xref: /openbmc/linux/tools/perf/util/evlist.c (revision 1504b6f9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 #include <api/fs/fs.h>
9 #include <errno.h>
10 #include <inttypes.h>
11 #include <poll.h>
12 #include "cpumap.h"
13 #include "util/mmap.h"
14 #include "thread_map.h"
15 #include "target.h"
16 #include "evlist.h"
17 #include "evsel.h"
18 #include "record.h"
19 #include "debug.h"
20 #include "units.h"
21 #include "bpf_counter.h"
22 #include <internal/lib.h> // page_size
23 #include "affinity.h"
24 #include "../perf.h"
25 #include "asm/bug.h"
26 #include "bpf-event.h"
27 #include "util/event.h"
28 #include "util/string2.h"
29 #include "util/perf_api_probe.h"
30 #include "util/evsel_fprintf.h"
31 #include "util/evlist-hybrid.h"
32 #include "util/pmu.h"
33 #include "util/sample.h"
34 #include <signal.h>
35 #include <unistd.h>
36 #include <sched.h>
37 #include <stdlib.h>
38 
39 #include "parse-events.h"
40 #include <subcmd/parse-options.h>
41 
42 #include <fcntl.h>
43 #include <sys/ioctl.h>
44 #include <sys/mman.h>
45 #include <sys/prctl.h>
46 #include <sys/timerfd.h>
47 
48 #include <linux/bitops.h>
49 #include <linux/hash.h>
50 #include <linux/log2.h>
51 #include <linux/err.h>
52 #include <linux/string.h>
53 #include <linux/time64.h>
54 #include <linux/zalloc.h>
55 #include <perf/evlist.h>
56 #include <perf/evsel.h>
57 #include <perf/cpumap.h>
58 #include <perf/mmap.h>
59 
60 #include <internal/xyarray.h>
61 
62 #ifdef LACKS_SIGQUEUE_PROTOTYPE
63 int sigqueue(pid_t pid, int sig, const union sigval value);
64 #endif
65 
66 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y))
67 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y)
68 
69 void evlist__init(struct evlist *evlist, struct perf_cpu_map *cpus,
70 		  struct perf_thread_map *threads)
71 {
72 	perf_evlist__init(&evlist->core);
73 	perf_evlist__set_maps(&evlist->core, cpus, threads);
74 	evlist->workload.pid = -1;
75 	evlist->bkw_mmap_state = BKW_MMAP_NOTREADY;
76 	evlist->ctl_fd.fd = -1;
77 	evlist->ctl_fd.ack = -1;
78 	evlist->ctl_fd.pos = -1;
79 }
80 
81 struct evlist *evlist__new(void)
82 {
83 	struct evlist *evlist = zalloc(sizeof(*evlist));
84 
85 	if (evlist != NULL)
86 		evlist__init(evlist, NULL, NULL);
87 
88 	return evlist;
89 }
90 
91 struct evlist *evlist__new_default(void)
92 {
93 	struct evlist *evlist = evlist__new();
94 
95 	if (evlist && evlist__add_default(evlist)) {
96 		evlist__delete(evlist);
97 		evlist = NULL;
98 	}
99 
100 	return evlist;
101 }
102 
103 struct evlist *evlist__new_dummy(void)
104 {
105 	struct evlist *evlist = evlist__new();
106 
107 	if (evlist && evlist__add_dummy(evlist)) {
108 		evlist__delete(evlist);
109 		evlist = NULL;
110 	}
111 
112 	return evlist;
113 }
114 
115 /**
116  * evlist__set_id_pos - set the positions of event ids.
117  * @evlist: selected event list
118  *
119  * Events with compatible sample types all have the same id_pos
120  * and is_pos.  For convenience, put a copy on evlist.
121  */
122 void evlist__set_id_pos(struct evlist *evlist)
123 {
124 	struct evsel *first = evlist__first(evlist);
125 
126 	evlist->id_pos = first->id_pos;
127 	evlist->is_pos = first->is_pos;
128 }
129 
130 static void evlist__update_id_pos(struct evlist *evlist)
131 {
132 	struct evsel *evsel;
133 
134 	evlist__for_each_entry(evlist, evsel)
135 		evsel__calc_id_pos(evsel);
136 
137 	evlist__set_id_pos(evlist);
138 }
139 
140 static void evlist__purge(struct evlist *evlist)
141 {
142 	struct evsel *pos, *n;
143 
144 	evlist__for_each_entry_safe(evlist, n, pos) {
145 		list_del_init(&pos->core.node);
146 		pos->evlist = NULL;
147 		evsel__delete(pos);
148 	}
149 
150 	evlist->core.nr_entries = 0;
151 }
152 
153 void evlist__exit(struct evlist *evlist)
154 {
155 	event_enable_timer__exit(&evlist->eet);
156 	zfree(&evlist->mmap);
157 	zfree(&evlist->overwrite_mmap);
158 	perf_evlist__exit(&evlist->core);
159 }
160 
161 void evlist__delete(struct evlist *evlist)
162 {
163 	if (evlist == NULL)
164 		return;
165 
166 	evlist__munmap(evlist);
167 	evlist__close(evlist);
168 	evlist__purge(evlist);
169 	evlist__exit(evlist);
170 	free(evlist);
171 }
172 
173 void evlist__add(struct evlist *evlist, struct evsel *entry)
174 {
175 	perf_evlist__add(&evlist->core, &entry->core);
176 	entry->evlist = evlist;
177 	entry->tracking = !entry->core.idx;
178 
179 	if (evlist->core.nr_entries == 1)
180 		evlist__set_id_pos(evlist);
181 }
182 
183 void evlist__remove(struct evlist *evlist, struct evsel *evsel)
184 {
185 	evsel->evlist = NULL;
186 	perf_evlist__remove(&evlist->core, &evsel->core);
187 }
188 
189 void evlist__splice_list_tail(struct evlist *evlist, struct list_head *list)
190 {
191 	while (!list_empty(list)) {
192 		struct evsel *evsel, *temp, *leader = NULL;
193 
194 		__evlist__for_each_entry_safe(list, temp, evsel) {
195 			list_del_init(&evsel->core.node);
196 			evlist__add(evlist, evsel);
197 			leader = evsel;
198 			break;
199 		}
200 
201 		__evlist__for_each_entry_safe(list, temp, evsel) {
202 			if (evsel__has_leader(evsel, leader)) {
203 				list_del_init(&evsel->core.node);
204 				evlist__add(evlist, evsel);
205 			}
206 		}
207 	}
208 }
209 
210 int __evlist__set_tracepoints_handlers(struct evlist *evlist,
211 				       const struct evsel_str_handler *assocs, size_t nr_assocs)
212 {
213 	size_t i;
214 	int err;
215 
216 	for (i = 0; i < nr_assocs; i++) {
217 		// Adding a handler for an event not in this evlist, just ignore it.
218 		struct evsel *evsel = evlist__find_tracepoint_by_name(evlist, assocs[i].name);
219 		if (evsel == NULL)
220 			continue;
221 
222 		err = -EEXIST;
223 		if (evsel->handler != NULL)
224 			goto out;
225 		evsel->handler = assocs[i].handler;
226 	}
227 
228 	err = 0;
229 out:
230 	return err;
231 }
232 
233 void evlist__set_leader(struct evlist *evlist)
234 {
235 	perf_evlist__set_leader(&evlist->core);
236 }
237 
238 int __evlist__add_default(struct evlist *evlist, bool precise)
239 {
240 	struct evsel *evsel;
241 
242 	evsel = evsel__new_cycles(precise, PERF_TYPE_HARDWARE,
243 				  PERF_COUNT_HW_CPU_CYCLES);
244 	if (evsel == NULL)
245 		return -ENOMEM;
246 
247 	evlist__add(evlist, evsel);
248 	return 0;
249 }
250 
251 static struct evsel *evlist__dummy_event(struct evlist *evlist)
252 {
253 	struct perf_event_attr attr = {
254 		.type	= PERF_TYPE_SOFTWARE,
255 		.config = PERF_COUNT_SW_DUMMY,
256 		.size	= sizeof(attr), /* to capture ABI version */
257 	};
258 
259 	return evsel__new_idx(&attr, evlist->core.nr_entries);
260 }
261 
262 int evlist__add_dummy(struct evlist *evlist)
263 {
264 	struct evsel *evsel = evlist__dummy_event(evlist);
265 
266 	if (evsel == NULL)
267 		return -ENOMEM;
268 
269 	evlist__add(evlist, evsel);
270 	return 0;
271 }
272 
273 struct evsel *evlist__add_aux_dummy(struct evlist *evlist, bool system_wide)
274 {
275 	struct evsel *evsel = evlist__dummy_event(evlist);
276 
277 	if (!evsel)
278 		return NULL;
279 
280 	evsel->core.attr.exclude_kernel = 1;
281 	evsel->core.attr.exclude_guest = 1;
282 	evsel->core.attr.exclude_hv = 1;
283 	evsel->core.attr.freq = 0;
284 	evsel->core.attr.sample_period = 1;
285 	evsel->core.system_wide = system_wide;
286 	evsel->no_aux_samples = true;
287 	evsel->name = strdup("dummy:u");
288 
289 	evlist__add(evlist, evsel);
290 	return evsel;
291 }
292 
293 struct evsel *evlist__add_sched_switch(struct evlist *evlist, bool system_wide)
294 {
295 	struct evsel *evsel = evsel__newtp_idx("sched", "sched_switch", 0);
296 
297 	if (IS_ERR(evsel))
298 		return evsel;
299 
300 	evsel__set_sample_bit(evsel, CPU);
301 	evsel__set_sample_bit(evsel, TIME);
302 
303 	evsel->core.system_wide = system_wide;
304 	evsel->no_aux_samples = true;
305 
306 	evlist__add(evlist, evsel);
307 	return evsel;
308 };
309 
310 int evlist__add_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs)
311 {
312 	struct evsel *evsel, *n;
313 	LIST_HEAD(head);
314 	size_t i;
315 
316 	for (i = 0; i < nr_attrs; i++) {
317 		evsel = evsel__new_idx(attrs + i, evlist->core.nr_entries + i);
318 		if (evsel == NULL)
319 			goto out_delete_partial_list;
320 		list_add_tail(&evsel->core.node, &head);
321 	}
322 
323 	evlist__splice_list_tail(evlist, &head);
324 
325 	return 0;
326 
327 out_delete_partial_list:
328 	__evlist__for_each_entry_safe(&head, n, evsel)
329 		evsel__delete(evsel);
330 	return -1;
331 }
332 
333 int __evlist__add_default_attrs(struct evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs)
334 {
335 	size_t i;
336 
337 	for (i = 0; i < nr_attrs; i++)
338 		event_attr_init(attrs + i);
339 
340 	return evlist__add_attrs(evlist, attrs, nr_attrs);
341 }
342 
343 __weak int arch_evlist__add_default_attrs(struct evlist *evlist,
344 					  struct perf_event_attr *attrs,
345 					  size_t nr_attrs)
346 {
347 	if (!nr_attrs)
348 		return 0;
349 
350 	return __evlist__add_default_attrs(evlist, attrs, nr_attrs);
351 }
352 
353 struct evsel *evlist__find_tracepoint_by_id(struct evlist *evlist, int id)
354 {
355 	struct evsel *evsel;
356 
357 	evlist__for_each_entry(evlist, evsel) {
358 		if (evsel->core.attr.type   == PERF_TYPE_TRACEPOINT &&
359 		    (int)evsel->core.attr.config == id)
360 			return evsel;
361 	}
362 
363 	return NULL;
364 }
365 
366 struct evsel *evlist__find_tracepoint_by_name(struct evlist *evlist, const char *name)
367 {
368 	struct evsel *evsel;
369 
370 	evlist__for_each_entry(evlist, evsel) {
371 		if ((evsel->core.attr.type == PERF_TYPE_TRACEPOINT) &&
372 		    (strcmp(evsel->name, name) == 0))
373 			return evsel;
374 	}
375 
376 	return NULL;
377 }
378 
379 int evlist__add_newtp(struct evlist *evlist, const char *sys, const char *name, void *handler)
380 {
381 	struct evsel *evsel = evsel__newtp(sys, name);
382 
383 	if (IS_ERR(evsel))
384 		return -1;
385 
386 	evsel->handler = handler;
387 	evlist__add(evlist, evsel);
388 	return 0;
389 }
390 
391 struct evlist_cpu_iterator evlist__cpu_begin(struct evlist *evlist, struct affinity *affinity)
392 {
393 	struct evlist_cpu_iterator itr = {
394 		.container = evlist,
395 		.evsel = NULL,
396 		.cpu_map_idx = 0,
397 		.evlist_cpu_map_idx = 0,
398 		.evlist_cpu_map_nr = perf_cpu_map__nr(evlist->core.all_cpus),
399 		.cpu = (struct perf_cpu){ .cpu = -1},
400 		.affinity = affinity,
401 	};
402 
403 	if (evlist__empty(evlist)) {
404 		/* Ensure the empty list doesn't iterate. */
405 		itr.evlist_cpu_map_idx = itr.evlist_cpu_map_nr;
406 	} else {
407 		itr.evsel = evlist__first(evlist);
408 		if (itr.affinity) {
409 			itr.cpu = perf_cpu_map__cpu(evlist->core.all_cpus, 0);
410 			affinity__set(itr.affinity, itr.cpu.cpu);
411 			itr.cpu_map_idx = perf_cpu_map__idx(itr.evsel->core.cpus, itr.cpu);
412 			/*
413 			 * If this CPU isn't in the evsel's cpu map then advance
414 			 * through the list.
415 			 */
416 			if (itr.cpu_map_idx == -1)
417 				evlist_cpu_iterator__next(&itr);
418 		}
419 	}
420 	return itr;
421 }
422 
423 void evlist_cpu_iterator__next(struct evlist_cpu_iterator *evlist_cpu_itr)
424 {
425 	while (evlist_cpu_itr->evsel != evlist__last(evlist_cpu_itr->container)) {
426 		evlist_cpu_itr->evsel = evsel__next(evlist_cpu_itr->evsel);
427 		evlist_cpu_itr->cpu_map_idx =
428 			perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus,
429 					  evlist_cpu_itr->cpu);
430 		if (evlist_cpu_itr->cpu_map_idx != -1)
431 			return;
432 	}
433 	evlist_cpu_itr->evlist_cpu_map_idx++;
434 	if (evlist_cpu_itr->evlist_cpu_map_idx < evlist_cpu_itr->evlist_cpu_map_nr) {
435 		evlist_cpu_itr->evsel = evlist__first(evlist_cpu_itr->container);
436 		evlist_cpu_itr->cpu =
437 			perf_cpu_map__cpu(evlist_cpu_itr->container->core.all_cpus,
438 					  evlist_cpu_itr->evlist_cpu_map_idx);
439 		if (evlist_cpu_itr->affinity)
440 			affinity__set(evlist_cpu_itr->affinity, evlist_cpu_itr->cpu.cpu);
441 		evlist_cpu_itr->cpu_map_idx =
442 			perf_cpu_map__idx(evlist_cpu_itr->evsel->core.cpus,
443 					  evlist_cpu_itr->cpu);
444 		/*
445 		 * If this CPU isn't in the evsel's cpu map then advance through
446 		 * the list.
447 		 */
448 		if (evlist_cpu_itr->cpu_map_idx == -1)
449 			evlist_cpu_iterator__next(evlist_cpu_itr);
450 	}
451 }
452 
453 bool evlist_cpu_iterator__end(const struct evlist_cpu_iterator *evlist_cpu_itr)
454 {
455 	return evlist_cpu_itr->evlist_cpu_map_idx >= evlist_cpu_itr->evlist_cpu_map_nr;
456 }
457 
458 static int evsel__strcmp(struct evsel *pos, char *evsel_name)
459 {
460 	if (!evsel_name)
461 		return 0;
462 	if (evsel__is_dummy_event(pos))
463 		return 1;
464 	return strcmp(pos->name, evsel_name);
465 }
466 
467 static int evlist__is_enabled(struct evlist *evlist)
468 {
469 	struct evsel *pos;
470 
471 	evlist__for_each_entry(evlist, pos) {
472 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
473 			continue;
474 		/* If at least one event is enabled, evlist is enabled. */
475 		if (!pos->disabled)
476 			return true;
477 	}
478 	return false;
479 }
480 
481 static void __evlist__disable(struct evlist *evlist, char *evsel_name, bool excl_dummy)
482 {
483 	struct evsel *pos;
484 	struct evlist_cpu_iterator evlist_cpu_itr;
485 	struct affinity saved_affinity, *affinity = NULL;
486 	bool has_imm = false;
487 
488 	// See explanation in evlist__close()
489 	if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
490 		if (affinity__setup(&saved_affinity) < 0)
491 			return;
492 		affinity = &saved_affinity;
493 	}
494 
495 	/* Disable 'immediate' events last */
496 	for (int imm = 0; imm <= 1; imm++) {
497 		evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) {
498 			pos = evlist_cpu_itr.evsel;
499 			if (evsel__strcmp(pos, evsel_name))
500 				continue;
501 			if (pos->disabled || !evsel__is_group_leader(pos) || !pos->core.fd)
502 				continue;
503 			if (excl_dummy && evsel__is_dummy_event(pos))
504 				continue;
505 			if (pos->immediate)
506 				has_imm = true;
507 			if (pos->immediate != imm)
508 				continue;
509 			evsel__disable_cpu(pos, evlist_cpu_itr.cpu_map_idx);
510 		}
511 		if (!has_imm)
512 			break;
513 	}
514 
515 	affinity__cleanup(affinity);
516 	evlist__for_each_entry(evlist, pos) {
517 		if (evsel__strcmp(pos, evsel_name))
518 			continue;
519 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
520 			continue;
521 		if (excl_dummy && evsel__is_dummy_event(pos))
522 			continue;
523 		pos->disabled = true;
524 	}
525 
526 	/*
527 	 * If we disabled only single event, we need to check
528 	 * the enabled state of the evlist manually.
529 	 */
530 	if (evsel_name)
531 		evlist->enabled = evlist__is_enabled(evlist);
532 	else
533 		evlist->enabled = false;
534 }
535 
536 void evlist__disable(struct evlist *evlist)
537 {
538 	__evlist__disable(evlist, NULL, false);
539 }
540 
541 void evlist__disable_non_dummy(struct evlist *evlist)
542 {
543 	__evlist__disable(evlist, NULL, true);
544 }
545 
546 void evlist__disable_evsel(struct evlist *evlist, char *evsel_name)
547 {
548 	__evlist__disable(evlist, evsel_name, false);
549 }
550 
551 static void __evlist__enable(struct evlist *evlist, char *evsel_name, bool excl_dummy)
552 {
553 	struct evsel *pos;
554 	struct evlist_cpu_iterator evlist_cpu_itr;
555 	struct affinity saved_affinity, *affinity = NULL;
556 
557 	// See explanation in evlist__close()
558 	if (!cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
559 		if (affinity__setup(&saved_affinity) < 0)
560 			return;
561 		affinity = &saved_affinity;
562 	}
563 
564 	evlist__for_each_cpu(evlist_cpu_itr, evlist, affinity) {
565 		pos = evlist_cpu_itr.evsel;
566 		if (evsel__strcmp(pos, evsel_name))
567 			continue;
568 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
569 			continue;
570 		if (excl_dummy && evsel__is_dummy_event(pos))
571 			continue;
572 		evsel__enable_cpu(pos, evlist_cpu_itr.cpu_map_idx);
573 	}
574 	affinity__cleanup(affinity);
575 	evlist__for_each_entry(evlist, pos) {
576 		if (evsel__strcmp(pos, evsel_name))
577 			continue;
578 		if (!evsel__is_group_leader(pos) || !pos->core.fd)
579 			continue;
580 		if (excl_dummy && evsel__is_dummy_event(pos))
581 			continue;
582 		pos->disabled = false;
583 	}
584 
585 	/*
586 	 * Even single event sets the 'enabled' for evlist,
587 	 * so the toggle can work properly and toggle to
588 	 * 'disabled' state.
589 	 */
590 	evlist->enabled = true;
591 }
592 
593 void evlist__enable(struct evlist *evlist)
594 {
595 	__evlist__enable(evlist, NULL, false);
596 }
597 
598 void evlist__enable_non_dummy(struct evlist *evlist)
599 {
600 	__evlist__enable(evlist, NULL, true);
601 }
602 
603 void evlist__enable_evsel(struct evlist *evlist, char *evsel_name)
604 {
605 	__evlist__enable(evlist, evsel_name, false);
606 }
607 
608 void evlist__toggle_enable(struct evlist *evlist)
609 {
610 	(evlist->enabled ? evlist__disable : evlist__enable)(evlist);
611 }
612 
613 int evlist__add_pollfd(struct evlist *evlist, int fd)
614 {
615 	return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN, fdarray_flag__default);
616 }
617 
618 int evlist__filter_pollfd(struct evlist *evlist, short revents_and_mask)
619 {
620 	return perf_evlist__filter_pollfd(&evlist->core, revents_and_mask);
621 }
622 
623 #ifdef HAVE_EVENTFD_SUPPORT
624 int evlist__add_wakeup_eventfd(struct evlist *evlist, int fd)
625 {
626 	return perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
627 				       fdarray_flag__nonfilterable |
628 				       fdarray_flag__non_perf_event);
629 }
630 #endif
631 
632 int evlist__poll(struct evlist *evlist, int timeout)
633 {
634 	return perf_evlist__poll(&evlist->core, timeout);
635 }
636 
637 struct perf_sample_id *evlist__id2sid(struct evlist *evlist, u64 id)
638 {
639 	struct hlist_head *head;
640 	struct perf_sample_id *sid;
641 	int hash;
642 
643 	hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
644 	head = &evlist->core.heads[hash];
645 
646 	hlist_for_each_entry(sid, head, node)
647 		if (sid->id == id)
648 			return sid;
649 
650 	return NULL;
651 }
652 
653 struct evsel *evlist__id2evsel(struct evlist *evlist, u64 id)
654 {
655 	struct perf_sample_id *sid;
656 
657 	if (evlist->core.nr_entries == 1 || !id)
658 		return evlist__first(evlist);
659 
660 	sid = evlist__id2sid(evlist, id);
661 	if (sid)
662 		return container_of(sid->evsel, struct evsel, core);
663 
664 	if (!evlist__sample_id_all(evlist))
665 		return evlist__first(evlist);
666 
667 	return NULL;
668 }
669 
670 struct evsel *evlist__id2evsel_strict(struct evlist *evlist, u64 id)
671 {
672 	struct perf_sample_id *sid;
673 
674 	if (!id)
675 		return NULL;
676 
677 	sid = evlist__id2sid(evlist, id);
678 	if (sid)
679 		return container_of(sid->evsel, struct evsel, core);
680 
681 	return NULL;
682 }
683 
684 static int evlist__event2id(struct evlist *evlist, union perf_event *event, u64 *id)
685 {
686 	const __u64 *array = event->sample.array;
687 	ssize_t n;
688 
689 	n = (event->header.size - sizeof(event->header)) >> 3;
690 
691 	if (event->header.type == PERF_RECORD_SAMPLE) {
692 		if (evlist->id_pos >= n)
693 			return -1;
694 		*id = array[evlist->id_pos];
695 	} else {
696 		if (evlist->is_pos > n)
697 			return -1;
698 		n -= evlist->is_pos;
699 		*id = array[n];
700 	}
701 	return 0;
702 }
703 
704 struct evsel *evlist__event2evsel(struct evlist *evlist, union perf_event *event)
705 {
706 	struct evsel *first = evlist__first(evlist);
707 	struct hlist_head *head;
708 	struct perf_sample_id *sid;
709 	int hash;
710 	u64 id;
711 
712 	if (evlist->core.nr_entries == 1)
713 		return first;
714 
715 	if (!first->core.attr.sample_id_all &&
716 	    event->header.type != PERF_RECORD_SAMPLE)
717 		return first;
718 
719 	if (evlist__event2id(evlist, event, &id))
720 		return NULL;
721 
722 	/* Synthesized events have an id of zero */
723 	if (!id)
724 		return first;
725 
726 	hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
727 	head = &evlist->core.heads[hash];
728 
729 	hlist_for_each_entry(sid, head, node) {
730 		if (sid->id == id)
731 			return container_of(sid->evsel, struct evsel, core);
732 	}
733 	return NULL;
734 }
735 
736 static int evlist__set_paused(struct evlist *evlist, bool value)
737 {
738 	int i;
739 
740 	if (!evlist->overwrite_mmap)
741 		return 0;
742 
743 	for (i = 0; i < evlist->core.nr_mmaps; i++) {
744 		int fd = evlist->overwrite_mmap[i].core.fd;
745 		int err;
746 
747 		if (fd < 0)
748 			continue;
749 		err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0);
750 		if (err)
751 			return err;
752 	}
753 	return 0;
754 }
755 
756 static int evlist__pause(struct evlist *evlist)
757 {
758 	return evlist__set_paused(evlist, true);
759 }
760 
761 static int evlist__resume(struct evlist *evlist)
762 {
763 	return evlist__set_paused(evlist, false);
764 }
765 
766 static void evlist__munmap_nofree(struct evlist *evlist)
767 {
768 	int i;
769 
770 	if (evlist->mmap)
771 		for (i = 0; i < evlist->core.nr_mmaps; i++)
772 			perf_mmap__munmap(&evlist->mmap[i].core);
773 
774 	if (evlist->overwrite_mmap)
775 		for (i = 0; i < evlist->core.nr_mmaps; i++)
776 			perf_mmap__munmap(&evlist->overwrite_mmap[i].core);
777 }
778 
779 void evlist__munmap(struct evlist *evlist)
780 {
781 	evlist__munmap_nofree(evlist);
782 	zfree(&evlist->mmap);
783 	zfree(&evlist->overwrite_mmap);
784 }
785 
786 static void perf_mmap__unmap_cb(struct perf_mmap *map)
787 {
788 	struct mmap *m = container_of(map, struct mmap, core);
789 
790 	mmap__munmap(m);
791 }
792 
793 static struct mmap *evlist__alloc_mmap(struct evlist *evlist,
794 				       bool overwrite)
795 {
796 	int i;
797 	struct mmap *map;
798 
799 	map = zalloc(evlist->core.nr_mmaps * sizeof(struct mmap));
800 	if (!map)
801 		return NULL;
802 
803 	for (i = 0; i < evlist->core.nr_mmaps; i++) {
804 		struct perf_mmap *prev = i ? &map[i - 1].core : NULL;
805 
806 		/*
807 		 * When the perf_mmap() call is made we grab one refcount, plus
808 		 * one extra to let perf_mmap__consume() get the last
809 		 * events after all real references (perf_mmap__get()) are
810 		 * dropped.
811 		 *
812 		 * Each PERF_EVENT_IOC_SET_OUTPUT points to this mmap and
813 		 * thus does perf_mmap__get() on it.
814 		 */
815 		perf_mmap__init(&map[i].core, prev, overwrite, perf_mmap__unmap_cb);
816 	}
817 
818 	return map;
819 }
820 
821 static void
822 perf_evlist__mmap_cb_idx(struct perf_evlist *_evlist,
823 			 struct perf_evsel *_evsel,
824 			 struct perf_mmap_param *_mp,
825 			 int idx)
826 {
827 	struct evlist *evlist = container_of(_evlist, struct evlist, core);
828 	struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
829 	struct evsel *evsel = container_of(_evsel, struct evsel, core);
830 
831 	auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, evsel, idx);
832 }
833 
834 static struct perf_mmap*
835 perf_evlist__mmap_cb_get(struct perf_evlist *_evlist, bool overwrite, int idx)
836 {
837 	struct evlist *evlist = container_of(_evlist, struct evlist, core);
838 	struct mmap *maps;
839 
840 	maps = overwrite ? evlist->overwrite_mmap : evlist->mmap;
841 
842 	if (!maps) {
843 		maps = evlist__alloc_mmap(evlist, overwrite);
844 		if (!maps)
845 			return NULL;
846 
847 		if (overwrite) {
848 			evlist->overwrite_mmap = maps;
849 			if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY)
850 				evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING);
851 		} else {
852 			evlist->mmap = maps;
853 		}
854 	}
855 
856 	return &maps[idx].core;
857 }
858 
859 static int
860 perf_evlist__mmap_cb_mmap(struct perf_mmap *_map, struct perf_mmap_param *_mp,
861 			  int output, struct perf_cpu cpu)
862 {
863 	struct mmap *map = container_of(_map, struct mmap, core);
864 	struct mmap_params *mp = container_of(_mp, struct mmap_params, core);
865 
866 	return mmap__mmap(map, mp, output, cpu);
867 }
868 
869 unsigned long perf_event_mlock_kb_in_pages(void)
870 {
871 	unsigned long pages;
872 	int max;
873 
874 	if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) {
875 		/*
876 		 * Pick a once upon a time good value, i.e. things look
877 		 * strange since we can't read a sysctl value, but lets not
878 		 * die yet...
879 		 */
880 		max = 512;
881 	} else {
882 		max -= (page_size / 1024);
883 	}
884 
885 	pages = (max * 1024) / page_size;
886 	if (!is_power_of_2(pages))
887 		pages = rounddown_pow_of_two(pages);
888 
889 	return pages;
890 }
891 
892 size_t evlist__mmap_size(unsigned long pages)
893 {
894 	if (pages == UINT_MAX)
895 		pages = perf_event_mlock_kb_in_pages();
896 	else if (!is_power_of_2(pages))
897 		return 0;
898 
899 	return (pages + 1) * page_size;
900 }
901 
902 static long parse_pages_arg(const char *str, unsigned long min,
903 			    unsigned long max)
904 {
905 	unsigned long pages, val;
906 	static struct parse_tag tags[] = {
907 		{ .tag  = 'B', .mult = 1       },
908 		{ .tag  = 'K', .mult = 1 << 10 },
909 		{ .tag  = 'M', .mult = 1 << 20 },
910 		{ .tag  = 'G', .mult = 1 << 30 },
911 		{ .tag  = 0 },
912 	};
913 
914 	if (str == NULL)
915 		return -EINVAL;
916 
917 	val = parse_tag_value(str, tags);
918 	if (val != (unsigned long) -1) {
919 		/* we got file size value */
920 		pages = PERF_ALIGN(val, page_size) / page_size;
921 	} else {
922 		/* we got pages count value */
923 		char *eptr;
924 		pages = strtoul(str, &eptr, 10);
925 		if (*eptr != '\0')
926 			return -EINVAL;
927 	}
928 
929 	if (pages == 0 && min == 0) {
930 		/* leave number of pages at 0 */
931 	} else if (!is_power_of_2(pages)) {
932 		char buf[100];
933 
934 		/* round pages up to next power of 2 */
935 		pages = roundup_pow_of_two(pages);
936 		if (!pages)
937 			return -EINVAL;
938 
939 		unit_number__scnprintf(buf, sizeof(buf), pages * page_size);
940 		pr_info("rounding mmap pages size to %s (%lu pages)\n",
941 			buf, pages);
942 	}
943 
944 	if (pages > max)
945 		return -EINVAL;
946 
947 	return pages;
948 }
949 
950 int __evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str)
951 {
952 	unsigned long max = UINT_MAX;
953 	long pages;
954 
955 	if (max > SIZE_MAX / page_size)
956 		max = SIZE_MAX / page_size;
957 
958 	pages = parse_pages_arg(str, 1, max);
959 	if (pages < 0) {
960 		pr_err("Invalid argument for --mmap_pages/-m\n");
961 		return -1;
962 	}
963 
964 	*mmap_pages = pages;
965 	return 0;
966 }
967 
968 int evlist__parse_mmap_pages(const struct option *opt, const char *str, int unset __maybe_unused)
969 {
970 	return __evlist__parse_mmap_pages(opt->value, str);
971 }
972 
973 /**
974  * evlist__mmap_ex - Create mmaps to receive events.
975  * @evlist: list of events
976  * @pages: map length in pages
977  * @overwrite: overwrite older events?
978  * @auxtrace_pages - auxtrace map length in pages
979  * @auxtrace_overwrite - overwrite older auxtrace data?
980  *
981  * If @overwrite is %false the user needs to signal event consumption using
982  * perf_mmap__write_tail().  Using evlist__mmap_read() does this
983  * automatically.
984  *
985  * Similarly, if @auxtrace_overwrite is %false the user needs to signal data
986  * consumption using auxtrace_mmap__write_tail().
987  *
988  * Return: %0 on success, negative error code otherwise.
989  */
990 int evlist__mmap_ex(struct evlist *evlist, unsigned int pages,
991 			 unsigned int auxtrace_pages,
992 			 bool auxtrace_overwrite, int nr_cblocks, int affinity, int flush,
993 			 int comp_level)
994 {
995 	/*
996 	 * Delay setting mp.prot: set it before calling perf_mmap__mmap.
997 	 * Its value is decided by evsel's write_backward.
998 	 * So &mp should not be passed through const pointer.
999 	 */
1000 	struct mmap_params mp = {
1001 		.nr_cblocks	= nr_cblocks,
1002 		.affinity	= affinity,
1003 		.flush		= flush,
1004 		.comp_level	= comp_level
1005 	};
1006 	struct perf_evlist_mmap_ops ops = {
1007 		.idx  = perf_evlist__mmap_cb_idx,
1008 		.get  = perf_evlist__mmap_cb_get,
1009 		.mmap = perf_evlist__mmap_cb_mmap,
1010 	};
1011 
1012 	evlist->core.mmap_len = evlist__mmap_size(pages);
1013 	pr_debug("mmap size %zuB\n", evlist->core.mmap_len);
1014 
1015 	auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->core.mmap_len,
1016 				   auxtrace_pages, auxtrace_overwrite);
1017 
1018 	return perf_evlist__mmap_ops(&evlist->core, &ops, &mp.core);
1019 }
1020 
1021 int evlist__mmap(struct evlist *evlist, unsigned int pages)
1022 {
1023 	return evlist__mmap_ex(evlist, pages, 0, false, 0, PERF_AFFINITY_SYS, 1, 0);
1024 }
1025 
1026 int evlist__create_maps(struct evlist *evlist, struct target *target)
1027 {
1028 	bool all_threads = (target->per_thread && target->system_wide);
1029 	struct perf_cpu_map *cpus;
1030 	struct perf_thread_map *threads;
1031 
1032 	/*
1033 	 * If specify '-a' and '--per-thread' to perf record, perf record
1034 	 * will override '--per-thread'. target->per_thread = false and
1035 	 * target->system_wide = true.
1036 	 *
1037 	 * If specify '--per-thread' only to perf record,
1038 	 * target->per_thread = true and target->system_wide = false.
1039 	 *
1040 	 * So target->per_thread && target->system_wide is false.
1041 	 * For perf record, thread_map__new_str doesn't call
1042 	 * thread_map__new_all_cpus. That will keep perf record's
1043 	 * current behavior.
1044 	 *
1045 	 * For perf stat, it allows the case that target->per_thread and
1046 	 * target->system_wide are all true. It means to collect system-wide
1047 	 * per-thread data. thread_map__new_str will call
1048 	 * thread_map__new_all_cpus to enumerate all threads.
1049 	 */
1050 	threads = thread_map__new_str(target->pid, target->tid, target->uid,
1051 				      all_threads);
1052 
1053 	if (!threads)
1054 		return -1;
1055 
1056 	if (target__uses_dummy_map(target))
1057 		cpus = perf_cpu_map__dummy_new();
1058 	else
1059 		cpus = perf_cpu_map__new(target->cpu_list);
1060 
1061 	if (!cpus)
1062 		goto out_delete_threads;
1063 
1064 	evlist->core.has_user_cpus = !!target->cpu_list && !target->hybrid;
1065 
1066 	perf_evlist__set_maps(&evlist->core, cpus, threads);
1067 
1068 	/* as evlist now has references, put count here */
1069 	perf_cpu_map__put(cpus);
1070 	perf_thread_map__put(threads);
1071 
1072 	return 0;
1073 
1074 out_delete_threads:
1075 	perf_thread_map__put(threads);
1076 	return -1;
1077 }
1078 
1079 int evlist__apply_filters(struct evlist *evlist, struct evsel **err_evsel)
1080 {
1081 	struct evsel *evsel;
1082 	int err = 0;
1083 
1084 	evlist__for_each_entry(evlist, evsel) {
1085 		if (evsel->filter == NULL)
1086 			continue;
1087 
1088 		/*
1089 		 * filters only work for tracepoint event, which doesn't have cpu limit.
1090 		 * So evlist and evsel should always be same.
1091 		 */
1092 		err = perf_evsel__apply_filter(&evsel->core, evsel->filter);
1093 		if (err) {
1094 			*err_evsel = evsel;
1095 			break;
1096 		}
1097 	}
1098 
1099 	return err;
1100 }
1101 
1102 int evlist__set_tp_filter(struct evlist *evlist, const char *filter)
1103 {
1104 	struct evsel *evsel;
1105 	int err = 0;
1106 
1107 	if (filter == NULL)
1108 		return -1;
1109 
1110 	evlist__for_each_entry(evlist, evsel) {
1111 		if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
1112 			continue;
1113 
1114 		err = evsel__set_filter(evsel, filter);
1115 		if (err)
1116 			break;
1117 	}
1118 
1119 	return err;
1120 }
1121 
1122 int evlist__append_tp_filter(struct evlist *evlist, const char *filter)
1123 {
1124 	struct evsel *evsel;
1125 	int err = 0;
1126 
1127 	if (filter == NULL)
1128 		return -1;
1129 
1130 	evlist__for_each_entry(evlist, evsel) {
1131 		if (evsel->core.attr.type != PERF_TYPE_TRACEPOINT)
1132 			continue;
1133 
1134 		err = evsel__append_tp_filter(evsel, filter);
1135 		if (err)
1136 			break;
1137 	}
1138 
1139 	return err;
1140 }
1141 
1142 char *asprintf__tp_filter_pids(size_t npids, pid_t *pids)
1143 {
1144 	char *filter;
1145 	size_t i;
1146 
1147 	for (i = 0; i < npids; ++i) {
1148 		if (i == 0) {
1149 			if (asprintf(&filter, "common_pid != %d", pids[i]) < 0)
1150 				return NULL;
1151 		} else {
1152 			char *tmp;
1153 
1154 			if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0)
1155 				goto out_free;
1156 
1157 			free(filter);
1158 			filter = tmp;
1159 		}
1160 	}
1161 
1162 	return filter;
1163 out_free:
1164 	free(filter);
1165 	return NULL;
1166 }
1167 
1168 int evlist__set_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
1169 {
1170 	char *filter = asprintf__tp_filter_pids(npids, pids);
1171 	int ret = evlist__set_tp_filter(evlist, filter);
1172 
1173 	free(filter);
1174 	return ret;
1175 }
1176 
1177 int evlist__set_tp_filter_pid(struct evlist *evlist, pid_t pid)
1178 {
1179 	return evlist__set_tp_filter_pids(evlist, 1, &pid);
1180 }
1181 
1182 int evlist__append_tp_filter_pids(struct evlist *evlist, size_t npids, pid_t *pids)
1183 {
1184 	char *filter = asprintf__tp_filter_pids(npids, pids);
1185 	int ret = evlist__append_tp_filter(evlist, filter);
1186 
1187 	free(filter);
1188 	return ret;
1189 }
1190 
1191 int evlist__append_tp_filter_pid(struct evlist *evlist, pid_t pid)
1192 {
1193 	return evlist__append_tp_filter_pids(evlist, 1, &pid);
1194 }
1195 
1196 bool evlist__valid_sample_type(struct evlist *evlist)
1197 {
1198 	struct evsel *pos;
1199 
1200 	if (evlist->core.nr_entries == 1)
1201 		return true;
1202 
1203 	if (evlist->id_pos < 0 || evlist->is_pos < 0)
1204 		return false;
1205 
1206 	evlist__for_each_entry(evlist, pos) {
1207 		if (pos->id_pos != evlist->id_pos ||
1208 		    pos->is_pos != evlist->is_pos)
1209 			return false;
1210 	}
1211 
1212 	return true;
1213 }
1214 
1215 u64 __evlist__combined_sample_type(struct evlist *evlist)
1216 {
1217 	struct evsel *evsel;
1218 
1219 	if (evlist->combined_sample_type)
1220 		return evlist->combined_sample_type;
1221 
1222 	evlist__for_each_entry(evlist, evsel)
1223 		evlist->combined_sample_type |= evsel->core.attr.sample_type;
1224 
1225 	return evlist->combined_sample_type;
1226 }
1227 
1228 u64 evlist__combined_sample_type(struct evlist *evlist)
1229 {
1230 	evlist->combined_sample_type = 0;
1231 	return __evlist__combined_sample_type(evlist);
1232 }
1233 
1234 u64 evlist__combined_branch_type(struct evlist *evlist)
1235 {
1236 	struct evsel *evsel;
1237 	u64 branch_type = 0;
1238 
1239 	evlist__for_each_entry(evlist, evsel)
1240 		branch_type |= evsel->core.attr.branch_sample_type;
1241 	return branch_type;
1242 }
1243 
1244 bool evlist__valid_read_format(struct evlist *evlist)
1245 {
1246 	struct evsel *first = evlist__first(evlist), *pos = first;
1247 	u64 read_format = first->core.attr.read_format;
1248 	u64 sample_type = first->core.attr.sample_type;
1249 
1250 	evlist__for_each_entry(evlist, pos) {
1251 		if (read_format != pos->core.attr.read_format) {
1252 			pr_debug("Read format differs %#" PRIx64 " vs %#" PRIx64 "\n",
1253 				 read_format, (u64)pos->core.attr.read_format);
1254 		}
1255 	}
1256 
1257 	/* PERF_SAMPLE_READ implies PERF_FORMAT_ID. */
1258 	if ((sample_type & PERF_SAMPLE_READ) &&
1259 	    !(read_format & PERF_FORMAT_ID)) {
1260 		return false;
1261 	}
1262 
1263 	return true;
1264 }
1265 
1266 u16 evlist__id_hdr_size(struct evlist *evlist)
1267 {
1268 	struct evsel *first = evlist__first(evlist);
1269 
1270 	return first->core.attr.sample_id_all ? evsel__id_hdr_size(first) : 0;
1271 }
1272 
1273 bool evlist__valid_sample_id_all(struct evlist *evlist)
1274 {
1275 	struct evsel *first = evlist__first(evlist), *pos = first;
1276 
1277 	evlist__for_each_entry_continue(evlist, pos) {
1278 		if (first->core.attr.sample_id_all != pos->core.attr.sample_id_all)
1279 			return false;
1280 	}
1281 
1282 	return true;
1283 }
1284 
1285 bool evlist__sample_id_all(struct evlist *evlist)
1286 {
1287 	struct evsel *first = evlist__first(evlist);
1288 	return first->core.attr.sample_id_all;
1289 }
1290 
1291 void evlist__set_selected(struct evlist *evlist, struct evsel *evsel)
1292 {
1293 	evlist->selected = evsel;
1294 }
1295 
1296 void evlist__close(struct evlist *evlist)
1297 {
1298 	struct evsel *evsel;
1299 	struct evlist_cpu_iterator evlist_cpu_itr;
1300 	struct affinity affinity;
1301 
1302 	/*
1303 	 * With perf record core.user_requested_cpus is usually NULL.
1304 	 * Use the old method to handle this for now.
1305 	 */
1306 	if (!evlist->core.user_requested_cpus ||
1307 	    cpu_map__is_dummy(evlist->core.user_requested_cpus)) {
1308 		evlist__for_each_entry_reverse(evlist, evsel)
1309 			evsel__close(evsel);
1310 		return;
1311 	}
1312 
1313 	if (affinity__setup(&affinity) < 0)
1314 		return;
1315 
1316 	evlist__for_each_cpu(evlist_cpu_itr, evlist, &affinity) {
1317 		perf_evsel__close_cpu(&evlist_cpu_itr.evsel->core,
1318 				      evlist_cpu_itr.cpu_map_idx);
1319 	}
1320 
1321 	affinity__cleanup(&affinity);
1322 	evlist__for_each_entry_reverse(evlist, evsel) {
1323 		perf_evsel__free_fd(&evsel->core);
1324 		perf_evsel__free_id(&evsel->core);
1325 	}
1326 	perf_evlist__reset_id_hash(&evlist->core);
1327 }
1328 
1329 static int evlist__create_syswide_maps(struct evlist *evlist)
1330 {
1331 	struct perf_cpu_map *cpus;
1332 	struct perf_thread_map *threads;
1333 
1334 	/*
1335 	 * Try reading /sys/devices/system/cpu/online to get
1336 	 * an all cpus map.
1337 	 *
1338 	 * FIXME: -ENOMEM is the best we can do here, the cpu_map
1339 	 * code needs an overhaul to properly forward the
1340 	 * error, and we may not want to do that fallback to a
1341 	 * default cpu identity map :-\
1342 	 */
1343 	cpus = perf_cpu_map__new(NULL);
1344 	if (!cpus)
1345 		goto out;
1346 
1347 	threads = perf_thread_map__new_dummy();
1348 	if (!threads)
1349 		goto out_put;
1350 
1351 	perf_evlist__set_maps(&evlist->core, cpus, threads);
1352 
1353 	perf_thread_map__put(threads);
1354 out_put:
1355 	perf_cpu_map__put(cpus);
1356 out:
1357 	return -ENOMEM;
1358 }
1359 
1360 int evlist__open(struct evlist *evlist)
1361 {
1362 	struct evsel *evsel;
1363 	int err;
1364 
1365 	/*
1366 	 * Default: one fd per CPU, all threads, aka systemwide
1367 	 * as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL
1368 	 */
1369 	if (evlist->core.threads == NULL && evlist->core.user_requested_cpus == NULL) {
1370 		err = evlist__create_syswide_maps(evlist);
1371 		if (err < 0)
1372 			goto out_err;
1373 	}
1374 
1375 	evlist__update_id_pos(evlist);
1376 
1377 	evlist__for_each_entry(evlist, evsel) {
1378 		err = evsel__open(evsel, evsel->core.cpus, evsel->core.threads);
1379 		if (err < 0)
1380 			goto out_err;
1381 	}
1382 
1383 	return 0;
1384 out_err:
1385 	evlist__close(evlist);
1386 	errno = -err;
1387 	return err;
1388 }
1389 
1390 int evlist__prepare_workload(struct evlist *evlist, struct target *target, const char *argv[],
1391 			     bool pipe_output, void (*exec_error)(int signo, siginfo_t *info, void *ucontext))
1392 {
1393 	int child_ready_pipe[2], go_pipe[2];
1394 	char bf;
1395 
1396 	if (pipe(child_ready_pipe) < 0) {
1397 		perror("failed to create 'ready' pipe");
1398 		return -1;
1399 	}
1400 
1401 	if (pipe(go_pipe) < 0) {
1402 		perror("failed to create 'go' pipe");
1403 		goto out_close_ready_pipe;
1404 	}
1405 
1406 	evlist->workload.pid = fork();
1407 	if (evlist->workload.pid < 0) {
1408 		perror("failed to fork");
1409 		goto out_close_pipes;
1410 	}
1411 
1412 	if (!evlist->workload.pid) {
1413 		int ret;
1414 
1415 		if (pipe_output)
1416 			dup2(2, 1);
1417 
1418 		signal(SIGTERM, SIG_DFL);
1419 
1420 		close(child_ready_pipe[0]);
1421 		close(go_pipe[1]);
1422 		fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
1423 
1424 		/*
1425 		 * Change the name of this process not to confuse --exclude-perf users
1426 		 * that sees 'perf' in the window up to the execvp() and thinks that
1427 		 * perf samples are not being excluded.
1428 		 */
1429 		prctl(PR_SET_NAME, "perf-exec");
1430 
1431 		/*
1432 		 * Tell the parent we're ready to go
1433 		 */
1434 		close(child_ready_pipe[1]);
1435 
1436 		/*
1437 		 * Wait until the parent tells us to go.
1438 		 */
1439 		ret = read(go_pipe[0], &bf, 1);
1440 		/*
1441 		 * The parent will ask for the execvp() to be performed by
1442 		 * writing exactly one byte, in workload.cork_fd, usually via
1443 		 * evlist__start_workload().
1444 		 *
1445 		 * For cancelling the workload without actually running it,
1446 		 * the parent will just close workload.cork_fd, without writing
1447 		 * anything, i.e. read will return zero and we just exit()
1448 		 * here.
1449 		 */
1450 		if (ret != 1) {
1451 			if (ret == -1)
1452 				perror("unable to read pipe");
1453 			exit(ret);
1454 		}
1455 
1456 		execvp(argv[0], (char **)argv);
1457 
1458 		if (exec_error) {
1459 			union sigval val;
1460 
1461 			val.sival_int = errno;
1462 			if (sigqueue(getppid(), SIGUSR1, val))
1463 				perror(argv[0]);
1464 		} else
1465 			perror(argv[0]);
1466 		exit(-1);
1467 	}
1468 
1469 	if (exec_error) {
1470 		struct sigaction act = {
1471 			.sa_flags     = SA_SIGINFO,
1472 			.sa_sigaction = exec_error,
1473 		};
1474 		sigaction(SIGUSR1, &act, NULL);
1475 	}
1476 
1477 	if (target__none(target)) {
1478 		if (evlist->core.threads == NULL) {
1479 			fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n",
1480 				__func__, __LINE__);
1481 			goto out_close_pipes;
1482 		}
1483 		perf_thread_map__set_pid(evlist->core.threads, 0, evlist->workload.pid);
1484 	}
1485 
1486 	close(child_ready_pipe[1]);
1487 	close(go_pipe[0]);
1488 	/*
1489 	 * wait for child to settle
1490 	 */
1491 	if (read(child_ready_pipe[0], &bf, 1) == -1) {
1492 		perror("unable to read pipe");
1493 		goto out_close_pipes;
1494 	}
1495 
1496 	fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
1497 	evlist->workload.cork_fd = go_pipe[1];
1498 	close(child_ready_pipe[0]);
1499 	return 0;
1500 
1501 out_close_pipes:
1502 	close(go_pipe[0]);
1503 	close(go_pipe[1]);
1504 out_close_ready_pipe:
1505 	close(child_ready_pipe[0]);
1506 	close(child_ready_pipe[1]);
1507 	return -1;
1508 }
1509 
1510 int evlist__start_workload(struct evlist *evlist)
1511 {
1512 	if (evlist->workload.cork_fd > 0) {
1513 		char bf = 0;
1514 		int ret;
1515 		/*
1516 		 * Remove the cork, let it rip!
1517 		 */
1518 		ret = write(evlist->workload.cork_fd, &bf, 1);
1519 		if (ret < 0)
1520 			perror("unable to write to pipe");
1521 
1522 		close(evlist->workload.cork_fd);
1523 		return ret;
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 int evlist__parse_sample(struct evlist *evlist, union perf_event *event, struct perf_sample *sample)
1530 {
1531 	struct evsel *evsel = evlist__event2evsel(evlist, event);
1532 	int ret;
1533 
1534 	if (!evsel)
1535 		return -EFAULT;
1536 	ret = evsel__parse_sample(evsel, event, sample);
1537 	if (ret)
1538 		return ret;
1539 	if (perf_guest && sample->id) {
1540 		struct perf_sample_id *sid = evlist__id2sid(evlist, sample->id);
1541 
1542 		if (sid) {
1543 			sample->machine_pid = sid->machine_pid;
1544 			sample->vcpu = sid->vcpu.cpu;
1545 		}
1546 	}
1547 	return 0;
1548 }
1549 
1550 int evlist__parse_sample_timestamp(struct evlist *evlist, union perf_event *event, u64 *timestamp)
1551 {
1552 	struct evsel *evsel = evlist__event2evsel(evlist, event);
1553 
1554 	if (!evsel)
1555 		return -EFAULT;
1556 	return evsel__parse_sample_timestamp(evsel, event, timestamp);
1557 }
1558 
1559 int evlist__strerror_open(struct evlist *evlist, int err, char *buf, size_t size)
1560 {
1561 	int printed, value;
1562 	char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
1563 
1564 	switch (err) {
1565 	case EACCES:
1566 	case EPERM:
1567 		printed = scnprintf(buf, size,
1568 				    "Error:\t%s.\n"
1569 				    "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg);
1570 
1571 		value = perf_event_paranoid();
1572 
1573 		printed += scnprintf(buf + printed, size - printed, "\nHint:\t");
1574 
1575 		if (value >= 2) {
1576 			printed += scnprintf(buf + printed, size - printed,
1577 					     "For your workloads it needs to be <= 1\nHint:\t");
1578 		}
1579 		printed += scnprintf(buf + printed, size - printed,
1580 				     "For system wide tracing it needs to be set to -1.\n");
1581 
1582 		printed += scnprintf(buf + printed, size - printed,
1583 				    "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n"
1584 				    "Hint:\tThe current value is %d.", value);
1585 		break;
1586 	case EINVAL: {
1587 		struct evsel *first = evlist__first(evlist);
1588 		int max_freq;
1589 
1590 		if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0)
1591 			goto out_default;
1592 
1593 		if (first->core.attr.sample_freq < (u64)max_freq)
1594 			goto out_default;
1595 
1596 		printed = scnprintf(buf, size,
1597 				    "Error:\t%s.\n"
1598 				    "Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n"
1599 				    "Hint:\tThe current value is %d and %" PRIu64 " is being requested.",
1600 				    emsg, max_freq, first->core.attr.sample_freq);
1601 		break;
1602 	}
1603 	default:
1604 out_default:
1605 		scnprintf(buf, size, "%s", emsg);
1606 		break;
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 int evlist__strerror_mmap(struct evlist *evlist, int err, char *buf, size_t size)
1613 {
1614 	char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
1615 	int pages_attempted = evlist->core.mmap_len / 1024, pages_max_per_user, printed = 0;
1616 
1617 	switch (err) {
1618 	case EPERM:
1619 		sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user);
1620 		printed += scnprintf(buf + printed, size - printed,
1621 				     "Error:\t%s.\n"
1622 				     "Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n"
1623 				     "Hint:\tTried using %zd kB.\n",
1624 				     emsg, pages_max_per_user, pages_attempted);
1625 
1626 		if (pages_attempted >= pages_max_per_user) {
1627 			printed += scnprintf(buf + printed, size - printed,
1628 					     "Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n",
1629 					     pages_max_per_user + pages_attempted);
1630 		}
1631 
1632 		printed += scnprintf(buf + printed, size - printed,
1633 				     "Hint:\tTry using a smaller -m/--mmap-pages value.");
1634 		break;
1635 	default:
1636 		scnprintf(buf, size, "%s", emsg);
1637 		break;
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 void evlist__to_front(struct evlist *evlist, struct evsel *move_evsel)
1644 {
1645 	struct evsel *evsel, *n;
1646 	LIST_HEAD(move);
1647 
1648 	if (move_evsel == evlist__first(evlist))
1649 		return;
1650 
1651 	evlist__for_each_entry_safe(evlist, n, evsel) {
1652 		if (evsel__leader(evsel) == evsel__leader(move_evsel))
1653 			list_move_tail(&evsel->core.node, &move);
1654 	}
1655 
1656 	list_splice(&move, &evlist->core.entries);
1657 }
1658 
1659 struct evsel *evlist__get_tracking_event(struct evlist *evlist)
1660 {
1661 	struct evsel *evsel;
1662 
1663 	evlist__for_each_entry(evlist, evsel) {
1664 		if (evsel->tracking)
1665 			return evsel;
1666 	}
1667 
1668 	return evlist__first(evlist);
1669 }
1670 
1671 void evlist__set_tracking_event(struct evlist *evlist, struct evsel *tracking_evsel)
1672 {
1673 	struct evsel *evsel;
1674 
1675 	if (tracking_evsel->tracking)
1676 		return;
1677 
1678 	evlist__for_each_entry(evlist, evsel) {
1679 		if (evsel != tracking_evsel)
1680 			evsel->tracking = false;
1681 	}
1682 
1683 	tracking_evsel->tracking = true;
1684 }
1685 
1686 struct evsel *evlist__find_evsel_by_str(struct evlist *evlist, const char *str)
1687 {
1688 	struct evsel *evsel;
1689 
1690 	evlist__for_each_entry(evlist, evsel) {
1691 		if (!evsel->name)
1692 			continue;
1693 		if (strcmp(str, evsel->name) == 0)
1694 			return evsel;
1695 	}
1696 
1697 	return NULL;
1698 }
1699 
1700 void evlist__toggle_bkw_mmap(struct evlist *evlist, enum bkw_mmap_state state)
1701 {
1702 	enum bkw_mmap_state old_state = evlist->bkw_mmap_state;
1703 	enum action {
1704 		NONE,
1705 		PAUSE,
1706 		RESUME,
1707 	} action = NONE;
1708 
1709 	if (!evlist->overwrite_mmap)
1710 		return;
1711 
1712 	switch (old_state) {
1713 	case BKW_MMAP_NOTREADY: {
1714 		if (state != BKW_MMAP_RUNNING)
1715 			goto state_err;
1716 		break;
1717 	}
1718 	case BKW_MMAP_RUNNING: {
1719 		if (state != BKW_MMAP_DATA_PENDING)
1720 			goto state_err;
1721 		action = PAUSE;
1722 		break;
1723 	}
1724 	case BKW_MMAP_DATA_PENDING: {
1725 		if (state != BKW_MMAP_EMPTY)
1726 			goto state_err;
1727 		break;
1728 	}
1729 	case BKW_MMAP_EMPTY: {
1730 		if (state != BKW_MMAP_RUNNING)
1731 			goto state_err;
1732 		action = RESUME;
1733 		break;
1734 	}
1735 	default:
1736 		WARN_ONCE(1, "Shouldn't get there\n");
1737 	}
1738 
1739 	evlist->bkw_mmap_state = state;
1740 
1741 	switch (action) {
1742 	case PAUSE:
1743 		evlist__pause(evlist);
1744 		break;
1745 	case RESUME:
1746 		evlist__resume(evlist);
1747 		break;
1748 	case NONE:
1749 	default:
1750 		break;
1751 	}
1752 
1753 state_err:
1754 	return;
1755 }
1756 
1757 bool evlist__exclude_kernel(struct evlist *evlist)
1758 {
1759 	struct evsel *evsel;
1760 
1761 	evlist__for_each_entry(evlist, evsel) {
1762 		if (!evsel->core.attr.exclude_kernel)
1763 			return false;
1764 	}
1765 
1766 	return true;
1767 }
1768 
1769 /*
1770  * Events in data file are not collect in groups, but we still want
1771  * the group display. Set the artificial group and set the leader's
1772  * forced_leader flag to notify the display code.
1773  */
1774 void evlist__force_leader(struct evlist *evlist)
1775 {
1776 	if (!evlist->core.nr_groups) {
1777 		struct evsel *leader = evlist__first(evlist);
1778 
1779 		evlist__set_leader(evlist);
1780 		leader->forced_leader = true;
1781 	}
1782 }
1783 
1784 struct evsel *evlist__reset_weak_group(struct evlist *evsel_list, struct evsel *evsel, bool close)
1785 {
1786 	struct evsel *c2, *leader;
1787 	bool is_open = true;
1788 
1789 	leader = evsel__leader(evsel);
1790 
1791 	pr_debug("Weak group for %s/%d failed\n",
1792 			leader->name, leader->core.nr_members);
1793 
1794 	/*
1795 	 * for_each_group_member doesn't work here because it doesn't
1796 	 * include the first entry.
1797 	 */
1798 	evlist__for_each_entry(evsel_list, c2) {
1799 		if (c2 == evsel)
1800 			is_open = false;
1801 		if (evsel__has_leader(c2, leader)) {
1802 			if (is_open && close)
1803 				perf_evsel__close(&c2->core);
1804 			/*
1805 			 * We want to close all members of the group and reopen
1806 			 * them. Some events, like Intel topdown, require being
1807 			 * in a group and so keep these in the group.
1808 			 */
1809 			evsel__remove_from_group(c2, leader);
1810 
1811 			/*
1812 			 * Set this for all former members of the group
1813 			 * to indicate they get reopened.
1814 			 */
1815 			c2->reset_group = true;
1816 		}
1817 	}
1818 	/* Reset the leader count if all entries were removed. */
1819 	if (leader->core.nr_members == 1)
1820 		leader->core.nr_members = 0;
1821 	return leader;
1822 }
1823 
1824 static int evlist__parse_control_fifo(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
1825 {
1826 	char *s, *p;
1827 	int ret = 0, fd;
1828 
1829 	if (strncmp(str, "fifo:", 5))
1830 		return -EINVAL;
1831 
1832 	str += 5;
1833 	if (!*str || *str == ',')
1834 		return -EINVAL;
1835 
1836 	s = strdup(str);
1837 	if (!s)
1838 		return -ENOMEM;
1839 
1840 	p = strchr(s, ',');
1841 	if (p)
1842 		*p = '\0';
1843 
1844 	/*
1845 	 * O_RDWR avoids POLLHUPs which is necessary to allow the other
1846 	 * end of a FIFO to be repeatedly opened and closed.
1847 	 */
1848 	fd = open(s, O_RDWR | O_NONBLOCK | O_CLOEXEC);
1849 	if (fd < 0) {
1850 		pr_err("Failed to open '%s'\n", s);
1851 		ret = -errno;
1852 		goto out_free;
1853 	}
1854 	*ctl_fd = fd;
1855 	*ctl_fd_close = true;
1856 
1857 	if (p && *++p) {
1858 		/* O_RDWR | O_NONBLOCK means the other end need not be open */
1859 		fd = open(p, O_RDWR | O_NONBLOCK | O_CLOEXEC);
1860 		if (fd < 0) {
1861 			pr_err("Failed to open '%s'\n", p);
1862 			ret = -errno;
1863 			goto out_free;
1864 		}
1865 		*ctl_fd_ack = fd;
1866 	}
1867 
1868 out_free:
1869 	free(s);
1870 	return ret;
1871 }
1872 
1873 int evlist__parse_control(const char *str, int *ctl_fd, int *ctl_fd_ack, bool *ctl_fd_close)
1874 {
1875 	char *comma = NULL, *endptr = NULL;
1876 
1877 	*ctl_fd_close = false;
1878 
1879 	if (strncmp(str, "fd:", 3))
1880 		return evlist__parse_control_fifo(str, ctl_fd, ctl_fd_ack, ctl_fd_close);
1881 
1882 	*ctl_fd = strtoul(&str[3], &endptr, 0);
1883 	if (endptr == &str[3])
1884 		return -EINVAL;
1885 
1886 	comma = strchr(str, ',');
1887 	if (comma) {
1888 		if (endptr != comma)
1889 			return -EINVAL;
1890 
1891 		*ctl_fd_ack = strtoul(comma + 1, &endptr, 0);
1892 		if (endptr == comma + 1 || *endptr != '\0')
1893 			return -EINVAL;
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 void evlist__close_control(int ctl_fd, int ctl_fd_ack, bool *ctl_fd_close)
1900 {
1901 	if (*ctl_fd_close) {
1902 		*ctl_fd_close = false;
1903 		close(ctl_fd);
1904 		if (ctl_fd_ack >= 0)
1905 			close(ctl_fd_ack);
1906 	}
1907 }
1908 
1909 int evlist__initialize_ctlfd(struct evlist *evlist, int fd, int ack)
1910 {
1911 	if (fd == -1) {
1912 		pr_debug("Control descriptor is not initialized\n");
1913 		return 0;
1914 	}
1915 
1916 	evlist->ctl_fd.pos = perf_evlist__add_pollfd(&evlist->core, fd, NULL, POLLIN,
1917 						     fdarray_flag__nonfilterable |
1918 						     fdarray_flag__non_perf_event);
1919 	if (evlist->ctl_fd.pos < 0) {
1920 		evlist->ctl_fd.pos = -1;
1921 		pr_err("Failed to add ctl fd entry: %m\n");
1922 		return -1;
1923 	}
1924 
1925 	evlist->ctl_fd.fd = fd;
1926 	evlist->ctl_fd.ack = ack;
1927 
1928 	return 0;
1929 }
1930 
1931 bool evlist__ctlfd_initialized(struct evlist *evlist)
1932 {
1933 	return evlist->ctl_fd.pos >= 0;
1934 }
1935 
1936 int evlist__finalize_ctlfd(struct evlist *evlist)
1937 {
1938 	struct pollfd *entries = evlist->core.pollfd.entries;
1939 
1940 	if (!evlist__ctlfd_initialized(evlist))
1941 		return 0;
1942 
1943 	entries[evlist->ctl_fd.pos].fd = -1;
1944 	entries[evlist->ctl_fd.pos].events = 0;
1945 	entries[evlist->ctl_fd.pos].revents = 0;
1946 
1947 	evlist->ctl_fd.pos = -1;
1948 	evlist->ctl_fd.ack = -1;
1949 	evlist->ctl_fd.fd = -1;
1950 
1951 	return 0;
1952 }
1953 
1954 static int evlist__ctlfd_recv(struct evlist *evlist, enum evlist_ctl_cmd *cmd,
1955 			      char *cmd_data, size_t data_size)
1956 {
1957 	int err;
1958 	char c;
1959 	size_t bytes_read = 0;
1960 
1961 	*cmd = EVLIST_CTL_CMD_UNSUPPORTED;
1962 	memset(cmd_data, 0, data_size);
1963 	data_size--;
1964 
1965 	do {
1966 		err = read(evlist->ctl_fd.fd, &c, 1);
1967 		if (err > 0) {
1968 			if (c == '\n' || c == '\0')
1969 				break;
1970 			cmd_data[bytes_read++] = c;
1971 			if (bytes_read == data_size)
1972 				break;
1973 			continue;
1974 		} else if (err == -1) {
1975 			if (errno == EINTR)
1976 				continue;
1977 			if (errno == EAGAIN || errno == EWOULDBLOCK)
1978 				err = 0;
1979 			else
1980 				pr_err("Failed to read from ctlfd %d: %m\n", evlist->ctl_fd.fd);
1981 		}
1982 		break;
1983 	} while (1);
1984 
1985 	pr_debug("Message from ctl_fd: \"%s%s\"\n", cmd_data,
1986 		 bytes_read == data_size ? "" : c == '\n' ? "\\n" : "\\0");
1987 
1988 	if (bytes_read > 0) {
1989 		if (!strncmp(cmd_data, EVLIST_CTL_CMD_ENABLE_TAG,
1990 			     (sizeof(EVLIST_CTL_CMD_ENABLE_TAG)-1))) {
1991 			*cmd = EVLIST_CTL_CMD_ENABLE;
1992 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_DISABLE_TAG,
1993 				    (sizeof(EVLIST_CTL_CMD_DISABLE_TAG)-1))) {
1994 			*cmd = EVLIST_CTL_CMD_DISABLE;
1995 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_SNAPSHOT_TAG,
1996 				    (sizeof(EVLIST_CTL_CMD_SNAPSHOT_TAG)-1))) {
1997 			*cmd = EVLIST_CTL_CMD_SNAPSHOT;
1998 			pr_debug("is snapshot\n");
1999 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_EVLIST_TAG,
2000 				    (sizeof(EVLIST_CTL_CMD_EVLIST_TAG)-1))) {
2001 			*cmd = EVLIST_CTL_CMD_EVLIST;
2002 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_STOP_TAG,
2003 				    (sizeof(EVLIST_CTL_CMD_STOP_TAG)-1))) {
2004 			*cmd = EVLIST_CTL_CMD_STOP;
2005 		} else if (!strncmp(cmd_data, EVLIST_CTL_CMD_PING_TAG,
2006 				    (sizeof(EVLIST_CTL_CMD_PING_TAG)-1))) {
2007 			*cmd = EVLIST_CTL_CMD_PING;
2008 		}
2009 	}
2010 
2011 	return bytes_read ? (int)bytes_read : err;
2012 }
2013 
2014 int evlist__ctlfd_ack(struct evlist *evlist)
2015 {
2016 	int err;
2017 
2018 	if (evlist->ctl_fd.ack == -1)
2019 		return 0;
2020 
2021 	err = write(evlist->ctl_fd.ack, EVLIST_CTL_CMD_ACK_TAG,
2022 		    sizeof(EVLIST_CTL_CMD_ACK_TAG));
2023 	if (err == -1)
2024 		pr_err("failed to write to ctl_ack_fd %d: %m\n", evlist->ctl_fd.ack);
2025 
2026 	return err;
2027 }
2028 
2029 static int get_cmd_arg(char *cmd_data, size_t cmd_size, char **arg)
2030 {
2031 	char *data = cmd_data + cmd_size;
2032 
2033 	/* no argument */
2034 	if (!*data)
2035 		return 0;
2036 
2037 	/* there's argument */
2038 	if (*data == ' ') {
2039 		*arg = data + 1;
2040 		return 1;
2041 	}
2042 
2043 	/* malformed */
2044 	return -1;
2045 }
2046 
2047 static int evlist__ctlfd_enable(struct evlist *evlist, char *cmd_data, bool enable)
2048 {
2049 	struct evsel *evsel;
2050 	char *name;
2051 	int err;
2052 
2053 	err = get_cmd_arg(cmd_data,
2054 			  enable ? sizeof(EVLIST_CTL_CMD_ENABLE_TAG) - 1 :
2055 				   sizeof(EVLIST_CTL_CMD_DISABLE_TAG) - 1,
2056 			  &name);
2057 	if (err < 0) {
2058 		pr_info("failed: wrong command\n");
2059 		return -1;
2060 	}
2061 
2062 	if (err) {
2063 		evsel = evlist__find_evsel_by_str(evlist, name);
2064 		if (evsel) {
2065 			if (enable)
2066 				evlist__enable_evsel(evlist, name);
2067 			else
2068 				evlist__disable_evsel(evlist, name);
2069 			pr_info("Event %s %s\n", evsel->name,
2070 				enable ? "enabled" : "disabled");
2071 		} else {
2072 			pr_info("failed: can't find '%s' event\n", name);
2073 		}
2074 	} else {
2075 		if (enable) {
2076 			evlist__enable(evlist);
2077 			pr_info(EVLIST_ENABLED_MSG);
2078 		} else {
2079 			evlist__disable(evlist);
2080 			pr_info(EVLIST_DISABLED_MSG);
2081 		}
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 static int evlist__ctlfd_list(struct evlist *evlist, char *cmd_data)
2088 {
2089 	struct perf_attr_details details = { .verbose = false, };
2090 	struct evsel *evsel;
2091 	char *arg;
2092 	int err;
2093 
2094 	err = get_cmd_arg(cmd_data,
2095 			  sizeof(EVLIST_CTL_CMD_EVLIST_TAG) - 1,
2096 			  &arg);
2097 	if (err < 0) {
2098 		pr_info("failed: wrong command\n");
2099 		return -1;
2100 	}
2101 
2102 	if (err) {
2103 		if (!strcmp(arg, "-v")) {
2104 			details.verbose = true;
2105 		} else if (!strcmp(arg, "-g")) {
2106 			details.event_group = true;
2107 		} else if (!strcmp(arg, "-F")) {
2108 			details.freq = true;
2109 		} else {
2110 			pr_info("failed: wrong command\n");
2111 			return -1;
2112 		}
2113 	}
2114 
2115 	evlist__for_each_entry(evlist, evsel)
2116 		evsel__fprintf(evsel, &details, stderr);
2117 
2118 	return 0;
2119 }
2120 
2121 int evlist__ctlfd_process(struct evlist *evlist, enum evlist_ctl_cmd *cmd)
2122 {
2123 	int err = 0;
2124 	char cmd_data[EVLIST_CTL_CMD_MAX_LEN];
2125 	int ctlfd_pos = evlist->ctl_fd.pos;
2126 	struct pollfd *entries = evlist->core.pollfd.entries;
2127 
2128 	if (!evlist__ctlfd_initialized(evlist) || !entries[ctlfd_pos].revents)
2129 		return 0;
2130 
2131 	if (entries[ctlfd_pos].revents & POLLIN) {
2132 		err = evlist__ctlfd_recv(evlist, cmd, cmd_data,
2133 					 EVLIST_CTL_CMD_MAX_LEN);
2134 		if (err > 0) {
2135 			switch (*cmd) {
2136 			case EVLIST_CTL_CMD_ENABLE:
2137 			case EVLIST_CTL_CMD_DISABLE:
2138 				err = evlist__ctlfd_enable(evlist, cmd_data,
2139 							   *cmd == EVLIST_CTL_CMD_ENABLE);
2140 				break;
2141 			case EVLIST_CTL_CMD_EVLIST:
2142 				err = evlist__ctlfd_list(evlist, cmd_data);
2143 				break;
2144 			case EVLIST_CTL_CMD_SNAPSHOT:
2145 			case EVLIST_CTL_CMD_STOP:
2146 			case EVLIST_CTL_CMD_PING:
2147 				break;
2148 			case EVLIST_CTL_CMD_ACK:
2149 			case EVLIST_CTL_CMD_UNSUPPORTED:
2150 			default:
2151 				pr_debug("ctlfd: unsupported %d\n", *cmd);
2152 				break;
2153 			}
2154 			if (!(*cmd == EVLIST_CTL_CMD_ACK || *cmd == EVLIST_CTL_CMD_UNSUPPORTED ||
2155 			      *cmd == EVLIST_CTL_CMD_SNAPSHOT))
2156 				evlist__ctlfd_ack(evlist);
2157 		}
2158 	}
2159 
2160 	if (entries[ctlfd_pos].revents & (POLLHUP | POLLERR))
2161 		evlist__finalize_ctlfd(evlist);
2162 	else
2163 		entries[ctlfd_pos].revents = 0;
2164 
2165 	return err;
2166 }
2167 
2168 /**
2169  * struct event_enable_time - perf record -D/--delay single time range.
2170  * @start: start of time range to enable events in milliseconds
2171  * @end: end of time range to enable events in milliseconds
2172  *
2173  * N.B. this structure is also accessed as an array of int.
2174  */
2175 struct event_enable_time {
2176 	int	start;
2177 	int	end;
2178 };
2179 
2180 static int parse_event_enable_time(const char *str, struct event_enable_time *range, bool first)
2181 {
2182 	const char *fmt = first ? "%u - %u %n" : " , %u - %u %n";
2183 	int ret, start, end, n;
2184 
2185 	ret = sscanf(str, fmt, &start, &end, &n);
2186 	if (ret != 2 || end <= start)
2187 		return -EINVAL;
2188 	if (range) {
2189 		range->start = start;
2190 		range->end = end;
2191 	}
2192 	return n;
2193 }
2194 
2195 static ssize_t parse_event_enable_times(const char *str, struct event_enable_time *range)
2196 {
2197 	int incr = !!range;
2198 	bool first = true;
2199 	ssize_t ret, cnt;
2200 
2201 	for (cnt = 0; *str; cnt++) {
2202 		ret = parse_event_enable_time(str, range, first);
2203 		if (ret < 0)
2204 			return ret;
2205 		/* Check no overlap */
2206 		if (!first && range && range->start <= range[-1].end)
2207 			return -EINVAL;
2208 		str += ret;
2209 		range += incr;
2210 		first = false;
2211 	}
2212 	return cnt;
2213 }
2214 
2215 /**
2216  * struct event_enable_timer - control structure for perf record -D/--delay.
2217  * @evlist: event list
2218  * @times: time ranges that events are enabled (N.B. this is also accessed as an
2219  *         array of int)
2220  * @times_cnt: number of time ranges
2221  * @timerfd: timer file descriptor
2222  * @pollfd_pos: position in @evlist array of file descriptors to poll (fdarray)
2223  * @times_step: current position in (int *)@times)[],
2224  *              refer event_enable_timer__process()
2225  *
2226  * Note, this structure is only used when there are time ranges, not when there
2227  * is only an initial delay.
2228  */
2229 struct event_enable_timer {
2230 	struct evlist *evlist;
2231 	struct event_enable_time *times;
2232 	size_t	times_cnt;
2233 	int	timerfd;
2234 	int	pollfd_pos;
2235 	size_t	times_step;
2236 };
2237 
2238 static int str_to_delay(const char *str)
2239 {
2240 	char *endptr;
2241 	long d;
2242 
2243 	d = strtol(str, &endptr, 10);
2244 	if (*endptr || d > INT_MAX || d < -1)
2245 		return 0;
2246 	return d;
2247 }
2248 
2249 int evlist__parse_event_enable_time(struct evlist *evlist, struct record_opts *opts,
2250 				    const char *str, int unset)
2251 {
2252 	enum fdarray_flags flags = fdarray_flag__nonfilterable | fdarray_flag__non_perf_event;
2253 	struct event_enable_timer *eet;
2254 	ssize_t times_cnt;
2255 	ssize_t ret;
2256 	int err;
2257 
2258 	if (unset)
2259 		return 0;
2260 
2261 	opts->initial_delay = str_to_delay(str);
2262 	if (opts->initial_delay)
2263 		return 0;
2264 
2265 	ret = parse_event_enable_times(str, NULL);
2266 	if (ret < 0)
2267 		return ret;
2268 
2269 	times_cnt = ret;
2270 	if (times_cnt == 0)
2271 		return -EINVAL;
2272 
2273 	eet = zalloc(sizeof(*eet));
2274 	if (!eet)
2275 		return -ENOMEM;
2276 
2277 	eet->times = calloc(times_cnt, sizeof(*eet->times));
2278 	if (!eet->times) {
2279 		err = -ENOMEM;
2280 		goto free_eet;
2281 	}
2282 
2283 	if (parse_event_enable_times(str, eet->times) != times_cnt) {
2284 		err = -EINVAL;
2285 		goto free_eet_times;
2286 	}
2287 
2288 	eet->times_cnt = times_cnt;
2289 
2290 	eet->timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
2291 	if (eet->timerfd == -1) {
2292 		err = -errno;
2293 		pr_err("timerfd_create failed: %s\n", strerror(errno));
2294 		goto free_eet_times;
2295 	}
2296 
2297 	eet->pollfd_pos = perf_evlist__add_pollfd(&evlist->core, eet->timerfd, NULL, POLLIN, flags);
2298 	if (eet->pollfd_pos < 0) {
2299 		err = eet->pollfd_pos;
2300 		goto close_timerfd;
2301 	}
2302 
2303 	eet->evlist = evlist;
2304 	evlist->eet = eet;
2305 	opts->initial_delay = eet->times[0].start;
2306 
2307 	return 0;
2308 
2309 close_timerfd:
2310 	close(eet->timerfd);
2311 free_eet_times:
2312 	free(eet->times);
2313 free_eet:
2314 	free(eet);
2315 	return err;
2316 }
2317 
2318 static int event_enable_timer__set_timer(struct event_enable_timer *eet, int ms)
2319 {
2320 	struct itimerspec its = {
2321 		.it_value.tv_sec = ms / MSEC_PER_SEC,
2322 		.it_value.tv_nsec = (ms % MSEC_PER_SEC) * NSEC_PER_MSEC,
2323 	};
2324 	int err = 0;
2325 
2326 	if (timerfd_settime(eet->timerfd, 0, &its, NULL) < 0) {
2327 		err = -errno;
2328 		pr_err("timerfd_settime failed: %s\n", strerror(errno));
2329 	}
2330 	return err;
2331 }
2332 
2333 int event_enable_timer__start(struct event_enable_timer *eet)
2334 {
2335 	int ms;
2336 
2337 	if (!eet)
2338 		return 0;
2339 
2340 	ms = eet->times[0].end - eet->times[0].start;
2341 	eet->times_step = 1;
2342 
2343 	return event_enable_timer__set_timer(eet, ms);
2344 }
2345 
2346 int event_enable_timer__process(struct event_enable_timer *eet)
2347 {
2348 	struct pollfd *entries;
2349 	short revents;
2350 
2351 	if (!eet)
2352 		return 0;
2353 
2354 	entries = eet->evlist->core.pollfd.entries;
2355 	revents = entries[eet->pollfd_pos].revents;
2356 	entries[eet->pollfd_pos].revents = 0;
2357 
2358 	if (revents & POLLIN) {
2359 		size_t step = eet->times_step;
2360 		size_t pos = step / 2;
2361 
2362 		if (step & 1) {
2363 			evlist__disable_non_dummy(eet->evlist);
2364 			pr_info(EVLIST_DISABLED_MSG);
2365 			if (pos >= eet->times_cnt - 1) {
2366 				/* Disarm timer */
2367 				event_enable_timer__set_timer(eet, 0);
2368 				return 1; /* Stop */
2369 			}
2370 		} else {
2371 			evlist__enable_non_dummy(eet->evlist);
2372 			pr_info(EVLIST_ENABLED_MSG);
2373 		}
2374 
2375 		step += 1;
2376 		pos = step / 2;
2377 
2378 		if (pos < eet->times_cnt) {
2379 			int *times = (int *)eet->times; /* Accessing 'times' as array of int */
2380 			int ms = times[step] - times[step - 1];
2381 
2382 			eet->times_step = step;
2383 			return event_enable_timer__set_timer(eet, ms);
2384 		}
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 void event_enable_timer__exit(struct event_enable_timer **ep)
2391 {
2392 	if (!ep || !*ep)
2393 		return;
2394 	free((*ep)->times);
2395 	zfree(ep);
2396 }
2397 
2398 struct evsel *evlist__find_evsel(struct evlist *evlist, int idx)
2399 {
2400 	struct evsel *evsel;
2401 
2402 	evlist__for_each_entry(evlist, evsel) {
2403 		if (evsel->core.idx == idx)
2404 			return evsel;
2405 	}
2406 	return NULL;
2407 }
2408 
2409 int evlist__scnprintf_evsels(struct evlist *evlist, size_t size, char *bf)
2410 {
2411 	struct evsel *evsel;
2412 	int printed = 0;
2413 
2414 	evlist__for_each_entry(evlist, evsel) {
2415 		if (evsel__is_dummy_event(evsel))
2416 			continue;
2417 		if (size > (strlen(evsel__name(evsel)) + (printed ? 2 : 1))) {
2418 			printed += scnprintf(bf + printed, size - printed, "%s%s", printed ? "," : "", evsel__name(evsel));
2419 		} else {
2420 			printed += scnprintf(bf + printed, size - printed, "%s...", printed ? "," : "");
2421 			break;
2422 		}
2423 	}
2424 
2425 	return printed;
2426 }
2427 
2428 void evlist__check_mem_load_aux(struct evlist *evlist)
2429 {
2430 	struct evsel *leader, *evsel, *pos;
2431 
2432 	/*
2433 	 * For some platforms, the 'mem-loads' event is required to use
2434 	 * together with 'mem-loads-aux' within a group and 'mem-loads-aux'
2435 	 * must be the group leader. Now we disable this group before reporting
2436 	 * because 'mem-loads-aux' is just an auxiliary event. It doesn't carry
2437 	 * any valid memory load information.
2438 	 */
2439 	evlist__for_each_entry(evlist, evsel) {
2440 		leader = evsel__leader(evsel);
2441 		if (leader == evsel)
2442 			continue;
2443 
2444 		if (leader->name && strstr(leader->name, "mem-loads-aux")) {
2445 			for_each_group_evsel(pos, leader) {
2446 				evsel__set_leader(pos, pos);
2447 				pos->core.nr_members = 0;
2448 			}
2449 		}
2450 	}
2451 }
2452