xref: /openbmc/linux/tools/perf/util/env.c (revision 9aa2cba7a275b2c0b10c95ea60aced015a5535e1)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "cgroup.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include "pmus.h"
14 #include "strbuf.h"
15 
16 struct perf_env perf_env;
17 
18 #ifdef HAVE_LIBBPF_SUPPORT
19 #include "bpf-event.h"
20 #include "bpf-utils.h"
21 #include <bpf/libbpf.h>
22 
23 void perf_env__insert_bpf_prog_info(struct perf_env *env,
24 				    struct bpf_prog_info_node *info_node)
25 {
26 	down_write(&env->bpf_progs.lock);
27 	__perf_env__insert_bpf_prog_info(env, info_node);
28 	up_write(&env->bpf_progs.lock);
29 }
30 
31 void __perf_env__insert_bpf_prog_info(struct perf_env *env, struct bpf_prog_info_node *info_node)
32 {
33 	__u32 prog_id = info_node->info_linear->info.id;
34 	struct bpf_prog_info_node *node;
35 	struct rb_node *parent = NULL;
36 	struct rb_node **p;
37 
38 	p = &env->bpf_progs.infos.rb_node;
39 
40 	while (*p != NULL) {
41 		parent = *p;
42 		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
43 		if (prog_id < node->info_linear->info.id) {
44 			p = &(*p)->rb_left;
45 		} else if (prog_id > node->info_linear->info.id) {
46 			p = &(*p)->rb_right;
47 		} else {
48 			pr_debug("duplicated bpf prog info %u\n", prog_id);
49 			return;
50 		}
51 	}
52 
53 	rb_link_node(&info_node->rb_node, parent, p);
54 	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
55 	env->bpf_progs.infos_cnt++;
56 }
57 
58 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
59 							__u32 prog_id)
60 {
61 	struct bpf_prog_info_node *node = NULL;
62 	struct rb_node *n;
63 
64 	down_read(&env->bpf_progs.lock);
65 	n = env->bpf_progs.infos.rb_node;
66 
67 	while (n) {
68 		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
69 		if (prog_id < node->info_linear->info.id)
70 			n = n->rb_left;
71 		else if (prog_id > node->info_linear->info.id)
72 			n = n->rb_right;
73 		else
74 			goto out;
75 	}
76 	node = NULL;
77 
78 out:
79 	up_read(&env->bpf_progs.lock);
80 	return node;
81 }
82 
83 bool perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
84 {
85 	bool ret;
86 
87 	down_write(&env->bpf_progs.lock);
88 	ret = __perf_env__insert_btf(env, btf_node);
89 	up_write(&env->bpf_progs.lock);
90 	return ret;
91 }
92 
93 bool __perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
94 {
95 	struct rb_node *parent = NULL;
96 	__u32 btf_id = btf_node->id;
97 	struct btf_node *node;
98 	struct rb_node **p;
99 
100 	p = &env->bpf_progs.btfs.rb_node;
101 
102 	while (*p != NULL) {
103 		parent = *p;
104 		node = rb_entry(parent, struct btf_node, rb_node);
105 		if (btf_id < node->id) {
106 			p = &(*p)->rb_left;
107 		} else if (btf_id > node->id) {
108 			p = &(*p)->rb_right;
109 		} else {
110 			pr_debug("duplicated btf %u\n", btf_id);
111 			return false;
112 		}
113 	}
114 
115 	rb_link_node(&btf_node->rb_node, parent, p);
116 	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
117 	env->bpf_progs.btfs_cnt++;
118 	return true;
119 }
120 
121 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
122 {
123 	struct btf_node *res;
124 
125 	down_read(&env->bpf_progs.lock);
126 	res = __perf_env__find_btf(env, btf_id);
127 	up_read(&env->bpf_progs.lock);
128 	return res;
129 }
130 
131 struct btf_node *__perf_env__find_btf(struct perf_env *env, __u32 btf_id)
132 {
133 	struct btf_node *node = NULL;
134 	struct rb_node *n;
135 
136 	n = env->bpf_progs.btfs.rb_node;
137 
138 	while (n) {
139 		node = rb_entry(n, struct btf_node, rb_node);
140 		if (btf_id < node->id)
141 			n = n->rb_left;
142 		else if (btf_id > node->id)
143 			n = n->rb_right;
144 		else
145 			return node;
146 	}
147 	return NULL;
148 }
149 
150 /* purge data in bpf_progs.infos tree */
151 static void perf_env__purge_bpf(struct perf_env *env)
152 {
153 	struct rb_root *root;
154 	struct rb_node *next;
155 
156 	down_write(&env->bpf_progs.lock);
157 
158 	root = &env->bpf_progs.infos;
159 	next = rb_first(root);
160 
161 	while (next) {
162 		struct bpf_prog_info_node *node;
163 
164 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
165 		next = rb_next(&node->rb_node);
166 		rb_erase(&node->rb_node, root);
167 		zfree(&node->info_linear);
168 		free(node);
169 	}
170 
171 	env->bpf_progs.infos_cnt = 0;
172 
173 	root = &env->bpf_progs.btfs;
174 	next = rb_first(root);
175 
176 	while (next) {
177 		struct btf_node *node;
178 
179 		node = rb_entry(next, struct btf_node, rb_node);
180 		next = rb_next(&node->rb_node);
181 		rb_erase(&node->rb_node, root);
182 		free(node);
183 	}
184 
185 	env->bpf_progs.btfs_cnt = 0;
186 
187 	up_write(&env->bpf_progs.lock);
188 }
189 #else // HAVE_LIBBPF_SUPPORT
190 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
191 {
192 }
193 #endif // HAVE_LIBBPF_SUPPORT
194 
195 void perf_env__exit(struct perf_env *env)
196 {
197 	int i, j;
198 
199 	perf_env__purge_bpf(env);
200 	perf_env__purge_cgroups(env);
201 	zfree(&env->hostname);
202 	zfree(&env->os_release);
203 	zfree(&env->version);
204 	zfree(&env->arch);
205 	zfree(&env->cpu_desc);
206 	zfree(&env->cpuid);
207 	zfree(&env->cmdline);
208 	zfree(&env->cmdline_argv);
209 	zfree(&env->sibling_dies);
210 	zfree(&env->sibling_cores);
211 	zfree(&env->sibling_threads);
212 	zfree(&env->pmu_mappings);
213 	zfree(&env->cpu);
214 	for (i = 0; i < env->nr_cpu_pmu_caps; i++)
215 		zfree(&env->cpu_pmu_caps[i]);
216 	zfree(&env->cpu_pmu_caps);
217 	zfree(&env->numa_map);
218 
219 	for (i = 0; i < env->nr_numa_nodes; i++)
220 		perf_cpu_map__put(env->numa_nodes[i].map);
221 	zfree(&env->numa_nodes);
222 
223 	for (i = 0; i < env->caches_cnt; i++)
224 		cpu_cache_level__free(&env->caches[i]);
225 	zfree(&env->caches);
226 
227 	for (i = 0; i < env->nr_memory_nodes; i++)
228 		zfree(&env->memory_nodes[i].set);
229 	zfree(&env->memory_nodes);
230 
231 	for (i = 0; i < env->nr_hybrid_nodes; i++) {
232 		zfree(&env->hybrid_nodes[i].pmu_name);
233 		zfree(&env->hybrid_nodes[i].cpus);
234 	}
235 	zfree(&env->hybrid_nodes);
236 
237 	for (i = 0; i < env->nr_pmus_with_caps; i++) {
238 		for (j = 0; j < env->pmu_caps[i].nr_caps; j++)
239 			zfree(&env->pmu_caps[i].caps[j]);
240 		zfree(&env->pmu_caps[i].caps);
241 		zfree(&env->pmu_caps[i].pmu_name);
242 	}
243 	zfree(&env->pmu_caps);
244 }
245 
246 void perf_env__init(struct perf_env *env)
247 {
248 #ifdef HAVE_LIBBPF_SUPPORT
249 	env->bpf_progs.infos = RB_ROOT;
250 	env->bpf_progs.btfs = RB_ROOT;
251 	init_rwsem(&env->bpf_progs.lock);
252 #endif
253 	env->kernel_is_64_bit = -1;
254 }
255 
256 static void perf_env__init_kernel_mode(struct perf_env *env)
257 {
258 	const char *arch = perf_env__raw_arch(env);
259 
260 	if (!strncmp(arch, "x86_64", 6) || !strncmp(arch, "aarch64", 7) ||
261 	    !strncmp(arch, "arm64", 5) || !strncmp(arch, "mips64", 6) ||
262 	    !strncmp(arch, "parisc64", 8) || !strncmp(arch, "riscv64", 7) ||
263 	    !strncmp(arch, "s390x", 5) || !strncmp(arch, "sparc64", 7))
264 		env->kernel_is_64_bit = 1;
265 	else
266 		env->kernel_is_64_bit = 0;
267 }
268 
269 int perf_env__kernel_is_64_bit(struct perf_env *env)
270 {
271 	if (env->kernel_is_64_bit == -1)
272 		perf_env__init_kernel_mode(env);
273 
274 	return env->kernel_is_64_bit;
275 }
276 
277 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
278 {
279 	int i;
280 
281 	/* do not include NULL termination */
282 	env->cmdline_argv = calloc(argc, sizeof(char *));
283 	if (env->cmdline_argv == NULL)
284 		goto out_enomem;
285 
286 	/*
287 	 * Must copy argv contents because it gets moved around during option
288 	 * parsing:
289 	 */
290 	for (i = 0; i < argc ; i++) {
291 		env->cmdline_argv[i] = argv[i];
292 		if (env->cmdline_argv[i] == NULL)
293 			goto out_free;
294 	}
295 
296 	env->nr_cmdline = argc;
297 
298 	return 0;
299 out_free:
300 	zfree(&env->cmdline_argv);
301 out_enomem:
302 	return -ENOMEM;
303 }
304 
305 int perf_env__read_cpu_topology_map(struct perf_env *env)
306 {
307 	int idx, nr_cpus;
308 
309 	if (env->cpu != NULL)
310 		return 0;
311 
312 	if (env->nr_cpus_avail == 0)
313 		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
314 
315 	nr_cpus = env->nr_cpus_avail;
316 	if (nr_cpus == -1)
317 		return -EINVAL;
318 
319 	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
320 	if (env->cpu == NULL)
321 		return -ENOMEM;
322 
323 	for (idx = 0; idx < nr_cpus; ++idx) {
324 		struct perf_cpu cpu = { .cpu = idx };
325 
326 		env->cpu[idx].core_id	= cpu__get_core_id(cpu);
327 		env->cpu[idx].socket_id	= cpu__get_socket_id(cpu);
328 		env->cpu[idx].die_id	= cpu__get_die_id(cpu);
329 	}
330 
331 	env->nr_cpus_avail = nr_cpus;
332 	return 0;
333 }
334 
335 int perf_env__read_pmu_mappings(struct perf_env *env)
336 {
337 	struct perf_pmu *pmu = NULL;
338 	u32 pmu_num = 0;
339 	struct strbuf sb;
340 
341 	while ((pmu = perf_pmus__scan(pmu)))
342 		pmu_num++;
343 
344 	if (!pmu_num) {
345 		pr_debug("pmu mappings not available\n");
346 		return -ENOENT;
347 	}
348 	env->nr_pmu_mappings = pmu_num;
349 
350 	if (strbuf_init(&sb, 128 * pmu_num) < 0)
351 		return -ENOMEM;
352 
353 	while ((pmu = perf_pmus__scan(pmu))) {
354 		if (strbuf_addf(&sb, "%u:%s", pmu->type, pmu->name) < 0)
355 			goto error;
356 		/* include a NULL character at the end */
357 		if (strbuf_add(&sb, "", 1) < 0)
358 			goto error;
359 	}
360 
361 	env->pmu_mappings = strbuf_detach(&sb, NULL);
362 
363 	return 0;
364 
365 error:
366 	strbuf_release(&sb);
367 	return -1;
368 }
369 
370 int perf_env__read_cpuid(struct perf_env *env)
371 {
372 	char cpuid[128];
373 	int err = get_cpuid(cpuid, sizeof(cpuid));
374 
375 	if (err)
376 		return err;
377 
378 	free(env->cpuid);
379 	env->cpuid = strdup(cpuid);
380 	if (env->cpuid == NULL)
381 		return ENOMEM;
382 	return 0;
383 }
384 
385 static int perf_env__read_arch(struct perf_env *env)
386 {
387 	struct utsname uts;
388 
389 	if (env->arch)
390 		return 0;
391 
392 	if (!uname(&uts))
393 		env->arch = strdup(uts.machine);
394 
395 	return env->arch ? 0 : -ENOMEM;
396 }
397 
398 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
399 {
400 	if (env->nr_cpus_avail == 0)
401 		env->nr_cpus_avail = cpu__max_present_cpu().cpu;
402 
403 	return env->nr_cpus_avail ? 0 : -ENOENT;
404 }
405 
406 const char *perf_env__raw_arch(struct perf_env *env)
407 {
408 	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
409 }
410 
411 int perf_env__nr_cpus_avail(struct perf_env *env)
412 {
413 	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
414 }
415 
416 void cpu_cache_level__free(struct cpu_cache_level *cache)
417 {
418 	zfree(&cache->type);
419 	zfree(&cache->map);
420 	zfree(&cache->size);
421 }
422 
423 /*
424  * Return architecture name in a normalized form.
425  * The conversion logic comes from the Makefile.
426  */
427 static const char *normalize_arch(char *arch)
428 {
429 	if (!strcmp(arch, "x86_64"))
430 		return "x86";
431 	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
432 		return "x86";
433 	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
434 		return "sparc";
435 	if (!strncmp(arch, "aarch64", 7) || !strncmp(arch, "arm64", 5))
436 		return "arm64";
437 	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
438 		return "arm";
439 	if (!strncmp(arch, "s390", 4))
440 		return "s390";
441 	if (!strncmp(arch, "parisc", 6))
442 		return "parisc";
443 	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
444 		return "powerpc";
445 	if (!strncmp(arch, "mips", 4))
446 		return "mips";
447 	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
448 		return "sh";
449 	if (!strncmp(arch, "loongarch", 9))
450 		return "loongarch";
451 
452 	return arch;
453 }
454 
455 const char *perf_env__arch(struct perf_env *env)
456 {
457 	char *arch_name;
458 
459 	if (!env || !env->arch) { /* Assume local operation */
460 		static struct utsname uts = { .machine[0] = '\0', };
461 		if (uts.machine[0] == '\0' && uname(&uts) < 0)
462 			return NULL;
463 		arch_name = uts.machine;
464 	} else
465 		arch_name = env->arch;
466 
467 	return normalize_arch(arch_name);
468 }
469 
470 const char *perf_env__cpuid(struct perf_env *env)
471 {
472 	int status;
473 
474 	if (!env || !env->cpuid) { /* Assume local operation */
475 		status = perf_env__read_cpuid(env);
476 		if (status)
477 			return NULL;
478 	}
479 
480 	return env->cpuid;
481 }
482 
483 int perf_env__nr_pmu_mappings(struct perf_env *env)
484 {
485 	int status;
486 
487 	if (!env || !env->nr_pmu_mappings) { /* Assume local operation */
488 		status = perf_env__read_pmu_mappings(env);
489 		if (status)
490 			return 0;
491 	}
492 
493 	return env->nr_pmu_mappings;
494 }
495 
496 const char *perf_env__pmu_mappings(struct perf_env *env)
497 {
498 	int status;
499 
500 	if (!env || !env->pmu_mappings) { /* Assume local operation */
501 		status = perf_env__read_pmu_mappings(env);
502 		if (status)
503 			return NULL;
504 	}
505 
506 	return env->pmu_mappings;
507 }
508 
509 int perf_env__numa_node(struct perf_env *env, struct perf_cpu cpu)
510 {
511 	if (!env->nr_numa_map) {
512 		struct numa_node *nn;
513 		int i, nr = 0;
514 
515 		for (i = 0; i < env->nr_numa_nodes; i++) {
516 			nn = &env->numa_nodes[i];
517 			nr = max(nr, perf_cpu_map__max(nn->map).cpu);
518 		}
519 
520 		nr++;
521 
522 		/*
523 		 * We initialize the numa_map array to prepare
524 		 * it for missing cpus, which return node -1
525 		 */
526 		env->numa_map = malloc(nr * sizeof(int));
527 		if (!env->numa_map)
528 			return -1;
529 
530 		for (i = 0; i < nr; i++)
531 			env->numa_map[i] = -1;
532 
533 		env->nr_numa_map = nr;
534 
535 		for (i = 0; i < env->nr_numa_nodes; i++) {
536 			struct perf_cpu tmp;
537 			int j;
538 
539 			nn = &env->numa_nodes[i];
540 			perf_cpu_map__for_each_cpu(tmp, j, nn->map)
541 				env->numa_map[tmp.cpu] = i;
542 		}
543 	}
544 
545 	return cpu.cpu >= 0 && cpu.cpu < env->nr_numa_map ? env->numa_map[cpu.cpu] : -1;
546 }
547 
548 char *perf_env__find_pmu_cap(struct perf_env *env, const char *pmu_name,
549 			     const char *cap)
550 {
551 	char *cap_eq;
552 	int cap_size;
553 	char **ptr;
554 	int i, j;
555 
556 	if (!pmu_name || !cap)
557 		return NULL;
558 
559 	cap_size = strlen(cap);
560 	cap_eq = zalloc(cap_size + 2);
561 	if (!cap_eq)
562 		return NULL;
563 
564 	memcpy(cap_eq, cap, cap_size);
565 	cap_eq[cap_size] = '=';
566 
567 	if (!strcmp(pmu_name, "cpu")) {
568 		for (i = 0; i < env->nr_cpu_pmu_caps; i++) {
569 			if (!strncmp(env->cpu_pmu_caps[i], cap_eq, cap_size + 1)) {
570 				free(cap_eq);
571 				return &env->cpu_pmu_caps[i][cap_size + 1];
572 			}
573 		}
574 		goto out;
575 	}
576 
577 	for (i = 0; i < env->nr_pmus_with_caps; i++) {
578 		if (strcmp(env->pmu_caps[i].pmu_name, pmu_name))
579 			continue;
580 
581 		ptr = env->pmu_caps[i].caps;
582 
583 		for (j = 0; j < env->pmu_caps[i].nr_caps; j++) {
584 			if (!strncmp(ptr[j], cap_eq, cap_size + 1)) {
585 				free(cap_eq);
586 				return &ptr[j][cap_size + 1];
587 			}
588 		}
589 	}
590 
591 out:
592 	free(cap_eq);
593 	return NULL;
594 }
595