xref: /openbmc/linux/tools/perf/util/evlist.c (revision 89df62c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 #include <api/fs/fs.h>
9 #include <errno.h>
10 #include <inttypes.h>
11 #include <poll.h>
12 #include "cpumap.h"
13 #include "util/mmap.h"
14 #include "thread_map.h"
15 #include "target.h"
16 #include "evlist.h"
17 #include "evsel.h"
18 #include "record.h"
19 #include "debug.h"
20 #include "units.h"
21 #include "bpf_counter.h"
22 #include <internal/lib.h> // page_size
23 #include "affinity.h"
24 #include "../perf.h"
25 #include "asm/bug.h"
26 #include "bpf-event.h"
27 #include "util/event.h"
28 #include "util/string2.h"
29 #include "util/perf_api_probe.h"
30 #include "util/evsel_fprintf.h"
31 #include "util/pmu.h"
32 #include "util/sample.h"
33 #include "util/bpf-filter.h"
34 #include "util/util.h"
35 #include <signal.h>
36 #include <unistd.h>
37 #include <sched.h>
38 #include <stdlib.h>
39 
40 #include "parse-events.h"
41 #include <subcmd/parse-options.h>
42 
43 #include <fcntl.h>
44 #include <sys/ioctl.h>
45 #include <sys/mman.h>
46 #include <sys/prctl.h>
47 #include <sys/timerfd.h>
48 
49 #include <linux/bitops.h>
50 #include <linux/hash.h>
51 #include <linux/log2.h>
52 #include <linux/err.h>
53 #include <linux/string.h>
54 #include <linux/time64.h>
55 #include <linux/zalloc.h>
56 #include <perf/evlist.h>
57 #include <perf/evsel.h>
58 #include <perf/cpumap.h>
59 #include <perf/mmap.h>
60 
61 #include <internal/xyarray.h>
62 
63 #ifdef LACKS_SIGQUEUE_PROTOTYPE
64 int sigqueue(pid_t pid, int sig, const union sigval value);
65 #endif
66 
67 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
68 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y)
69 
70 void evlist__init(struct evlist *evlist, struct perf_cpu_map *cpus,
71 		  struct perf_thread_map *threads)
72 {
73 	perf_evlist__init(&evlist->core);
74 	perf_evlist__set_maps(&evlist->core, cpus, threads);
75 	evlist->workload.pid = -1;
76 	evlist->bkw_mmap_state = BKW_MMAP_NOTREADY;
77 	evlist->ctl_fd.fd = -1;
78 	evlist->ctl_fd.ack = -1;
79 	evlist->ctl_fd.pos = -1;
80 }
81 
82 struct evlist *evlist__new(void)
83 {
84 	struct evlist *evlist = zalloc(sizeof(*evlist));
85 
86 	if (evlist != NULL)
87 		evlist__init(evlist, NULL, NULL);
88 
89 	return evlist;
90 }
91 
92 struct evlist *evlist__new_default(void)
93 {
94 	struct evlist *evlist = evlist__new();
95 	bool can_profile_kernel;
96 	int err;
97 
98 	if (!evlist)
99 		return NULL;
100 
101 	can_profile_kernel = perf_event_paranoid_check(1);
102 	err = parse_event(evlist, can_profile_kernel ? "cycles:P" : "cycles:Pu");
103 	if (err) {
104 		evlist__delete(evlist);
105 		evlist = NULL;
106 	}
107 
108 	return evlist;
109 }
110 
111 struct evlist *evlist__new_dummy(void)
112 {
113 	struct evlist *evlist = evlist__new();
114 
115 	if (evlist && evlist__add_dummy(evlist)) {
116 		evlist__delete(evlist);
117 		evlist = NULL;
118 	}
119 
120 	return evlist;
121 }
122 
123 /**
124  * evlist__set_id_pos - set the positions of event ids.
125  * @evlist: selected event list
126  *
127  * Events with compatible sample types all have the same id_pos
128  * and is_pos.  For convenience, put a copy on evlist.
129  */
130 void evlist__set_id_pos(struct evlist *evlist)
131 {
132 	struct evsel *first = evlist__first(evlist);
133 
134 	evlist->id_pos = first->id_pos;
135 	evlist->is_pos = first->is_pos;
136 }
137 
138 static void evlist__update_id_pos(struct evlist *evlist)
139 {
140 	struct evsel *evsel;
141 
142 	evlist__for_each_entry(evlist, evsel)
143 		evsel__calc_id_pos(evsel);
144 
145 	evlist__set_id_pos(evlist);
146 }
147 
148 static void evlist__purge(struct evlist *evlist)
149 {
150 	struct evsel *pos, *n;
151 
152 	evlist__for_each_entry_safe(evlist, n, pos) {
153 		list_del_init(&pos->core.node);
154 		pos->evlist = NULL;
155 		evsel__delete(pos);
156 	}
157 
158 	evlist->core.nr_entries = 0;
159 }
160 
161 void evlist__exit(struct evlist *evlist)
162 {
163 	event_enable_timer__exit(&evlist->eet);
164 	zfree(&evlist->mmap);
165 	zfree(&evlist->overwrite_mmap);
166 	perf_evlist__exit(&evlist->core);
167 }
168 
169 void evlist__delete(struct evlist *evlist)
170 {
171 	if (evlist == NULL)
172 		return;
173 
174 	evlist__munmap(evlist);
175 	evlist__close(evlist);
176 	evlist__purge(evlist);
177 	evlist__exit(evlist);
178 	free(evlist);
179 }
180 
181 void evlist__add(struct evlist *evlist, struct evsel *entry)
182 {
183 	perf_evlist__add(&evlist->core, &entry->core);
184 	entry->evlist = evlist;
185 	entry->tracking = !entry->core.idx;
186 
187 	if (evlist->core.nr_entries == 1)
188 		evlist__set_id_pos(evlist);
189 }
190 
191 void evlist__remove(struct evlist *evlist, struct evsel *evsel)
192 {
193 	evsel->evlist = NULL;
194 	perf_evlist__remove(&evlist->core, &evsel->core);
195 }
196 
197 void evlist__splice_list_tail(struct evlist *evlist, struct list_head *list)
198 {
199 	while (!list_empty(list)) {
200 		struct evsel *evsel, *temp, *leader = NULL;
201 
202 		__evlist__for_each_entry_safe(list, temp, evsel) {
203 			list_del_init(&evsel->core.node);
204 			evlist__add(evlist, evsel);
205 			leader = evsel;
206 			break;
207 		}
208 
209 		__evlist__for_each_entry_safe(list, temp, evsel) {
210 			if (evsel__has_leader(evsel, leader)) {
211 				list_del_init(&evsel->core.node);
212 				evlist__add(evlist, evsel);
213 			}
214 		}
215 	}
216 }
217 
218 int __evlist__set_tracepoints_handlers(struct evlist *evlist,
219 				       const struct evsel_str_handler *assocs, size_t nr_assocs)
220 {
221 	size_t i;
222 	int err;
223 
224 	for (i = 0; i < nr_assocs; i++) {
225 		// Adding a handler for an event not in this evlist, just ignore it.
226 		struct evsel *evsel = evlist__find_tracepoint_by_name(evlist, assocs[i].name);
227 		if (evsel == NULL)
228 			continue;
229 
230 		err = -EEXIST;
231 		if (evsel->handler != NULL)
232 			goto out;
233 		evsel->handler = assocs[i].handler;
234 	}
235 
236 	err = 0;
237 out:
238 	return err;
239 }
240 
241 static void evlist__set_leader(struct evlist *evlist)
242 {
243 	perf_evlist__set_leader(&evlist->core);
244 }
245 
246 static struct evsel *evlist__dummy_event(struct evlist *evlist)
247 {
248 	struct perf_event_attr attr = {
249 		.type	= PERF_TYPE_SOFTWARE,
250 		.config = PERF_COUNT_SW_DUMMY,
251 		.size	= sizeof(attr), /* to capture ABI version */
252 	};
253 
254 	return evsel__new_idx(&attr, evlist->core.nr_entries);
255 }
256 
257 int evlist__add_dummy(struct evlist *evlist)
258 {
259 	struct evsel *evsel = evlist__dummy_event(evlist);
260 
261 	if (evsel == NULL)
262 		return -ENOMEM;
263 
264 	evlist__add(evlist, evsel);
265 	return 0;
266 }
267 
268 struct evsel *evlist__add_aux_dummy(struct evlist *evlist, bool system_wide)
269 {
270 	struct evsel *evsel = evlist__dummy_event(evlist);
271 
272 	if (!evsel)
273 		return NULL;
274 
275 	evsel->core.attr.exclude_kernel = 1;
276 	evsel->core.attr.exclude_guest = 1;
277 	evsel->core.attr.exclude_hv = 1;
278 	evsel->core.attr.freq = 0;
279 	evsel->core.attr.sample_period = 1;
280 	evsel->core.system_wide = system_wide;
281 	evsel->no_aux_samples = true;
282 	evsel->name = strdup("dummy:u");
283 
284 	evlist__add(evlist, evsel);
285 	return evsel;
286 }
287 
288 #ifdef HAVE_LIBTRACEEVENT
289 struct evsel *evlist__add_sched_switch(struct evlist *evlist, bool system_wide)
290 {
291 	struct evsel *evsel = evsel__newtp_idx("sched", "sched_switch", 0);
292 
293 	if (IS_ERR(evsel))
294 		return evsel;
295 
296 	evsel__set_sample_bit(evsel, CPU);
297 	evsel__set_sample_bit(evsel, TIME);
298 
299 	evsel->core.system_wide = system_wide;
300 	evsel->no_aux_samples = true;
301 
302 	evlist__add(evlist, evsel);
303 	return evsel;
304 }
305 #endif
306 
307 int evlist__add_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs)
308 {
309 	struct evsel *evsel, *n;
310 	LIST_HEAD(head);
311 	size_t i;
312 
313 	for (i = 0; i < nr_attrs; i++) {
314 		evsel = evsel__new_idx(attrs + i, evlist->core.nr_entries + i);
315 		if (evsel == NULL)
316 			goto out_delete_partial_list;
317 		list_add_tail(&evsel->core.node, &head);
318 	}
319 
320 	evlist__splice_list_tail(evlist, &head);
321 
322 	return 0;
323 
324 out_delete_partial_list:
325 	__evlist__for_each_entry_safe(&head, n, evsel)
326 		evsel__delete(evsel);
327 	return -1;
328 }
329 
330 int __evlist__add_default_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs)
331 {
332 	size_t i;
333 
334 	for (i = 0; i < nr_attrs; i++)
335 		event_attr_init(attrs + i);
336 
337 	return evlist__add_attrs(evlist, attrs, nr_attrs);
338 }
339 
340 __weak int arch_evlist__add_default_attrs(struct evlist *evlist,
341 					  struct perf_event_attr *attrs,
342 					  size_t nr_attrs)
343 {
344 	if (!nr_attrs)
345 		return 0;
346 
347 	return __evlist__add_default_attrs(evlist, attrs, nr_attrs);
348 }
349 
350 struct evsel *evlist__find_tracepoint_by_id(struct evlist *evlist, int id)
351 {
352 	struct evsel *evsel;
353 
354 	evlist__for_each_entry(evlist, evsel) {
355 		if (evsel->core.attr.type   == PERF_TYPE_TRACEPOINT &&
356 		    (int)evsel->core.attr.config == id)
357 			return evsel;
358 	}
359 
360 	return NULL;
361 }
362 
363 struct evsel *evlist__find_tracepoint_by_name(struct evlist *evlist, const char *name)
364 {
365 	struct evsel *evsel;
366 
367 	evlist__for_each_entry(evlist, evsel) {
368 		if ((evsel->core.attr.type == PERF_TYPE_TRACEPOINT) &&
369 		    (strcmp(evsel->name, name) == 0))
370 			return evsel;
371 	}
372 
373 	return NULL;
374 }
375 
376 #ifdef HAVE_LIBTRACEEVENT
377 int evlist__add_newtp(struct evlist *evlist, const char *sys, const char *name, void *handler)
378 {
379 	struct evsel *evsel = evsel__newtp(sys, name);
380 
381 	if (IS_ERR(evsel))
382 		return -1;
383 
384 	evsel->handler = handler;
385 	evlist__add(evlist, evsel);
386 	return 0;
387 }
388 #endif
389 
390 struct evlist_cpu_iterator evlist__cpu_begin(struct evlist *evlist, struct affinity *affinity)
391 {
392 	struct evlist_cpu_iterator itr = {
393 		.container = evlist,
394 		.evsel = NULL,
395 		.cpu_map_idx = 0,
396 		.evlist_cpu_map_idx = 0,
397 		.evlist_cpu_map_nr = perf_cpu_map__nr(evlist->core.all_cpus),
398 		.cpu = (struct perf_cpu){ .cpu = -1},
399 		.affinity = affinity,
400 	};
401 
402 	if (evlist__empty(evlist)) {
403 		/* Ensure the empty list doesn't iterate. */
404 		itr.evlist_cpu_map_idx = itr.evlist_cpu_map_nr;
405 	} else {
406 		itr.evsel = evlist__first(evlist);
407 		if (itr.affinity) {
408 			itr.cpu = perf_cpu_map__cpu(evlist->core.all_cpus, 0);
409 			affinity__set(itr.affinity, itr.cpu.cpu);
410 			itr.cpu_map_idx = perf_cpu_map__idx(itr.evsel->core.cpus, itr.cpu);
411 			/*
412 			 * If this CPU isn't in the evsel's cpu map then advance
413 			 * through the list.
414 			 */
415 			if (itr.cpu_map_idx == -1)
416 				evlist_cpu_iterator__next(&itr);
417 		}
418 	}
419 	return itr;
420 }
421 
422 void evlist_cpu_iterator__next(struct evlist_cpu_iterator *evlist_cpu_itr)
423 {
424 	while (evlist_cpu_itr->evsel != evlist__last(evlist_cpu_itr->container)) {
425 		evlist_cpu_itr->evsel = evsel__next(evlist_cpu_itr->evsel);
426 		evlist_cpu_itr->cpu_map_idx =
427 			perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus,
428 					  evlist_cpu_itr->cpu);
429 		if (evlist_cpu_itr->cpu_map_idx != -1)
430 			return;
431 	}
432 	evlist_cpu_itr->evlist_cpu_map_idx++;
433 	if (evlist_cpu_itr->evlist_cpu_map_idx < evlist_cpu_itr->evlist_cpu_map_nr) {
434 		evlist_cpu_itr->evsel = evlist__first(evlist_cpu_itr->container);
435 		evlist_cpu_itr->cpu =
436 			perf_cpu_map__cpu(evlist_cpu_itr->container->core.all_cpus,
437 					  evlist_cpu_itr->evlist_cpu_map_idx);
438 		if (evlist_cpu_itr->affinity)
439 			affinity__set(evlist_cpu_itr->affinity, evlist_cpu_itr->cpu.cpu);
440 		evlist_cpu_itr->cpu_map_idx =
441 			perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus,
442 					  evlist_cpu_itr->cpu);
443 		/*
444 		 * If this CPU isn't in the evsel's cpu map then advance through
445 		 * the list.
446 		 */
447 		if (evlist_cpu_itr->cpu_map_idx == -1)
448 			evlist_cpu_iterator__next(evlist_cpu_itr);
449 	}
450 }
451 
452 bool evlist_cpu_iterator__end(const struct evlist_cpu_iterator *evlist_cpu_itr)
453 {
454 	return evlist_cpu_itr->evlist_cpu_map_idx >= evlist_cpu_itr->evlist_cpu_map_nr;
455 }
456 
457 static int evsel__strcmp(struct evsel *pos, char *evsel_name)
458 {
459 	if (!evsel_name)
460 		return 0;
461 	if (evsel__is_dummy_event(pos))
462 		return 1;
463 	return !evsel__name_is(pos, evsel_name);
464 }
465 
466 static int evlist__is_enabled(struct evlist *evlist)
467 {
468 	struct evsel *pos;
469 
470 	evlist__for_each_entry(evlist, pos) {
471 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
472 			continue;
473 		/* If at least one event is enabled, evlist is enabled. */
474 		if (!pos->disabled)
475 			return true;
476 	}
477 	return false;
478 }
479 
480 static void __evlist__disable(struct evlist *evlist, char *evsel_name, bool excl_dummy)
481 {
482 	struct evsel *pos;
483 	struct evlist_cpu_iterator evlist_cpu_itr;
484 	struct affinity saved_affinity, *affinity = NULL;
485 	bool has_imm = false;
486 
487 	// See explanation in evlist__close()
488 	if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
489 		if (affinity__setup(&saved_affinity) < 0)
490 			return;
491 		affinity = &saved_affinity;
492 	}
493 
494 	/* Disable 'immediate' events last */
495 	for (int imm = 0; imm <= 1; imm++) {
496 		evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) {
497 			pos = evlist_cpu_itr.evsel;
498 			if (evsel__strcmp(pos, evsel_name))
499 				continue;
500 			if (pos->disabled || !evsel__is_group_leader(pos) || !pos->core.fd)
501 				continue;
502 			if (excl_dummy && evsel__is_dummy_event(pos))
503 				continue;
504 			if (pos->immediate)
505 				has_imm = true;
506 			if (pos->immediate != imm)
507 				continue;
508 			evsel__disable_cpu(pos, evlist_cpu_itr.cpu_map_idx);
509 		}
510 		if (!has_imm)
511 			break;
512 	}
513 
514 	affinity__cleanup(affinity);
515 	evlist__for_each_entry(evlist, pos) {
516 		if (evsel__strcmp(pos, evsel_name))
517 			continue;
518 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
519 			continue;
520 		if (excl_dummy && evsel__is_dummy_event(pos))
521 			continue;
522 		pos->disabled = true;
523 	}
524 
525 	/*
526 	 * If we disabled only single event, we need to check
527 	 * the enabled state of the evlist manually.
528 	 */
529 	if (evsel_name)
530 		evlist->enabled = evlist__is_enabled(evlist);
531 	else
532 		evlist->enabled = false;
533 }
534 
535 void evlist__disable(struct evlist *evlist)
536 {
537 	__evlist__disable(evlist, NULL, false);
538 }
539 
540 void evlist__disable_non_dummy(struct evlist *evlist)
541 {
542 	__evlist__disable(evlist, NULL, true);
543 }
544 
545 void evlist__disable_evsel(struct evlist *evlist, char *evsel_name)
546 {
547 	__evlist__disable(evlist, evsel_name, false);
548 }
549 
550 static void __evlist__enable(struct evlist *evlist, char *evsel_name, bool excl_dummy)
551 {
552 	struct evsel *pos;
553 	struct evlist_cpu_iterator evlist_cpu_itr;
554 	struct affinity saved_affinity, *affinity = NULL;
555 
556 	// See explanation in evlist__close()
557 	if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
558 		if (affinity__setup(&saved_affinity) < 0)
559 			return;
560 		affinity = &saved_affinity;
561 	}
562 
563 	evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) {
564 		pos = evlist_cpu_itr.evsel;
565 		if (evsel__strcmp(pos, evsel_name))
566 			continue;
567 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
568 			continue;
569 		if (excl_dummy && evsel__is_dummy_event(pos))
570 			continue;
571 		evsel__enable_cpu(pos, evlist_cpu_itr.cpu_map_idx);
572 	}
573 	affinity__cleanup(affinity);
574 	evlist__for_each_entry(evlist, pos) {
575 		if (evsel__strcmp(pos, evsel_name))
576 			continue;
577 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
578 			continue;
579 		if (excl_dummy && evsel__is_dummy_event(pos))
580 			continue;
581 		pos->disabled = false;
582 	}
583 
584 	/*
585 	 * Even single event sets the 'enabled' for evlist,
586 	 * so the toggle can work properly and toggle to
587 	 * 'disabled' state.
588 	 */
589 	evlist->enabled = true;
590 }
591 
592 void evlist__enable(struct evlist *evlist)
593 {
594 	__evlist__enable(evlist, NULL, false);
595 }
596 
597 void evlist__enable_non_dummy(struct evlist *evlist)
598 {
599 	__evlist__enable(evlist, NULL, true);
600 }
601 
602 void evlist__enable_evsel(struct evlist *evlist, char *evsel_name)
603 {
604 	__evlist__enable(evlist, evsel_name, false);
605 }
606 
607 void evlist__toggle_enable(struct evlist *evlist)
608 {
609 	(evlist->enabled ? evlist__disable : evlist__enable)(evlist);
610 }
611 
612 int evlist__add_pollfd(struct evlist *evlist, int fd)
613 {
614 	return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__default);
615 }
616 
617 int evlist__filter_pollfd(struct evlist *evlist, short revents_and_mask)
618 {
619 	return perf_evlist__filter_pollfd(&evlist->core, revents_and_mask);
620 }
621 
622 #ifdef HAVE_EVENTFD_SUPPORT
623 int evlist__add_wakeup_eventfd(struct evlist *evlist, int fd)
624 {
625 	return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
626 				       fdarray_flag__nonfilterable |
627 				       fdarray_flag__non_perf_event);
628 }
629 #endif
630 
631 int evlist__poll(struct evlist *evlist, int timeout)
632 {
633 	return perf_evlist__poll(&evlist->core, timeout);
634 }
635 
636 struct perf_sample_id *evlist__id2sid(struct evlist *evlist, u64 id)
637 {
638 	struct hlist_head *head;
639 	struct perf_sample_id *sid;
640 	int hash;
641 
642 	hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
643 	head = &evlist->core.heads[hash];
644 
645 	hlist_for_each_entry(sid, head, node)
646 		if (sid->id == id)
647 			return sid;
648 
649 	return NULL;
650 }
651 
652 struct evsel *evlist__id2evsel(struct evlist *evlist, u64 id)
653 {
654 	struct perf_sample_id *sid;
655 
656 	if (evlist->core.nr_entries == 1 || !id)
657 		return evlist__first(evlist);
658 
659 	sid = evlist__id2sid(evlist, id);
660 	if (sid)
661 		return container_of(sid->evsel, struct evsel, core);
662 
663 	if (!evlist__sample_id_all(evlist))
664 		return evlist__first(evlist);
665 
666 	return NULL;
667 }
668 
669 struct evsel *evlist__id2evsel_strict(struct evlist *evlist, u64 id)
670 {
671 	struct perf_sample_id *sid;
672 
673 	if (!id)
674 		return NULL;
675 
676 	sid = evlist__id2sid(evlist, id);
677 	if (sid)
678 		return container_of(sid->evsel, struct evsel, core);
679 
680 	return NULL;
681 }
682 
683 static int evlist__event2id(struct evlist *evlist, union perf_event *event, u64 *id)
684 {
685 	const __u64 *array = event->sample.array;
686 	ssize_t n;
687 
688 	n = (event->header.size - sizeof(event->header)) >> 3;
689 
690 	if (event->header.type == PERF_RECORD_SAMPLE) {
691 		if (evlist->id_pos >= n)
692 			return -1;
693 		*id = array[evlist->id_pos];
694 	} else {
695 		if (evlist->is_pos > n)
696 			return -1;
697 		n -= evlist->is_pos;
698 		*id = array[n];
699 	}
700 	return 0;
701 }
702 
703 struct evsel *evlist__event2evsel(struct evlist *evlist, union perf_event *event)
704 {
705 	struct evsel *first = evlist__first(evlist);
706 	struct hlist_head *head;
707 	struct perf_sample_id *sid;
708 	int hash;
709 	u64 id;
710 
711 	if (evlist->core.nr_entries == 1)
712 		return first;
713 
714 	if (!first->core.attr.sample_id_all &&
715 	    event->header.type != PERF_RECORD_SAMPLE)
716 		return first;
717 
718 	if (evlist__event2id(evlist, event, &id))
719 		return NULL;
720 
721 	/* Synthesized events have an id of zero */
722 	if (!id)
723 		return first;
724 
725 	hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
726 	head = &evlist->core.heads[hash];
727 
728 	hlist_for_each_entry(sid, head, node) {
729 		if (sid->id == id)
730 			return container_of(sid->evsel, struct evsel, core);
731 	}
732 	return NULL;
733 }
734 
735 static int evlist__set_paused(struct evlist *evlist, bool value)
736 {
737 	int i;
738 
739 	if (!evlist->overwrite_mmap)
740 		return 0;
741 
742 	for (i = 0; i < evlist->core.nr_mmaps; i++) {
743 		int fd = evlist->overwrite_mmap[i].core.fd;
744 		int err;
745 
746 		if (fd < 0)
747 			continue;
748 		err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0);
749 		if (err)
750 			return err;
751 	}
752 	return 0;
753 }
754 
755 static int evlist__pause(struct evlist *evlist)
756 {
757 	return evlist__set_paused(evlist, true);
758 }
759 
760 static int evlist__resume(struct evlist *evlist)
761 {
762 	return evlist__set_paused(evlist, false);
763 }
764 
765 static void evlist__munmap_nofree(struct evlist *evlist)
766 {
767 	int i;
768 
769 	if (evlist->mmap)
770 		for (i = 0; i < evlist->core.nr_mmaps; i++)
771 			perf_mmap__munmap(&evlist->mmap[i].core);
772 
773 	if (evlist->overwrite_mmap)
774 		for (i = 0; i < evlist->core.nr_mmaps; i++)
775 			perf_mmap__munmap(&evlist->overwrite_mmap[i].core);
776 }
777 
778 void evlist__munmap(struct evlist *evlist)
779 {
780 	evlist__munmap_nofree(evlist);
781 	zfree(&evlist->mmap);
782 	zfree(&evlist->overwrite_mmap);
783 }
784 
785 static void perf_mmap__unmap_cb(struct perf_mmap *map)
786 {
787 	struct mmap *m = container_of(map, struct mmap, core);
788 
789 	mmap__munmap(m);
790 }
791 
792 static struct mmap *evlist__alloc_mmap(struct evlist *evlist,
793 				       bool overwrite)
794 {
795 	int i;
796 	struct mmap *map;
797 
798 	map = zalloc(evlist->core.nr_mmaps * sizeof(struct mmap));
799 	if (!map)
800 		return NULL;
801 
802 	for (i = 0; i < evlist->core.nr_mmaps; i++) {
803 		struct perf_mmap *prev = i ? &map[i - 1].core : NULL;
804 
805 		/*
806 		 * When the perf_mmap() call is made we grab one refcount, plus
807 		 * one extra to let perf_mmap__consume() get the last
808 		 * events after all real references (perf_mmap__get()) are
809 		 * dropped.
810 		 *
811 		 * Each PERF_EVENT_IOC_SET_OUTPUT points to this mmap and
812 		 * thus does perf_mmap__get() on it.
813 		 */
814 		perf_mmap__init(&map[i].core, prev, overwrite, perf_mmap__unmap_cb);
815 	}
816 
817 	return map;
818 }
819 
820 static void
821 perf_evlist__mmap_cb_idx(struct perf_evlist *_evlist,
822 			 struct perf_evsel *_evsel,
823 			 struct perf_mmap_param *_mp,
824 			 int idx)
825 {
826 	struct evlist *evlist = container_of(_evlist, struct evlist, core);
827 	struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
828 	struct evsel *evsel = container_of(_evsel, struct evsel, core);
829 
830 	auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, evsel, idx);
831 }
832 
833 static struct perf_mmap*
834 perf_evlist__mmap_cb_get(struct perf_evlist *_evlist, bool overwrite, int idx)
835 {
836 	struct evlist *evlist = container_of(_evlist, struct evlist, core);
837 	struct mmap *maps;
838 
839 	maps = overwrite ? evlist->overwrite_mmap : evlist->mmap;
840 
841 	if (!maps) {
842 		maps = evlist__alloc_mmap(evlist, overwrite);
843 		if (!maps)
844 			return NULL;
845 
846 		if (overwrite) {
847 			evlist->overwrite_mmap = maps;
848 			if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY)
849 				evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING);
850 		} else {
851 			evlist->mmap = maps;
852 		}
853 	}
854 
855 	return &maps[idx].core;
856 }
857 
858 static int
859 perf_evlist__mmap_cb_mmap(struct perf_mmap *_map, struct perf_mmap_param *_mp,
860 			  int output, struct perf_cpu cpu)
861 {
862 	struct mmap *map = container_of(_map, struct mmap, core);
863 	struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
864 
865 	return mmap__mmap(map, mp, output, cpu);
866 }
867 
868 unsigned long perf_event_mlock_kb_in_pages(void)
869 {
870 	unsigned long pages;
871 	int max;
872 
873 	if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) {
874 		/*
875 		 * Pick a once upon a time good value, i.e. things look
876 		 * strange since we can't read a sysctl value, but lets not
877 		 * die yet...
878 		 */
879 		max = 512;
880 	} else {
881 		max -= (page_size / 1024);
882 	}
883 
884 	pages = (max * 1024) / page_size;
885 	if (!is_power_of_2(pages))
886 		pages = rounddown_pow_of_two(pages);
887 
888 	return pages;
889 }
890 
891 size_t evlist__mmap_size(unsigned long pages)
892 {
893 	if (pages == UINT_MAX)
894 		pages = perf_event_mlock_kb_in_pages();
895 	else if (!is_power_of_2(pages))
896 		return 0;
897 
898 	return (pages + 1) * page_size;
899 }
900 
901 static long parse_pages_arg(const char *str, unsigned long min,
902 			    unsigned long max)
903 {
904 	unsigned long pages, val;
905 	static struct parse_tag tags[] = {
906 		{ .tag  = 'B', .mult = 1       },
907 		{ .tag  = 'K', .mult = 1 << 10 },
908 		{ .tag  = 'M', .mult = 1 << 20 },
909 		{ .tag  = 'G', .mult = 1 << 30 },
910 		{ .tag  = 0 },
911 	};
912 
913 	if (str == NULL)
914 		return -EINVAL;
915 
916 	val = parse_tag_value(str, tags);
917 	if (val != (unsigned long) -1) {
918 		/* we got file size value */
919 		pages = PERF_ALIGN(val, page_size) / page_size;
920 	} else {
921 		/* we got pages count value */
922 		char *eptr;
923 		pages = strtoul(str, &eptr, 10);
924 		if (*eptr != '\0')
925 			return -EINVAL;
926 	}
927 
928 	if (pages == 0 && min == 0) {
929 		/* leave number of pages at 0 */
930 	} else if (!is_power_of_2(pages)) {
931 		char buf[100];
932 
933 		/* round pages up to next power of 2 */
934 		pages = roundup_pow_of_two(pages);
935 		if (!pages)
936 			return -EINVAL;
937 
938 		unit_number__scnprintf(buf, sizeof(buf), pages * page_size);
939 		pr_info("rounding mmap pages size to %s (%lu pages)\n",
940 			buf, pages);
941 	}
942 
943 	if (pages > max)
944 		return -EINVAL;
945 
946 	return pages;
947 }
948 
949 int __evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str)
950 {
951 	unsigned long max = UINT_MAX;
952 	long pages;
953 
954 	if (max > SIZE_MAX / page_size)
955 		max = SIZE_MAX / page_size;
956 
957 	pages = parse_pages_arg(str, 1, max);
958 	if (pages < 0) {
959 		pr_err("Invalid argument for --mmap_pages/-m\n");
960 		return -1;
961 	}
962 
963 	*mmap_pages = pages;
964 	return 0;
965 }
966 
967 int evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused)
968 {
969 	return __evlist__parse_mmap_pages(opt->value, str);
970 }
971 
972 /**
973  * evlist__mmap_ex - Create mmaps to receive events.
974  * @evlist: list of events
975  * @pages: map length in pages
976  * @overwrite: overwrite older events?
977  * @auxtrace_pages - auxtrace map length in pages
978  * @auxtrace_overwrite - overwrite older auxtrace data?
979  *
980  * If @overwrite is %false the user needs to signal event consumption using
981  * perf_mmap__write_tail().  Using evlist__mmap_read() does this
982  * automatically.
983  *
984  * Similarly, if @auxtrace_overwrite is %false the user needs to signal data
985  * consumption using auxtrace_mmap__write_tail().
986  *
987  * Return: %0 on success, negative error code otherwise.
988  */
989 int evlist__mmap_ex(struct evlist *evlist, unsigned int pages,
990 			 unsigned int auxtrace_pages,
991 			 bool auxtrace_overwrite, int nr_cblocks, int affinity, int flush,
992 			 int comp_level)
993 {
994 	/*
995 	 * Delay setting mp.prot: set it before calling perf_mmap__mmap.
996 	 * Its value is decided by evsel's write_backward.
997 	 * So &mp should not be passed through const pointer.
998 	 */
999 	struct mmap_params mp = {
1000 		.nr_cblocks	= nr_cblocks,
1001 		.affinity	= affinity,
1002 		.flush		= flush,
1003 		.comp_level	= comp_level
1004 	};
1005 	struct perf_evlist_mmap_ops ops = {
1006 		.idx  = perf_evlist__mmap_cb_idx,
1007 		.get  = perf_evlist__mmap_cb_get,
1008 		.mmap = perf_evlist__mmap_cb_mmap,
1009 	};
1010 
1011 	evlist->core.mmap_len = evlist__mmap_size(pages);
1012 	pr_debug("mmap size %zuB\n", evlist->core.mmap_len);
1013 
1014 	auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->core.mmap_len,
1015 				   auxtrace_pages, auxtrace_overwrite);
1016 
1017 	return perf_evlist__mmap_ops(&evlist->core, &ops, &mp.core);
1018 }
1019 
1020 int evlist__mmap(struct evlist *evlist, unsigned int pages)
1021 {
1022 	return evlist__mmap_ex(evlist, pages, 0, false, 0, PERF_AFFINITY_SYS, 1, 0);
1023 }
1024 
1025 int evlist__create_maps(struct evlist *evlist, struct target *target)
1026 {
1027 	bool all_threads = (target->per_thread && target->system_wide);
1028 	struct perf_cpu_map *cpus;
1029 	struct perf_thread_map *threads;
1030 
1031 	/*
1032 	 * If specify '-a' and '--per-thread' to perf record, perf record
1033 	 * will override '--per-thread'. target->per_thread = false and
1034 	 * target->system_wide = true.
1035 	 *
1036 	 * If specify '--per-thread' only to perf record,
1037 	 * target->per_thread = true and target->system_wide = false.
1038 	 *
1039 	 * So target->per_thread && target->system_wide is false.
1040 	 * For perf record, thread_map__new_str doesn't call
1041 	 * thread_map__new_all_cpus. That will keep perf record's
1042 	 * current behavior.
1043 	 *
1044 	 * For perf stat, it allows the case that target->per_thread and
1045 	 * target->system_wide are all true. It means to collect system-wide
1046 	 * per-thread data. thread_map__new_str will call
1047 	 * thread_map__new_all_cpus to enumerate all threads.
1048 	 */
1049 	threads = thread_map__new_str(target->pid, target->tid, target->uid,
1050 				      all_threads);
1051 
1052 	if (!threads)
1053 		return -1;
1054 
1055 	if (target__uses_dummy_map(target))
1056 		cpus = perf_cpu_map__dummy_new();
1057 	else
1058 		cpus = perf_cpu_map__new(target->cpu_list);
1059 
1060 	if (!cpus)
1061 		goto out_delete_threads;
1062 
1063 	evlist->core.has_user_cpus = !!target->cpu_list;
1064 
1065 	perf_evlist__set_maps(&evlist->core, cpus, threads);
1066 
1067 	/* as evlist now has references, put count here */
1068 	perf_cpu_map__put(cpus);
1069 	perf_thread_map__put(threads);
1070 
1071 	return 0;
1072 
1073 out_delete_threads:
1074 	perf_thread_map__put(threads);
1075 	return -1;
1076 }
1077 
1078 int evlist__apply_filters(struct evlist *evlist, struct evsel **err_evsel)
1079 {
1080 	struct evsel *evsel;
1081 	int err = 0;
1082 
1083 	evlist__for_each_entry(evlist, evsel) {
1084 		/*
1085 		 * filters only work for tracepoint event, which doesn't have cpu limit.
1086 		 * So evlist and evsel should always be same.
1087 		 */
1088 		if (evsel->filter) {
1089 			err = perf_evsel__apply_filter(&evsel->core, evsel->filter);
1090 			if (err) {
1091 				*err_evsel = evsel;
1092 				break;
1093 			}
1094 		}
1095 
1096 		/*
1097 		 * non-tracepoint events can have BPF filters.
1098 		 */
1099 		if (!list_empty(&evsel->bpf_filters)) {
1100 			err = perf_bpf_filter__prepare(evsel);
1101 			if (err) {
1102 				*err_evsel = evsel;
1103 				break;
1104 			}
1105 		}
1106 	}
1107 
1108 	return err;
1109 }
1110 
1111 int evlist__set_tp_filter(struct evlist *evlist, const char *filter)
1112 {
1113 	struct evsel *evsel;
1114 	int err = 0;
1115 
1116 	if (filter == NULL)
1117 		return -1;
1118 
1119 	evlist__for_each_entry(evlist, evsel) {
1120 		if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
1121 			continue;
1122 
1123 		err = evsel__set_filter(evsel, filter);
1124 		if (err)
1125 			break;
1126 	}
1127 
1128 	return err;
1129 }
1130 
1131 int evlist__append_tp_filter(struct evlist *evlist, const char *filter)
1132 {
1133 	struct evsel *evsel;
1134 	int err = 0;
1135 
1136 	if (filter == NULL)
1137 		return -1;
1138 
1139 	evlist__for_each_entry(evlist, evsel) {
1140 		if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
1141 			continue;
1142 
1143 		err = evsel__append_tp_filter(evsel, filter);
1144 		if (err)
1145 			break;
1146 	}
1147 
1148 	return err;
1149 }
1150 
1151 char *asprintf__tp_filter_pids(size_t npids, pid_t *pids)
1152 {
1153 	char *filter;
1154 	size_t i;
1155 
1156 	for (i = 0; i < npids; ++i) {
1157 		if (i == 0) {
1158 			if (asprintf(&filter, "common_pid != %d", pids[i]) < 0)
1159 				return NULL;
1160 		} else {
1161 			char *tmp;
1162 
1163 			if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0)
1164 				goto out_free;
1165 
1166 			free(filter);
1167 			filter = tmp;
1168 		}
1169 	}
1170 
1171 	return filter;
1172 out_free:
1173 	free(filter);
1174 	return NULL;
1175 }
1176 
1177 int evlist__set_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
1178 {
1179 	char *filter = asprintf__tp_filter_pids(npids, pids);
1180 	int ret = evlist__set_tp_filter(evlist, filter);
1181 
1182 	free(filter);
1183 	return ret;
1184 }
1185 
1186 int evlist__set_tp_filter_pid(struct evlist *evlist, pid_t pid)
1187 {
1188 	return evlist__set_tp_filter_pids(evlist, 1, &pid);
1189 }
1190 
1191 int evlist__append_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
1192 {
1193 	char *filter = asprintf__tp_filter_pids(npids, pids);
1194 	int ret = evlist__append_tp_filter(evlist, filter);
1195 
1196 	free(filter);
1197 	return ret;
1198 }
1199 
1200 int evlist__append_tp_filter_pid(struct evlist *evlist, pid_t pid)
1201 {
1202 	return evlist__append_tp_filter_pids(evlist, 1, &pid);
1203 }
1204 
1205 bool evlist__valid_sample_type(struct evlist *evlist)
1206 {
1207 	struct evsel *pos;
1208 
1209 	if (evlist->core.nr_entries == 1)
1210 		return true;
1211 
1212 	if (evlist->id_pos < 0 || evlist->is_pos < 0)
1213 		return false;
1214 
1215 	evlist__for_each_entry(evlist, pos) {
1216 		if (pos->id_pos != evlist->id_pos ||
1217 		    pos->is_pos != evlist->is_pos)
1218 			return false;
1219 	}
1220 
1221 	return true;
1222 }
1223 
1224 u64 __evlist__combined_sample_type(struct evlist *evlist)
1225 {
1226 	struct evsel *evsel;
1227 
1228 	if (evlist->combined_sample_type)
1229 		return evlist->combined_sample_type;
1230 
1231 	evlist__for_each_entry(evlist, evsel)
1232 		evlist->combined_sample_type |= evsel->core.attr.sample_type;
1233 
1234 	return evlist->combined_sample_type;
1235 }
1236 
1237 u64 evlist__combined_sample_type(struct evlist *evlist)
1238 {
1239 	evlist->combined_sample_type = 0;
1240 	return __evlist__combined_sample_type(evlist);
1241 }
1242 
1243 u64 evlist__combined_branch_type(struct evlist *evlist)
1244 {
1245 	struct evsel *evsel;
1246 	u64 branch_type = 0;
1247 
1248 	evlist__for_each_entry(evlist, evsel)
1249 		branch_type |= evsel->core.attr.branch_sample_type;
1250 	return branch_type;
1251 }
1252 
1253 bool evlist__valid_read_format(struct evlist *evlist)
1254 {
1255 	struct evsel *first = evlist__first(evlist), *pos = first;
1256 	u64 read_format = first->core.attr.read_format;
1257 	u64 sample_type = first->core.attr.sample_type;
1258 
1259 	evlist__for_each_entry(evlist, pos) {
1260 		if (read_format != pos->core.attr.read_format) {
1261 			pr_debug("Read format differs %#" PRIx64 " vs %#" PRIx64 "\n",
1262 				 read_format, (u64)pos->core.attr.read_format);
1263 		}
1264 	}
1265 
1266 	/* PERF_SAMPLE_READ implies PERF_FORMAT_ID. */
1267 	if ((sample_type & PERF_SAMPLE_READ) &&
1268 	    !(read_format & PERF_FORMAT_ID)) {
1269 		return false;
1270 	}
1271 
1272 	return true;
1273 }
1274 
1275 u16 evlist__id_hdr_size(struct evlist *evlist)
1276 {
1277 	struct evsel *first = evlist__first(evlist);
1278 
1279 	return first->core.attr.sample_id_all ? evsel__id_hdr_size(first) : 0;
1280 }
1281 
1282 bool evlist__valid_sample_id_all(struct evlist *evlist)
1283 {
1284 	struct evsel *first = evlist__first(evlist), *pos = first;
1285 
1286 	evlist__for_each_entry_continue(evlist, pos) {
1287 		if (first->core.attr.sample_id_all != pos->core.attr.sample_id_all)
1288 			return false;
1289 	}
1290 
1291 	return true;
1292 }
1293 
1294 bool evlist__sample_id_all(struct evlist *evlist)
1295 {
1296 	struct evsel *first = evlist__first(evlist);
1297 	return first->core.attr.sample_id_all;
1298 }
1299 
1300 void evlist__set_selected(struct evlist *evlist, struct evsel *evsel)
1301 {
1302 	evlist->selected = evsel;
1303 }
1304 
1305 void evlist__close(struct evlist *evlist)
1306 {
1307 	struct evsel *evsel;
1308 	struct evlist_cpu_iterator evlist_cpu_itr;
1309 	struct affinity affinity;
1310 
1311 	/*
1312 	 * With perf record core.user_requested_cpus is usually NULL.
1313 	 * Use the old method to handle this for now.
1314 	 */
1315 	if (!evlist->core.user_requested_cpus ||
1316 	    cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
1317 		evlist__for_each_entry_reverse(evlist, evsel)
1318 			evsel__close(evsel);
1319 		return;
1320 	}
1321 
1322 	if (affinity__setup(&affinity) < 0)
1323 		return;
1324 
1325 	evlist__for_each_cpu(evlist_cpu_itr, evlist, &affinity) {
1326 		perf_evsel__close_cpu(&evlist_cpu_itr.evsel->core,
1327 				      evlist_cpu_itr.cpu_map_idx);
1328 	}
1329 
1330 	affinity__cleanup(&affinity);
1331 	evlist__for_each_entry_reverse(evlist, evsel) {
1332 		perf_evsel__free_fd(&evsel->core);
1333 		perf_evsel__free_id(&evsel->core);
1334 	}
1335 	perf_evlist__reset_id_hash(&evlist->core);
1336 }
1337 
1338 static int evlist__create_syswide_maps(struct evlist *evlist)
1339 {
1340 	struct perf_cpu_map *cpus;
1341 	struct perf_thread_map *threads;
1342 
1343 	/*
1344 	 * Try reading /sys/devices/system/cpu/online to get
1345 	 * an all cpus map.
1346 	 *
1347 	 * FIXME: -ENOMEM is the best we can do here, the cpu_map
1348 	 * code needs an overhaul to properly forward the
1349 	 * error, and we may not want to do that fallback to a
1350 	 * default cpu identity map :-\
1351 	 */
1352 	cpus = perf_cpu_map__new(NULL);
1353 	if (!cpus)
1354 		goto out;
1355 
1356 	threads = perf_thread_map__new_dummy();
1357 	if (!threads)
1358 		goto out_put;
1359 
1360 	perf_evlist__set_maps(&evlist->core, cpus, threads);
1361 
1362 	perf_thread_map__put(threads);
1363 out_put:
1364 	perf_cpu_map__put(cpus);
1365 out:
1366 	return -ENOMEM;
1367 }
1368 
1369 int evlist__open(struct evlist *evlist)
1370 {
1371 	struct evsel *evsel;
1372 	int err;
1373 
1374 	/*
1375 	 * Default: one fd per CPU, all threads, aka systemwide
1376 	 * as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL
1377 	 */
1378 	if (evlist->core.threads == NULL && evlist->core.user_requested_cpus == NULL) {
1379 		err = evlist__create_syswide_maps(evlist);
1380 		if (err < 0)
1381 			goto out_err;
1382 	}
1383 
1384 	evlist__update_id_pos(evlist);
1385 
1386 	evlist__for_each_entry(evlist, evsel) {
1387 		err = evsel__open(evsel, evsel->core.cpus, evsel->core.threads);
1388 		if (err < 0)
1389 			goto out_err;
1390 	}
1391 
1392 	return 0;
1393 out_err:
1394 	evlist__close(evlist);
1395 	errno = -err;
1396 	return err;
1397 }
1398 
1399 int evlist__prepare_workload(struct evlist *evlist, struct target *target, const char *argv[],
1400 			     bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext))
1401 {
1402 	int child_ready_pipe[2], go_pipe[2];
1403 	char bf;
1404 
1405 	if (pipe(child_ready_pipe) < 0) {
1406 		perror("failed to create 'ready' pipe");
1407 		return -1;
1408 	}
1409 
1410 	if (pipe(go_pipe) < 0) {
1411 		perror("failed to create 'go' pipe");
1412 		goto out_close_ready_pipe;
1413 	}
1414 
1415 	evlist->workload.pid = fork();
1416 	if (evlist->workload.pid < 0) {
1417 		perror("failed to fork");
1418 		goto out_close_pipes;
1419 	}
1420 
1421 	if (!evlist->workload.pid) {
1422 		int ret;
1423 
1424 		if (pipe_output)
1425 			dup2(2, 1);
1426 
1427 		signal(SIGTERM, SIG_DFL);
1428 
1429 		close(child_ready_pipe[0]);
1430 		close(go_pipe[1]);
1431 		fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
1432 
1433 		/*
1434 		 * Change the name of this process not to confuse --exclude-perf users
1435 		 * that sees 'perf' in the window up to the execvp() and thinks that
1436 		 * perf samples are not being excluded.
1437 		 */
1438 		prctl(PR_SET_NAME, "perf-exec");
1439 
1440 		/*
1441 		 * Tell the parent we're ready to go
1442 		 */
1443 		close(child_ready_pipe[1]);
1444 
1445 		/*
1446 		 * Wait until the parent tells us to go.
1447 		 */
1448 		ret = read(go_pipe[0], &bf, 1);
1449 		/*
1450 		 * The parent will ask for the execvp() to be performed by
1451 		 * writing exactly one byte, in workload.cork_fd, usually via
1452 		 * evlist__start_workload().
1453 		 *
1454 		 * For cancelling the workload without actually running it,
1455 		 * the parent will just close workload.cork_fd, without writing
1456 		 * anything, i.e. read will return zero and we just exit()
1457 		 * here.
1458 		 */
1459 		if (ret != 1) {
1460 			if (ret == -1)
1461 				perror("unable to read pipe");
1462 			exit(ret);
1463 		}
1464 
1465 		execvp(argv[0], (char **)argv);
1466 
1467 		if (exec_error) {
1468 			union sigval val;
1469 
1470 			val.sival_int = errno;
1471 			if (sigqueue(getppid(), SIGUSR1, val))
1472 				perror(argv[0]);
1473 		} else
1474 			perror(argv[0]);
1475 		exit(-1);
1476 	}
1477 
1478 	if (exec_error) {
1479 		struct sigaction act = {
1480 			.sa_flags     = SA_SIGINFO,
1481 			.sa_sigaction = exec_error,
1482 		};
1483 		sigaction(SIGUSR1, &act, NULL);
1484 	}
1485 
1486 	if (target__none(target)) {
1487 		if (evlist->core.threads == NULL) {
1488 			fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n",
1489 				__func__, __LINE__);
1490 			goto out_close_pipes;
1491 		}
1492 		perf_thread_map__set_pid(evlist->core.threads, 0, evlist->workload.pid);
1493 	}
1494 
1495 	close(child_ready_pipe[1]);
1496 	close(go_pipe[0]);
1497 	/*
1498 	 * wait for child to settle
1499 	 */
1500 	if (read(child_ready_pipe[0], &bf, 1) == -1) {
1501 		perror("unable to read pipe");
1502 		goto out_close_pipes;
1503 	}
1504 
1505 	fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
1506 	evlist->workload.cork_fd = go_pipe[1];
1507 	close(child_ready_pipe[0]);
1508 	return 0;
1509 
1510 out_close_pipes:
1511 	close(go_pipe[0]);
1512 	close(go_pipe[1]);
1513 out_close_ready_pipe:
1514 	close(child_ready_pipe[0]);
1515 	close(child_ready_pipe[1]);
1516 	return -1;
1517 }
1518 
1519 int evlist__start_workload(struct evlist *evlist)
1520 {
1521 	if (evlist->workload.cork_fd > 0) {
1522 		char bf = 0;
1523 		int ret;
1524 		/*
1525 		 * Remove the cork, let it rip!
1526 		 */
1527 		ret = write(evlist->workload.cork_fd, &bf, 1);
1528 		if (ret < 0)
1529 			perror("unable to write to pipe");
1530 
1531 		close(evlist->workload.cork_fd);
1532 		return ret;
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 int evlist__parse_sample(struct evlist *evlist, union perf_event *event, struct perf_sample *sample)
1539 {
1540 	struct evsel *evsel = evlist__event2evsel(evlist, event);
1541 	int ret;
1542 
1543 	if (!evsel)
1544 		return -EFAULT;
1545 	ret = evsel__parse_sample(evsel, event, sample);
1546 	if (ret)
1547 		return ret;
1548 	if (perf_guest && sample->id) {
1549 		struct perf_sample_id *sid = evlist__id2sid(evlist, sample->id);
1550 
1551 		if (sid) {
1552 			sample->machine_pid = sid->machine_pid;
1553 			sample->vcpu = sid->vcpu.cpu;
1554 		}
1555 	}
1556 	return 0;
1557 }
1558 
1559 int evlist__parse_sample_timestamp(struct evlist *evlist, union perf_event *event, u64 *timestamp)
1560 {
1561 	struct evsel *evsel = evlist__event2evsel(evlist, event);
1562 
1563 	if (!evsel)
1564 		return -EFAULT;
1565 	return evsel__parse_sample_timestamp(evsel, event, timestamp);
1566 }
1567 
1568 int evlist__strerror_open(struct evlist *evlist, int err, char *buf, size_t size)
1569 {
1570 	int printed, value;
1571 	char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
1572 
1573 	switch (err) {
1574 	case EACCES:
1575 	case EPERM:
1576 		printed = scnprintf(buf, size,
1577 				    "Error:\t%s.\n"
1578 				    "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg);
1579 
1580 		value = perf_event_paranoid();
1581 
1582 		printed += scnprintf(buf + printed, size - printed, "\nHint:\t");
1583 
1584 		if (value >= 2) {
1585 			printed += scnprintf(buf + printed, size - printed,
1586 					     "For your workloads it needs to be <= 1\nHint:\t");
1587 		}
1588 		printed += scnprintf(buf + printed, size - printed,
1589 				     "For system wide tracing it needs to be set to -1.\n");
1590 
1591 		printed += scnprintf(buf + printed, size - printed,
1592 				    "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n"
1593 				    "Hint:\tThe current value is %d.", value);
1594 		break;
1595 	case EINVAL: {
1596 		struct evsel *first = evlist__first(evlist);
1597 		int max_freq;
1598 
1599 		if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0)
1600 			goto out_default;
1601 
1602 		if (first->core.attr.sample_freq < (u64)max_freq)
1603 			goto out_default;
1604 
1605 		printed = scnprintf(buf, size,
1606 				    "Error:\t%s.\n"
1607 				    "Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n"
1608 				    "Hint:\tThe current value is %d and %" PRIu64 " is being requested.",
1609 				    emsg, max_freq, first->core.attr.sample_freq);
1610 		break;
1611 	}
1612 	default:
1613 out_default:
1614 		scnprintf(buf, size, "%s", emsg);
1615 		break;
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 int evlist__strerror_mmap(struct evlist *evlist, int err, char *buf, size_t size)
1622 {
1623 	char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
1624 	int pages_attempted = evlist->core.mmap_len / 1024, pages_max_per_user, printed = 0;
1625 
1626 	switch (err) {
1627 	case EPERM:
1628 		sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user);
1629 		printed += scnprintf(buf + printed, size - printed,
1630 				     "Error:\t%s.\n"
1631 				     "Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n"
1632 				     "Hint:\tTried using %zd kB.\n",
1633 				     emsg, pages_max_per_user, pages_attempted);
1634 
1635 		if (pages_attempted >= pages_max_per_user) {
1636 			printed += scnprintf(buf + printed, size - printed,
1637 					     "Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n",
1638 					     pages_max_per_user + pages_attempted);
1639 		}
1640 
1641 		printed += scnprintf(buf + printed, size - printed,
1642 				     "Hint:\tTry using a smaller -m/--mmap-pages value.");
1643 		break;
1644 	default:
1645 		scnprintf(buf, size, "%s", emsg);
1646 		break;
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 void evlist__to_front(struct evlist *evlist, struct evsel *move_evsel)
1653 {
1654 	struct evsel *evsel, *n;
1655 	LIST_HEAD(move);
1656 
1657 	if (move_evsel == evlist__first(evlist))
1658 		return;
1659 
1660 	evlist__for_each_entry_safe(evlist, n, evsel) {
1661 		if (evsel__leader(evsel) == evsel__leader(move_evsel))
1662 			list_move_tail(&evsel->core.node, &move);
1663 	}
1664 
1665 	list_splice(&move, &evlist->core.entries);
1666 }
1667 
1668 struct evsel *evlist__get_tracking_event(struct evlist *evlist)
1669 {
1670 	struct evsel *evsel;
1671 
1672 	evlist__for_each_entry(evlist, evsel) {
1673 		if (evsel->tracking)
1674 			return evsel;
1675 	}
1676 
1677 	return evlist__first(evlist);
1678 }
1679 
1680 void evlist__set_tracking_event(struct evlist *evlist, struct evsel *tracking_evsel)
1681 {
1682 	struct evsel *evsel;
1683 
1684 	if (tracking_evsel->tracking)
1685 		return;
1686 
1687 	evlist__for_each_entry(evlist, evsel) {
1688 		if (evsel != tracking_evsel)
1689 			evsel->tracking = false;
1690 	}
1691 
1692 	tracking_evsel->tracking = true;
1693 }
1694 
1695 struct evsel *evlist__find_evsel_by_str(struct evlist *evlist, const char *str)
1696 {
1697 	struct evsel *evsel;
1698 
1699 	evlist__for_each_entry(evlist, evsel) {
1700 		if (!evsel->name)
1701 			continue;
1702 		if (evsel__name_is(evsel, str))
1703 			return evsel;
1704 	}
1705 
1706 	return NULL;
1707 }
1708 
1709 void evlist__toggle_bkw_mmap(struct evlist *evlist, enum bkw_mmap_state state)
1710 {
1711 	enum bkw_mmap_state old_state = evlist->bkw_mmap_state;
1712 	enum action {
1713 		NONE,
1714 		PAUSE,
1715 		RESUME,
1716 	} action = NONE;
1717 
1718 	if (!evlist->overwrite_mmap)
1719 		return;
1720 
1721 	switch (old_state) {
1722 	case BKW_MMAP_NOTREADY: {
1723 		if (state != BKW_MMAP_RUNNING)
1724 			goto state_err;
1725 		break;
1726 	}
1727 	case BKW_MMAP_RUNNING: {
1728 		if (state != BKW_MMAP_DATA_PENDING)
1729 			goto state_err;
1730 		action = PAUSE;
1731 		break;
1732 	}
1733 	case BKW_MMAP_DATA_PENDING: {
1734 		if (state != BKW_MMAP_EMPTY)
1735 			goto state_err;
1736 		break;
1737 	}
1738 	case BKW_MMAP_EMPTY: {
1739 		if (state != BKW_MMAP_RUNNING)
1740 			goto state_err;
1741 		action = RESUME;
1742 		break;
1743 	}
1744 	default:
1745 		WARN_ONCE(1, "Shouldn't get there\n");
1746 	}
1747 
1748 	evlist->bkw_mmap_state = state;
1749 
1750 	switch (action) {
1751 	case PAUSE:
1752 		evlist__pause(evlist);
1753 		break;
1754 	case RESUME:
1755 		evlist__resume(evlist);
1756 		break;
1757 	case NONE:
1758 	default:
1759 		break;
1760 	}
1761 
1762 state_err:
1763 	return;
1764 }
1765 
1766 bool evlist__exclude_kernel(struct evlist *evlist)
1767 {
1768 	struct evsel *evsel;
1769 
1770 	evlist__for_each_entry(evlist, evsel) {
1771 		if (!evsel->core.attr.exclude_kernel)
1772 			return false;
1773 	}
1774 
1775 	return true;
1776 }
1777 
1778 /*
1779  * Events in data file are not collect in groups, but we still want
1780  * the group display. Set the artificial group and set the leader's
1781  * forced_leader flag to notify the display code.
1782  */
1783 void evlist__force_leader(struct evlist *evlist)
1784 {
1785 	if (evlist__nr_groups(evlist) == 0) {
1786 		struct evsel *leader = evlist__first(evlist);
1787 
1788 		evlist__set_leader(evlist);
1789 		leader->forced_leader = true;
1790 	}
1791 }
1792 
1793 struct evsel *evlist__reset_weak_group(struct evlist *evsel_list, struct evsel *evsel, bool close)
1794 {
1795 	struct evsel *c2, *leader;
1796 	bool is_open = true;
1797 
1798 	leader = evsel__leader(evsel);
1799 
1800 	pr_debug("Weak group for %s/%d failed\n",
1801 			leader->name, leader->core.nr_members);
1802 
1803 	/*
1804 	 * for_each_group_member doesn't work here because it doesn't
1805 	 * include the first entry.
1806 	 */
1807 	evlist__for_each_entry(evsel_list, c2) {
1808 		if (c2 == evsel)
1809 			is_open = false;
1810 		if (evsel__has_leader(c2, leader)) {
1811 			if (is_open && close)
1812 				perf_evsel__close(&c2->core);
1813 			/*
1814 			 * We want to close all members of the group and reopen
1815 			 * them. Some events, like Intel topdown, require being
1816 			 * in a group and so keep these in the group.
1817 			 */
1818 			evsel__remove_from_group(c2, leader);
1819 
1820 			/*
1821 			 * Set this for all former members of the group
1822 			 * to indicate they get reopened.
1823 			 */
1824 			c2->reset_group = true;
1825 		}
1826 	}
1827 	/* Reset the leader count if all entries were removed. */
1828 	if (leader->core.nr_members == 1)
1829 		leader->core.nr_members = 0;
1830 	return leader;
1831 }
1832 
1833 static int evlist__parse_control_fifo(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
1834 {
1835 	char *s, *p;
1836 	int ret = 0, fd;
1837 
1838 	if (strncmp(str, "fifo:", 5))
1839 		return -EINVAL;
1840 
1841 	str += 5;
1842 	if (!*str || *str == ',')
1843 		return -EINVAL;
1844 
1845 	s = strdup(str);
1846 	if (!s)
1847 		return -ENOMEM;
1848 
1849 	p = strchr(s, ',');
1850 	if (p)
1851 		*p = '\0';
1852 
1853 	/*
1854 	 * O_RDWR avoids POLLHUPs which is necessary to allow the other
1855 	 * end of a FIFO to be repeatedly opened and closed.
1856 	 */
1857 	fd = open(s, O_RDWR | O_NONBLOCK | O_CLOEXEC);
1858 	if (fd < 0) {
1859 		pr_err("Failed to open '%s'\n", s);
1860 		ret = -errno;
1861 		goto out_free;
1862 	}
1863 	*ctl_fd = fd;
1864 	*ctl_fd_close = true;
1865 
1866 	if (p && *++p) {
1867 		/* O_RDWR | O_NONBLOCK means the other end need not be open */
1868 		fd = open(p, O_RDWR | O_NONBLOCK | O_CLOEXEC);
1869 		if (fd < 0) {
1870 			pr_err("Failed to open '%s'\n", p);
1871 			ret = -errno;
1872 			goto out_free;
1873 		}
1874 		*ctl_fd_ack = fd;
1875 	}
1876 
1877 out_free:
1878 	free(s);
1879 	return ret;
1880 }
1881 
1882 int evlist__parse_control(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
1883 {
1884 	char *comma = NULL, *endptr = NULL;
1885 
1886 	*ctl_fd_close = false;
1887 
1888 	if (strncmp(str, "fd:", 3))
1889 		return evlist__parse_control_fifo(str, ctl_fd, ctl_fd_ack, ctl_fd_close);
1890 
1891 	*ctl_fd = strtoul(&str[3], &endptr, 0);
1892 	if (endptr == &str[3])
1893 		return -EINVAL;
1894 
1895 	comma = strchr(str, ',');
1896 	if (comma) {
1897 		if (endptr != comma)
1898 			return -EINVAL;
1899 
1900 		*ctl_fd_ack = strtoul(comma + 1, &endptr, 0);
1901 		if (endptr == comma + 1 || *endptr != '\0')
1902 			return -EINVAL;
1903 	}
1904 
1905 	return 0;
1906 }
1907 
1908 void evlist__close_control(int ctl_fd, int ctl_fd_ack, bool *ctl_fd_close)
1909 {
1910 	if (*ctl_fd_close) {
1911 		*ctl_fd_close = false;
1912 		close(ctl_fd);
1913 		if (ctl_fd_ack >= 0)
1914 			close(ctl_fd_ack);
1915 	}
1916 }
1917 
1918 int evlist__initialize_ctlfd(struct evlist *evlist, int fd, int ack)
1919 {
1920 	if (fd == -1) {
1921 		pr_debug("Control descriptor is not initialized\n");
1922 		return 0;
1923 	}
1924 
1925 	evlist->ctl_fd.pos = perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
1926 						     fdarray_flag__nonfilterable |
1927 						     fdarray_flag__non_perf_event);
1928 	if (evlist->ctl_fd.pos < 0) {
1929 		evlist->ctl_fd.pos = -1;
1930 		pr_err("Failed to add ctl fd entry: %m\n");
1931 		return -1;
1932 	}
1933 
1934 	evlist->ctl_fd.fd = fd;
1935 	evlist->ctl_fd.ack = ack;
1936 
1937 	return 0;
1938 }
1939 
1940 bool evlist__ctlfd_initialized(struct evlist *evlist)
1941 {
1942 	return evlist->ctl_fd.pos >= 0;
1943 }
1944 
1945 int evlist__finalize_ctlfd(struct evlist *evlist)
1946 {
1947 	struct pollfd *entries = evlist->core.pollfd.entries;
1948 
1949 	if (!evlist__ctlfd_initialized(evlist))
1950 		return 0;
1951 
1952 	entries[evlist->ctl_fd.pos].fd = -1;
1953 	entries[evlist->ctl_fd.pos].events = 0;
1954 	entries[evlist->ctl_fd.pos].revents = 0;
1955 
1956 	evlist->ctl_fd.pos = -1;
1957 	evlist->ctl_fd.ack = -1;
1958 	evlist->ctl_fd.fd = -1;
1959 
1960 	return 0;
1961 }
1962 
1963 static int evlist__ctlfd_recv(struct evlist *evlist, enum evlist_ctl_cmd *cmd,
1964 			      char *cmd_data, size_t data_size)
1965 {
1966 	int err;
1967 	char c;
1968 	size_t bytes_read = 0;
1969 
1970 	*cmd = EVLIST_CTL_CMD_UNSUPPORTED;
1971 	memset(cmd_data, 0, data_size);
1972 	data_size--;
1973 
1974 	do {
1975 		err = read(evlist->ctl_fd.fd, &c, 1);
1976 		if (err > 0) {
1977 			if (c == '\n' || c == '\0')
1978 				break;
1979 			cmd_data[bytes_read++] = c;
1980 			if (bytes_read == data_size)
1981 				break;
1982 			continue;
1983 		} else if (err == -1) {
1984 			if (errno == EINTR)
1985 				continue;
1986 			if (errno == EAGAIN || errno == EWOULDBLOCK)
1987 				err = 0;
1988 			else
1989 				pr_err("Failed to read from ctlfd %d: %m\n", evlist->ctl_fd.fd);
1990 		}
1991 		break;
1992 	} while (1);
1993 
1994 	pr_debug("Message from ctl_fd: \"%s%s\"\n", cmd_data,
1995 		 bytes_read == data_size ? "" : c == '\n' ? "\\n" : "\\0");
1996 
1997 	if (bytes_read > 0) {
1998 		if (!strncmp(cmd_data, EVLIST_CTL_CMD_ENABLE_TAG,
1999 			     (sizeof(EVLIST_CTL_CMD_ENABLE_TAG)-1))) {
2000 			*cmd = EVLIST_CTL_CMD_ENABLE;
2001 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_DISABLE_TAG,
2002 				    (sizeof(EVLIST_CTL_CMD_DISABLE_TAG)-1))) {
2003 			*cmd = EVLIST_CTL_CMD_DISABLE;
2004 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_SNAPSHOT_TAG,
2005 				    (sizeof(EVLIST_CTL_CMD_SNAPSHOT_TAG)-1))) {
2006 			*cmd = EVLIST_CTL_CMD_SNAPSHOT;
2007 			pr_debug("is snapshot\n");
2008 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_EVLIST_TAG,
2009 				    (sizeof(EVLIST_CTL_CMD_EVLIST_TAG)-1))) {
2010 			*cmd = EVLIST_CTL_CMD_EVLIST;
2011 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_STOP_TAG,
2012 				    (sizeof(EVLIST_CTL_CMD_STOP_TAG)-1))) {
2013 			*cmd = EVLIST_CTL_CMD_STOP;
2014 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_PING_TAG,
2015 				    (sizeof(EVLIST_CTL_CMD_PING_TAG)-1))) {
2016 			*cmd = EVLIST_CTL_CMD_PING;
2017 		}
2018 	}
2019 
2020 	return bytes_read ? (int)bytes_read : err;
2021 }
2022 
2023 int evlist__ctlfd_ack(struct evlist *evlist)
2024 {
2025 	int err;
2026 
2027 	if (evlist->ctl_fd.ack == -1)
2028 		return 0;
2029 
2030 	err = write(evlist->ctl_fd.ack, EVLIST_CTL_CMD_ACK_TAG,
2031 		    sizeof(EVLIST_CTL_CMD_ACK_TAG));
2032 	if (err == -1)
2033 		pr_err("failed to write to ctl_ack_fd %d: %m\n", evlist->ctl_fd.ack);
2034 
2035 	return err;
2036 }
2037 
2038 static int get_cmd_arg(char *cmd_data, size_t cmd_size, char **arg)
2039 {
2040 	char *data = cmd_data + cmd_size;
2041 
2042 	/* no argument */
2043 	if (!*data)
2044 		return 0;
2045 
2046 	/* there's argument */
2047 	if (*data == ' ') {
2048 		*arg = data + 1;
2049 		return 1;
2050 	}
2051 
2052 	/* malformed */
2053 	return -1;
2054 }
2055 
2056 static int evlist__ctlfd_enable(struct evlist *evlist, char *cmd_data, bool enable)
2057 {
2058 	struct evsel *evsel;
2059 	char *name;
2060 	int err;
2061 
2062 	err = get_cmd_arg(cmd_data,
2063 			  enable ? sizeof(EVLIST_CTL_CMD_ENABLE_TAG) - 1 :
2064 				   sizeof(EVLIST_CTL_CMD_DISABLE_TAG) - 1,
2065 			  &name);
2066 	if (err < 0) {
2067 		pr_info("failed: wrong command\n");
2068 		return -1;
2069 	}
2070 
2071 	if (err) {
2072 		evsel = evlist__find_evsel_by_str(evlist, name);
2073 		if (evsel) {
2074 			if (enable)
2075 				evlist__enable_evsel(evlist, name);
2076 			else
2077 				evlist__disable_evsel(evlist, name);
2078 			pr_info("Event %s %s\n", evsel->name,
2079 				enable ? "enabled" : "disabled");
2080 		} else {
2081 			pr_info("failed: can't find '%s' event\n", name);
2082 		}
2083 	} else {
2084 		if (enable) {
2085 			evlist__enable(evlist);
2086 			pr_info(EVLIST_ENABLED_MSG);
2087 		} else {
2088 			evlist__disable(evlist);
2089 			pr_info(EVLIST_DISABLED_MSG);
2090 		}
2091 	}
2092 
2093 	return 0;
2094 }
2095 
2096 static int evlist__ctlfd_list(struct evlist *evlist, char *cmd_data)
2097 {
2098 	struct perf_attr_details details = { .verbose = false, };
2099 	struct evsel *evsel;
2100 	char *arg;
2101 	int err;
2102 
2103 	err = get_cmd_arg(cmd_data,
2104 			  sizeof(EVLIST_CTL_CMD_EVLIST_TAG) - 1,
2105 			  &arg);
2106 	if (err < 0) {
2107 		pr_info("failed: wrong command\n");
2108 		return -1;
2109 	}
2110 
2111 	if (err) {
2112 		if (!strcmp(arg, "-v")) {
2113 			details.verbose = true;
2114 		} else if (!strcmp(arg, "-g")) {
2115 			details.event_group = true;
2116 		} else if (!strcmp(arg, "-F")) {
2117 			details.freq = true;
2118 		} else {
2119 			pr_info("failed: wrong command\n");
2120 			return -1;
2121 		}
2122 	}
2123 
2124 	evlist__for_each_entry(evlist, evsel)
2125 		evsel__fprintf(evsel, &details, stderr);
2126 
2127 	return 0;
2128 }
2129 
2130 int evlist__ctlfd_process(struct evlist *evlist, enum evlist_ctl_cmd *cmd)
2131 {
2132 	int err = 0;
2133 	char cmd_data[EVLIST_CTL_CMD_MAX_LEN];
2134 	int ctlfd_pos = evlist->ctl_fd.pos;
2135 	struct pollfd *entries = evlist->core.pollfd.entries;
2136 
2137 	if (!evlist__ctlfd_initialized(evlist) || !entries[ctlfd_pos].revents)
2138 		return 0;
2139 
2140 	if (entries[ctlfd_pos].revents & POLLIN) {
2141 		err = evlist__ctlfd_recv(evlist, cmd, cmd_data,
2142 					 EVLIST_CTL_CMD_MAX_LEN);
2143 		if (err > 0) {
2144 			switch (*cmd) {
2145 			case EVLIST_CTL_CMD_ENABLE:
2146 			case EVLIST_CTL_CMD_DISABLE:
2147 				err = evlist__ctlfd_enable(evlist, cmd_data,
2148 							   *cmd == EVLIST_CTL_CMD_ENABLE);
2149 				break;
2150 			case EVLIST_CTL_CMD_EVLIST:
2151 				err = evlist__ctlfd_list(evlist, cmd_data);
2152 				break;
2153 			case EVLIST_CTL_CMD_SNAPSHOT:
2154 			case EVLIST_CTL_CMD_STOP:
2155 			case EVLIST_CTL_CMD_PING:
2156 				break;
2157 			case EVLIST_CTL_CMD_ACK:
2158 			case EVLIST_CTL_CMD_UNSUPPORTED:
2159 			default:
2160 				pr_debug("ctlfd: unsupported %d\n", *cmd);
2161 				break;
2162 			}
2163 			if (!(*cmd == EVLIST_CTL_CMD_ACK || *cmd == EVLIST_CTL_CMD_UNSUPPORTED ||
2164 			      *cmd == EVLIST_CTL_CMD_SNAPSHOT))
2165 				evlist__ctlfd_ack(evlist);
2166 		}
2167 	}
2168 
2169 	if (entries[ctlfd_pos].revents & (POLLHUP | POLLERR))
2170 		evlist__finalize_ctlfd(evlist);
2171 	else
2172 		entries[ctlfd_pos].revents = 0;
2173 
2174 	return err;
2175 }
2176 
2177 /**
2178  * struct event_enable_time - perf record -D/--delay single time range.
2179  * @start: start of time range to enable events in milliseconds
2180  * @end: end of time range to enable events in milliseconds
2181  *
2182  * N.B. this structure is also accessed as an array of int.
2183  */
2184 struct event_enable_time {
2185 	int	start;
2186 	int	end;
2187 };
2188 
2189 static int parse_event_enable_time(const char *str, struct event_enable_time *range, bool first)
2190 {
2191 	const char *fmt = first ? "%u - %u %n" : " , %u - %u %n";
2192 	int ret, start, end, n;
2193 
2194 	ret = sscanf(str, fmt, &start, &end, &n);
2195 	if (ret != 2 || end <= start)
2196 		return -EINVAL;
2197 	if (range) {
2198 		range->start = start;
2199 		range->end = end;
2200 	}
2201 	return n;
2202 }
2203 
2204 static ssize_t parse_event_enable_times(const char *str, struct event_enable_time *range)
2205 {
2206 	int incr = !!range;
2207 	bool first = true;
2208 	ssize_t ret, cnt;
2209 
2210 	for (cnt = 0; *str; cnt++) {
2211 		ret = parse_event_enable_time(str, range, first);
2212 		if (ret < 0)
2213 			return ret;
2214 		/* Check no overlap */
2215 		if (!first && range && range->start <= range[-1].end)
2216 			return -EINVAL;
2217 		str += ret;
2218 		range += incr;
2219 		first = false;
2220 	}
2221 	return cnt;
2222 }
2223 
2224 /**
2225  * struct event_enable_timer - control structure for perf record -D/--delay.
2226  * @evlist: event list
2227  * @times: time ranges that events are enabled (N.B. this is also accessed as an
2228  *         array of int)
2229  * @times_cnt: number of time ranges
2230  * @timerfd: timer file descriptor
2231  * @pollfd_pos: position in @evlist array of file descriptors to poll (fdarray)
2232  * @times_step: current position in (int *)@times)[],
2233  *              refer event_enable_timer__process()
2234  *
2235  * Note, this structure is only used when there are time ranges, not when there
2236  * is only an initial delay.
2237  */
2238 struct event_enable_timer {
2239 	struct evlist *evlist;
2240 	struct event_enable_time *times;
2241 	size_t	times_cnt;
2242 	int	timerfd;
2243 	int	pollfd_pos;
2244 	size_t	times_step;
2245 };
2246 
2247 static int str_to_delay(const char *str)
2248 {
2249 	char *endptr;
2250 	long d;
2251 
2252 	d = strtol(str, &endptr, 10);
2253 	if (*endptr || d > INT_MAX || d < -1)
2254 		return 0;
2255 	return d;
2256 }
2257 
2258 int evlist__parse_event_enable_time(struct evlist *evlist, struct record_opts *opts,
2259 				    const char *str, int unset)
2260 {
2261 	enum fdarray_flags flags = fdarray_flag__nonfilterable | fdarray_flag__non_perf_event;
2262 	struct event_enable_timer *eet;
2263 	ssize_t times_cnt;
2264 	ssize_t ret;
2265 	int err;
2266 
2267 	if (unset)
2268 		return 0;
2269 
2270 	opts->target.initial_delay = str_to_delay(str);
2271 	if (opts->target.initial_delay)
2272 		return 0;
2273 
2274 	ret = parse_event_enable_times(str, NULL);
2275 	if (ret < 0)
2276 		return ret;
2277 
2278 	times_cnt = ret;
2279 	if (times_cnt == 0)
2280 		return -EINVAL;
2281 
2282 	eet = zalloc(sizeof(*eet));
2283 	if (!eet)
2284 		return -ENOMEM;
2285 
2286 	eet->times = calloc(times_cnt, sizeof(*eet->times));
2287 	if (!eet->times) {
2288 		err = -ENOMEM;
2289 		goto free_eet;
2290 	}
2291 
2292 	if (parse_event_enable_times(str, eet->times) != times_cnt) {
2293 		err = -EINVAL;
2294 		goto free_eet_times;
2295 	}
2296 
2297 	eet->times_cnt = times_cnt;
2298 
2299 	eet->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
2300 	if (eet->timerfd == -1) {
2301 		err = -errno;
2302 		pr_err("timerfd_create failed: %s\n", strerror(errno));
2303 		goto free_eet_times;
2304 	}
2305 
2306 	eet->pollfd_pos = perf_evlist__add_pollfd(&evlist->core, eet->timerfd, NULL, POLLIN, flags);
2307 	if (eet->pollfd_pos < 0) {
2308 		err = eet->pollfd_pos;
2309 		goto close_timerfd;
2310 	}
2311 
2312 	eet->evlist = evlist;
2313 	evlist->eet = eet;
2314 	opts->target.initial_delay = eet->times[0].start;
2315 
2316 	return 0;
2317 
2318 close_timerfd:
2319 	close(eet->timerfd);
2320 free_eet_times:
2321 	zfree(&eet->times);
2322 free_eet:
2323 	free(eet);
2324 	return err;
2325 }
2326 
2327 static int event_enable_timer__set_timer(struct event_enable_timer *eet, int ms)
2328 {
2329 	struct itimerspec its = {
2330 		.it_value.tv_sec = ms / MSEC_PER_SEC,
2331 		.it_value.tv_nsec = (ms % MSEC_PER_SEC) * NSEC_PER_MSEC,
2332 	};
2333 	int err = 0;
2334 
2335 	if (timerfd_settime(eet->timerfd, 0, &its, NULL) < 0) {
2336 		err = -errno;
2337 		pr_err("timerfd_settime failed: %s\n", strerror(errno));
2338 	}
2339 	return err;
2340 }
2341 
2342 int event_enable_timer__start(struct event_enable_timer *eet)
2343 {
2344 	int ms;
2345 
2346 	if (!eet)
2347 		return 0;
2348 
2349 	ms = eet->times[0].end - eet->times[0].start;
2350 	eet->times_step = 1;
2351 
2352 	return event_enable_timer__set_timer(eet, ms);
2353 }
2354 
2355 int event_enable_timer__process(struct event_enable_timer *eet)
2356 {
2357 	struct pollfd *entries;
2358 	short revents;
2359 
2360 	if (!eet)
2361 		return 0;
2362 
2363 	entries = eet->evlist->core.pollfd.entries;
2364 	revents = entries[eet->pollfd_pos].revents;
2365 	entries[eet->pollfd_pos].revents = 0;
2366 
2367 	if (revents & POLLIN) {
2368 		size_t step = eet->times_step;
2369 		size_t pos = step / 2;
2370 
2371 		if (step & 1) {
2372 			evlist__disable_non_dummy(eet->evlist);
2373 			pr_info(EVLIST_DISABLED_MSG);
2374 			if (pos >= eet->times_cnt - 1) {
2375 				/* Disarm timer */
2376 				event_enable_timer__set_timer(eet, 0);
2377 				return 1; /* Stop */
2378 			}
2379 		} else {
2380 			evlist__enable_non_dummy(eet->evlist);
2381 			pr_info(EVLIST_ENABLED_MSG);
2382 		}
2383 
2384 		step += 1;
2385 		pos = step / 2;
2386 
2387 		if (pos < eet->times_cnt) {
2388 			int *times = (int *)eet->times; /* Accessing 'times' as array of int */
2389 			int ms = times[step] - times[step - 1];
2390 
2391 			eet->times_step = step;
2392 			return event_enable_timer__set_timer(eet, ms);
2393 		}
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 void event_enable_timer__exit(struct event_enable_timer **ep)
2400 {
2401 	if (!ep || !*ep)
2402 		return;
2403 	zfree(&(*ep)->times);
2404 	zfree(ep);
2405 }
2406 
2407 struct evsel *evlist__find_evsel(struct evlist *evlist, int idx)
2408 {
2409 	struct evsel *evsel;
2410 
2411 	evlist__for_each_entry(evlist, evsel) {
2412 		if (evsel->core.idx == idx)
2413 			return evsel;
2414 	}
2415 	return NULL;
2416 }
2417 
2418 int evlist__scnprintf_evsels(struct evlist *evlist, size_t size, char *bf)
2419 {
2420 	struct evsel *evsel;
2421 	int printed = 0;
2422 
2423 	evlist__for_each_entry(evlist, evsel) {
2424 		if (evsel__is_dummy_event(evsel))
2425 			continue;
2426 		if (size > (strlen(evsel__name(evsel)) + (printed ? 2 : 1))) {
2427 			printed += scnprintf(bf + printed, size - printed, "%s%s", printed ? "," : "", evsel__name(evsel));
2428 		} else {
2429 			printed += scnprintf(bf + printed, size - printed, "%s...", printed ? "," : "");
2430 			break;
2431 		}
2432 	}
2433 
2434 	return printed;
2435 }
2436 
2437 void evlist__check_mem_load_aux(struct evlist *evlist)
2438 {
2439 	struct evsel *leader, *evsel, *pos;
2440 
2441 	/*
2442 	 * For some platforms, the 'mem-loads' event is required to use
2443 	 * together with 'mem-loads-aux' within a group and 'mem-loads-aux'
2444 	 * must be the group leader. Now we disable this group before reporting
2445 	 * because 'mem-loads-aux' is just an auxiliary event. It doesn't carry
2446 	 * any valid memory load information.
2447 	 */
2448 	evlist__for_each_entry(evlist, evsel) {
2449 		leader = evsel__leader(evsel);
2450 		if (leader == evsel)
2451 			continue;
2452 
2453 		if (leader->name && strstr(leader->name, "mem-loads-aux")) {
2454 			for_each_group_evsel(pos, leader) {
2455 				evsel__set_leader(pos, pos);
2456 				pos->core.nr_members = 0;
2457 			}
2458 		}
2459 	}
2460 }
2461 
2462 /**
2463  * evlist__warn_user_requested_cpus() - Check each evsel against requested CPUs
2464  *     and warn if the user CPU list is inapplicable for the event's PMU's
2465  *     CPUs. Not core PMUs list a CPU in sysfs, but this may be overwritten by a
2466  *     user requested CPU and so any online CPU is applicable. Core PMUs handle
2467  *     events on the CPUs in their list and otherwise the event isn't supported.
2468  * @evlist: The list of events being checked.
2469  * @cpu_list: The user provided list of CPUs.
2470  */
2471 void evlist__warn_user_requested_cpus(struct evlist *evlist, const char *cpu_list)
2472 {
2473 	struct perf_cpu_map *user_requested_cpus;
2474 	struct evsel *pos;
2475 
2476 	if (!cpu_list)
2477 		return;
2478 
2479 	user_requested_cpus = perf_cpu_map__new(cpu_list);
2480 	if (!user_requested_cpus)
2481 		return;
2482 
2483 	evlist__for_each_entry(evlist, pos) {
2484 		struct perf_cpu_map *intersect, *to_test;
2485 		const struct perf_pmu *pmu = evsel__find_pmu(pos);
2486 
2487 		to_test = pmu && pmu->is_core ? pmu->cpus : cpu_map__online();
2488 		intersect = perf_cpu_map__intersect(to_test, user_requested_cpus);
2489 		if (!perf_cpu_map__equal(intersect, user_requested_cpus)) {
2490 			char buf[128];
2491 
2492 			cpu_map__snprint(to_test, buf, sizeof(buf));
2493 			pr_warning("WARNING: A requested CPU in '%s' is not supported by PMU '%s' (CPUs %s) for event '%s'\n",
2494 				cpu_list, pmu ? pmu->name : "cpu", buf, evsel__name(pos));
2495 		}
2496 		perf_cpu_map__put(intersect);
2497 	}
2498 	perf_cpu_map__put(user_requested_cpus);
2499 }
2500