1 // SPDX-License-Identifier: GPL-2.0 2 #include "cpumap.h" 3 #include "debug.h" 4 #include "env.h" 5 #include "util/header.h" 6 #include <linux/ctype.h> 7 #include <linux/zalloc.h> 8 #include "cgroup.h" 9 #include <errno.h> 10 #include <sys/utsname.h> 11 #include <stdlib.h> 12 #include <string.h> 13 14 struct perf_env perf_env; 15 16 #ifdef HAVE_LIBBPF_SUPPORT 17 #include "bpf-event.h" 18 #include <bpf/libbpf.h> 19 20 void perf_env__insert_bpf_prog_info(struct perf_env *env, 21 struct bpf_prog_info_node *info_node) 22 { 23 __u32 prog_id = info_node->info_linear->info.id; 24 struct bpf_prog_info_node *node; 25 struct rb_node *parent = NULL; 26 struct rb_node **p; 27 28 down_write(&env->bpf_progs.lock); 29 p = &env->bpf_progs.infos.rb_node; 30 31 while (*p != NULL) { 32 parent = *p; 33 node = rb_entry(parent, struct bpf_prog_info_node, rb_node); 34 if (prog_id < node->info_linear->info.id) { 35 p = &(*p)->rb_left; 36 } else if (prog_id > node->info_linear->info.id) { 37 p = &(*p)->rb_right; 38 } else { 39 pr_debug("duplicated bpf prog info %u\n", prog_id); 40 goto out; 41 } 42 } 43 44 rb_link_node(&info_node->rb_node, parent, p); 45 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos); 46 env->bpf_progs.infos_cnt++; 47 out: 48 up_write(&env->bpf_progs.lock); 49 } 50 51 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env, 52 __u32 prog_id) 53 { 54 struct bpf_prog_info_node *node = NULL; 55 struct rb_node *n; 56 57 down_read(&env->bpf_progs.lock); 58 n = env->bpf_progs.infos.rb_node; 59 60 while (n) { 61 node = rb_entry(n, struct bpf_prog_info_node, rb_node); 62 if (prog_id < node->info_linear->info.id) 63 n = n->rb_left; 64 else if (prog_id > node->info_linear->info.id) 65 n = n->rb_right; 66 else 67 goto out; 68 } 69 node = NULL; 70 71 out: 72 up_read(&env->bpf_progs.lock); 73 return node; 74 } 75 76 void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) 77 { 78 struct rb_node *parent = NULL; 79 __u32 btf_id = btf_node->id; 80 struct btf_node *node; 81 struct rb_node **p; 82 83 down_write(&env->bpf_progs.lock); 84 p = &env->bpf_progs.btfs.rb_node; 85 86 while (*p != NULL) { 87 parent = *p; 88 node = rb_entry(parent, struct btf_node, rb_node); 89 if (btf_id < node->id) { 90 p = &(*p)->rb_left; 91 } else if (btf_id > node->id) { 92 p = &(*p)->rb_right; 93 } else { 94 pr_debug("duplicated btf %u\n", btf_id); 95 goto out; 96 } 97 } 98 99 rb_link_node(&btf_node->rb_node, parent, p); 100 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs); 101 env->bpf_progs.btfs_cnt++; 102 out: 103 up_write(&env->bpf_progs.lock); 104 } 105 106 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id) 107 { 108 struct btf_node *node = NULL; 109 struct rb_node *n; 110 111 down_read(&env->bpf_progs.lock); 112 n = env->bpf_progs.btfs.rb_node; 113 114 while (n) { 115 node = rb_entry(n, struct btf_node, rb_node); 116 if (btf_id < node->id) 117 n = n->rb_left; 118 else if (btf_id > node->id) 119 n = n->rb_right; 120 else 121 goto out; 122 } 123 node = NULL; 124 125 out: 126 up_read(&env->bpf_progs.lock); 127 return node; 128 } 129 130 /* purge data in bpf_progs.infos tree */ 131 static void perf_env__purge_bpf(struct perf_env *env) 132 { 133 struct rb_root *root; 134 struct rb_node *next; 135 136 down_write(&env->bpf_progs.lock); 137 138 root = &env->bpf_progs.infos; 139 next = rb_first(root); 140 141 while (next) { 142 struct bpf_prog_info_node *node; 143 144 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 145 next = rb_next(&node->rb_node); 146 rb_erase(&node->rb_node, root); 147 free(node); 148 } 149 150 env->bpf_progs.infos_cnt = 0; 151 152 root = &env->bpf_progs.btfs; 153 next = rb_first(root); 154 155 while (next) { 156 struct btf_node *node; 157 158 node = rb_entry(next, struct btf_node, rb_node); 159 next = rb_next(&node->rb_node); 160 rb_erase(&node->rb_node, root); 161 free(node); 162 } 163 164 env->bpf_progs.btfs_cnt = 0; 165 166 up_write(&env->bpf_progs.lock); 167 } 168 #else // HAVE_LIBBPF_SUPPORT 169 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused) 170 { 171 } 172 #endif // HAVE_LIBBPF_SUPPORT 173 174 void perf_env__exit(struct perf_env *env) 175 { 176 int i; 177 178 perf_env__purge_bpf(env); 179 perf_env__purge_cgroups(env); 180 zfree(&env->hostname); 181 zfree(&env->os_release); 182 zfree(&env->version); 183 zfree(&env->arch); 184 zfree(&env->cpu_desc); 185 zfree(&env->cpuid); 186 zfree(&env->cmdline); 187 zfree(&env->cmdline_argv); 188 zfree(&env->sibling_cores); 189 zfree(&env->sibling_threads); 190 zfree(&env->pmu_mappings); 191 zfree(&env->cpu); 192 zfree(&env->numa_map); 193 194 for (i = 0; i < env->nr_numa_nodes; i++) 195 perf_cpu_map__put(env->numa_nodes[i].map); 196 zfree(&env->numa_nodes); 197 198 for (i = 0; i < env->caches_cnt; i++) 199 cpu_cache_level__free(&env->caches[i]); 200 zfree(&env->caches); 201 202 for (i = 0; i < env->nr_memory_nodes; i++) 203 zfree(&env->memory_nodes[i].set); 204 zfree(&env->memory_nodes); 205 } 206 207 void perf_env__init(struct perf_env *env __maybe_unused) 208 { 209 #ifdef HAVE_LIBBPF_SUPPORT 210 env->bpf_progs.infos = RB_ROOT; 211 env->bpf_progs.btfs = RB_ROOT; 212 init_rwsem(&env->bpf_progs.lock); 213 #endif 214 } 215 216 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[]) 217 { 218 int i; 219 220 /* do not include NULL termination */ 221 env->cmdline_argv = calloc(argc, sizeof(char *)); 222 if (env->cmdline_argv == NULL) 223 goto out_enomem; 224 225 /* 226 * Must copy argv contents because it gets moved around during option 227 * parsing: 228 */ 229 for (i = 0; i < argc ; i++) { 230 env->cmdline_argv[i] = argv[i]; 231 if (env->cmdline_argv[i] == NULL) 232 goto out_free; 233 } 234 235 env->nr_cmdline = argc; 236 237 return 0; 238 out_free: 239 zfree(&env->cmdline_argv); 240 out_enomem: 241 return -ENOMEM; 242 } 243 244 int perf_env__read_cpu_topology_map(struct perf_env *env) 245 { 246 int cpu, nr_cpus; 247 248 if (env->cpu != NULL) 249 return 0; 250 251 if (env->nr_cpus_avail == 0) 252 env->nr_cpus_avail = cpu__max_present_cpu(); 253 254 nr_cpus = env->nr_cpus_avail; 255 if (nr_cpus == -1) 256 return -EINVAL; 257 258 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0])); 259 if (env->cpu == NULL) 260 return -ENOMEM; 261 262 for (cpu = 0; cpu < nr_cpus; ++cpu) { 263 env->cpu[cpu].core_id = cpu_map__get_core_id(cpu); 264 env->cpu[cpu].socket_id = cpu_map__get_socket_id(cpu); 265 env->cpu[cpu].die_id = cpu_map__get_die_id(cpu); 266 } 267 268 env->nr_cpus_avail = nr_cpus; 269 return 0; 270 } 271 272 int perf_env__read_cpuid(struct perf_env *env) 273 { 274 char cpuid[128]; 275 int err = get_cpuid(cpuid, sizeof(cpuid)); 276 277 if (err) 278 return err; 279 280 free(env->cpuid); 281 env->cpuid = strdup(cpuid); 282 if (env->cpuid == NULL) 283 return ENOMEM; 284 return 0; 285 } 286 287 static int perf_env__read_arch(struct perf_env *env) 288 { 289 struct utsname uts; 290 291 if (env->arch) 292 return 0; 293 294 if (!uname(&uts)) 295 env->arch = strdup(uts.machine); 296 297 return env->arch ? 0 : -ENOMEM; 298 } 299 300 static int perf_env__read_nr_cpus_avail(struct perf_env *env) 301 { 302 if (env->nr_cpus_avail == 0) 303 env->nr_cpus_avail = cpu__max_present_cpu(); 304 305 return env->nr_cpus_avail ? 0 : -ENOENT; 306 } 307 308 const char *perf_env__raw_arch(struct perf_env *env) 309 { 310 return env && !perf_env__read_arch(env) ? env->arch : "unknown"; 311 } 312 313 int perf_env__nr_cpus_avail(struct perf_env *env) 314 { 315 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0; 316 } 317 318 void cpu_cache_level__free(struct cpu_cache_level *cache) 319 { 320 zfree(&cache->type); 321 zfree(&cache->map); 322 zfree(&cache->size); 323 } 324 325 /* 326 * Return architecture name in a normalized form. 327 * The conversion logic comes from the Makefile. 328 */ 329 static const char *normalize_arch(char *arch) 330 { 331 if (!strcmp(arch, "x86_64")) 332 return "x86"; 333 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6') 334 return "x86"; 335 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5)) 336 return "sparc"; 337 if (!strcmp(arch, "aarch64") || !strcmp(arch, "arm64")) 338 return "arm64"; 339 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110")) 340 return "arm"; 341 if (!strncmp(arch, "s390", 4)) 342 return "s390"; 343 if (!strncmp(arch, "parisc", 6)) 344 return "parisc"; 345 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3)) 346 return "powerpc"; 347 if (!strncmp(arch, "mips", 4)) 348 return "mips"; 349 if (!strncmp(arch, "sh", 2) && isdigit(arch[2])) 350 return "sh"; 351 352 return arch; 353 } 354 355 const char *perf_env__arch(struct perf_env *env) 356 { 357 char *arch_name; 358 359 if (!env || !env->arch) { /* Assume local operation */ 360 static struct utsname uts = { .machine[0] = '\0', }; 361 if (uts.machine[0] == '\0' && uname(&uts) < 0) 362 return NULL; 363 arch_name = uts.machine; 364 } else 365 arch_name = env->arch; 366 367 return normalize_arch(arch_name); 368 } 369 370 371 int perf_env__numa_node(struct perf_env *env, int cpu) 372 { 373 if (!env->nr_numa_map) { 374 struct numa_node *nn; 375 int i, nr = 0; 376 377 for (i = 0; i < env->nr_numa_nodes; i++) { 378 nn = &env->numa_nodes[i]; 379 nr = max(nr, perf_cpu_map__max(nn->map)); 380 } 381 382 nr++; 383 384 /* 385 * We initialize the numa_map array to prepare 386 * it for missing cpus, which return node -1 387 */ 388 env->numa_map = malloc(nr * sizeof(int)); 389 if (!env->numa_map) 390 return -1; 391 392 for (i = 0; i < nr; i++) 393 env->numa_map[i] = -1; 394 395 env->nr_numa_map = nr; 396 397 for (i = 0; i < env->nr_numa_nodes; i++) { 398 int tmp, j; 399 400 nn = &env->numa_nodes[i]; 401 perf_cpu_map__for_each_cpu(j, tmp, nn->map) 402 env->numa_map[j] = i; 403 } 404 } 405 406 return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1; 407 } 408