1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 4 * 5 * Parts came from builtin-{top,stat,record}.c, see those files for further 6 * copyright notes. 7 */ 8 #include <api/fs/fs.h> 9 #include <errno.h> 10 #include <inttypes.h> 11 #include <poll.h> 12 #include "cpumap.h" 13 #include "util/mmap.h" 14 #include "thread_map.h" 15 #include "target.h" 16 #include "evlist.h" 17 #include "evsel.h" 18 #include "record.h" 19 #include "debug.h" 20 #include "units.h" 21 #include "bpf_counter.h" 22 #include <internal/lib.h> // page_size 23 #include "affinity.h" 24 #include "../perf.h" 25 #include "asm/bug.h" 26 #include "bpf-event.h" 27 #include "util/event.h" 28 #include "util/string2.h" 29 #include "util/perf_api_probe.h" 30 #include "util/evsel_fprintf.h" 31 #include "util/evlist-hybrid.h" 32 #include "util/pmu.h" 33 #include "util/sample.h" 34 #include <signal.h> 35 #include <unistd.h> 36 #include <sched.h> 37 #include <stdlib.h> 38 39 #include "parse-events.h" 40 #include <subcmd/parse-options.h> 41 42 #include <fcntl.h> 43 #include <sys/ioctl.h> 44 #include <sys/mman.h> 45 #include <sys/prctl.h> 46 #include <sys/timerfd.h> 47 48 #include <linux/bitops.h> 49 #include <linux/hash.h> 50 #include <linux/log2.h> 51 #include <linux/err.h> 52 #include <linux/string.h> 53 #include <linux/time64.h> 54 #include <linux/zalloc.h> 55 #include <perf/evlist.h> 56 #include <perf/evsel.h> 57 #include <perf/cpumap.h> 58 #include <perf/mmap.h> 59 60 #include <internal/xyarray.h> 61 62 #ifdef LACKS_SIGQUEUE_PROTOTYPE 63 int sigqueue(pid_t pid, int sig, const union sigval value); 64 #endif 65 66 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y)) 67 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 68 69 void evlist__init(struct evlist *evlist, struct perf_cpu_map *cpus, 70 struct perf_thread_map *threads) 71 { 72 perf_evlist__init(&evlist->core); 73 perf_evlist__set_maps(&evlist->core, cpus, threads); 74 evlist->workload.pid = -1; 75 evlist->bkw_mmap_state = BKW_MMAP_NOTREADY; 76 evlist->ctl_fd.fd = -1; 77 evlist->ctl_fd.ack = -1; 78 evlist->ctl_fd.pos = -1; 79 } 80 81 struct evlist *evlist__new(void) 82 { 83 struct evlist *evlist = zalloc(sizeof(*evlist)); 84 85 if (evlist != NULL) 86 evlist__init(evlist, NULL, NULL); 87 88 return evlist; 89 } 90 91 struct evlist *evlist__new_default(void) 92 { 93 struct evlist *evlist = evlist__new(); 94 95 if (evlist && evlist__add_default(evlist)) { 96 evlist__delete(evlist); 97 evlist = NULL; 98 } 99 100 return evlist; 101 } 102 103 struct evlist *evlist__new_dummy(void) 104 { 105 struct evlist *evlist = evlist__new(); 106 107 if (evlist && evlist__add_dummy(evlist)) { 108 evlist__delete(evlist); 109 evlist = NULL; 110 } 111 112 return evlist; 113 } 114 115 /** 116 * evlist__set_id_pos - set the positions of event ids. 117 * @evlist: selected event list 118 * 119 * Events with compatible sample types all have the same id_pos 120 * and is_pos. For convenience, put a copy on evlist. 121 */ 122 void evlist__set_id_pos(struct evlist *evlist) 123 { 124 struct evsel *first = evlist__first(evlist); 125 126 evlist->id_pos = first->id_pos; 127 evlist->is_pos = first->is_pos; 128 } 129 130 static void evlist__update_id_pos(struct evlist *evlist) 131 { 132 struct evsel *evsel; 133 134 evlist__for_each_entry(evlist, evsel) 135 evsel__calc_id_pos(evsel); 136 137 evlist__set_id_pos(evlist); 138 } 139 140 static void evlist__purge(struct evlist *evlist) 141 { 142 struct evsel *pos, *n; 143 144 evlist__for_each_entry_safe(evlist, n, pos) { 145 list_del_init(&pos->core.node); 146 pos->evlist = NULL; 147 evsel__delete(pos); 148 } 149 150 evlist->core.nr_entries = 0; 151 } 152 153 void evlist__exit(struct evlist *evlist) 154 { 155 event_enable_timer__exit(&evlist->eet); 156 zfree(&evlist->mmap); 157 zfree(&evlist->overwrite_mmap); 158 perf_evlist__exit(&evlist->core); 159 } 160 161 void evlist__delete(struct evlist *evlist) 162 { 163 if (evlist == NULL) 164 return; 165 166 evlist__munmap(evlist); 167 evlist__close(evlist); 168 evlist__purge(evlist); 169 evlist__exit(evlist); 170 free(evlist); 171 } 172 173 void evlist__add(struct evlist *evlist, struct evsel *entry) 174 { 175 perf_evlist__add(&evlist->core, &entry->core); 176 entry->evlist = evlist; 177 entry->tracking = !entry->core.idx; 178 179 if (evlist->core.nr_entries == 1) 180 evlist__set_id_pos(evlist); 181 } 182 183 void evlist__remove(struct evlist *evlist, struct evsel *evsel) 184 { 185 evsel->evlist = NULL; 186 perf_evlist__remove(&evlist->core, &evsel->core); 187 } 188 189 void evlist__splice_list_tail(struct evlist *evlist, struct list_head *list) 190 { 191 while (!list_empty(list)) { 192 struct evsel *evsel, *temp, *leader = NULL; 193 194 __evlist__for_each_entry_safe(list, temp, evsel) { 195 list_del_init(&evsel->core.node); 196 evlist__add(evlist, evsel); 197 leader = evsel; 198 break; 199 } 200 201 __evlist__for_each_entry_safe(list, temp, evsel) { 202 if (evsel__has_leader(evsel, leader)) { 203 list_del_init(&evsel->core.node); 204 evlist__add(evlist, evsel); 205 } 206 } 207 } 208 } 209 210 int __evlist__set_tracepoints_handlers(struct evlist *evlist, 211 const struct evsel_str_handler *assocs, size_t nr_assocs) 212 { 213 size_t i; 214 int err; 215 216 for (i = 0; i < nr_assocs; i++) { 217 // Adding a handler for an event not in this evlist, just ignore it. 218 struct evsel *evsel = evlist__find_tracepoint_by_name(evlist, assocs[i].name); 219 if (evsel == NULL) 220 continue; 221 222 err = -EEXIST; 223 if (evsel->handler != NULL) 224 goto out; 225 evsel->handler = assocs[i].handler; 226 } 227 228 err = 0; 229 out: 230 return err; 231 } 232 233 void evlist__set_leader(struct evlist *evlist) 234 { 235 perf_evlist__set_leader(&evlist->core); 236 } 237 238 int __evlist__add_default(struct evlist *evlist, bool precise) 239 { 240 struct evsel *evsel; 241 242 evsel = evsel__new_cycles(precise, PERF_TYPE_HARDWARE, 243 PERF_COUNT_HW_CPU_CYCLES); 244 if (evsel == NULL) 245 return -ENOMEM; 246 247 evlist__add(evlist, evsel); 248 return 0; 249 } 250 251 static struct evsel *evlist__dummy_event(struct evlist *evlist) 252 { 253 struct perf_event_attr attr = { 254 .type = PERF_TYPE_SOFTWARE, 255 .config = PERF_COUNT_SW_DUMMY, 256 .size = sizeof(attr), /* to capture ABI version */ 257 }; 258 259 return evsel__new_idx(&attr, evlist->core.nr_entries); 260 } 261 262 int evlist__add_dummy(struct evlist *evlist) 263 { 264 struct evsel *evsel = evlist__dummy_event(evlist); 265 266 if (evsel == NULL) 267 return -ENOMEM; 268 269 evlist__add(evlist, evsel); 270 return 0; 271 } 272 273 struct evsel *evlist__add_aux_dummy(struct evlist *evlist, bool system_wide) 274 { 275 struct evsel *evsel = evlist__dummy_event(evlist); 276 277 if (!evsel) 278 return NULL; 279 280 evsel->core.attr.exclude_kernel = 1; 281 evsel->core.attr.exclude_guest = 1; 282 evsel->core.attr.exclude_hv = 1; 283 evsel->core.attr.freq = 0; 284 evsel->core.attr.sample_period = 1; 285 evsel->core.system_wide = system_wide; 286 evsel->no_aux_samples = true; 287 evsel->name = strdup("dummy:u"); 288 289 evlist__add(evlist, evsel); 290 return evsel; 291 } 292 293 struct evsel *evlist__add_sched_switch(struct evlist *evlist, bool system_wide) 294 { 295 struct evsel *evsel = evsel__newtp_idx("sched", "sched_switch", 0); 296 297 if (IS_ERR(evsel)) 298 return evsel; 299 300 evsel__set_sample_bit(evsel, CPU); 301 evsel__set_sample_bit(evsel, TIME); 302 303 evsel->core.system_wide = system_wide; 304 evsel->no_aux_samples = true; 305 306 evlist__add(evlist, evsel); 307 return evsel; 308 }; 309 310 int evlist__add_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) 311 { 312 struct evsel *evsel, *n; 313 LIST_HEAD(head); 314 size_t i; 315 316 for (i = 0; i < nr_attrs; i++) { 317 evsel = evsel__new_idx(attrs + i, evlist->core.nr_entries + i); 318 if (evsel == NULL) 319 goto out_delete_partial_list; 320 list_add_tail(&evsel->core.node, &head); 321 } 322 323 evlist__splice_list_tail(evlist, &head); 324 325 return 0; 326 327 out_delete_partial_list: 328 __evlist__for_each_entry_safe(&head, n, evsel) 329 evsel__delete(evsel); 330 return -1; 331 } 332 333 int __evlist__add_default_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) 334 { 335 size_t i; 336 337 for (i = 0; i < nr_attrs; i++) 338 event_attr_init(attrs + i); 339 340 return evlist__add_attrs(evlist, attrs, nr_attrs); 341 } 342 343 __weak int arch_evlist__add_default_attrs(struct evlist *evlist, 344 struct perf_event_attr *attrs, 345 size_t nr_attrs) 346 { 347 if (!nr_attrs) 348 return 0; 349 350 return __evlist__add_default_attrs(evlist, attrs, nr_attrs); 351 } 352 353 struct evsel *evlist__find_tracepoint_by_id(struct evlist *evlist, int id) 354 { 355 struct evsel *evsel; 356 357 evlist__for_each_entry(evlist, evsel) { 358 if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT && 359 (int)evsel->core.attr.config == id) 360 return evsel; 361 } 362 363 return NULL; 364 } 365 366 struct evsel *evlist__find_tracepoint_by_name(struct evlist *evlist, const char *name) 367 { 368 struct evsel *evsel; 369 370 evlist__for_each_entry(evlist, evsel) { 371 if ((evsel->core.attr.type == PERF_TYPE_TRACEPOINT) && 372 (strcmp(evsel->name, name) == 0)) 373 return evsel; 374 } 375 376 return NULL; 377 } 378 379 int evlist__add_newtp(struct evlist *evlist, const char *sys, const char *name, void *handler) 380 { 381 struct evsel *evsel = evsel__newtp(sys, name); 382 383 if (IS_ERR(evsel)) 384 return -1; 385 386 evsel->handler = handler; 387 evlist__add(evlist, evsel); 388 return 0; 389 } 390 391 struct evlist_cpu_iterator evlist__cpu_begin(struct evlist *evlist, struct affinity *affinity) 392 { 393 struct evlist_cpu_iterator itr = { 394 .container = evlist, 395 .evsel = NULL, 396 .cpu_map_idx = 0, 397 .evlist_cpu_map_idx = 0, 398 .evlist_cpu_map_nr = perf_cpu_map__nr(evlist->core.all_cpus), 399 .cpu = (struct perf_cpu){ .cpu = -1}, 400 .affinity = affinity, 401 }; 402 403 if (evlist__empty(evlist)) { 404 /* Ensure the empty list doesn't iterate. */ 405 itr.evlist_cpu_map_idx = itr.evlist_cpu_map_nr; 406 } else { 407 itr.evsel = evlist__first(evlist); 408 if (itr.affinity) { 409 itr.cpu = perf_cpu_map__cpu(evlist->core.all_cpus, 0); 410 affinity__set(itr.affinity, itr.cpu.cpu); 411 itr.cpu_map_idx = perf_cpu_map__idx(itr.evsel->core.cpus, itr.cpu); 412 /* 413 * If this CPU isn't in the evsel's cpu map then advance 414 * through the list. 415 */ 416 if (itr.cpu_map_idx == -1) 417 evlist_cpu_iterator__next(&itr); 418 } 419 } 420 return itr; 421 } 422 423 void evlist_cpu_iterator__next(struct evlist_cpu_iterator *evlist_cpu_itr) 424 { 425 while (evlist_cpu_itr->evsel != evlist__last(evlist_cpu_itr->container)) { 426 evlist_cpu_itr->evsel = evsel__next(evlist_cpu_itr->evsel); 427 evlist_cpu_itr->cpu_map_idx = 428 perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus, 429 evlist_cpu_itr->cpu); 430 if (evlist_cpu_itr->cpu_map_idx != -1) 431 return; 432 } 433 evlist_cpu_itr->evlist_cpu_map_idx++; 434 if (evlist_cpu_itr->evlist_cpu_map_idx < evlist_cpu_itr->evlist_cpu_map_nr) { 435 evlist_cpu_itr->evsel = evlist__first(evlist_cpu_itr->container); 436 evlist_cpu_itr->cpu = 437 perf_cpu_map__cpu(evlist_cpu_itr->container->core.all_cpus, 438 evlist_cpu_itr->evlist_cpu_map_idx); 439 if (evlist_cpu_itr->affinity) 440 affinity__set(evlist_cpu_itr->affinity, evlist_cpu_itr->cpu.cpu); 441 evlist_cpu_itr->cpu_map_idx = 442 perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus, 443 evlist_cpu_itr->cpu); 444 /* 445 * If this CPU isn't in the evsel's cpu map then advance through 446 * the list. 447 */ 448 if (evlist_cpu_itr->cpu_map_idx == -1) 449 evlist_cpu_iterator__next(evlist_cpu_itr); 450 } 451 } 452 453 bool evlist_cpu_iterator__end(const struct evlist_cpu_iterator *evlist_cpu_itr) 454 { 455 return evlist_cpu_itr->evlist_cpu_map_idx >= evlist_cpu_itr->evlist_cpu_map_nr; 456 } 457 458 static int evsel__strcmp(struct evsel *pos, char *evsel_name) 459 { 460 if (!evsel_name) 461 return 0; 462 if (evsel__is_dummy_event(pos)) 463 return 1; 464 return strcmp(pos->name, evsel_name); 465 } 466 467 static int evlist__is_enabled(struct evlist *evlist) 468 { 469 struct evsel *pos; 470 471 evlist__for_each_entry(evlist, pos) { 472 if (!evsel__is_group_leader(pos) || !pos->core.fd) 473 continue; 474 /* If at least one event is enabled, evlist is enabled. */ 475 if (!pos->disabled) 476 return true; 477 } 478 return false; 479 } 480 481 static void __evlist__disable(struct evlist *evlist, char *evsel_name, bool excl_dummy) 482 { 483 struct evsel *pos; 484 struct evlist_cpu_iterator evlist_cpu_itr; 485 struct affinity saved_affinity, *affinity = NULL; 486 bool has_imm = false; 487 488 // See explanation in evlist__close() 489 if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) { 490 if (affinity__setup(&saved_affinity) < 0) 491 return; 492 affinity = &saved_affinity; 493 } 494 495 /* Disable 'immediate' events last */ 496 for (int imm = 0; imm <= 1; imm++) { 497 evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) { 498 pos = evlist_cpu_itr.evsel; 499 if (evsel__strcmp(pos, evsel_name)) 500 continue; 501 if (pos->disabled || !evsel__is_group_leader(pos) || !pos->core.fd) 502 continue; 503 if (excl_dummy && evsel__is_dummy_event(pos)) 504 continue; 505 if (pos->immediate) 506 has_imm = true; 507 if (pos->immediate != imm) 508 continue; 509 evsel__disable_cpu(pos, evlist_cpu_itr.cpu_map_idx); 510 } 511 if (!has_imm) 512 break; 513 } 514 515 affinity__cleanup(affinity); 516 evlist__for_each_entry(evlist, pos) { 517 if (evsel__strcmp(pos, evsel_name)) 518 continue; 519 if (!evsel__is_group_leader(pos) || !pos->core.fd) 520 continue; 521 if (excl_dummy && evsel__is_dummy_event(pos)) 522 continue; 523 pos->disabled = true; 524 } 525 526 /* 527 * If we disabled only single event, we need to check 528 * the enabled state of the evlist manually. 529 */ 530 if (evsel_name) 531 evlist->enabled = evlist__is_enabled(evlist); 532 else 533 evlist->enabled = false; 534 } 535 536 void evlist__disable(struct evlist *evlist) 537 { 538 __evlist__disable(evlist, NULL, false); 539 } 540 541 void evlist__disable_non_dummy(struct evlist *evlist) 542 { 543 __evlist__disable(evlist, NULL, true); 544 } 545 546 void evlist__disable_evsel(struct evlist *evlist, char *evsel_name) 547 { 548 __evlist__disable(evlist, evsel_name, false); 549 } 550 551 static void __evlist__enable(struct evlist *evlist, char *evsel_name, bool excl_dummy) 552 { 553 struct evsel *pos; 554 struct evlist_cpu_iterator evlist_cpu_itr; 555 struct affinity saved_affinity, *affinity = NULL; 556 557 // See explanation in evlist__close() 558 if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) { 559 if (affinity__setup(&saved_affinity) < 0) 560 return; 561 affinity = &saved_affinity; 562 } 563 564 evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) { 565 pos = evlist_cpu_itr.evsel; 566 if (evsel__strcmp(pos, evsel_name)) 567 continue; 568 if (!evsel__is_group_leader(pos) || !pos->core.fd) 569 continue; 570 if (excl_dummy && evsel__is_dummy_event(pos)) 571 continue; 572 evsel__enable_cpu(pos, evlist_cpu_itr.cpu_map_idx); 573 } 574 affinity__cleanup(affinity); 575 evlist__for_each_entry(evlist, pos) { 576 if (evsel__strcmp(pos, evsel_name)) 577 continue; 578 if (!evsel__is_group_leader(pos) || !pos->core.fd) 579 continue; 580 if (excl_dummy && evsel__is_dummy_event(pos)) 581 continue; 582 pos->disabled = false; 583 } 584 585 /* 586 * Even single event sets the 'enabled' for evlist, 587 * so the toggle can work properly and toggle to 588 * 'disabled' state. 589 */ 590 evlist->enabled = true; 591 } 592 593 void evlist__enable(struct evlist *evlist) 594 { 595 __evlist__enable(evlist, NULL, false); 596 } 597 598 void evlist__enable_non_dummy(struct evlist *evlist) 599 { 600 __evlist__enable(evlist, NULL, true); 601 } 602 603 void evlist__enable_evsel(struct evlist *evlist, char *evsel_name) 604 { 605 __evlist__enable(evlist, evsel_name, false); 606 } 607 608 void evlist__toggle_enable(struct evlist *evlist) 609 { 610 (evlist->enabled ? evlist__disable : evlist__enable)(evlist); 611 } 612 613 int evlist__add_pollfd(struct evlist *evlist, int fd) 614 { 615 return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__default); 616 } 617 618 int evlist__filter_pollfd(struct evlist *evlist, short revents_and_mask) 619 { 620 return perf_evlist__filter_pollfd(&evlist->core, revents_and_mask); 621 } 622 623 #ifdef HAVE_EVENTFD_SUPPORT 624 int evlist__add_wakeup_eventfd(struct evlist *evlist, int fd) 625 { 626 return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, 627 fdarray_flag__nonfilterable | 628 fdarray_flag__non_perf_event); 629 } 630 #endif 631 632 int evlist__poll(struct evlist *evlist, int timeout) 633 { 634 return perf_evlist__poll(&evlist->core, timeout); 635 } 636 637 struct perf_sample_id *evlist__id2sid(struct evlist *evlist, u64 id) 638 { 639 struct hlist_head *head; 640 struct perf_sample_id *sid; 641 int hash; 642 643 hash = hash_64(id, PERF_EVLIST__HLIST_BITS); 644 head = &evlist->core.heads[hash]; 645 646 hlist_for_each_entry(sid, head, node) 647 if (sid->id == id) 648 return sid; 649 650 return NULL; 651 } 652 653 struct evsel *evlist__id2evsel(struct evlist *evlist, u64 id) 654 { 655 struct perf_sample_id *sid; 656 657 if (evlist->core.nr_entries == 1 || !id) 658 return evlist__first(evlist); 659 660 sid = evlist__id2sid(evlist, id); 661 if (sid) 662 return container_of(sid->evsel, struct evsel, core); 663 664 if (!evlist__sample_id_all(evlist)) 665 return evlist__first(evlist); 666 667 return NULL; 668 } 669 670 struct evsel *evlist__id2evsel_strict(struct evlist *evlist, u64 id) 671 { 672 struct perf_sample_id *sid; 673 674 if (!id) 675 return NULL; 676 677 sid = evlist__id2sid(evlist, id); 678 if (sid) 679 return container_of(sid->evsel, struct evsel, core); 680 681 return NULL; 682 } 683 684 static int evlist__event2id(struct evlist *evlist, union perf_event *event, u64 *id) 685 { 686 const __u64 *array = event->sample.array; 687 ssize_t n; 688 689 n = (event->header.size - sizeof(event->header)) >> 3; 690 691 if (event->header.type == PERF_RECORD_SAMPLE) { 692 if (evlist->id_pos >= n) 693 return -1; 694 *id = array[evlist->id_pos]; 695 } else { 696 if (evlist->is_pos > n) 697 return -1; 698 n -= evlist->is_pos; 699 *id = array[n]; 700 } 701 return 0; 702 } 703 704 struct evsel *evlist__event2evsel(struct evlist *evlist, union perf_event *event) 705 { 706 struct evsel *first = evlist__first(evlist); 707 struct hlist_head *head; 708 struct perf_sample_id *sid; 709 int hash; 710 u64 id; 711 712 if (evlist->core.nr_entries == 1) 713 return first; 714 715 if (!first->core.attr.sample_id_all && 716 event->header.type != PERF_RECORD_SAMPLE) 717 return first; 718 719 if (evlist__event2id(evlist, event, &id)) 720 return NULL; 721 722 /* Synthesized events have an id of zero */ 723 if (!id) 724 return first; 725 726 hash = hash_64(id, PERF_EVLIST__HLIST_BITS); 727 head = &evlist->core.heads[hash]; 728 729 hlist_for_each_entry(sid, head, node) { 730 if (sid->id == id) 731 return container_of(sid->evsel, struct evsel, core); 732 } 733 return NULL; 734 } 735 736 static int evlist__set_paused(struct evlist *evlist, bool value) 737 { 738 int i; 739 740 if (!evlist->overwrite_mmap) 741 return 0; 742 743 for (i = 0; i < evlist->core.nr_mmaps; i++) { 744 int fd = evlist->overwrite_mmap[i].core.fd; 745 int err; 746 747 if (fd < 0) 748 continue; 749 err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0); 750 if (err) 751 return err; 752 } 753 return 0; 754 } 755 756 static int evlist__pause(struct evlist *evlist) 757 { 758 return evlist__set_paused(evlist, true); 759 } 760 761 static int evlist__resume(struct evlist *evlist) 762 { 763 return evlist__set_paused(evlist, false); 764 } 765 766 static void evlist__munmap_nofree(struct evlist *evlist) 767 { 768 int i; 769 770 if (evlist->mmap) 771 for (i = 0; i < evlist->core.nr_mmaps; i++) 772 perf_mmap__munmap(&evlist->mmap[i].core); 773 774 if (evlist->overwrite_mmap) 775 for (i = 0; i < evlist->core.nr_mmaps; i++) 776 perf_mmap__munmap(&evlist->overwrite_mmap[i].core); 777 } 778 779 void evlist__munmap(struct evlist *evlist) 780 { 781 evlist__munmap_nofree(evlist); 782 zfree(&evlist->mmap); 783 zfree(&evlist->overwrite_mmap); 784 } 785 786 static void perf_mmap__unmap_cb(struct perf_mmap *map) 787 { 788 struct mmap *m = container_of(map, struct mmap, core); 789 790 mmap__munmap(m); 791 } 792 793 static struct mmap *evlist__alloc_mmap(struct evlist *evlist, 794 bool overwrite) 795 { 796 int i; 797 struct mmap *map; 798 799 map = zalloc(evlist->core.nr_mmaps * sizeof(struct mmap)); 800 if (!map) 801 return NULL; 802 803 for (i = 0; i < evlist->core.nr_mmaps; i++) { 804 struct perf_mmap *prev = i ? &map[i - 1].core : NULL; 805 806 /* 807 * When the perf_mmap() call is made we grab one refcount, plus 808 * one extra to let perf_mmap__consume() get the last 809 * events after all real references (perf_mmap__get()) are 810 * dropped. 811 * 812 * Each PERF_EVENT_IOC_SET_OUTPUT points to this mmap and 813 * thus does perf_mmap__get() on it. 814 */ 815 perf_mmap__init(&map[i].core, prev, overwrite, perf_mmap__unmap_cb); 816 } 817 818 return map; 819 } 820 821 static void 822 perf_evlist__mmap_cb_idx(struct perf_evlist *_evlist, 823 struct perf_evsel *_evsel, 824 struct perf_mmap_param *_mp, 825 int idx) 826 { 827 struct evlist *evlist = container_of(_evlist, struct evlist, core); 828 struct mmap_params *mp = container_of(_mp, struct mmap_params, core); 829 struct evsel *evsel = container_of(_evsel, struct evsel, core); 830 831 auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, evsel, idx); 832 } 833 834 static struct perf_mmap* 835 perf_evlist__mmap_cb_get(struct perf_evlist *_evlist, bool overwrite, int idx) 836 { 837 struct evlist *evlist = container_of(_evlist, struct evlist, core); 838 struct mmap *maps; 839 840 maps = overwrite ? evlist->overwrite_mmap : evlist->mmap; 841 842 if (!maps) { 843 maps = evlist__alloc_mmap(evlist, overwrite); 844 if (!maps) 845 return NULL; 846 847 if (overwrite) { 848 evlist->overwrite_mmap = maps; 849 if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY) 850 evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING); 851 } else { 852 evlist->mmap = maps; 853 } 854 } 855 856 return &maps[idx].core; 857 } 858 859 static int 860 perf_evlist__mmap_cb_mmap(struct perf_mmap *_map, struct perf_mmap_param *_mp, 861 int output, struct perf_cpu cpu) 862 { 863 struct mmap *map = container_of(_map, struct mmap, core); 864 struct mmap_params *mp = container_of(_mp, struct mmap_params, core); 865 866 return mmap__mmap(map, mp, output, cpu); 867 } 868 869 unsigned long perf_event_mlock_kb_in_pages(void) 870 { 871 unsigned long pages; 872 int max; 873 874 if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) { 875 /* 876 * Pick a once upon a time good value, i.e. things look 877 * strange since we can't read a sysctl value, but lets not 878 * die yet... 879 */ 880 max = 512; 881 } else { 882 max -= (page_size / 1024); 883 } 884 885 pages = (max * 1024) / page_size; 886 if (!is_power_of_2(pages)) 887 pages = rounddown_pow_of_two(pages); 888 889 return pages; 890 } 891 892 size_t evlist__mmap_size(unsigned long pages) 893 { 894 if (pages == UINT_MAX) 895 pages = perf_event_mlock_kb_in_pages(); 896 else if (!is_power_of_2(pages)) 897 return 0; 898 899 return (pages + 1) * page_size; 900 } 901 902 static long parse_pages_arg(const char *str, unsigned long min, 903 unsigned long max) 904 { 905 unsigned long pages, val; 906 static struct parse_tag tags[] = { 907 { .tag = 'B', .mult = 1 }, 908 { .tag = 'K', .mult = 1 << 10 }, 909 { .tag = 'M', .mult = 1 << 20 }, 910 { .tag = 'G', .mult = 1 << 30 }, 911 { .tag = 0 }, 912 }; 913 914 if (str == NULL) 915 return -EINVAL; 916 917 val = parse_tag_value(str, tags); 918 if (val != (unsigned long) -1) { 919 /* we got file size value */ 920 pages = PERF_ALIGN(val, page_size) / page_size; 921 } else { 922 /* we got pages count value */ 923 char *eptr; 924 pages = strtoul(str, &eptr, 10); 925 if (*eptr != '\0') 926 return -EINVAL; 927 } 928 929 if (pages == 0 && min == 0) { 930 /* leave number of pages at 0 */ 931 } else if (!is_power_of_2(pages)) { 932 char buf[100]; 933 934 /* round pages up to next power of 2 */ 935 pages = roundup_pow_of_two(pages); 936 if (!pages) 937 return -EINVAL; 938 939 unit_number__scnprintf(buf, sizeof(buf), pages * page_size); 940 pr_info("rounding mmap pages size to %s (%lu pages)\n", 941 buf, pages); 942 } 943 944 if (pages > max) 945 return -EINVAL; 946 947 return pages; 948 } 949 950 int __evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str) 951 { 952 unsigned long max = UINT_MAX; 953 long pages; 954 955 if (max > SIZE_MAX / page_size) 956 max = SIZE_MAX / page_size; 957 958 pages = parse_pages_arg(str, 1, max); 959 if (pages < 0) { 960 pr_err("Invalid argument for --mmap_pages/-m\n"); 961 return -1; 962 } 963 964 *mmap_pages = pages; 965 return 0; 966 } 967 968 int evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused) 969 { 970 return __evlist__parse_mmap_pages(opt->value, str); 971 } 972 973 /** 974 * evlist__mmap_ex - Create mmaps to receive events. 975 * @evlist: list of events 976 * @pages: map length in pages 977 * @overwrite: overwrite older events? 978 * @auxtrace_pages - auxtrace map length in pages 979 * @auxtrace_overwrite - overwrite older auxtrace data? 980 * 981 * If @overwrite is %false the user needs to signal event consumption using 982 * perf_mmap__write_tail(). Using evlist__mmap_read() does this 983 * automatically. 984 * 985 * Similarly, if @auxtrace_overwrite is %false the user needs to signal data 986 * consumption using auxtrace_mmap__write_tail(). 987 * 988 * Return: %0 on success, negative error code otherwise. 989 */ 990 int evlist__mmap_ex(struct evlist *evlist, unsigned int pages, 991 unsigned int auxtrace_pages, 992 bool auxtrace_overwrite, int nr_cblocks, int affinity, int flush, 993 int comp_level) 994 { 995 /* 996 * Delay setting mp.prot: set it before calling perf_mmap__mmap. 997 * Its value is decided by evsel's write_backward. 998 * So &mp should not be passed through const pointer. 999 */ 1000 struct mmap_params mp = { 1001 .nr_cblocks = nr_cblocks, 1002 .affinity = affinity, 1003 .flush = flush, 1004 .comp_level = comp_level 1005 }; 1006 struct perf_evlist_mmap_ops ops = { 1007 .idx = perf_evlist__mmap_cb_idx, 1008 .get = perf_evlist__mmap_cb_get, 1009 .mmap = perf_evlist__mmap_cb_mmap, 1010 }; 1011 1012 evlist->core.mmap_len = evlist__mmap_size(pages); 1013 pr_debug("mmap size %zuB\n", evlist->core.mmap_len); 1014 1015 auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->core.mmap_len, 1016 auxtrace_pages, auxtrace_overwrite); 1017 1018 return perf_evlist__mmap_ops(&evlist->core, &ops, &mp.core); 1019 } 1020 1021 int evlist__mmap(struct evlist *evlist, unsigned int pages) 1022 { 1023 return evlist__mmap_ex(evlist, pages, 0, false, 0, PERF_AFFINITY_SYS, 1, 0); 1024 } 1025 1026 int evlist__create_maps(struct evlist *evlist, struct target *target) 1027 { 1028 bool all_threads = (target->per_thread && target->system_wide); 1029 struct perf_cpu_map *cpus; 1030 struct perf_thread_map *threads; 1031 1032 /* 1033 * If specify '-a' and '--per-thread' to perf record, perf record 1034 * will override '--per-thread'. target->per_thread = false and 1035 * target->system_wide = true. 1036 * 1037 * If specify '--per-thread' only to perf record, 1038 * target->per_thread = true and target->system_wide = false. 1039 * 1040 * So target->per_thread && target->system_wide is false. 1041 * For perf record, thread_map__new_str doesn't call 1042 * thread_map__new_all_cpus. That will keep perf record's 1043 * current behavior. 1044 * 1045 * For perf stat, it allows the case that target->per_thread and 1046 * target->system_wide are all true. It means to collect system-wide 1047 * per-thread data. thread_map__new_str will call 1048 * thread_map__new_all_cpus to enumerate all threads. 1049 */ 1050 threads = thread_map__new_str(target->pid, target->tid, target->uid, 1051 all_threads); 1052 1053 if (!threads) 1054 return -1; 1055 1056 if (target__uses_dummy_map(target)) 1057 cpus = perf_cpu_map__dummy_new(); 1058 else 1059 cpus = perf_cpu_map__new(target->cpu_list); 1060 1061 if (!cpus) 1062 goto out_delete_threads; 1063 1064 evlist->core.has_user_cpus = !!target->cpu_list && !target->hybrid; 1065 1066 perf_evlist__set_maps(&evlist->core, cpus, threads); 1067 1068 /* as evlist now has references, put count here */ 1069 perf_cpu_map__put(cpus); 1070 perf_thread_map__put(threads); 1071 1072 return 0; 1073 1074 out_delete_threads: 1075 perf_thread_map__put(threads); 1076 return -1; 1077 } 1078 1079 int evlist__apply_filters(struct evlist *evlist, struct evsel **err_evsel) 1080 { 1081 struct evsel *evsel; 1082 int err = 0; 1083 1084 evlist__for_each_entry(evlist, evsel) { 1085 if (evsel->filter == NULL) 1086 continue; 1087 1088 /* 1089 * filters only work for tracepoint event, which doesn't have cpu limit. 1090 * So evlist and evsel should always be same. 1091 */ 1092 err = perf_evsel__apply_filter(&evsel->core, evsel->filter); 1093 if (err) { 1094 *err_evsel = evsel; 1095 break; 1096 } 1097 } 1098 1099 return err; 1100 } 1101 1102 int evlist__set_tp_filter(struct evlist *evlist, const char *filter) 1103 { 1104 struct evsel *evsel; 1105 int err = 0; 1106 1107 if (filter == NULL) 1108 return -1; 1109 1110 evlist__for_each_entry(evlist, evsel) { 1111 if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT) 1112 continue; 1113 1114 err = evsel__set_filter(evsel, filter); 1115 if (err) 1116 break; 1117 } 1118 1119 return err; 1120 } 1121 1122 int evlist__append_tp_filter(struct evlist *evlist, const char *filter) 1123 { 1124 struct evsel *evsel; 1125 int err = 0; 1126 1127 if (filter == NULL) 1128 return -1; 1129 1130 evlist__for_each_entry(evlist, evsel) { 1131 if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT) 1132 continue; 1133 1134 err = evsel__append_tp_filter(evsel, filter); 1135 if (err) 1136 break; 1137 } 1138 1139 return err; 1140 } 1141 1142 char *asprintf__tp_filter_pids(size_t npids, pid_t *pids) 1143 { 1144 char *filter; 1145 size_t i; 1146 1147 for (i = 0; i < npids; ++i) { 1148 if (i == 0) { 1149 if (asprintf(&filter, "common_pid != %d", pids[i]) < 0) 1150 return NULL; 1151 } else { 1152 char *tmp; 1153 1154 if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0) 1155 goto out_free; 1156 1157 free(filter); 1158 filter = tmp; 1159 } 1160 } 1161 1162 return filter; 1163 out_free: 1164 free(filter); 1165 return NULL; 1166 } 1167 1168 int evlist__set_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids) 1169 { 1170 char *filter = asprintf__tp_filter_pids(npids, pids); 1171 int ret = evlist__set_tp_filter(evlist, filter); 1172 1173 free(filter); 1174 return ret; 1175 } 1176 1177 int evlist__set_tp_filter_pid(struct evlist *evlist, pid_t pid) 1178 { 1179 return evlist__set_tp_filter_pids(evlist, 1, &pid); 1180 } 1181 1182 int evlist__append_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids) 1183 { 1184 char *filter = asprintf__tp_filter_pids(npids, pids); 1185 int ret = evlist__append_tp_filter(evlist, filter); 1186 1187 free(filter); 1188 return ret; 1189 } 1190 1191 int evlist__append_tp_filter_pid(struct evlist *evlist, pid_t pid) 1192 { 1193 return evlist__append_tp_filter_pids(evlist, 1, &pid); 1194 } 1195 1196 bool evlist__valid_sample_type(struct evlist *evlist) 1197 { 1198 struct evsel *pos; 1199 1200 if (evlist->core.nr_entries == 1) 1201 return true; 1202 1203 if (evlist->id_pos < 0 || evlist->is_pos < 0) 1204 return false; 1205 1206 evlist__for_each_entry(evlist, pos) { 1207 if (pos->id_pos != evlist->id_pos || 1208 pos->is_pos != evlist->is_pos) 1209 return false; 1210 } 1211 1212 return true; 1213 } 1214 1215 u64 __evlist__combined_sample_type(struct evlist *evlist) 1216 { 1217 struct evsel *evsel; 1218 1219 if (evlist->combined_sample_type) 1220 return evlist->combined_sample_type; 1221 1222 evlist__for_each_entry(evlist, evsel) 1223 evlist->combined_sample_type |= evsel->core.attr.sample_type; 1224 1225 return evlist->combined_sample_type; 1226 } 1227 1228 u64 evlist__combined_sample_type(struct evlist *evlist) 1229 { 1230 evlist->combined_sample_type = 0; 1231 return __evlist__combined_sample_type(evlist); 1232 } 1233 1234 u64 evlist__combined_branch_type(struct evlist *evlist) 1235 { 1236 struct evsel *evsel; 1237 u64 branch_type = 0; 1238 1239 evlist__for_each_entry(evlist, evsel) 1240 branch_type |= evsel->core.attr.branch_sample_type; 1241 return branch_type; 1242 } 1243 1244 bool evlist__valid_read_format(struct evlist *evlist) 1245 { 1246 struct evsel *first = evlist__first(evlist), *pos = first; 1247 u64 read_format = first->core.attr.read_format; 1248 u64 sample_type = first->core.attr.sample_type; 1249 1250 evlist__for_each_entry(evlist, pos) { 1251 if (read_format != pos->core.attr.read_format) { 1252 pr_debug("Read format differs %#" PRIx64 " vs %#" PRIx64 "\n", 1253 read_format, (u64)pos->core.attr.read_format); 1254 } 1255 } 1256 1257 /* PERF_SAMPLE_READ implies PERF_FORMAT_ID. */ 1258 if ((sample_type & PERF_SAMPLE_READ) && 1259 !(read_format & PERF_FORMAT_ID)) { 1260 return false; 1261 } 1262 1263 return true; 1264 } 1265 1266 u16 evlist__id_hdr_size(struct evlist *evlist) 1267 { 1268 struct evsel *first = evlist__first(evlist); 1269 1270 return first->core.attr.sample_id_all ? evsel__id_hdr_size(first) : 0; 1271 } 1272 1273 bool evlist__valid_sample_id_all(struct evlist *evlist) 1274 { 1275 struct evsel *first = evlist__first(evlist), *pos = first; 1276 1277 evlist__for_each_entry_continue(evlist, pos) { 1278 if (first->core.attr.sample_id_all != pos->core.attr.sample_id_all) 1279 return false; 1280 } 1281 1282 return true; 1283 } 1284 1285 bool evlist__sample_id_all(struct evlist *evlist) 1286 { 1287 struct evsel *first = evlist__first(evlist); 1288 return first->core.attr.sample_id_all; 1289 } 1290 1291 void evlist__set_selected(struct evlist *evlist, struct evsel *evsel) 1292 { 1293 evlist->selected = evsel; 1294 } 1295 1296 void evlist__close(struct evlist *evlist) 1297 { 1298 struct evsel *evsel; 1299 struct evlist_cpu_iterator evlist_cpu_itr; 1300 struct affinity affinity; 1301 1302 /* 1303 * With perf record core.user_requested_cpus is usually NULL. 1304 * Use the old method to handle this for now. 1305 */ 1306 if (!evlist->core.user_requested_cpus || 1307 cpu_map__is_dummy(evlist->core.user_requested_cpus)) { 1308 evlist__for_each_entry_reverse(evlist, evsel) 1309 evsel__close(evsel); 1310 return; 1311 } 1312 1313 if (affinity__setup(&affinity) < 0) 1314 return; 1315 1316 evlist__for_each_cpu(evlist_cpu_itr, evlist, &affinity) { 1317 perf_evsel__close_cpu(&evlist_cpu_itr.evsel->core, 1318 evlist_cpu_itr.cpu_map_idx); 1319 } 1320 1321 affinity__cleanup(&affinity); 1322 evlist__for_each_entry_reverse(evlist, evsel) { 1323 perf_evsel__free_fd(&evsel->core); 1324 perf_evsel__free_id(&evsel->core); 1325 } 1326 perf_evlist__reset_id_hash(&evlist->core); 1327 } 1328 1329 static int evlist__create_syswide_maps(struct evlist *evlist) 1330 { 1331 struct perf_cpu_map *cpus; 1332 struct perf_thread_map *threads; 1333 1334 /* 1335 * Try reading /sys/devices/system/cpu/online to get 1336 * an all cpus map. 1337 * 1338 * FIXME: -ENOMEM is the best we can do here, the cpu_map 1339 * code needs an overhaul to properly forward the 1340 * error, and we may not want to do that fallback to a 1341 * default cpu identity map :-\ 1342 */ 1343 cpus = perf_cpu_map__new(NULL); 1344 if (!cpus) 1345 goto out; 1346 1347 threads = perf_thread_map__new_dummy(); 1348 if (!threads) 1349 goto out_put; 1350 1351 perf_evlist__set_maps(&evlist->core, cpus, threads); 1352 1353 perf_thread_map__put(threads); 1354 out_put: 1355 perf_cpu_map__put(cpus); 1356 out: 1357 return -ENOMEM; 1358 } 1359 1360 int evlist__open(struct evlist *evlist) 1361 { 1362 struct evsel *evsel; 1363 int err; 1364 1365 /* 1366 * Default: one fd per CPU, all threads, aka systemwide 1367 * as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL 1368 */ 1369 if (evlist->core.threads == NULL && evlist->core.user_requested_cpus == NULL) { 1370 err = evlist__create_syswide_maps(evlist); 1371 if (err < 0) 1372 goto out_err; 1373 } 1374 1375 evlist__update_id_pos(evlist); 1376 1377 evlist__for_each_entry(evlist, evsel) { 1378 err = evsel__open(evsel, evsel->core.cpus, evsel->core.threads); 1379 if (err < 0) 1380 goto out_err; 1381 } 1382 1383 return 0; 1384 out_err: 1385 evlist__close(evlist); 1386 errno = -err; 1387 return err; 1388 } 1389 1390 int evlist__prepare_workload(struct evlist *evlist, struct target *target, const char *argv[], 1391 bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext)) 1392 { 1393 int child_ready_pipe[2], go_pipe[2]; 1394 char bf; 1395 1396 if (pipe(child_ready_pipe) < 0) { 1397 perror("failed to create 'ready' pipe"); 1398 return -1; 1399 } 1400 1401 if (pipe(go_pipe) < 0) { 1402 perror("failed to create 'go' pipe"); 1403 goto out_close_ready_pipe; 1404 } 1405 1406 evlist->workload.pid = fork(); 1407 if (evlist->workload.pid < 0) { 1408 perror("failed to fork"); 1409 goto out_close_pipes; 1410 } 1411 1412 if (!evlist->workload.pid) { 1413 int ret; 1414 1415 if (pipe_output) 1416 dup2(2, 1); 1417 1418 signal(SIGTERM, SIG_DFL); 1419 1420 close(child_ready_pipe[0]); 1421 close(go_pipe[1]); 1422 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC); 1423 1424 /* 1425 * Change the name of this process not to confuse --exclude-perf users 1426 * that sees 'perf' in the window up to the execvp() and thinks that 1427 * perf samples are not being excluded. 1428 */ 1429 prctl(PR_SET_NAME, "perf-exec"); 1430 1431 /* 1432 * Tell the parent we're ready to go 1433 */ 1434 close(child_ready_pipe[1]); 1435 1436 /* 1437 * Wait until the parent tells us to go. 1438 */ 1439 ret = read(go_pipe[0], &bf, 1); 1440 /* 1441 * The parent will ask for the execvp() to be performed by 1442 * writing exactly one byte, in workload.cork_fd, usually via 1443 * evlist__start_workload(). 1444 * 1445 * For cancelling the workload without actually running it, 1446 * the parent will just close workload.cork_fd, without writing 1447 * anything, i.e. read will return zero and we just exit() 1448 * here. 1449 */ 1450 if (ret != 1) { 1451 if (ret == -1) 1452 perror("unable to read pipe"); 1453 exit(ret); 1454 } 1455 1456 execvp(argv[0], (char **)argv); 1457 1458 if (exec_error) { 1459 union sigval val; 1460 1461 val.sival_int = errno; 1462 if (sigqueue(getppid(), SIGUSR1, val)) 1463 perror(argv[0]); 1464 } else 1465 perror(argv[0]); 1466 exit(-1); 1467 } 1468 1469 if (exec_error) { 1470 struct sigaction act = { 1471 .sa_flags = SA_SIGINFO, 1472 .sa_sigaction = exec_error, 1473 }; 1474 sigaction(SIGUSR1, &act, NULL); 1475 } 1476 1477 if (target__none(target)) { 1478 if (evlist->core.threads == NULL) { 1479 fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n", 1480 __func__, __LINE__); 1481 goto out_close_pipes; 1482 } 1483 perf_thread_map__set_pid(evlist->core.threads, 0, evlist->workload.pid); 1484 } 1485 1486 close(child_ready_pipe[1]); 1487 close(go_pipe[0]); 1488 /* 1489 * wait for child to settle 1490 */ 1491 if (read(child_ready_pipe[0], &bf, 1) == -1) { 1492 perror("unable to read pipe"); 1493 goto out_close_pipes; 1494 } 1495 1496 fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC); 1497 evlist->workload.cork_fd = go_pipe[1]; 1498 close(child_ready_pipe[0]); 1499 return 0; 1500 1501 out_close_pipes: 1502 close(go_pipe[0]); 1503 close(go_pipe[1]); 1504 out_close_ready_pipe: 1505 close(child_ready_pipe[0]); 1506 close(child_ready_pipe[1]); 1507 return -1; 1508 } 1509 1510 int evlist__start_workload(struct evlist *evlist) 1511 { 1512 if (evlist->workload.cork_fd > 0) { 1513 char bf = 0; 1514 int ret; 1515 /* 1516 * Remove the cork, let it rip! 1517 */ 1518 ret = write(evlist->workload.cork_fd, &bf, 1); 1519 if (ret < 0) 1520 perror("unable to write to pipe"); 1521 1522 close(evlist->workload.cork_fd); 1523 return ret; 1524 } 1525 1526 return 0; 1527 } 1528 1529 int evlist__parse_sample(struct evlist *evlist, union perf_event *event, struct perf_sample *sample) 1530 { 1531 struct evsel *evsel = evlist__event2evsel(evlist, event); 1532 int ret; 1533 1534 if (!evsel) 1535 return -EFAULT; 1536 ret = evsel__parse_sample(evsel, event, sample); 1537 if (ret) 1538 return ret; 1539 if (perf_guest && sample->id) { 1540 struct perf_sample_id *sid = evlist__id2sid(evlist, sample->id); 1541 1542 if (sid) { 1543 sample->machine_pid = sid->machine_pid; 1544 sample->vcpu = sid->vcpu.cpu; 1545 } 1546 } 1547 return 0; 1548 } 1549 1550 int evlist__parse_sample_timestamp(struct evlist *evlist, union perf_event *event, u64 *timestamp) 1551 { 1552 struct evsel *evsel = evlist__event2evsel(evlist, event); 1553 1554 if (!evsel) 1555 return -EFAULT; 1556 return evsel__parse_sample_timestamp(evsel, event, timestamp); 1557 } 1558 1559 int evlist__strerror_open(struct evlist *evlist, int err, char *buf, size_t size) 1560 { 1561 int printed, value; 1562 char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf)); 1563 1564 switch (err) { 1565 case EACCES: 1566 case EPERM: 1567 printed = scnprintf(buf, size, 1568 "Error:\t%s.\n" 1569 "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg); 1570 1571 value = perf_event_paranoid(); 1572 1573 printed += scnprintf(buf + printed, size - printed, "\nHint:\t"); 1574 1575 if (value >= 2) { 1576 printed += scnprintf(buf + printed, size - printed, 1577 "For your workloads it needs to be <= 1\nHint:\t"); 1578 } 1579 printed += scnprintf(buf + printed, size - printed, 1580 "For system wide tracing it needs to be set to -1.\n"); 1581 1582 printed += scnprintf(buf + printed, size - printed, 1583 "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n" 1584 "Hint:\tThe current value is %d.", value); 1585 break; 1586 case EINVAL: { 1587 struct evsel *first = evlist__first(evlist); 1588 int max_freq; 1589 1590 if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0) 1591 goto out_default; 1592 1593 if (first->core.attr.sample_freq < (u64)max_freq) 1594 goto out_default; 1595 1596 printed = scnprintf(buf, size, 1597 "Error:\t%s.\n" 1598 "Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n" 1599 "Hint:\tThe current value is %d and %" PRIu64 " is being requested.", 1600 emsg, max_freq, first->core.attr.sample_freq); 1601 break; 1602 } 1603 default: 1604 out_default: 1605 scnprintf(buf, size, "%s", emsg); 1606 break; 1607 } 1608 1609 return 0; 1610 } 1611 1612 int evlist__strerror_mmap(struct evlist *evlist, int err, char *buf, size_t size) 1613 { 1614 char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf)); 1615 int pages_attempted = evlist->core.mmap_len / 1024, pages_max_per_user, printed = 0; 1616 1617 switch (err) { 1618 case EPERM: 1619 sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user); 1620 printed += scnprintf(buf + printed, size - printed, 1621 "Error:\t%s.\n" 1622 "Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n" 1623 "Hint:\tTried using %zd kB.\n", 1624 emsg, pages_max_per_user, pages_attempted); 1625 1626 if (pages_attempted >= pages_max_per_user) { 1627 printed += scnprintf(buf + printed, size - printed, 1628 "Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n", 1629 pages_max_per_user + pages_attempted); 1630 } 1631 1632 printed += scnprintf(buf + printed, size - printed, 1633 "Hint:\tTry using a smaller -m/--mmap-pages value."); 1634 break; 1635 default: 1636 scnprintf(buf, size, "%s", emsg); 1637 break; 1638 } 1639 1640 return 0; 1641 } 1642 1643 void evlist__to_front(struct evlist *evlist, struct evsel *move_evsel) 1644 { 1645 struct evsel *evsel, *n; 1646 LIST_HEAD(move); 1647 1648 if (move_evsel == evlist__first(evlist)) 1649 return; 1650 1651 evlist__for_each_entry_safe(evlist, n, evsel) { 1652 if (evsel__leader(evsel) == evsel__leader(move_evsel)) 1653 list_move_tail(&evsel->core.node, &move); 1654 } 1655 1656 list_splice(&move, &evlist->core.entries); 1657 } 1658 1659 struct evsel *evlist__get_tracking_event(struct evlist *evlist) 1660 { 1661 struct evsel *evsel; 1662 1663 evlist__for_each_entry(evlist, evsel) { 1664 if (evsel->tracking) 1665 return evsel; 1666 } 1667 1668 return evlist__first(evlist); 1669 } 1670 1671 void evlist__set_tracking_event(struct evlist *evlist, struct evsel *tracking_evsel) 1672 { 1673 struct evsel *evsel; 1674 1675 if (tracking_evsel->tracking) 1676 return; 1677 1678 evlist__for_each_entry(evlist, evsel) { 1679 if (evsel != tracking_evsel) 1680 evsel->tracking = false; 1681 } 1682 1683 tracking_evsel->tracking = true; 1684 } 1685 1686 struct evsel *evlist__find_evsel_by_str(struct evlist *evlist, const char *str) 1687 { 1688 struct evsel *evsel; 1689 1690 evlist__for_each_entry(evlist, evsel) { 1691 if (!evsel->name) 1692 continue; 1693 if (strcmp(str, evsel->name) == 0) 1694 return evsel; 1695 } 1696 1697 return NULL; 1698 } 1699 1700 void evlist__toggle_bkw_mmap(struct evlist *evlist, enum bkw_mmap_state state) 1701 { 1702 enum bkw_mmap_state old_state = evlist->bkw_mmap_state; 1703 enum action { 1704 NONE, 1705 PAUSE, 1706 RESUME, 1707 } action = NONE; 1708 1709 if (!evlist->overwrite_mmap) 1710 return; 1711 1712 switch (old_state) { 1713 case BKW_MMAP_NOTREADY: { 1714 if (state != BKW_MMAP_RUNNING) 1715 goto state_err; 1716 break; 1717 } 1718 case BKW_MMAP_RUNNING: { 1719 if (state != BKW_MMAP_DATA_PENDING) 1720 goto state_err; 1721 action = PAUSE; 1722 break; 1723 } 1724 case BKW_MMAP_DATA_PENDING: { 1725 if (state != BKW_MMAP_EMPTY) 1726 goto state_err; 1727 break; 1728 } 1729 case BKW_MMAP_EMPTY: { 1730 if (state != BKW_MMAP_RUNNING) 1731 goto state_err; 1732 action = RESUME; 1733 break; 1734 } 1735 default: 1736 WARN_ONCE(1, "Shouldn't get there\n"); 1737 } 1738 1739 evlist->bkw_mmap_state = state; 1740 1741 switch (action) { 1742 case PAUSE: 1743 evlist__pause(evlist); 1744 break; 1745 case RESUME: 1746 evlist__resume(evlist); 1747 break; 1748 case NONE: 1749 default: 1750 break; 1751 } 1752 1753 state_err: 1754 return; 1755 } 1756 1757 bool evlist__exclude_kernel(struct evlist *evlist) 1758 { 1759 struct evsel *evsel; 1760 1761 evlist__for_each_entry(evlist, evsel) { 1762 if (!evsel->core.attr.exclude_kernel) 1763 return false; 1764 } 1765 1766 return true; 1767 } 1768 1769 /* 1770 * Events in data file are not collect in groups, but we still want 1771 * the group display. Set the artificial group and set the leader's 1772 * forced_leader flag to notify the display code. 1773 */ 1774 void evlist__force_leader(struct evlist *evlist) 1775 { 1776 if (!evlist->core.nr_groups) { 1777 struct evsel *leader = evlist__first(evlist); 1778 1779 evlist__set_leader(evlist); 1780 leader->forced_leader = true; 1781 } 1782 } 1783 1784 struct evsel *evlist__reset_weak_group(struct evlist *evsel_list, struct evsel *evsel, bool close) 1785 { 1786 struct evsel *c2, *leader; 1787 bool is_open = true; 1788 1789 leader = evsel__leader(evsel); 1790 1791 pr_debug("Weak group for %s/%d failed\n", 1792 leader->name, leader->core.nr_members); 1793 1794 /* 1795 * for_each_group_member doesn't work here because it doesn't 1796 * include the first entry. 1797 */ 1798 evlist__for_each_entry(evsel_list, c2) { 1799 if (c2 == evsel) 1800 is_open = false; 1801 if (evsel__has_leader(c2, leader)) { 1802 if (is_open && close) 1803 perf_evsel__close(&c2->core); 1804 /* 1805 * We want to close all members of the group and reopen 1806 * them. Some events, like Intel topdown, require being 1807 * in a group and so keep these in the group. 1808 */ 1809 evsel__remove_from_group(c2, leader); 1810 1811 /* 1812 * Set this for all former members of the group 1813 * to indicate they get reopened. 1814 */ 1815 c2->reset_group = true; 1816 } 1817 } 1818 /* Reset the leader count if all entries were removed. */ 1819 if (leader->core.nr_members == 1) 1820 leader->core.nr_members = 0; 1821 return leader; 1822 } 1823 1824 static int evlist__parse_control_fifo(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close) 1825 { 1826 char *s, *p; 1827 int ret = 0, fd; 1828 1829 if (strncmp(str, "fifo:", 5)) 1830 return -EINVAL; 1831 1832 str += 5; 1833 if (!*str || *str == ',') 1834 return -EINVAL; 1835 1836 s = strdup(str); 1837 if (!s) 1838 return -ENOMEM; 1839 1840 p = strchr(s, ','); 1841 if (p) 1842 *p = '\0'; 1843 1844 /* 1845 * O_RDWR avoids POLLHUPs which is necessary to allow the other 1846 * end of a FIFO to be repeatedly opened and closed. 1847 */ 1848 fd = open(s, O_RDWR | O_NONBLOCK | O_CLOEXEC); 1849 if (fd < 0) { 1850 pr_err("Failed to open '%s'\n", s); 1851 ret = -errno; 1852 goto out_free; 1853 } 1854 *ctl_fd = fd; 1855 *ctl_fd_close = true; 1856 1857 if (p && *++p) { 1858 /* O_RDWR | O_NONBLOCK means the other end need not be open */ 1859 fd = open(p, O_RDWR | O_NONBLOCK | O_CLOEXEC); 1860 if (fd < 0) { 1861 pr_err("Failed to open '%s'\n", p); 1862 ret = -errno; 1863 goto out_free; 1864 } 1865 *ctl_fd_ack = fd; 1866 } 1867 1868 out_free: 1869 free(s); 1870 return ret; 1871 } 1872 1873 int evlist__parse_control(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close) 1874 { 1875 char *comma = NULL, *endptr = NULL; 1876 1877 *ctl_fd_close = false; 1878 1879 if (strncmp(str, "fd:", 3)) 1880 return evlist__parse_control_fifo(str, ctl_fd, ctl_fd_ack, ctl_fd_close); 1881 1882 *ctl_fd = strtoul(&str[3], &endptr, 0); 1883 if (endptr == &str[3]) 1884 return -EINVAL; 1885 1886 comma = strchr(str, ','); 1887 if (comma) { 1888 if (endptr != comma) 1889 return -EINVAL; 1890 1891 *ctl_fd_ack = strtoul(comma + 1, &endptr, 0); 1892 if (endptr == comma + 1 || *endptr != '\0') 1893 return -EINVAL; 1894 } 1895 1896 return 0; 1897 } 1898 1899 void evlist__close_control(int ctl_fd, int ctl_fd_ack, bool *ctl_fd_close) 1900 { 1901 if (*ctl_fd_close) { 1902 *ctl_fd_close = false; 1903 close(ctl_fd); 1904 if (ctl_fd_ack >= 0) 1905 close(ctl_fd_ack); 1906 } 1907 } 1908 1909 int evlist__initialize_ctlfd(struct evlist *evlist, int fd, int ack) 1910 { 1911 if (fd == -1) { 1912 pr_debug("Control descriptor is not initialized\n"); 1913 return 0; 1914 } 1915 1916 evlist->ctl_fd.pos = perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, 1917 fdarray_flag__nonfilterable | 1918 fdarray_flag__non_perf_event); 1919 if (evlist->ctl_fd.pos < 0) { 1920 evlist->ctl_fd.pos = -1; 1921 pr_err("Failed to add ctl fd entry: %m\n"); 1922 return -1; 1923 } 1924 1925 evlist->ctl_fd.fd = fd; 1926 evlist->ctl_fd.ack = ack; 1927 1928 return 0; 1929 } 1930 1931 bool evlist__ctlfd_initialized(struct evlist *evlist) 1932 { 1933 return evlist->ctl_fd.pos >= 0; 1934 } 1935 1936 int evlist__finalize_ctlfd(struct evlist *evlist) 1937 { 1938 struct pollfd *entries = evlist->core.pollfd.entries; 1939 1940 if (!evlist__ctlfd_initialized(evlist)) 1941 return 0; 1942 1943 entries[evlist->ctl_fd.pos].fd = -1; 1944 entries[evlist->ctl_fd.pos].events = 0; 1945 entries[evlist->ctl_fd.pos].revents = 0; 1946 1947 evlist->ctl_fd.pos = -1; 1948 evlist->ctl_fd.ack = -1; 1949 evlist->ctl_fd.fd = -1; 1950 1951 return 0; 1952 } 1953 1954 static int evlist__ctlfd_recv(struct evlist *evlist, enum evlist_ctl_cmd *cmd, 1955 char *cmd_data, size_t data_size) 1956 { 1957 int err; 1958 char c; 1959 size_t bytes_read = 0; 1960 1961 *cmd = EVLIST_CTL_CMD_UNSUPPORTED; 1962 memset(cmd_data, 0, data_size); 1963 data_size--; 1964 1965 do { 1966 err = read(evlist->ctl_fd.fd, &c, 1); 1967 if (err > 0) { 1968 if (c == '\n' || c == '\0') 1969 break; 1970 cmd_data[bytes_read++] = c; 1971 if (bytes_read == data_size) 1972 break; 1973 continue; 1974 } else if (err == -1) { 1975 if (errno == EINTR) 1976 continue; 1977 if (errno == EAGAIN || errno == EWOULDBLOCK) 1978 err = 0; 1979 else 1980 pr_err("Failed to read from ctlfd %d: %m\n", evlist->ctl_fd.fd); 1981 } 1982 break; 1983 } while (1); 1984 1985 pr_debug("Message from ctl_fd: \"%s%s\"\n", cmd_data, 1986 bytes_read == data_size ? "" : c == '\n' ? "\\n" : "\\0"); 1987 1988 if (bytes_read > 0) { 1989 if (!strncmp(cmd_data, EVLIST_CTL_CMD_ENABLE_TAG, 1990 (sizeof(EVLIST_CTL_CMD_ENABLE_TAG)-1))) { 1991 *cmd = EVLIST_CTL_CMD_ENABLE; 1992 } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_DISABLE_TAG, 1993 (sizeof(EVLIST_CTL_CMD_DISABLE_TAG)-1))) { 1994 *cmd = EVLIST_CTL_CMD_DISABLE; 1995 } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_SNAPSHOT_TAG, 1996 (sizeof(EVLIST_CTL_CMD_SNAPSHOT_TAG)-1))) { 1997 *cmd = EVLIST_CTL_CMD_SNAPSHOT; 1998 pr_debug("is snapshot\n"); 1999 } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_EVLIST_TAG, 2000 (sizeof(EVLIST_CTL_CMD_EVLIST_TAG)-1))) { 2001 *cmd = EVLIST_CTL_CMD_EVLIST; 2002 } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_STOP_TAG, 2003 (sizeof(EVLIST_CTL_CMD_STOP_TAG)-1))) { 2004 *cmd = EVLIST_CTL_CMD_STOP; 2005 } else if (!strncmp(cmd_data, EVLIST_CTL_CMD_PING_TAG, 2006 (sizeof(EVLIST_CTL_CMD_PING_TAG)-1))) { 2007 *cmd = EVLIST_CTL_CMD_PING; 2008 } 2009 } 2010 2011 return bytes_read ? (int)bytes_read : err; 2012 } 2013 2014 int evlist__ctlfd_ack(struct evlist *evlist) 2015 { 2016 int err; 2017 2018 if (evlist->ctl_fd.ack == -1) 2019 return 0; 2020 2021 err = write(evlist->ctl_fd.ack, EVLIST_CTL_CMD_ACK_TAG, 2022 sizeof(EVLIST_CTL_CMD_ACK_TAG)); 2023 if (err == -1) 2024 pr_err("failed to write to ctl_ack_fd %d: %m\n", evlist->ctl_fd.ack); 2025 2026 return err; 2027 } 2028 2029 static int get_cmd_arg(char *cmd_data, size_t cmd_size, char **arg) 2030 { 2031 char *data = cmd_data + cmd_size; 2032 2033 /* no argument */ 2034 if (!*data) 2035 return 0; 2036 2037 /* there's argument */ 2038 if (*data == ' ') { 2039 *arg = data + 1; 2040 return 1; 2041 } 2042 2043 /* malformed */ 2044 return -1; 2045 } 2046 2047 static int evlist__ctlfd_enable(struct evlist *evlist, char *cmd_data, bool enable) 2048 { 2049 struct evsel *evsel; 2050 char *name; 2051 int err; 2052 2053 err = get_cmd_arg(cmd_data, 2054 enable ? sizeof(EVLIST_CTL_CMD_ENABLE_TAG) - 1 : 2055 sizeof(EVLIST_CTL_CMD_DISABLE_TAG) - 1, 2056 &name); 2057 if (err < 0) { 2058 pr_info("failed: wrong command\n"); 2059 return -1; 2060 } 2061 2062 if (err) { 2063 evsel = evlist__find_evsel_by_str(evlist, name); 2064 if (evsel) { 2065 if (enable) 2066 evlist__enable_evsel(evlist, name); 2067 else 2068 evlist__disable_evsel(evlist, name); 2069 pr_info("Event %s %s\n", evsel->name, 2070 enable ? "enabled" : "disabled"); 2071 } else { 2072 pr_info("failed: can't find '%s' event\n", name); 2073 } 2074 } else { 2075 if (enable) { 2076 evlist__enable(evlist); 2077 pr_info(EVLIST_ENABLED_MSG); 2078 } else { 2079 evlist__disable(evlist); 2080 pr_info(EVLIST_DISABLED_MSG); 2081 } 2082 } 2083 2084 return 0; 2085 } 2086 2087 static int evlist__ctlfd_list(struct evlist *evlist, char *cmd_data) 2088 { 2089 struct perf_attr_details details = { .verbose = false, }; 2090 struct evsel *evsel; 2091 char *arg; 2092 int err; 2093 2094 err = get_cmd_arg(cmd_data, 2095 sizeof(EVLIST_CTL_CMD_EVLIST_TAG) - 1, 2096 &arg); 2097 if (err < 0) { 2098 pr_info("failed: wrong command\n"); 2099 return -1; 2100 } 2101 2102 if (err) { 2103 if (!strcmp(arg, "-v")) { 2104 details.verbose = true; 2105 } else if (!strcmp(arg, "-g")) { 2106 details.event_group = true; 2107 } else if (!strcmp(arg, "-F")) { 2108 details.freq = true; 2109 } else { 2110 pr_info("failed: wrong command\n"); 2111 return -1; 2112 } 2113 } 2114 2115 evlist__for_each_entry(evlist, evsel) 2116 evsel__fprintf(evsel, &details, stderr); 2117 2118 return 0; 2119 } 2120 2121 int evlist__ctlfd_process(struct evlist *evlist, enum evlist_ctl_cmd *cmd) 2122 { 2123 int err = 0; 2124 char cmd_data[EVLIST_CTL_CMD_MAX_LEN]; 2125 int ctlfd_pos = evlist->ctl_fd.pos; 2126 struct pollfd *entries = evlist->core.pollfd.entries; 2127 2128 if (!evlist__ctlfd_initialized(evlist) || !entries[ctlfd_pos].revents) 2129 return 0; 2130 2131 if (entries[ctlfd_pos].revents & POLLIN) { 2132 err = evlist__ctlfd_recv(evlist, cmd, cmd_data, 2133 EVLIST_CTL_CMD_MAX_LEN); 2134 if (err > 0) { 2135 switch (*cmd) { 2136 case EVLIST_CTL_CMD_ENABLE: 2137 case EVLIST_CTL_CMD_DISABLE: 2138 err = evlist__ctlfd_enable(evlist, cmd_data, 2139 *cmd == EVLIST_CTL_CMD_ENABLE); 2140 break; 2141 case EVLIST_CTL_CMD_EVLIST: 2142 err = evlist__ctlfd_list(evlist, cmd_data); 2143 break; 2144 case EVLIST_CTL_CMD_SNAPSHOT: 2145 case EVLIST_CTL_CMD_STOP: 2146 case EVLIST_CTL_CMD_PING: 2147 break; 2148 case EVLIST_CTL_CMD_ACK: 2149 case EVLIST_CTL_CMD_UNSUPPORTED: 2150 default: 2151 pr_debug("ctlfd: unsupported %d\n", *cmd); 2152 break; 2153 } 2154 if (!(*cmd == EVLIST_CTL_CMD_ACK || *cmd == EVLIST_CTL_CMD_UNSUPPORTED || 2155 *cmd == EVLIST_CTL_CMD_SNAPSHOT)) 2156 evlist__ctlfd_ack(evlist); 2157 } 2158 } 2159 2160 if (entries[ctlfd_pos].revents & (POLLHUP | POLLERR)) 2161 evlist__finalize_ctlfd(evlist); 2162 else 2163 entries[ctlfd_pos].revents = 0; 2164 2165 return err; 2166 } 2167 2168 /** 2169 * struct event_enable_time - perf record -D/--delay single time range. 2170 * @start: start of time range to enable events in milliseconds 2171 * @end: end of time range to enable events in milliseconds 2172 * 2173 * N.B. this structure is also accessed as an array of int. 2174 */ 2175 struct event_enable_time { 2176 int start; 2177 int end; 2178 }; 2179 2180 static int parse_event_enable_time(const char *str, struct event_enable_time *range, bool first) 2181 { 2182 const char *fmt = first ? "%u - %u %n" : " , %u - %u %n"; 2183 int ret, start, end, n; 2184 2185 ret = sscanf(str, fmt, &start, &end, &n); 2186 if (ret != 2 || end <= start) 2187 return -EINVAL; 2188 if (range) { 2189 range->start = start; 2190 range->end = end; 2191 } 2192 return n; 2193 } 2194 2195 static ssize_t parse_event_enable_times(const char *str, struct event_enable_time *range) 2196 { 2197 int incr = !!range; 2198 bool first = true; 2199 ssize_t ret, cnt; 2200 2201 for (cnt = 0; *str; cnt++) { 2202 ret = parse_event_enable_time(str, range, first); 2203 if (ret < 0) 2204 return ret; 2205 /* Check no overlap */ 2206 if (!first && range && range->start <= range[-1].end) 2207 return -EINVAL; 2208 str += ret; 2209 range += incr; 2210 first = false; 2211 } 2212 return cnt; 2213 } 2214 2215 /** 2216 * struct event_enable_timer - control structure for perf record -D/--delay. 2217 * @evlist: event list 2218 * @times: time ranges that events are enabled (N.B. this is also accessed as an 2219 * array of int) 2220 * @times_cnt: number of time ranges 2221 * @timerfd: timer file descriptor 2222 * @pollfd_pos: position in @evlist array of file descriptors to poll (fdarray) 2223 * @times_step: current position in (int *)@times)[], 2224 * refer event_enable_timer__process() 2225 * 2226 * Note, this structure is only used when there are time ranges, not when there 2227 * is only an initial delay. 2228 */ 2229 struct event_enable_timer { 2230 struct evlist *evlist; 2231 struct event_enable_time *times; 2232 size_t times_cnt; 2233 int timerfd; 2234 int pollfd_pos; 2235 size_t times_step; 2236 }; 2237 2238 static int str_to_delay(const char *str) 2239 { 2240 char *endptr; 2241 long d; 2242 2243 d = strtol(str, &endptr, 10); 2244 if (*endptr || d > INT_MAX || d < -1) 2245 return 0; 2246 return d; 2247 } 2248 2249 int evlist__parse_event_enable_time(struct evlist *evlist, struct record_opts *opts, 2250 const char *str, int unset) 2251 { 2252 enum fdarray_flags flags = fdarray_flag__nonfilterable | fdarray_flag__non_perf_event; 2253 struct event_enable_timer *eet; 2254 ssize_t times_cnt; 2255 ssize_t ret; 2256 int err; 2257 2258 if (unset) 2259 return 0; 2260 2261 opts->initial_delay = str_to_delay(str); 2262 if (opts->initial_delay) 2263 return 0; 2264 2265 ret = parse_event_enable_times(str, NULL); 2266 if (ret < 0) 2267 return ret; 2268 2269 times_cnt = ret; 2270 if (times_cnt == 0) 2271 return -EINVAL; 2272 2273 eet = zalloc(sizeof(*eet)); 2274 if (!eet) 2275 return -ENOMEM; 2276 2277 eet->times = calloc(times_cnt, sizeof(*eet->times)); 2278 if (!eet->times) { 2279 err = -ENOMEM; 2280 goto free_eet; 2281 } 2282 2283 if (parse_event_enable_times(str, eet->times) != times_cnt) { 2284 err = -EINVAL; 2285 goto free_eet_times; 2286 } 2287 2288 eet->times_cnt = times_cnt; 2289 2290 eet->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC); 2291 if (eet->timerfd == -1) { 2292 err = -errno; 2293 pr_err("timerfd_create failed: %s\n", strerror(errno)); 2294 goto free_eet_times; 2295 } 2296 2297 eet->pollfd_pos = perf_evlist__add_pollfd(&evlist->core, eet->timerfd, NULL, POLLIN, flags); 2298 if (eet->pollfd_pos < 0) { 2299 err = eet->pollfd_pos; 2300 goto close_timerfd; 2301 } 2302 2303 eet->evlist = evlist; 2304 evlist->eet = eet; 2305 opts->initial_delay = eet->times[0].start; 2306 2307 return 0; 2308 2309 close_timerfd: 2310 close(eet->timerfd); 2311 free_eet_times: 2312 free(eet->times); 2313 free_eet: 2314 free(eet); 2315 return err; 2316 } 2317 2318 static int event_enable_timer__set_timer(struct event_enable_timer *eet, int ms) 2319 { 2320 struct itimerspec its = { 2321 .it_value.tv_sec = ms / MSEC_PER_SEC, 2322 .it_value.tv_nsec = (ms % MSEC_PER_SEC) * NSEC_PER_MSEC, 2323 }; 2324 int err = 0; 2325 2326 if (timerfd_settime(eet->timerfd, 0, &its, NULL) < 0) { 2327 err = -errno; 2328 pr_err("timerfd_settime failed: %s\n", strerror(errno)); 2329 } 2330 return err; 2331 } 2332 2333 int event_enable_timer__start(struct event_enable_timer *eet) 2334 { 2335 int ms; 2336 2337 if (!eet) 2338 return 0; 2339 2340 ms = eet->times[0].end - eet->times[0].start; 2341 eet->times_step = 1; 2342 2343 return event_enable_timer__set_timer(eet, ms); 2344 } 2345 2346 int event_enable_timer__process(struct event_enable_timer *eet) 2347 { 2348 struct pollfd *entries; 2349 short revents; 2350 2351 if (!eet) 2352 return 0; 2353 2354 entries = eet->evlist->core.pollfd.entries; 2355 revents = entries[eet->pollfd_pos].revents; 2356 entries[eet->pollfd_pos].revents = 0; 2357 2358 if (revents & POLLIN) { 2359 size_t step = eet->times_step; 2360 size_t pos = step / 2; 2361 2362 if (step & 1) { 2363 evlist__disable_non_dummy(eet->evlist); 2364 pr_info(EVLIST_DISABLED_MSG); 2365 if (pos >= eet->times_cnt - 1) { 2366 /* Disarm timer */ 2367 event_enable_timer__set_timer(eet, 0); 2368 return 1; /* Stop */ 2369 } 2370 } else { 2371 evlist__enable_non_dummy(eet->evlist); 2372 pr_info(EVLIST_ENABLED_MSG); 2373 } 2374 2375 step += 1; 2376 pos = step / 2; 2377 2378 if (pos < eet->times_cnt) { 2379 int *times = (int *)eet->times; /* Accessing 'times' as array of int */ 2380 int ms = times[step] - times[step - 1]; 2381 2382 eet->times_step = step; 2383 return event_enable_timer__set_timer(eet, ms); 2384 } 2385 } 2386 2387 return 0; 2388 } 2389 2390 void event_enable_timer__exit(struct event_enable_timer **ep) 2391 { 2392 if (!ep || !*ep) 2393 return; 2394 free((*ep)->times); 2395 zfree(ep); 2396 } 2397 2398 struct evsel *evlist__find_evsel(struct evlist *evlist, int idx) 2399 { 2400 struct evsel *evsel; 2401 2402 evlist__for_each_entry(evlist, evsel) { 2403 if (evsel->core.idx == idx) 2404 return evsel; 2405 } 2406 return NULL; 2407 } 2408 2409 int evlist__scnprintf_evsels(struct evlist *evlist, size_t size, char *bf) 2410 { 2411 struct evsel *evsel; 2412 int printed = 0; 2413 2414 evlist__for_each_entry(evlist, evsel) { 2415 if (evsel__is_dummy_event(evsel)) 2416 continue; 2417 if (size > (strlen(evsel__name(evsel)) + (printed ? 2 : 1))) { 2418 printed += scnprintf(bf + printed, size - printed, "%s%s", printed ? "," : "", evsel__name(evsel)); 2419 } else { 2420 printed += scnprintf(bf + printed, size - printed, "%s...", printed ? "," : ""); 2421 break; 2422 } 2423 } 2424 2425 return printed; 2426 } 2427 2428 void evlist__check_mem_load_aux(struct evlist *evlist) 2429 { 2430 struct evsel *leader, *evsel, *pos; 2431 2432 /* 2433 * For some platforms, the 'mem-loads' event is required to use 2434 * together with 'mem-loads-aux' within a group and 'mem-loads-aux' 2435 * must be the group leader. Now we disable this group before reporting 2436 * because 'mem-loads-aux' is just an auxiliary event. It doesn't carry 2437 * any valid memory load information. 2438 */ 2439 evlist__for_each_entry(evlist, evsel) { 2440 leader = evsel__leader(evsel); 2441 if (leader == evsel) 2442 continue; 2443 2444 if (leader->name && strstr(leader->name, "mem-loads-aux")) { 2445 for_each_group_evsel(pos, leader) { 2446 evsel__set_leader(pos, pos); 2447 pos->core.nr_members = 0; 2448 } 2449 } 2450 } 2451 } 2452