xref: /openbmc/linux/tools/perf/util/env.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "cpumap.h"
3 #include "debug.h"
4 #include "env.h"
5 #include "util/header.h"
6 #include <linux/ctype.h>
7 #include <linux/zalloc.h>
8 #include "cgroup.h"
9 #include <errno.h>
10 #include <sys/utsname.h>
11 #include <stdlib.h>
12 #include <string.h>
13 
14 struct perf_env perf_env;
15 
16 #ifdef HAVE_LIBBPF_SUPPORT
17 #include "bpf-event.h"
18 #include <bpf/libbpf.h>
19 
20 void perf_env__insert_bpf_prog_info(struct perf_env *env,
21 				    struct bpf_prog_info_node *info_node)
22 {
23 	__u32 prog_id = info_node->info_linear->info.id;
24 	struct bpf_prog_info_node *node;
25 	struct rb_node *parent = NULL;
26 	struct rb_node **p;
27 
28 	down_write(&env->bpf_progs.lock);
29 	p = &env->bpf_progs.infos.rb_node;
30 
31 	while (*p != NULL) {
32 		parent = *p;
33 		node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
34 		if (prog_id < node->info_linear->info.id) {
35 			p = &(*p)->rb_left;
36 		} else if (prog_id > node->info_linear->info.id) {
37 			p = &(*p)->rb_right;
38 		} else {
39 			pr_debug("duplicated bpf prog info %u\n", prog_id);
40 			goto out;
41 		}
42 	}
43 
44 	rb_link_node(&info_node->rb_node, parent, p);
45 	rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
46 	env->bpf_progs.infos_cnt++;
47 out:
48 	up_write(&env->bpf_progs.lock);
49 }
50 
51 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
52 							__u32 prog_id)
53 {
54 	struct bpf_prog_info_node *node = NULL;
55 	struct rb_node *n;
56 
57 	down_read(&env->bpf_progs.lock);
58 	n = env->bpf_progs.infos.rb_node;
59 
60 	while (n) {
61 		node = rb_entry(n, struct bpf_prog_info_node, rb_node);
62 		if (prog_id < node->info_linear->info.id)
63 			n = n->rb_left;
64 		else if (prog_id > node->info_linear->info.id)
65 			n = n->rb_right;
66 		else
67 			goto out;
68 	}
69 	node = NULL;
70 
71 out:
72 	up_read(&env->bpf_progs.lock);
73 	return node;
74 }
75 
76 void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
77 {
78 	struct rb_node *parent = NULL;
79 	__u32 btf_id = btf_node->id;
80 	struct btf_node *node;
81 	struct rb_node **p;
82 
83 	down_write(&env->bpf_progs.lock);
84 	p = &env->bpf_progs.btfs.rb_node;
85 
86 	while (*p != NULL) {
87 		parent = *p;
88 		node = rb_entry(parent, struct btf_node, rb_node);
89 		if (btf_id < node->id) {
90 			p = &(*p)->rb_left;
91 		} else if (btf_id > node->id) {
92 			p = &(*p)->rb_right;
93 		} else {
94 			pr_debug("duplicated btf %u\n", btf_id);
95 			goto out;
96 		}
97 	}
98 
99 	rb_link_node(&btf_node->rb_node, parent, p);
100 	rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
101 	env->bpf_progs.btfs_cnt++;
102 out:
103 	up_write(&env->bpf_progs.lock);
104 }
105 
106 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
107 {
108 	struct btf_node *node = NULL;
109 	struct rb_node *n;
110 
111 	down_read(&env->bpf_progs.lock);
112 	n = env->bpf_progs.btfs.rb_node;
113 
114 	while (n) {
115 		node = rb_entry(n, struct btf_node, rb_node);
116 		if (btf_id < node->id)
117 			n = n->rb_left;
118 		else if (btf_id > node->id)
119 			n = n->rb_right;
120 		else
121 			goto out;
122 	}
123 	node = NULL;
124 
125 out:
126 	up_read(&env->bpf_progs.lock);
127 	return node;
128 }
129 
130 /* purge data in bpf_progs.infos tree */
131 static void perf_env__purge_bpf(struct perf_env *env)
132 {
133 	struct rb_root *root;
134 	struct rb_node *next;
135 
136 	down_write(&env->bpf_progs.lock);
137 
138 	root = &env->bpf_progs.infos;
139 	next = rb_first(root);
140 
141 	while (next) {
142 		struct bpf_prog_info_node *node;
143 
144 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
145 		next = rb_next(&node->rb_node);
146 		rb_erase(&node->rb_node, root);
147 		free(node->info_linear);
148 		free(node);
149 	}
150 
151 	env->bpf_progs.infos_cnt = 0;
152 
153 	root = &env->bpf_progs.btfs;
154 	next = rb_first(root);
155 
156 	while (next) {
157 		struct btf_node *node;
158 
159 		node = rb_entry(next, struct btf_node, rb_node);
160 		next = rb_next(&node->rb_node);
161 		rb_erase(&node->rb_node, root);
162 		free(node);
163 	}
164 
165 	env->bpf_progs.btfs_cnt = 0;
166 
167 	up_write(&env->bpf_progs.lock);
168 }
169 #else // HAVE_LIBBPF_SUPPORT
170 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
171 {
172 }
173 #endif // HAVE_LIBBPF_SUPPORT
174 
175 void perf_env__exit(struct perf_env *env)
176 {
177 	int i;
178 
179 	perf_env__purge_bpf(env);
180 	perf_env__purge_cgroups(env);
181 	zfree(&env->hostname);
182 	zfree(&env->os_release);
183 	zfree(&env->version);
184 	zfree(&env->arch);
185 	zfree(&env->cpu_desc);
186 	zfree(&env->cpuid);
187 	zfree(&env->cmdline);
188 	zfree(&env->cmdline_argv);
189 	zfree(&env->sibling_dies);
190 	zfree(&env->sibling_cores);
191 	zfree(&env->sibling_threads);
192 	zfree(&env->pmu_mappings);
193 	zfree(&env->cpu);
194 	zfree(&env->cpu_pmu_caps);
195 	zfree(&env->numa_map);
196 
197 	for (i = 0; i < env->nr_numa_nodes; i++)
198 		perf_cpu_map__put(env->numa_nodes[i].map);
199 	zfree(&env->numa_nodes);
200 
201 	for (i = 0; i < env->caches_cnt; i++)
202 		cpu_cache_level__free(&env->caches[i]);
203 	zfree(&env->caches);
204 
205 	for (i = 0; i < env->nr_memory_nodes; i++)
206 		zfree(&env->memory_nodes[i].set);
207 	zfree(&env->memory_nodes);
208 
209 	for (i = 0; i < env->nr_hybrid_nodes; i++) {
210 		zfree(&env->hybrid_nodes[i].pmu_name);
211 		zfree(&env->hybrid_nodes[i].cpus);
212 	}
213 	zfree(&env->hybrid_nodes);
214 
215 	for (i = 0; i < env->nr_hybrid_cpc_nodes; i++) {
216 		zfree(&env->hybrid_cpc_nodes[i].cpu_pmu_caps);
217 		zfree(&env->hybrid_cpc_nodes[i].pmu_name);
218 	}
219 	zfree(&env->hybrid_cpc_nodes);
220 }
221 
222 void perf_env__init(struct perf_env *env __maybe_unused)
223 {
224 #ifdef HAVE_LIBBPF_SUPPORT
225 	env->bpf_progs.infos = RB_ROOT;
226 	env->bpf_progs.btfs = RB_ROOT;
227 	init_rwsem(&env->bpf_progs.lock);
228 #endif
229 }
230 
231 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
232 {
233 	int i;
234 
235 	/* do not include NULL termination */
236 	env->cmdline_argv = calloc(argc, sizeof(char *));
237 	if (env->cmdline_argv == NULL)
238 		goto out_enomem;
239 
240 	/*
241 	 * Must copy argv contents because it gets moved around during option
242 	 * parsing:
243 	 */
244 	for (i = 0; i < argc ; i++) {
245 		env->cmdline_argv[i] = argv[i];
246 		if (env->cmdline_argv[i] == NULL)
247 			goto out_free;
248 	}
249 
250 	env->nr_cmdline = argc;
251 
252 	return 0;
253 out_free:
254 	zfree(&env->cmdline_argv);
255 out_enomem:
256 	return -ENOMEM;
257 }
258 
259 int perf_env__read_cpu_topology_map(struct perf_env *env)
260 {
261 	int cpu, nr_cpus;
262 
263 	if (env->cpu != NULL)
264 		return 0;
265 
266 	if (env->nr_cpus_avail == 0)
267 		env->nr_cpus_avail = cpu__max_present_cpu();
268 
269 	nr_cpus = env->nr_cpus_avail;
270 	if (nr_cpus == -1)
271 		return -EINVAL;
272 
273 	env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
274 	if (env->cpu == NULL)
275 		return -ENOMEM;
276 
277 	for (cpu = 0; cpu < nr_cpus; ++cpu) {
278 		env->cpu[cpu].core_id	= cpu_map__get_core_id(cpu);
279 		env->cpu[cpu].socket_id	= cpu_map__get_socket_id(cpu);
280 		env->cpu[cpu].die_id	= cpu_map__get_die_id(cpu);
281 	}
282 
283 	env->nr_cpus_avail = nr_cpus;
284 	return 0;
285 }
286 
287 int perf_env__read_cpuid(struct perf_env *env)
288 {
289 	char cpuid[128];
290 	int err = get_cpuid(cpuid, sizeof(cpuid));
291 
292 	if (err)
293 		return err;
294 
295 	free(env->cpuid);
296 	env->cpuid = strdup(cpuid);
297 	if (env->cpuid == NULL)
298 		return ENOMEM;
299 	return 0;
300 }
301 
302 static int perf_env__read_arch(struct perf_env *env)
303 {
304 	struct utsname uts;
305 
306 	if (env->arch)
307 		return 0;
308 
309 	if (!uname(&uts))
310 		env->arch = strdup(uts.machine);
311 
312 	return env->arch ? 0 : -ENOMEM;
313 }
314 
315 static int perf_env__read_nr_cpus_avail(struct perf_env *env)
316 {
317 	if (env->nr_cpus_avail == 0)
318 		env->nr_cpus_avail = cpu__max_present_cpu();
319 
320 	return env->nr_cpus_avail ? 0 : -ENOENT;
321 }
322 
323 const char *perf_env__raw_arch(struct perf_env *env)
324 {
325 	return env && !perf_env__read_arch(env) ? env->arch : "unknown";
326 }
327 
328 int perf_env__nr_cpus_avail(struct perf_env *env)
329 {
330 	return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
331 }
332 
333 void cpu_cache_level__free(struct cpu_cache_level *cache)
334 {
335 	zfree(&cache->type);
336 	zfree(&cache->map);
337 	zfree(&cache->size);
338 }
339 
340 /*
341  * Return architecture name in a normalized form.
342  * The conversion logic comes from the Makefile.
343  */
344 static const char *normalize_arch(char *arch)
345 {
346 	if (!strcmp(arch, "x86_64"))
347 		return "x86";
348 	if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
349 		return "x86";
350 	if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
351 		return "sparc";
352 	if (!strcmp(arch, "aarch64") || !strcmp(arch, "arm64"))
353 		return "arm64";
354 	if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
355 		return "arm";
356 	if (!strncmp(arch, "s390", 4))
357 		return "s390";
358 	if (!strncmp(arch, "parisc", 6))
359 		return "parisc";
360 	if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
361 		return "powerpc";
362 	if (!strncmp(arch, "mips", 4))
363 		return "mips";
364 	if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
365 		return "sh";
366 
367 	return arch;
368 }
369 
370 const char *perf_env__arch(struct perf_env *env)
371 {
372 	char *arch_name;
373 
374 	if (!env || !env->arch) { /* Assume local operation */
375 		static struct utsname uts = { .machine[0] = '\0', };
376 		if (uts.machine[0] == '\0' && uname(&uts) < 0)
377 			return NULL;
378 		arch_name = uts.machine;
379 	} else
380 		arch_name = env->arch;
381 
382 	return normalize_arch(arch_name);
383 }
384 
385 
386 int perf_env__numa_node(struct perf_env *env, int cpu)
387 {
388 	if (!env->nr_numa_map) {
389 		struct numa_node *nn;
390 		int i, nr = 0;
391 
392 		for (i = 0; i < env->nr_numa_nodes; i++) {
393 			nn = &env->numa_nodes[i];
394 			nr = max(nr, perf_cpu_map__max(nn->map));
395 		}
396 
397 		nr++;
398 
399 		/*
400 		 * We initialize the numa_map array to prepare
401 		 * it for missing cpus, which return node -1
402 		 */
403 		env->numa_map = malloc(nr * sizeof(int));
404 		if (!env->numa_map)
405 			return -1;
406 
407 		for (i = 0; i < nr; i++)
408 			env->numa_map[i] = -1;
409 
410 		env->nr_numa_map = nr;
411 
412 		for (i = 0; i < env->nr_numa_nodes; i++) {
413 			int tmp, j;
414 
415 			nn = &env->numa_nodes[i];
416 			perf_cpu_map__for_each_cpu(j, tmp, nn->map)
417 				env->numa_map[j] = i;
418 		}
419 	}
420 
421 	return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1;
422 }
423