1 // SPDX-License-Identifier: GPL-2.0 2 #include "cpumap.h" 3 #include "debug.h" 4 #include "env.h" 5 #include "util/header.h" 6 #include <linux/ctype.h> 7 #include <linux/zalloc.h> 8 #include "cgroup.h" 9 #include <errno.h> 10 #include <sys/utsname.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include "pmus.h" 14 #include "strbuf.h" 15 16 struct perf_env perf_env; 17 18 #ifdef HAVE_LIBBPF_SUPPORT 19 #include "bpf-event.h" 20 #include "bpf-utils.h" 21 #include <bpf/libbpf.h> 22 23 void perf_env__insert_bpf_prog_info(struct perf_env *env, 24 struct bpf_prog_info_node *info_node) 25 { 26 down_write(&env->bpf_progs.lock); 27 __perf_env__insert_bpf_prog_info(env, info_node); 28 up_write(&env->bpf_progs.lock); 29 } 30 31 void __perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node) 32 { 33 __u32 prog_id = info_node->info_linear->info.id; 34 struct bpf_prog_info_node *node; 35 struct rb_node *parent = NULL; 36 struct rb_node **p; 37 38 p = &env->bpf_progs.infos.rb_node; 39 40 while (*p != NULL) { 41 parent = *p; 42 node = rb_entry(parent, struct bpf_prog_info_node, rb_node); 43 if (prog_id < node->info_linear->info.id) { 44 p = &(*p)->rb_left; 45 } else if (prog_id > node->info_linear->info.id) { 46 p = &(*p)->rb_right; 47 } else { 48 pr_debug("duplicated bpf prog info %u\n", prog_id); 49 return; 50 } 51 } 52 53 rb_link_node(&info_node->rb_node, parent, p); 54 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos); 55 env->bpf_progs.infos_cnt++; 56 } 57 58 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env, 59 __u32 prog_id) 60 { 61 struct bpf_prog_info_node *node = NULL; 62 struct rb_node *n; 63 64 down_read(&env->bpf_progs.lock); 65 n = env->bpf_progs.infos.rb_node; 66 67 while (n) { 68 node = rb_entry(n, struct bpf_prog_info_node, rb_node); 69 if (prog_id < node->info_linear->info.id) 70 n = n->rb_left; 71 else if (prog_id > node->info_linear->info.id) 72 n = n->rb_right; 73 else 74 goto out; 75 } 76 node = NULL; 77 78 out: 79 up_read(&env->bpf_progs.lock); 80 return node; 81 } 82 83 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) 84 { 85 bool ret; 86 87 down_write(&env->bpf_progs.lock); 88 ret = __perf_env__insert_btf(env, btf_node); 89 up_write(&env->bpf_progs.lock); 90 return ret; 91 } 92 93 bool __perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) 94 { 95 struct rb_node *parent = NULL; 96 __u32 btf_id = btf_node->id; 97 struct btf_node *node; 98 struct rb_node **p; 99 100 p = &env->bpf_progs.btfs.rb_node; 101 102 while (*p != NULL) { 103 parent = *p; 104 node = rb_entry(parent, struct btf_node, rb_node); 105 if (btf_id < node->id) { 106 p = &(*p)->rb_left; 107 } else if (btf_id > node->id) { 108 p = &(*p)->rb_right; 109 } else { 110 pr_debug("duplicated btf %u\n", btf_id); 111 return false; 112 } 113 } 114 115 rb_link_node(&btf_node->rb_node, parent, p); 116 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs); 117 env->bpf_progs.btfs_cnt++; 118 return true; 119 } 120 121 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id) 122 { 123 struct btf_node *res; 124 125 down_read(&env->bpf_progs.lock); 126 res = __perf_env__find_btf(env, btf_id); 127 up_read(&env->bpf_progs.lock); 128 return res; 129 } 130 131 struct btf_node *__perf_env__find_btf(struct perf_env *env, __u32 btf_id) 132 { 133 struct btf_node *node = NULL; 134 struct rb_node *n; 135 136 n = env->bpf_progs.btfs.rb_node; 137 138 while (n) { 139 node = rb_entry(n, struct btf_node, rb_node); 140 if (btf_id < node->id) 141 n = n->rb_left; 142 else if (btf_id > node->id) 143 n = n->rb_right; 144 else 145 return node; 146 } 147 return NULL; 148 } 149 150 /* purge data in bpf_progs.infos tree */ 151 static void perf_env__purge_bpf(struct perf_env *env) 152 { 153 struct rb_root *root; 154 struct rb_node *next; 155 156 down_write(&env->bpf_progs.lock); 157 158 root = &env->bpf_progs.infos; 159 next = rb_first(root); 160 161 while (next) { 162 struct bpf_prog_info_node *node; 163 164 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 165 next = rb_next(&node->rb_node); 166 rb_erase(&node->rb_node, root); 167 zfree(&node->info_linear); 168 free(node); 169 } 170 171 env->bpf_progs.infos_cnt = 0; 172 173 root = &env->bpf_progs.btfs; 174 next = rb_first(root); 175 176 while (next) { 177 struct btf_node *node; 178 179 node = rb_entry(next, struct btf_node, rb_node); 180 next = rb_next(&node->rb_node); 181 rb_erase(&node->rb_node, root); 182 free(node); 183 } 184 185 env->bpf_progs.btfs_cnt = 0; 186 187 up_write(&env->bpf_progs.lock); 188 } 189 #else // HAVE_LIBBPF_SUPPORT 190 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused) 191 { 192 } 193 #endif // HAVE_LIBBPF_SUPPORT 194 195 void perf_env__exit(struct perf_env *env) 196 { 197 int i, j; 198 199 perf_env__purge_bpf(env); 200 perf_env__purge_cgroups(env); 201 zfree(&env->hostname); 202 zfree(&env->os_release); 203 zfree(&env->version); 204 zfree(&env->arch); 205 zfree(&env->cpu_desc); 206 zfree(&env->cpuid); 207 zfree(&env->cmdline); 208 zfree(&env->cmdline_argv); 209 zfree(&env->sibling_dies); 210 zfree(&env->sibling_cores); 211 zfree(&env->sibling_threads); 212 zfree(&env->pmu_mappings); 213 zfree(&env->cpu); 214 for (i = 0; i < env->nr_cpu_pmu_caps; i++) 215 zfree(&env->cpu_pmu_caps[i]); 216 zfree(&env->cpu_pmu_caps); 217 zfree(&env->numa_map); 218 219 for (i = 0; i < env->nr_numa_nodes; i++) 220 perf_cpu_map__put(env->numa_nodes[i].map); 221 zfree(&env->numa_nodes); 222 223 for (i = 0; i < env->caches_cnt; i++) 224 cpu_cache_level__free(&env->caches[i]); 225 zfree(&env->caches); 226 227 for (i = 0; i < env->nr_memory_nodes; i++) 228 zfree(&env->memory_nodes[i].set); 229 zfree(&env->memory_nodes); 230 231 for (i = 0; i < env->nr_hybrid_nodes; i++) { 232 zfree(&env->hybrid_nodes[i].pmu_name); 233 zfree(&env->hybrid_nodes[i].cpus); 234 } 235 zfree(&env->hybrid_nodes); 236 237 for (i = 0; i < env->nr_pmus_with_caps; i++) { 238 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) 239 zfree(&env->pmu_caps[i].caps[j]); 240 zfree(&env->pmu_caps[i].caps); 241 zfree(&env->pmu_caps[i].pmu_name); 242 } 243 zfree(&env->pmu_caps); 244 } 245 246 void perf_env__init(struct perf_env *env) 247 { 248 #ifdef HAVE_LIBBPF_SUPPORT 249 env->bpf_progs.infos = RB_ROOT; 250 env->bpf_progs.btfs = RB_ROOT; 251 init_rwsem(&env->bpf_progs.lock); 252 #endif 253 env->kernel_is_64_bit = -1; 254 } 255 256 static void perf_env__init_kernel_mode(struct perf_env *env) 257 { 258 const char *arch = perf_env__raw_arch(env); 259 260 if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) || 261 !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) || 262 !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) || 263 !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7)) 264 env->kernel_is_64_bit = 1; 265 else 266 env->kernel_is_64_bit = 0; 267 } 268 269 int perf_env__kernel_is_64_bit(struct perf_env *env) 270 { 271 if (env->kernel_is_64_bit == -1) 272 perf_env__init_kernel_mode(env); 273 274 return env->kernel_is_64_bit; 275 } 276 277 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[]) 278 { 279 int i; 280 281 /* do not include NULL termination */ 282 env->cmdline_argv = calloc(argc, sizeof(char *)); 283 if (env->cmdline_argv == NULL) 284 goto out_enomem; 285 286 /* 287 * Must copy argv contents because it gets moved around during option 288 * parsing: 289 */ 290 for (i = 0; i < argc ; i++) { 291 env->cmdline_argv[i] = argv[i]; 292 if (env->cmdline_argv[i] == NULL) 293 goto out_free; 294 } 295 296 env->nr_cmdline = argc; 297 298 return 0; 299 out_free: 300 zfree(&env->cmdline_argv); 301 out_enomem: 302 return -ENOMEM; 303 } 304 305 int perf_env__read_cpu_topology_map(struct perf_env *env) 306 { 307 int idx, nr_cpus; 308 309 if (env->cpu != NULL) 310 return 0; 311 312 if (env->nr_cpus_avail == 0) 313 env->nr_cpus_avail = cpu__max_present_cpu().cpu; 314 315 nr_cpus = env->nr_cpus_avail; 316 if (nr_cpus == -1) 317 return -EINVAL; 318 319 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0])); 320 if (env->cpu == NULL) 321 return -ENOMEM; 322 323 for (idx = 0; idx < nr_cpus; ++idx) { 324 struct perf_cpu cpu = { .cpu = idx }; 325 326 env->cpu[idx].core_id = cpu__get_core_id(cpu); 327 env->cpu[idx].socket_id = cpu__get_socket_id(cpu); 328 env->cpu[idx].die_id = cpu__get_die_id(cpu); 329 } 330 331 env->nr_cpus_avail = nr_cpus; 332 return 0; 333 } 334 335 int perf_env__read_pmu_mappings(struct perf_env *env) 336 { 337 struct perf_pmu *pmu = NULL; 338 u32 pmu_num = 0; 339 struct strbuf sb; 340 341 while ((pmu = perf_pmus__scan(pmu))) 342 pmu_num++; 343 344 if (!pmu_num) { 345 pr_debug("pmu mappings not available\n"); 346 return -ENOENT; 347 } 348 env->nr_pmu_mappings = pmu_num; 349 350 if (strbuf_init(&sb, 128 * pmu_num) < 0) 351 return -ENOMEM; 352 353 while ((pmu = perf_pmus__scan(pmu))) { 354 if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0) 355 goto error; 356 /* include a NULL character at the end */ 357 if (strbuf_add(&sb, "", 1) < 0) 358 goto error; 359 } 360 361 env->pmu_mappings = strbuf_detach(&sb, NULL); 362 363 return 0; 364 365 error: 366 strbuf_release(&sb); 367 return -1; 368 } 369 370 int perf_env__read_cpuid(struct perf_env *env) 371 { 372 char cpuid[128]; 373 int err = get_cpuid(cpuid, sizeof(cpuid)); 374 375 if (err) 376 return err; 377 378 free(env->cpuid); 379 env->cpuid = strdup(cpuid); 380 if (env->cpuid == NULL) 381 return ENOMEM; 382 return 0; 383 } 384 385 static int perf_env__read_arch(struct perf_env *env) 386 { 387 struct utsname uts; 388 389 if (env->arch) 390 return 0; 391 392 if (!uname(&uts)) 393 env->arch = strdup(uts.machine); 394 395 return env->arch ? 0 : -ENOMEM; 396 } 397 398 static int perf_env__read_nr_cpus_avail(struct perf_env *env) 399 { 400 if (env->nr_cpus_avail == 0) 401 env->nr_cpus_avail = cpu__max_present_cpu().cpu; 402 403 return env->nr_cpus_avail ? 0 : -ENOENT; 404 } 405 406 const char *perf_env__raw_arch(struct perf_env *env) 407 { 408 return env && !perf_env__read_arch(env) ? env->arch : "unknown"; 409 } 410 411 int perf_env__nr_cpus_avail(struct perf_env *env) 412 { 413 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0; 414 } 415 416 void cpu_cache_level__free(struct cpu_cache_level *cache) 417 { 418 zfree(&cache->type); 419 zfree(&cache->map); 420 zfree(&cache->size); 421 } 422 423 /* 424 * Return architecture name in a normalized form. 425 * The conversion logic comes from the Makefile. 426 */ 427 static const char *normalize_arch(char *arch) 428 { 429 if (!strcmp(arch, "x86_64")) 430 return "x86"; 431 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6') 432 return "x86"; 433 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5)) 434 return "sparc"; 435 if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5)) 436 return "arm64"; 437 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110")) 438 return "arm"; 439 if (!strncmp(arch, "s390", 4)) 440 return "s390"; 441 if (!strncmp(arch, "parisc", 6)) 442 return "parisc"; 443 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3)) 444 return "powerpc"; 445 if (!strncmp(arch, "mips", 4)) 446 return "mips"; 447 if (!strncmp(arch, "sh", 2) && isdigit(arch[2])) 448 return "sh"; 449 if (!strncmp(arch, "loongarch", 9)) 450 return "loongarch"; 451 452 return arch; 453 } 454 455 const char *perf_env__arch(struct perf_env *env) 456 { 457 char *arch_name; 458 459 if (!env || !env->arch) { /* Assume local operation */ 460 static struct utsname uts = { .machine[0] = '\0', }; 461 if (uts.machine[0] == '\0' && uname(&uts) < 0) 462 return NULL; 463 arch_name = uts.machine; 464 } else 465 arch_name = env->arch; 466 467 return normalize_arch(arch_name); 468 } 469 470 const char *perf_env__cpuid(struct perf_env *env) 471 { 472 int status; 473 474 if (!env || !env->cpuid) { /* Assume local operation */ 475 status = perf_env__read_cpuid(env); 476 if (status) 477 return NULL; 478 } 479 480 return env->cpuid; 481 } 482 483 int perf_env__nr_pmu_mappings(struct perf_env *env) 484 { 485 int status; 486 487 if (!env || !env->nr_pmu_mappings) { /* Assume local operation */ 488 status = perf_env__read_pmu_mappings(env); 489 if (status) 490 return 0; 491 } 492 493 return env->nr_pmu_mappings; 494 } 495 496 const char *perf_env__pmu_mappings(struct perf_env *env) 497 { 498 int status; 499 500 if (!env || !env->pmu_mappings) { /* Assume local operation */ 501 status = perf_env__read_pmu_mappings(env); 502 if (status) 503 return NULL; 504 } 505 506 return env->pmu_mappings; 507 } 508 509 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu) 510 { 511 if (!env->nr_numa_map) { 512 struct numa_node *nn; 513 int i, nr = 0; 514 515 for (i = 0; i < env->nr_numa_nodes; i++) { 516 nn = &env->numa_nodes[i]; 517 nr = max(nr, perf_cpu_map__max(nn->map).cpu); 518 } 519 520 nr++; 521 522 /* 523 * We initialize the numa_map array to prepare 524 * it for missing cpus, which return node -1 525 */ 526 env->numa_map = malloc(nr * sizeof(int)); 527 if (!env->numa_map) 528 return -1; 529 530 for (i = 0; i < nr; i++) 531 env->numa_map[i] = -1; 532 533 env->nr_numa_map = nr; 534 535 for (i = 0; i < env->nr_numa_nodes; i++) { 536 struct perf_cpu tmp; 537 int j; 538 539 nn = &env->numa_nodes[i]; 540 perf_cpu_map__for_each_cpu(tmp, j, nn->map) 541 env->numa_map[tmp.cpu] = i; 542 } 543 } 544 545 return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1; 546 } 547 548 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name, 549 const char *cap) 550 { 551 char *cap_eq; 552 int cap_size; 553 char **ptr; 554 int i, j; 555 556 if (!pmu_name || !cap) 557 return NULL; 558 559 cap_size = strlen(cap); 560 cap_eq = zalloc(cap_size + 2); 561 if (!cap_eq) 562 return NULL; 563 564 memcpy(cap_eq, cap, cap_size); 565 cap_eq[cap_size] = '='; 566 567 if (!strcmp(pmu_name, "cpu")) { 568 for (i = 0; i < env->nr_cpu_pmu_caps; i++) { 569 if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) { 570 free(cap_eq); 571 return &env->cpu_pmu_caps[i][cap_size + 1]; 572 } 573 } 574 goto out; 575 } 576 577 for (i = 0; i < env->nr_pmus_with_caps; i++) { 578 if (strcmp(env->pmu_caps[i].pmu_name, pmu_name)) 579 continue; 580 581 ptr = env->pmu_caps[i].caps; 582 583 for (j = 0; j < env->pmu_caps[i].nr_caps; j++) { 584 if (!strncmp(ptr[j], cap_eq, cap_size + 1)) { 585 free(cap_eq); 586 return &ptr[j][cap_size + 1]; 587 } 588 } 589 } 590 591 out: 592 free(cap_eq); 593 return NULL; 594 } 595