read is the whole ring buffer. If 'end' is positive, the ring 811 * buffer has not fully filled, so we must adjust 'end' to 0. 812 * 813 * However, since both 'head' and 'end' is unsigned, we can't 814 * simply compare 'end' against 0. Here we compare '-head' and 815 * the size of the ring buffer, where -head is the number of bytes 816 * kernel write to the ring buffer. 817 */ 818 if (-head < (u64)(md->mask + 1)) 819 end = 0; 820 else 821 end = head + md->mask + 1; 822 823 return perf_mmap__read(md, false, start, end, &md->prev); 824 } 825 826 union perf_event *perf_evlist__mmap_read_forward(struct perf_evlist *evlist, int idx) 827 { 828 struct perf_mmap *md = &evlist->mmap[idx]; 829 830 /* 831 * Check messup is required for forward overwritable ring buffer: 832 * memory pointed by md->prev can be overwritten in this case. 833 * No need for read-write ring buffer: kernel stop outputting when 834 * it hit md->prev (perf_mmap__consume()). 835 */ 836 return perf_mmap__read_forward(md, evlist->overwrite); 837 } 838 839 union perf_event *perf_evlist__mmap_read_backward(struct perf_evlist *evlist, int idx) 840 { 841 struct perf_mmap *md = &evlist->mmap[idx]; 842 843 /* 844 * No need to check messup for backward ring buffer: 845 * We can always read arbitrary long data from a backward 846 * ring buffer unless we forget to pause it before reading. 847 */ 848 return perf_mmap__read_backward(md); 849 } 850 851 union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx) 852 { 853 return perf_evlist__mmap_read_forward(evlist, idx); 854 } 855 856 void perf_mmap__read_catchup(struct perf_mmap *md) 857 { 858 u64 head; 859 860 if (!atomic_read(&md->refcnt)) 861 return; 862 863 head = perf_mmap__read_head(md); 864 md->prev = head; 865 } 866 867 void perf_evlist__mmap_read_catchup(struct perf_evlist *evlist, int idx) 868 { 869 perf_mmap__read_catchup(&evlist->mmap[idx]); 870 } 871 872 static bool perf_mmap__empty(struct perf_mmap *md) 873 { 874 return perf_mmap__read_head(md) == md->prev && !md->auxtrace_mmap.base; 875 } 876 877 static void perf_mmap__get(struct perf_mmap *map) 878 { 879 atomic_inc(&map->refcnt); 880 } 881 882 static void perf_mmap__put(struct perf_mmap *md) 883 { 884 BUG_ON(md->base && atomic_read(&md->refcnt) == 0); 885 886 if (atomic_dec_and_test(&md->refcnt)) 887 perf_mmap__munmap(md); 888 } 889 890 void perf_mmap__consume(struct perf_mmap *md, bool overwrite) 891 { 892 if (!overwrite) { 893 u64 old = md->prev; 894 895 perf_mmap__write_tail(md, old); 896 } 897 898 if (atomic_read(&md->refcnt) == 1 && perf_mmap__empty(md)) 899 perf_mmap__put(md); 900 } 901 902 void perf_evlist__mmap_consume(struct perf_evlist *evlist, int idx) 903 { 904 perf_mmap__consume(&evlist->mmap[idx], evlist->overwrite); 905 } 906 907 int __weak auxtrace_mmap__mmap(struct auxtrace_mmap *mm __maybe_unused, 908 struct auxtrace_mmap_params *mp __maybe_unused, 909 void *userpg __maybe_unused, 910 int fd __maybe_unused) 911 { 912 return 0; 913 } 914 915 void __weak auxtrace_mmap__munmap(struct auxtrace_mmap *mm __maybe_unused) 916 { 917 } 918 919 void __weak auxtrace_mmap_params__init( 920 struct auxtrace_mmap_params *mp __maybe_unused, 921 off_t auxtrace_offset __maybe_unused, 922 unsigned int auxtrace_pages __maybe_unused, 923 bool auxtrace_overwrite __maybe_unused) 924 { 925 } 926 927 void __weak auxtrace_mmap_params__set_idx( 928 struct auxtrace_mmap_params *mp __maybe_unused, 929 struct perf_evlist *evlist __maybe_unused, 930 int idx __maybe_unused, 931 bool per_cpu __maybe_unused) 932 { 933 } 934 935 static void perf_mmap__munmap(struct perf_mmap *map) 936 { 937 if (map->base != NULL) { 938 munmap(map->base, perf_mmap__mmap_len(map)); 939 map->base = NULL; 940 map->fd = -1; 941 atomic_set(&map->refcnt, 0); 942 } 943 auxtrace_mmap__munmap(&map->auxtrace_mmap); 944 } 945 946 static void perf_evlist__munmap_nofree(struct perf_evlist *evlist) 947 { 948 int i; 949 950 if (evlist->mmap) 951 for (i = 0; i < evlist->nr_mmaps; i++) 952 perf_mmap__munmap(&evlist->mmap[i]); 953 954 if (evlist->backward_mmap) 955 for (i = 0; i < evlist->nr_mmaps; i++) 956 perf_mmap__munmap(&evlist->backward_mmap[i]); 957 } 958 959 void perf_evlist__munmap(struct perf_evlist *evlist) 960 { 961 perf_evlist__munmap_nofree(evlist); 962 zfree(&evlist->mmap); 963 zfree(&evlist->backward_mmap); 964 } 965 966 static struct perf_mmap *perf_evlist__alloc_mmap(struct perf_evlist *evlist) 967 { 968 int i; 969 struct perf_mmap *map; 970 971 evlist->nr_mmaps = cpu_map__nr(evlist->cpus); 972 if (cpu_map__empty(evlist->cpus)) 973 evlist->nr_mmaps = thread_map__nr(evlist->threads); 974 map = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap)); 975 if (!map) 976 return NULL; 977 978 for (i = 0; i < evlist->nr_mmaps; i++) 979 map[i].fd = -1; 980 return map; 981 } 982 983 struct mmap_params { 984 int prot; 985 int mask; 986 struct auxtrace_mmap_params auxtrace_mp; 987 }; 988 989 static int perf_mmap__mmap(struct perf_mmap *map, 990 struct mmap_params *mp, int fd) 991 { 992 /* 993 * The last one will be done at perf_evlist__mmap_consume(), so that we 994 * make sure we don't prevent tools from consuming every last event in 995 * the ring buffer. 996 * 997 * I.e. we can get the POLLHUP meaning that the fd doesn't exist 998 * anymore, but the last events for it are still in the ring buffer, 999 * waiting to be consumed. 1000 * 1001 * Tools can chose to ignore this at their own discretion, but the 1002 * evlist layer can't just drop it when filtering events in 1003 * perf_evlist__filter_pollfd(). 1004 */ 1005 atomic_set(&map->refcnt, 2); 1006 map->prev = 0; 1007 map->mask = mp->mask; 1008 map->base = mmap(NULL, perf_mmap__mmap_len(map), mp->prot, 1009 MAP_SHARED, fd, 0); 1010 if (map->base == MAP_FAILED) { 1011 pr_debug2("failed to mmap perf event ring buffer, error %d\n", 1012 errno); 1013 map->base = NULL; 1014 return -1; 1015 } 1016 map->fd = fd; 1017 1018 if (auxtrace_mmap__mmap(&map->auxtrace_mmap, 1019 &mp->auxtrace_mp, map->base, fd)) 1020 return -1; 1021 1022 return 0; 1023 } 1024 1025 static bool 1026 perf_evlist__should_poll(struct perf_evlist *evlist __maybe_unused, 1027 struct perf_evsel *evsel) 1028 { 1029 if (evsel->attr.write_backward) 1030 return false; 1031 return true; 1032 } 1033 1034 static int perf_evlist__mmap_per_evsel(struct perf_evlist *evlist, int idx, 1035 struct mmap_params *mp, int cpu, 1036 int thread, int *_output, int *_output_backward) 1037 { 1038 struct perf_evsel *evsel; 1039 int revent; 1040 1041 evlist__for_each_entry(evlist, evsel) { 1042 struct perf_mmap *maps = evlist->mmap; 1043 int *output = _output; 1044 int fd; 1045 1046 if (evsel->attr.write_backward) { 1047 output = _output_backward; 1048 maps = evlist->backward_mmap; 1049 1050 if (!maps) { 1051 maps = perf_evlist__alloc_mmap(evlist); 1052 if (!maps) 1053 return -1; 1054 evlist->backward_mmap = maps; 1055 if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY) 1056 perf_evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING); 1057 } 1058 } 1059 1060 if (evsel->system_wide && thread) 1061 continue; 1062 1063 fd = FD(evsel, cpu, thread); 1064 1065 if (*output == -1) { 1066 *output = fd; 1067 1068 if (perf_mmap__mmap(&maps[idx], mp, *output) < 0) 1069 return -1; 1070 } else { 1071 if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, *output) != 0) 1072 return -1; 1073 1074 perf_mmap__get(&maps[idx]); 1075 } 1076 1077 revent = perf_evlist__should_poll(evlist, evsel) ? POLLIN : 0; 1078 1079 /* 1080 * The system_wide flag causes a selected event to be opened 1081 * always without a pid. Consequently it will never get a 1082 * POLLHUP, but it is used for tracking in combination with 1083 * other events, so it should not need to be polled anyway. 1084 * Therefore don't add it for polling. 1085 */ 1086 if (!evsel->system_wide && 1087 __perf_evlist__add_pollfd(evlist, fd, &maps[idx], revent) < 0) { 1088 perf_mmap__put(&maps[idx]); 1089 return -1; 1090 } 1091 1092 if (evsel->attr.read_format & PERF_FORMAT_ID) { 1093 if (perf_evlist__id_add_fd(evlist, evsel, cpu, thread, 1094 fd) < 0) 1095 return -1; 1096 perf_evlist__set_sid_idx(evlist, evsel, idx, cpu, 1097 thread); 1098 } 1099 } 1100 1101 return 0; 1102 } 1103 1104 static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, 1105 struct mmap_params *mp) 1106 { 1107 int cpu, thread; 1108 int nr_cpus = cpu_map__nr(evlist->cpus); 1109 int nr_threads = thread_map__nr(evlist->threads); 1110 1111 pr_debug2("perf event ring buffer mmapped per cpu\n"); 1112 for (cpu = 0; cpu < nr_cpus; cpu++) { 1113 int output = -1; 1114 int output_backward = -1; 1115 1116 auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, cpu, 1117 true); 1118 1119 for (thread = 0; thread < nr_threads; thread++) { 1120 if (perf_evlist__mmap_per_evsel(evlist, cpu, mp, cpu, 1121 thread, &output, &output_backward)) 1122 goto out_unmap; 1123 } 1124 } 1125 1126 return 0; 1127 1128 out_unmap: 1129 perf_evlist__munmap_nofree(evlist); 1130 return -1; 1131 } 1132 1133 static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, 1134 struct mmap_params *mp) 1135 { 1136 int thread; 1137 int nr_threads = thread_map__nr(evlist->threads); 1138 1139 pr_debug2("perf event ring buffer mmapped per thread\n"); 1140 for (thread = 0; thread < nr_threads; thread++) { 1141 int output = -1; 1142 int output_backward = -1; 1143 1144 auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, thread, 1145 false); 1146 1147 if (perf_evlist__mmap_per_evsel(evlist, thread, mp, 0, thread, 1148 &output, &output_backward)) 1149 goto out_unmap; 1150 } 1151 1152 return 0; 1153 1154 out_unmap: 1155 perf_evlist__munmap_nofree(evlist); 1156 return -1; 1157 } 1158 1159 unsigned long perf_event_mlock_kb_in_pages(void) 1160 { 1161 unsigned long pages; 1162 int max; 1163 1164 if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) { 1165 /* 1166 * Pick a once upon a time good value, i.e. things look 1167 * strange since we can't read a sysctl value, but lets not 1168 * die yet... 1169 */ 1170 max = 512; 1171 } else { 1172 max -= (page_size / 1024); 1173 } 1174 1175 pages = (max * 1024) / page_size; 1176 if (!is_power_of_2(pages)) 1177 pages = rounddown_pow_of_two(pages); 1178 1179 return pages; 1180 } 1181 1182 static size_t perf_evlist__mmap_size(unsigned long pages) 1183 { 1184 if (pages == UINT_MAX) 1185 pages = perf_event_mlock_kb_in_pages(); 1186 else if (!is_power_of_2(pages)) 1187 return 0; 1188 1189 return (pages + 1) * page_size; 1190 } 1191 1192 static long parse_pages_arg(const char *str, unsigned long min, 1193 unsigned long max) 1194 { 1195 unsigned long pages, val; 1196 static struct parse_tag tags[] = { 1197 { .tag = 'B', .mult = 1 }, 1198 { .tag = 'K', .mult = 1 << 10 }, 1199 { .tag = 'M', .mult = 1 << 20 }, 1200 { .tag = 'G', .mult = 1 << 30 }, 1201 { .tag = 0 }, 1202 }; 1203 1204 if (str == NULL) 1205 return -EINVAL; 1206 1207 val = parse_tag_value(str, tags); 1208 if (val != (unsigned long) -1) { 1209 /* we got file size value */ 1210 pages = PERF_ALIGN(val, page_size) / page_size; 1211 } else { 1212 /* we got pages count value */ 1213 char *eptr; 1214 pages = strtoul(str, &eptr, 10); 1215 if (*eptr != '\0') 1216 return -EINVAL; 1217 } 1218 1219 if (pages == 0 && min == 0) { 1220 /* leave number of pages at 0 */ 1221 } else if (!is_power_of_2(pages)) { 1222 /* round pages up to next power of 2 */ 1223 pages = roundup_pow_of_two(pages); 1224 if (!pages) 1225 return -EINVAL; 1226 pr_info("rounding mmap pages size to %lu bytes (%lu pages)\n", 1227 pages * page_size, pages); 1228 } 1229 1230 if (pages > max) 1231 return -EINVAL; 1232 1233 return pages; 1234 } 1235 1236 int __perf_evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str) 1237 { 1238 unsigned long max = UINT_MAX; 1239 long pages; 1240 1241 if (max > SIZE_MAX / page_size) 1242 max = SIZE_MAX / page_size; 1243 1244 pages = parse_pages_arg(str, 1, max); 1245 if (pages < 0) { 1246 pr_err("Invalid argument for --mmap_pages/-m\n"); 1247 return -1; 1248 } 1249 1250 *mmap_pages = pages; 1251 return 0; 1252 } 1253 1254 int perf_evlist__parse_mmap_pages(const struct option *opt, const char *str, 1255 int unset __maybe_unused) 1256 { 1257 return __perf_evlist__parse_mmap_pages(opt->value, str); 1258 } 1259 1260 /** 1261 * perf_evlist__mmap_ex - Create mmaps to receive events. 1262 * @evlist: list of events 1263 * @pages: map length in pages 1264 * @overwrite: overwrite older events? 1265 * @auxtrace_pages - auxtrace map length in pages 1266 * @auxtrace_overwrite - overwrite older auxtrace data? 1267 * 1268 * If @overwrite is %false the user needs to signal event consumption using 1269 * perf_mmap__write_tail(). Using perf_evlist__mmap_read() does this 1270 * automatically. 1271 * 1272 * Similarly, if @auxtrace_overwrite is %false the user needs to signal data 1273 * consumption using auxtrace_mmap__write_tail(). 1274 * 1275 * Return: %0 on success, negative error code otherwise. 1276 */ 1277 int perf_evlist__mmap_ex(struct perf_evlist *evlist, unsigned int pages, 1278 bool overwrite, unsigned int auxtrace_pages, 1279 bool auxtrace_overwrite) 1280 { 1281 struct perf_evsel *evsel; 1282 const struct cpu_map *cpus = evlist->cpus; 1283 const struct thread_map *threads = evlist->threads; 1284 struct mmap_params mp = { 1285 .prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), 1286 }; 1287 1288 if (!evlist->mmap) 1289 evlist->mmap = perf_evlist__alloc_mmap(evlist); 1290 if (!evlist->mmap) 1291 return -ENOMEM; 1292 1293 if (evlist->pollfd.entries == NULL && perf_evlist__alloc_pollfd(evlist) < 0) 1294 return -ENOMEM; 1295 1296 evlist->overwrite = overwrite; 1297 evlist->mmap_len = perf_evlist__mmap_size(pages); 1298 pr_debug("mmap size %zuB\n", evlist->mmap_len); 1299 mp.mask = evlist->mmap_len - page_size - 1; 1300 1301 auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->mmap_len, 1302 auxtrace_pages, auxtrace_overwrite); 1303 1304 evlist__for_each_entry(evlist, evsel) { 1305 if ((evsel->attr.read_format & PERF_FORMAT_ID) && 1306 evsel->sample_id == NULL && 1307 perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0) 1308 return -ENOMEM; 1309 } 1310 1311 if (cpu_map__empty(cpus)) 1312 return perf_evlist__mmap_per_thread(evlist, &mp); 1313 1314 return perf_evlist__mmap_per_cpu(evlist, &mp); 1315 } 1316 1317 int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages, 1318 bool overwrite) 1319 { 1320 return perf_evlist__mmap_ex(evlist, pages, overwrite, 0, false); 1321 } 1322 1323 int perf_evlist__create_maps(struct perf_evlist *evlist, struct target *target) 1324 { 1325 struct cpu_map *cpus; 1326 struct thread_map *threads; 1327 1328 threads = thread_map__new_str(target->pid, target->tid, target->uid); 1329 1330 if (!threads) 1331 return -1; 1332 1333 if (target__uses_dummy_map(target)) 1334 cpus = cpu_map__dummy_new(); 1335 else 1336 cpus = cpu_map__new(target->cpu_list); 1337 1338 if (!cpus) 1339 goto out_delete_threads; 1340 1341 evlist->has_user_cpus = !!target->cpu_list; 1342 1343 perf_evlist__set_maps(evlist, cpus, threads); 1344 1345 return 0; 1346 1347 out_delete_threads: 1348 thread_map__put(threads); 1349 return -1; 1350 } 1351 1352 void perf_evlist__set_maps(struct perf_evlist *evlist, struct cpu_map *cpus, 1353 struct thread_map *threads) 1354 { 1355 /* 1356 * Allow for the possibility that one or another of the maps isn't being 1357 * changed i.e. don't put it. Note we are assuming the maps that are 1358 * being applied are brand new and evlist is taking ownership of the 1359 * original reference count of 1. If that is not the case it is up to 1360 * the caller to increase the reference count. 1361 */ 1362 if (cpus != evlist->cpus) { 1363 cpu_map__put(evlist->cpus); 1364 evlist->cpus = cpu_map__get(cpus); 1365 } 1366 1367 if (threads != evlist->threads) { 1368 thread_map__put(evlist->threads); 1369 evlist->threads = thread_map__get(threads); 1370 } 1371 1372 perf_evlist__propagate_maps(evlist); 1373 } 1374 1375 void __perf_evlist__set_sample_bit(struct perf_evlist *evlist, 1376 enum perf_event_sample_format bit) 1377 { 1378 struct perf_evsel *evsel; 1379 1380 evlist__for_each_entry(evlist, evsel) 1381 __perf_evsel__set_sample_bit(evsel, bit); 1382 } 1383 1384 void __perf_evlist__reset_sample_bit(struct perf_evlist *evlist, 1385 enum perf_event_sample_format bit) 1386 { 1387 struct perf_evsel *evsel; 1388 1389 evlist__for_each_entry(evlist, evsel) 1390 __perf_evsel__reset_sample_bit(evsel, bit); 1391 } 1392 1393 int perf_evlist__apply_filters(struct perf_evlist *evlist, struct perf_evsel **err_evsel) 1394 { 1395 struct perf_evsel *evsel; 1396 int err = 0; 1397 const int ncpus = cpu_map__nr(evlist->cpus), 1398 nthreads = thread_map__nr(evlist->threads); 1399 1400 evlist__for_each_entry(evlist, evsel) { 1401 if (evsel->filter == NULL) 1402 continue; 1403 1404 /* 1405 * filters only work for tracepoint event, which doesn't have cpu limit. 1406 * So evlist and evsel should always be same. 1407 */ 1408 err = perf_evsel__apply_filter(evsel, ncpus, nthreads, evsel->filter); 1409 if (err) { 1410 *err_evsel = evsel; 1411 break; 1412 } 1413 } 1414 1415 return err; 1416 } 1417 1418 int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter) 1419 { 1420 struct perf_evsel *evsel; 1421 int err = 0; 1422 1423 evlist__for_each_entry(evlist, evsel) { 1424 if (evsel->attr.type != PERF_TYPE_TRACEPOINT) 1425 continue; 1426 1427 err = perf_evsel__set_filter(evsel, filter); 1428 if (err) 1429 break; 1430 } 1431 1432 return err; 1433 } 1434 1435 int perf_evlist__set_filter_pids(struct perf_evlist *evlist, size_t npids, pid_t *pids) 1436 { 1437 char *filter; 1438 int ret = -1; 1439 size_t i; 1440 1441 for (i = 0; i < npids; ++i) { 1442 if (i == 0) { 1443 if (asprintf(&filter, "common_pid != %d", pids[i]) < 0) 1444 return -1; 1445 } else { 1446 char *tmp; 1447 1448 if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0) 1449 goto out_free; 1450 1451 free(filter); 1452 filter = tmp; 1453 } 1454 } 1455 1456 ret = perf_evlist__set_filter(evlist, filter); 1457 out_free: 1458 free(filter); 1459 return ret; 1460 } 1461 1462 int perf_evlist__set_filter_pid(struct perf_evlist *evlist, pid_t pid) 1463 { 1464 return perf_evlist__set_filter_pids(evlist, 1, &pid); 1465 } 1466 1467 bool perf_evlist__valid_sample_type(struct perf_evlist *evlist) 1468 { 1469 struct perf_evsel *pos; 1470 1471 if (evlist->nr_entries == 1) 1472 return true; 1473 1474 if (evlist->id_pos < 0 || evlist->is_pos < 0) 1475 return false; 1476 1477 evlist__for_each_entry(evlist, pos) { 1478 if (pos->id_pos != evlist->id_pos || 1479 pos->is_pos != evlist->is_pos) 1480 return false; 1481 } 1482 1483 return true; 1484 } 1485 1486 u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist) 1487 { 1488 struct perf_evsel *evsel; 1489 1490 if (evlist->combined_sample_type) 1491 return evlist->combined_sample_type; 1492 1493 evlist__for_each_entry(evlist, evsel) 1494 evlist->combined_sample_type |= evsel->attr.sample_type; 1495 1496 return evlist->combined_sample_type; 1497 } 1498 1499 u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist) 1500 { 1501 evlist->combined_sample_type = 0; 1502 return __perf_evlist__combined_sample_type(evlist); 1503 } 1504 1505 u64 perf_evlist__combined_branch_type(struct perf_evlist *evlist) 1506 { 1507 struct perf_evsel *evsel; 1508 u64 branch_type = 0; 1509 1510 evlist__for_each_entry(evlist, evsel) 1511 branch_type |= evsel->attr.branch_sample_type; 1512 return branch_type; 1513 } 1514 1515 bool perf_evlist__valid_read_format(struct perf_evlist *evlist) 1516 { 1517 struct perf_evsel *first = perf_evlist__first(evlist), *pos = first; 1518 u64 read_format = first->attr.read_format; 1519 u64 sample_type = first->attr.sample_type; 1520 1521 evlist__for_each_entry(evlist, pos) { 1522 if (read_format != pos->attr.read_format) 1523 return false; 1524 } 1525 1526 /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */ 1527 if ((sample_type & PERF_SAMPLE_READ) && 1528 !(read_format & PERF_FORMAT_ID)) { 1529 return false; 1530 } 1531 1532 return true; 1533 } 1534 1535 u64 perf_evlist__read_format(struct perf_evlist *evlist) 1536 { 1537 struct perf_evsel *first = perf_evlist__first(evlist); 1538 return first->attr.read_format; 1539 } 1540 1541 u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist) 1542 { 1543 struct perf_evsel *first = perf_evlist__first(evlist); 1544 struct perf_sample *data; 1545 u64 sample_type; 1546 u16 size = 0; 1547 1548 if (!first->attr.sample_id_all) 1549 goto out; 1550 1551 sample_type = first->attr.sample_type; 1552 1553 if (sample_type & PERF_SAMPLE_TID) 1554 size += sizeof(data->tid) * 2; 1555 1556 if (sample_type & PERF_SAMPLE_TIME) 1557 size += sizeof(data->time); 1558 1559 if (sample_type & PERF_SAMPLE_ID) 1560 size += sizeof(data->id); 1561 1562 if (sample_type & PERF_SAMPLE_STREAM_ID) 1563 size += sizeof(data->stream_id); 1564 1565 if (sample_type & PERF_SAMPLE_CPU) 1566 size += sizeof(data->cpu) * 2; 1567 1568 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1569 size += sizeof(data->id); 1570 out: 1571 return size; 1572 } 1573 1574 bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist) 1575 { 1576 struct perf_evsel *first = perf_evlist__first(evlist), *pos = first; 1577 1578 evlist__for_each_entry_continue(evlist, pos) { 1579 if (first->attr.sample_id_all != pos->attr.sample_id_all) 1580 return false; 1581 } 1582 1583 return true; 1584 } 1585 1586 bool perf_evlist__sample_id_all(struct perf_evlist *evlist) 1587 { 1588 struct perf_evsel *first = perf_evlist__first(evlist); 1589 return first->attr.sample_id_all; 1590 } 1591 1592 void perf_evlist__set_selected(struct perf_evlist *evlist, 1593 struct perf_evsel *evsel) 1594 { 1595 evlist->selected = evsel; 1596 } 1597 1598 void perf_evlist__close(struct perf_evlist *evlist) 1599 { 1600 struct perf_evsel *evsel; 1601 int ncpus = cpu_map__nr(evlist->cpus); 1602 int nthreads = thread_map__nr(evlist->threads); 1603 int n; 1604 1605 evlist__for_each_entry_reverse(evlist, evsel) { 1606 n = evsel->cpus ? evsel->cpus->nr : ncpus; 1607 perf_evsel__close(evsel, n, nthreads); 1608 } 1609 } 1610 1611 static int perf_evlist__create_syswide_maps(struct perf_evlist *evlist) 1612 { 1613 struct cpu_map *cpus; 1614 struct thread_map *threads; 1615 int err = -ENOMEM; 1616 1617 /* 1618 * Try reading /sys/devices/system/cpu/online to get 1619 * an all cpus map. 1620 * 1621 * FIXME: -ENOMEM is the best we can do here, the cpu_map 1622 * code needs an overhaul to properly forward the 1623 * error, and we may not want to do that fallback to a 1624 * default cpu identity map :-\ 1625 */ 1626 cpus = cpu_map__new(NULL); 1627 if (!cpus) 1628 goto out; 1629 1630 threads = thread_map__new_dummy(); 1631 if (!threads) 1632 goto out_put; 1633 1634 perf_evlist__set_maps(evlist, cpus, threads); 1635 out: 1636 return err; 1637 out_put: 1638 cpu_map__put(cpus); 1639 goto out; 1640 } 1641 1642 int perf_evlist__open(struct perf_evlist *evlist) 1643 { 1644 struct perf_evsel *evsel; 1645 int err; 1646 1647 /* 1648 * Default: one fd per CPU, all threads, aka systemwide 1649 * as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL 1650 */ 1651 if (evlist->threads == NULL && evlist->cpus == NULL) { 1652 err = perf_evlist__create_syswide_maps(evlist); 1653 if (err < 0) 1654 goto out_err; 1655 } 1656 1657 perf_evlist__update_id_pos(evlist); 1658 1659 evlist__for_each_entry(evlist, evsel) { 1660 err = perf_evsel__open(evsel, evsel->cpus, evsel->threads); 1661 if (err < 0) 1662 goto out_err; 1663 } 1664 1665 return 0; 1666 out_err: 1667 perf_evlist__close(evlist); 1668 errno = -err; 1669 return err; 1670 } 1671 1672 int perf_evlist__prepare_workload(struct perf_evlist *evlist, struct target *target, 1673 const char *argv[], bool pipe_output, 1674 void (*exec_error)(int signo, siginfo_t *info, void *ucontext)) 1675 { 1676 int child_ready_pipe[2], go_pipe[2]; 1677 char bf; 1678 1679 if (pipe(child_ready_pipe) < 0) { 1680 perror("failed to create 'ready' pipe"); 1681 return -1; 1682 } 1683 1684 if (pipe(go_pipe) < 0) { 1685 perror("failed to create 'go' pipe"); 1686 goto out_close_ready_pipe; 1687 } 1688 1689 evlist->workload.pid = fork(); 1690 if (evlist->workload.pid < 0) { 1691 perror("failed to fork"); 1692 goto out_close_pipes; 1693 } 1694 1695 if (!evlist->workload.pid) { 1696 int ret; 1697 1698 if (pipe_output) 1699 dup2(2, 1); 1700 1701 signal(SIGTERM, SIG_DFL); 1702 1703 close(child_ready_pipe[0]); 1704 close(go_pipe[1]); 1705 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC); 1706 1707 /* 1708 * Tell the parent we're ready to go 1709 */ 1710 close(child_ready_pipe[1]); 1711 1712 /* 1713 * Wait until the parent tells us to go. 1714 */ 1715 ret = read(go_pipe[0], &bf, 1); 1716 /* 1717 * The parent will ask for the execvp() to be performed by 1718 * writing exactly one byte, in workload.cork_fd, usually via 1719 * perf_evlist__start_workload(). 1720 * 1721 * For cancelling the workload without actually running it, 1722 * the parent will just close workload.cork_fd, without writing 1723 * anything, i.e. read will return zero and we just exit() 1724 * here. 1725 */ 1726 if (ret != 1) { 1727 if (ret == -1) 1728 perror("unable to read pipe"); 1729 exit(ret); 1730 } 1731 1732 execvp(argv[0], (char **)argv); 1733 1734 if (exec_error) { 1735 union sigval val; 1736 1737 val.sival_int = errno; 1738 if (sigqueue(getppid(), SIGUSR1, val)) 1739 perror(argv[0]); 1740 } else 1741 perror(argv[0]); 1742 exit(-1); 1743 } 1744 1745 if (exec_error) { 1746 struct sigaction act = { 1747 .sa_flags = SA_SIGINFO, 1748 .sa_sigaction = exec_error, 1749 }; 1750 sigaction(SIGUSR1, &act, NULL); 1751 } 1752 1753 if (target__none(target)) { 1754 if (evlist->threads == NULL) { 1755 fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n", 1756 __func__, __LINE__); 1757 goto out_close_pipes; 1758 } 1759 thread_map__set_pid(evlist->threads, 0, evlist->workload.pid); 1760 } 1761 1762 close(child_ready_pipe[1]); 1763 close(go_pipe[0]); 1764 /* 1765 * wait for child to settle 1766 */ 1767 if (read(child_ready_pipe[0], &bf, 1) == -1) { 1768 perror("unable to read pipe"); 1769 goto out_close_pipes; 1770 } 1771 1772 fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC); 1773 evlist->workload.cork_fd = go_pipe[1]; 1774 close(child_ready_pipe[0]); 1775 return 0; 1776 1777 out_close_pipes: 1778 close(go_pipe[0]); 1779 close(go_pipe[1]); 1780 out_close_ready_pipe: 1781 close(child_ready_pipe[0]); 1782 close(child_ready_pipe[1]); 1783 return -1; 1784 } 1785 1786 int perf_evlist__start_workload(struct perf_evlist *evlist) 1787 { 1788 if (evlist->workload.cork_fd > 0) { 1789 char bf = 0; 1790 int ret; 1791 /* 1792 * Remove the cork, let it rip! 1793 */ 1794 ret = write(evlist->workload.cork_fd, &bf, 1); 1795 if (ret < 0) 1796 perror("enable to write to pipe"); 1797 1798 close(evlist->workload.cork_fd); 1799 return ret; 1800 } 1801 1802 return 0; 1803 } 1804 1805 int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event, 1806 struct perf_sample *sample) 1807 { 1808 struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event); 1809 1810 if (!evsel) 1811 return -EFAULT; 1812 return perf_evsel__parse_sample(evsel, event, sample); 1813 } 1814 1815 size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp) 1816 { 1817 struct perf_evsel *evsel; 1818 size_t printed = 0; 1819 1820 evlist__for_each_entry(evlist, evsel) { 1821 printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "", 1822 perf_evsel__name(evsel)); 1823 } 1824 1825 return printed + fprintf(fp, "\n"); 1826 } 1827 1828 int perf_evlist__strerror_open(struct perf_evlist *evlist, 1829 int err, char *buf, size_t size) 1830 { 1831 int printed, value; 1832 char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf)); 1833 1834 switch (err) { 1835 case EACCES: 1836 case EPERM: 1837 printed = scnprintf(buf, size, 1838 "Error:\t%s.\n" 1839 "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg); 1840 1841 value = perf_event_paranoid(); 1842 1843 printed += scnprintf(buf + printed, size - printed, "\nHint:\t"); 1844 1845 if (value >= 2) { 1846 printed += scnprintf(buf + printed, size - printed, 1847 "For your workloads it needs to be <= 1\nHint:\t"); 1848 } 1849 printed += scnprintf(buf + printed, size - printed, 1850 "For system wide tracing it needs to be set to -1.\n"); 1851 1852 printed += scnprintf(buf + printed, size - printed, 1853 "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n" 1854 "Hint:\tThe current value is %d.", value); 1855 break; 1856 case EINVAL: { 1857 struct perf_evsel *first = perf_evlist__first(evlist); 1858 int max_freq; 1859 1860 if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0) 1861 goto out_default; 1862 1863 if (first->attr.sample_freq < (u64)max_freq) 1864 goto out_default; 1865 1866 printed = scnprintf(buf, size, 1867 "Error:\t%s.\n" 1868 "Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n" 1869 "Hint:\tThe current value is %d and %" PRIu64 " is being requested.", 1870 emsg, max_freq, first->attr.sample_freq); 1871 break; 1872 } 1873 default: 1874 out_default: 1875 scnprintf(buf, size, "%s", emsg); 1876 break; 1877 } 1878 1879 return 0; 1880 } 1881 1882 int perf_evlist__strerror_mmap(struct perf_evlist *evlist, int err, char *buf, size_t size) 1883 { 1884 char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf)); 1885 int pages_attempted = evlist->mmap_len / 1024, pages_max_per_user, printed = 0; 1886 1887 switch (err) { 1888 case EPERM: 1889 sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user); 1890 printed += scnprintf(buf + printed, size - printed, 1891 "Error:\t%s.\n" 1892 "Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n" 1893 "Hint:\tTried using %zd kB.\n", 1894 emsg, pages_max_per_user, pages_attempted); 1895 1896 if (pages_attempted >= pages_max_per_user) { 1897 printed += scnprintf(buf + printed, size - printed, 1898 "Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n", 1899 pages_max_per_user + pages_attempted); 1900 } 1901 1902 printed += scnprintf(buf + printed, size - printed, 1903 "Hint:\tTry using a smaller -m/--mmap-pages value."); 1904 break; 1905 default: 1906 scnprintf(buf, size, "%s", emsg); 1907 break; 1908 } 1909 1910 return 0; 1911 } 1912 1913 void perf_evlist__to_front(struct perf_evlist *evlist, 1914 struct perf_evsel *move_evsel) 1915 { 1916 struct perf_evsel *evsel, *n; 1917 LIST_HEAD(move); 1918 1919 if (move_evsel == perf_evlist__first(evlist)) 1920 return; 1921 1922 evlist__for_each_entry_safe(evlist, n, evsel) { 1923 if (evsel->leader == move_evsel->leader) 1924 list_move_tail(&evsel->node, &move); 1925 } 1926 1927 list_splice(&move, &evlist->entries); 1928 } 1929 1930 void perf_evlist__set_tracking_event(struct perf_evlist *evlist, 1931 struct perf_evsel *tracking_evsel) 1932 { 1933 struct perf_evsel *evsel; 1934 1935 if (tracking_evsel->tracking) 1936 return; 1937 1938 evlist__for_each_entry(evlist, evsel) { 1939 if (evsel != tracking_evsel) 1940 evsel->tracking = false; 1941 } 1942 1943 tracking_evsel->tracking = true; 1944 } 1945 1946 struct perf_evsel * 1947 perf_evlist__find_evsel_by_str(struct perf_evlist *evlist, 1948 const char *str) 1949 { 1950 struct perf_evsel *evsel; 1951 1952 evlist__for_each_entry(evlist, evsel) { 1953 if (!evsel->name) 1954 continue; 1955 if (strcmp(str, evsel->name) == 0) 1956 return evsel; 1957 } 1958 1959 return NULL; 1960 } 1961 1962 void perf_evlist__toggle_bkw_mmap(struct perf_evlist *evlist, 1963 enum bkw_mmap_state state) 1964 { 1965 enum bkw_mmap_state old_state = evlist->bkw_mmap_state; 1966 enum action { 1967 NONE, 1968 PAUSE, 1969 RESUME, 1970 } action = NONE; 1971 1972 if (!evlist->backward_mmap) 1973 return; 1974 1975 switch (old_state) { 1976 case BKW_MMAP_NOTREADY: { 1977 if (state != BKW_MMAP_RUNNING) 1978 goto state_err;; 1979 break; 1980 } 1981 case BKW_MMAP_RUNNING: { 1982 if (state != BKW_MMAP_DATA_PENDING) 1983 goto state_err; 1984 action = PAUSE; 1985 break; 1986 } 1987 case BKW_MMAP_DATA_PENDING: { 1988 if (state != BKW_MMAP_EMPTY) 1989 goto state_err; 1990 break; 1991 } 1992 case BKW_MMAP_EMPTY: { 1993 if (state != BKW_MMAP_RUNNING) 1994 goto state_err; 1995 action = RESUME; 1996 break; 1997 } 1998 default: 1999 WARN_ONCE(1, "Shouldn't get there\n"); 2000 } 2001 2002 evlist->bkw_mmap_state = state; 2003 2004 switch (action) { 2005 case PAUSE: 2006 perf_evlist__pause(evlist); 2007 break; 2008 case RESUME: 2009 perf_evlist__resume(evlist); 2010 break; 2011 case NONE: 2012 default: 2013 break; 2014 } 2015 2016 state_err: 2017 return; 2018 } 2019