1 // SPDX-License-Identifier: GPL-2.0 2 #include "cpumap.h" 3 #include "debug.h" 4 #include "env.h" 5 #include "util/header.h" 6 #include <linux/ctype.h> 7 #include <linux/zalloc.h> 8 #include "cgroup.h" 9 #include <errno.h> 10 #include <sys/utsname.h> 11 #include <stdlib.h> 12 #include <string.h> 13 14 struct perf_env perf_env; 15 16 #ifdef HAVE_LIBBPF_SUPPORT 17 #include "bpf-event.h" 18 #include <bpf/libbpf.h> 19 20 void perf_env__insert_bpf_prog_info(struct perf_env *env, 21 struct bpf_prog_info_node *info_node) 22 { 23 __u32 prog_id = info_node->info_linear->info.id; 24 struct bpf_prog_info_node *node; 25 struct rb_node *parent = NULL; 26 struct rb_node **p; 27 28 down_write(&env->bpf_progs.lock); 29 p = &env->bpf_progs.infos.rb_node; 30 31 while (*p != NULL) { 32 parent = *p; 33 node = rb_entry(parent, struct bpf_prog_info_node, rb_node); 34 if (prog_id < node->info_linear->info.id) { 35 p = &(*p)->rb_left; 36 } else if (prog_id > node->info_linear->info.id) { 37 p = &(*p)->rb_right; 38 } else { 39 pr_debug("duplicated bpf prog info %u\n", prog_id); 40 goto out; 41 } 42 } 43 44 rb_link_node(&info_node->rb_node, parent, p); 45 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos); 46 env->bpf_progs.infos_cnt++; 47 out: 48 up_write(&env->bpf_progs.lock); 49 } 50 51 struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env, 52 __u32 prog_id) 53 { 54 struct bpf_prog_info_node *node = NULL; 55 struct rb_node *n; 56 57 down_read(&env->bpf_progs.lock); 58 n = env->bpf_progs.infos.rb_node; 59 60 while (n) { 61 node = rb_entry(n, struct bpf_prog_info_node, rb_node); 62 if (prog_id < node->info_linear->info.id) 63 n = n->rb_left; 64 else if (prog_id > node->info_linear->info.id) 65 n = n->rb_right; 66 else 67 goto out; 68 } 69 node = NULL; 70 71 out: 72 up_read(&env->bpf_progs.lock); 73 return node; 74 } 75 76 void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node) 77 { 78 struct rb_node *parent = NULL; 79 __u32 btf_id = btf_node->id; 80 struct btf_node *node; 81 struct rb_node **p; 82 83 down_write(&env->bpf_progs.lock); 84 p = &env->bpf_progs.btfs.rb_node; 85 86 while (*p != NULL) { 87 parent = *p; 88 node = rb_entry(parent, struct btf_node, rb_node); 89 if (btf_id < node->id) { 90 p = &(*p)->rb_left; 91 } else if (btf_id > node->id) { 92 p = &(*p)->rb_right; 93 } else { 94 pr_debug("duplicated btf %u\n", btf_id); 95 goto out; 96 } 97 } 98 99 rb_link_node(&btf_node->rb_node, parent, p); 100 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs); 101 env->bpf_progs.btfs_cnt++; 102 out: 103 up_write(&env->bpf_progs.lock); 104 } 105 106 struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id) 107 { 108 struct btf_node *node = NULL; 109 struct rb_node *n; 110 111 down_read(&env->bpf_progs.lock); 112 n = env->bpf_progs.btfs.rb_node; 113 114 while (n) { 115 node = rb_entry(n, struct btf_node, rb_node); 116 if (btf_id < node->id) 117 n = n->rb_left; 118 else if (btf_id > node->id) 119 n = n->rb_right; 120 else 121 goto out; 122 } 123 node = NULL; 124 125 out: 126 up_read(&env->bpf_progs.lock); 127 return node; 128 } 129 130 /* purge data in bpf_progs.infos tree */ 131 static void perf_env__purge_bpf(struct perf_env *env) 132 { 133 struct rb_root *root; 134 struct rb_node *next; 135 136 down_write(&env->bpf_progs.lock); 137 138 root = &env->bpf_progs.infos; 139 next = rb_first(root); 140 141 while (next) { 142 struct bpf_prog_info_node *node; 143 144 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 145 next = rb_next(&node->rb_node); 146 rb_erase(&node->rb_node, root); 147 free(node->info_linear); 148 free(node); 149 } 150 151 env->bpf_progs.infos_cnt = 0; 152 153 root = &env->bpf_progs.btfs; 154 next = rb_first(root); 155 156 while (next) { 157 struct btf_node *node; 158 159 node = rb_entry(next, struct btf_node, rb_node); 160 next = rb_next(&node->rb_node); 161 rb_erase(&node->rb_node, root); 162 free(node); 163 } 164 165 env->bpf_progs.btfs_cnt = 0; 166 167 up_write(&env->bpf_progs.lock); 168 } 169 #else // HAVE_LIBBPF_SUPPORT 170 static void perf_env__purge_bpf(struct perf_env *env __maybe_unused) 171 { 172 } 173 #endif // HAVE_LIBBPF_SUPPORT 174 175 void perf_env__exit(struct perf_env *env) 176 { 177 int i; 178 179 perf_env__purge_bpf(env); 180 perf_env__purge_cgroups(env); 181 zfree(&env->hostname); 182 zfree(&env->os_release); 183 zfree(&env->version); 184 zfree(&env->arch); 185 zfree(&env->cpu_desc); 186 zfree(&env->cpuid); 187 zfree(&env->cmdline); 188 zfree(&env->cmdline_argv); 189 zfree(&env->sibling_cores); 190 zfree(&env->sibling_threads); 191 zfree(&env->pmu_mappings); 192 zfree(&env->cpu); 193 zfree(&env->numa_map); 194 195 for (i = 0; i < env->nr_numa_nodes; i++) 196 perf_cpu_map__put(env->numa_nodes[i].map); 197 zfree(&env->numa_nodes); 198 199 for (i = 0; i < env->caches_cnt; i++) 200 cpu_cache_level__free(&env->caches[i]); 201 zfree(&env->caches); 202 203 for (i = 0; i < env->nr_memory_nodes; i++) 204 zfree(&env->memory_nodes[i].set); 205 zfree(&env->memory_nodes); 206 } 207 208 void perf_env__init(struct perf_env *env __maybe_unused) 209 { 210 #ifdef HAVE_LIBBPF_SUPPORT 211 env->bpf_progs.infos = RB_ROOT; 212 env->bpf_progs.btfs = RB_ROOT; 213 init_rwsem(&env->bpf_progs.lock); 214 #endif 215 } 216 217 int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[]) 218 { 219 int i; 220 221 /* do not include NULL termination */ 222 env->cmdline_argv = calloc(argc, sizeof(char *)); 223 if (env->cmdline_argv == NULL) 224 goto out_enomem; 225 226 /* 227 * Must copy argv contents because it gets moved around during option 228 * parsing: 229 */ 230 for (i = 0; i < argc ; i++) { 231 env->cmdline_argv[i] = argv[i]; 232 if (env->cmdline_argv[i] == NULL) 233 goto out_free; 234 } 235 236 env->nr_cmdline = argc; 237 238 return 0; 239 out_free: 240 zfree(&env->cmdline_argv); 241 out_enomem: 242 return -ENOMEM; 243 } 244 245 int perf_env__read_cpu_topology_map(struct perf_env *env) 246 { 247 int cpu, nr_cpus; 248 249 if (env->cpu != NULL) 250 return 0; 251 252 if (env->nr_cpus_avail == 0) 253 env->nr_cpus_avail = cpu__max_present_cpu(); 254 255 nr_cpus = env->nr_cpus_avail; 256 if (nr_cpus == -1) 257 return -EINVAL; 258 259 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0])); 260 if (env->cpu == NULL) 261 return -ENOMEM; 262 263 for (cpu = 0; cpu < nr_cpus; ++cpu) { 264 env->cpu[cpu].core_id = cpu_map__get_core_id(cpu); 265 env->cpu[cpu].socket_id = cpu_map__get_socket_id(cpu); 266 env->cpu[cpu].die_id = cpu_map__get_die_id(cpu); 267 } 268 269 env->nr_cpus_avail = nr_cpus; 270 return 0; 271 } 272 273 int perf_env__read_cpuid(struct perf_env *env) 274 { 275 char cpuid[128]; 276 int err = get_cpuid(cpuid, sizeof(cpuid)); 277 278 if (err) 279 return err; 280 281 free(env->cpuid); 282 env->cpuid = strdup(cpuid); 283 if (env->cpuid == NULL) 284 return ENOMEM; 285 return 0; 286 } 287 288 static int perf_env__read_arch(struct perf_env *env) 289 { 290 struct utsname uts; 291 292 if (env->arch) 293 return 0; 294 295 if (!uname(&uts)) 296 env->arch = strdup(uts.machine); 297 298 return env->arch ? 0 : -ENOMEM; 299 } 300 301 static int perf_env__read_nr_cpus_avail(struct perf_env *env) 302 { 303 if (env->nr_cpus_avail == 0) 304 env->nr_cpus_avail = cpu__max_present_cpu(); 305 306 return env->nr_cpus_avail ? 0 : -ENOENT; 307 } 308 309 const char *perf_env__raw_arch(struct perf_env *env) 310 { 311 return env && !perf_env__read_arch(env) ? env->arch : "unknown"; 312 } 313 314 int perf_env__nr_cpus_avail(struct perf_env *env) 315 { 316 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0; 317 } 318 319 void cpu_cache_level__free(struct cpu_cache_level *cache) 320 { 321 zfree(&cache->type); 322 zfree(&cache->map); 323 zfree(&cache->size); 324 } 325 326 /* 327 * Return architecture name in a normalized form. 328 * The conversion logic comes from the Makefile. 329 */ 330 static const char *normalize_arch(char *arch) 331 { 332 if (!strcmp(arch, "x86_64")) 333 return "x86"; 334 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6') 335 return "x86"; 336 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5)) 337 return "sparc"; 338 if (!strcmp(arch, "aarch64") || !strcmp(arch, "arm64")) 339 return "arm64"; 340 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110")) 341 return "arm"; 342 if (!strncmp(arch, "s390", 4)) 343 return "s390"; 344 if (!strncmp(arch, "parisc", 6)) 345 return "parisc"; 346 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3)) 347 return "powerpc"; 348 if (!strncmp(arch, "mips", 4)) 349 return "mips"; 350 if (!strncmp(arch, "sh", 2) && isdigit(arch[2])) 351 return "sh"; 352 353 return arch; 354 } 355 356 const char *perf_env__arch(struct perf_env *env) 357 { 358 char *arch_name; 359 360 if (!env || !env->arch) { /* Assume local operation */ 361 static struct utsname uts = { .machine[0] = '\0', }; 362 if (uts.machine[0] == '\0' && uname(&uts) < 0) 363 return NULL; 364 arch_name = uts.machine; 365 } else 366 arch_name = env->arch; 367 368 return normalize_arch(arch_name); 369 } 370 371 372 int perf_env__numa_node(struct perf_env *env, int cpu) 373 { 374 if (!env->nr_numa_map) { 375 struct numa_node *nn; 376 int i, nr = 0; 377 378 for (i = 0; i < env->nr_numa_nodes; i++) { 379 nn = &env->numa_nodes[i]; 380 nr = max(nr, perf_cpu_map__max(nn->map)); 381 } 382 383 nr++; 384 385 /* 386 * We initialize the numa_map array to prepare 387 * it for missing cpus, which return node -1 388 */ 389 env->numa_map = malloc(nr * sizeof(int)); 390 if (!env->numa_map) 391 return -1; 392 393 for (i = 0; i < nr; i++) 394 env->numa_map[i] = -1; 395 396 env->nr_numa_map = nr; 397 398 for (i = 0; i < env->nr_numa_nodes; i++) { 399 int tmp, j; 400 401 nn = &env->numa_nodes[i]; 402 perf_cpu_map__for_each_cpu(j, tmp, nn->map) 403 env->numa_map[j] = i; 404 } 405 } 406 407 return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1; 408 } 409