1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/bitfield.h> 11 #include <linux/bitops.h> 12 #include <linux/coresight-pmu.h> 13 #include <linux/err.h> 14 #include <linux/log2.h> 15 #include <linux/types.h> 16 #include <linux/zalloc.h> 17 18 #include <stdlib.h> 19 20 #include "auxtrace.h" 21 #include "color.h" 22 #include "cs-etm.h" 23 #include "cs-etm-decoder/cs-etm-decoder.h" 24 #include "debug.h" 25 #include "dso.h" 26 #include "evlist.h" 27 #include "intlist.h" 28 #include "machine.h" 29 #include "map.h" 30 #include "perf.h" 31 #include "session.h" 32 #include "map_symbol.h" 33 #include "branch.h" 34 #include "symbol.h" 35 #include "tool.h" 36 #include "thread.h" 37 #include "thread-stack.h" 38 #include "tsc.h" 39 #include <tools/libc_compat.h> 40 #include "util/synthetic-events.h" 41 #include "util/util.h" 42 43 struct cs_etm_auxtrace { 44 struct auxtrace auxtrace; 45 struct auxtrace_queues queues; 46 struct auxtrace_heap heap; 47 struct itrace_synth_opts synth_opts; 48 struct perf_session *session; 49 struct perf_tsc_conversion tc; 50 51 /* 52 * Timeless has no timestamps in the trace so overlapping mmap lookups 53 * are less accurate but produces smaller trace data. We use context IDs 54 * in the trace instead of matching timestamps with fork records so 55 * they're not really needed in the general case. Overlapping mmaps 56 * happen in cases like between a fork and an exec. 57 */ 58 bool timeless_decoding; 59 60 /* 61 * Per-thread ignores the trace channel ID and instead assumes that 62 * everything in a buffer comes from the same process regardless of 63 * which CPU it ran on. It also implies no context IDs so the TID is 64 * taken from the auxtrace buffer. 65 */ 66 bool per_thread_decoding; 67 bool snapshot_mode; 68 bool data_queued; 69 bool has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */ 70 71 int num_cpu; 72 u64 latest_kernel_timestamp; 73 u32 auxtrace_type; 74 u64 branches_sample_type; 75 u64 branches_id; 76 u64 instructions_sample_type; 77 u64 instructions_sample_period; 78 u64 instructions_id; 79 u64 **metadata; 80 unsigned int pmu_type; 81 enum cs_etm_pid_fmt pid_fmt; 82 }; 83 84 struct cs_etm_traceid_queue { 85 u8 trace_chan_id; 86 u64 period_instructions; 87 size_t last_branch_pos; 88 union perf_event *event_buf; 89 struct thread *thread; 90 struct thread *prev_packet_thread; 91 ocsd_ex_level prev_packet_el; 92 ocsd_ex_level el; 93 struct branch_stack *last_branch; 94 struct branch_stack *last_branch_rb; 95 struct cs_etm_packet *prev_packet; 96 struct cs_etm_packet *packet; 97 struct cs_etm_packet_queue packet_queue; 98 }; 99 100 struct cs_etm_queue { 101 struct cs_etm_auxtrace *etm; 102 struct cs_etm_decoder *decoder; 103 struct auxtrace_buffer *buffer; 104 unsigned int queue_nr; 105 u8 pending_timestamp_chan_id; 106 u64 offset; 107 const unsigned char *buf; 108 size_t buf_len, buf_used; 109 /* Conversion between traceID and index in traceid_queues array */ 110 struct intlist *traceid_queues_list; 111 struct cs_etm_traceid_queue **traceid_queues; 112 }; 113 114 /* RB tree for quick conversion between traceID and metadata pointers */ 115 static struct intlist *traceid_list; 116 117 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm); 118 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 119 pid_t tid); 120 static int cs_etm__get_data_block(struct cs_etm_queue *etmq); 121 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); 122 123 /* PTMs ETMIDR [11:8] set to b0011 */ 124 #define ETMIDR_PTM_VERSION 0x00000300 125 126 /* 127 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to 128 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply 129 * encode the etm queue number as the upper 16 bit and the channel as 130 * the lower 16 bit. 131 */ 132 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \ 133 (queue_nr << 16 | trace_chan_id) 134 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) 135 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) 136 137 static u32 cs_etm__get_v7_protocol_version(u32 etmidr) 138 { 139 etmidr &= ETMIDR_PTM_VERSION; 140 141 if (etmidr == ETMIDR_PTM_VERSION) 142 return CS_ETM_PROTO_PTM; 143 144 return CS_ETM_PROTO_ETMV3; 145 } 146 147 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) 148 { 149 struct int_node *inode; 150 u64 *metadata; 151 152 inode = intlist__find(traceid_list, trace_chan_id); 153 if (!inode) 154 return -EINVAL; 155 156 metadata = inode->priv; 157 *magic = metadata[CS_ETM_MAGIC]; 158 return 0; 159 } 160 161 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) 162 { 163 struct int_node *inode; 164 u64 *metadata; 165 166 inode = intlist__find(traceid_list, trace_chan_id); 167 if (!inode) 168 return -EINVAL; 169 170 metadata = inode->priv; 171 *cpu = (int)metadata[CS_ETM_CPU]; 172 return 0; 173 } 174 175 /* 176 * The returned PID format is presented as an enum: 177 * 178 * CS_ETM_PIDFMT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced. 179 * CS_ETM_PIDFMT_CTXTID2: CONTEXTIDR_EL2 is traced. 180 * CS_ETM_PIDFMT_NONE: No context IDs 181 * 182 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2 183 * are enabled at the same time when the session runs on an EL2 kernel. 184 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be 185 * recorded in the trace data, the tool will selectively use 186 * CONTEXTIDR_EL2 as PID. 187 * 188 * The result is cached in etm->pid_fmt so this function only needs to be called 189 * when processing the aux info. 190 */ 191 static enum cs_etm_pid_fmt cs_etm__init_pid_fmt(u64 *metadata) 192 { 193 u64 val; 194 195 if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) { 196 val = metadata[CS_ETM_ETMCR]; 197 /* CONTEXTIDR is traced */ 198 if (val & BIT(ETM_OPT_CTXTID)) 199 return CS_ETM_PIDFMT_CTXTID; 200 } else { 201 val = metadata[CS_ETMV4_TRCCONFIGR]; 202 /* CONTEXTIDR_EL2 is traced */ 203 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT))) 204 return CS_ETM_PIDFMT_CTXTID2; 205 /* CONTEXTIDR_EL1 is traced */ 206 else if (val & BIT(ETM4_CFG_BIT_CTXTID)) 207 return CS_ETM_PIDFMT_CTXTID; 208 } 209 210 return CS_ETM_PIDFMT_NONE; 211 } 212 213 enum cs_etm_pid_fmt cs_etm__get_pid_fmt(struct cs_etm_queue *etmq) 214 { 215 return etmq->etm->pid_fmt; 216 } 217 218 static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata) 219 { 220 struct int_node *inode; 221 222 /* Get an RB node for this CPU */ 223 inode = intlist__findnew(traceid_list, trace_chan_id); 224 225 /* Something went wrong, no need to continue */ 226 if (!inode) 227 return -ENOMEM; 228 229 /* 230 * The node for that CPU should not be taken. 231 * Back out if that's the case. 232 */ 233 if (inode->priv) 234 return -EINVAL; 235 236 /* All good, associate the traceID with the metadata pointer */ 237 inode->priv = cpu_metadata; 238 239 return 0; 240 } 241 242 static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata) 243 { 244 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; 245 246 switch (cs_etm_magic) { 247 case __perf_cs_etmv3_magic: 248 *trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] & 249 CORESIGHT_TRACE_ID_VAL_MASK); 250 break; 251 case __perf_cs_etmv4_magic: 252 case __perf_cs_ete_magic: 253 *trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] & 254 CORESIGHT_TRACE_ID_VAL_MASK); 255 break; 256 default: 257 return -EINVAL; 258 } 259 return 0; 260 } 261 262 /* 263 * update metadata trace ID from the value found in the AUX_HW_INFO packet. 264 * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present. 265 */ 266 static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata) 267 { 268 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; 269 270 switch (cs_etm_magic) { 271 case __perf_cs_etmv3_magic: 272 cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id; 273 break; 274 case __perf_cs_etmv4_magic: 275 case __perf_cs_ete_magic: 276 cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id; 277 break; 278 279 default: 280 return -EINVAL; 281 } 282 return 0; 283 } 284 285 /* 286 * Get a metadata for a specific cpu from an array. 287 * 288 */ 289 static u64 *get_cpu_data(struct cs_etm_auxtrace *etm, int cpu) 290 { 291 int i; 292 u64 *metadata = NULL; 293 294 for (i = 0; i < etm->num_cpu; i++) { 295 if (etm->metadata[i][CS_ETM_CPU] == (u64)cpu) { 296 metadata = etm->metadata[i]; 297 break; 298 } 299 } 300 301 return metadata; 302 } 303 304 /* 305 * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event. 306 * 307 * The payload associates the Trace ID and the CPU. 308 * The routine is tolerant of seeing multiple packets with the same association, 309 * but a CPU / Trace ID association changing during a session is an error. 310 */ 311 static int cs_etm__process_aux_output_hw_id(struct perf_session *session, 312 union perf_event *event) 313 { 314 struct cs_etm_auxtrace *etm; 315 struct perf_sample sample; 316 struct int_node *inode; 317 struct evsel *evsel; 318 u64 *cpu_data; 319 u64 hw_id; 320 int cpu, version, err; 321 u8 trace_chan_id, curr_chan_id; 322 323 /* extract and parse the HW ID */ 324 hw_id = event->aux_output_hw_id.hw_id; 325 version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id); 326 trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id); 327 328 /* check that we can handle this version */ 329 if (version > CS_AUX_HW_ID_CURR_VERSION) 330 return -EINVAL; 331 332 /* get access to the etm metadata */ 333 etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); 334 if (!etm || !etm->metadata) 335 return -EINVAL; 336 337 /* parse the sample to get the CPU */ 338 evsel = evlist__event2evsel(session->evlist, event); 339 if (!evsel) 340 return -EINVAL; 341 err = evsel__parse_sample(evsel, event, &sample); 342 if (err) 343 return err; 344 cpu = sample.cpu; 345 if (cpu == -1) { 346 /* no CPU in the sample - possibly recorded with an old version of perf */ 347 pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record."); 348 return -EINVAL; 349 } 350 351 /* See if the ID is mapped to a CPU, and it matches the current CPU */ 352 inode = intlist__find(traceid_list, trace_chan_id); 353 if (inode) { 354 cpu_data = inode->priv; 355 if ((int)cpu_data[CS_ETM_CPU] != cpu) { 356 pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n"); 357 return -EINVAL; 358 } 359 360 /* check that the mapped ID matches */ 361 err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data); 362 if (err) 363 return err; 364 if (curr_chan_id != trace_chan_id) { 365 pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n"); 366 return -EINVAL; 367 } 368 369 /* mapped and matched - return OK */ 370 return 0; 371 } 372 373 cpu_data = get_cpu_data(etm, cpu); 374 if (cpu_data == NULL) 375 return err; 376 377 /* not one we've seen before - lets map it */ 378 err = cs_etm__map_trace_id(trace_chan_id, cpu_data); 379 if (err) 380 return err; 381 382 /* 383 * if we are picking up the association from the packet, need to plug 384 * the correct trace ID into the metadata for setting up decoders later. 385 */ 386 err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data); 387 return err; 388 } 389 390 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, 391 u8 trace_chan_id) 392 { 393 /* 394 * When a timestamp packet is encountered the backend code 395 * is stopped so that the front end has time to process packets 396 * that were accumulated in the traceID queue. Since there can 397 * be more than one channel per cs_etm_queue, we need to specify 398 * what traceID queue needs servicing. 399 */ 400 etmq->pending_timestamp_chan_id = trace_chan_id; 401 } 402 403 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, 404 u8 *trace_chan_id) 405 { 406 struct cs_etm_packet_queue *packet_queue; 407 408 if (!etmq->pending_timestamp_chan_id) 409 return 0; 410 411 if (trace_chan_id) 412 *trace_chan_id = etmq->pending_timestamp_chan_id; 413 414 packet_queue = cs_etm__etmq_get_packet_queue(etmq, 415 etmq->pending_timestamp_chan_id); 416 if (!packet_queue) 417 return 0; 418 419 /* Acknowledge pending status */ 420 etmq->pending_timestamp_chan_id = 0; 421 422 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ 423 return packet_queue->cs_timestamp; 424 } 425 426 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) 427 { 428 int i; 429 430 queue->head = 0; 431 queue->tail = 0; 432 queue->packet_count = 0; 433 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { 434 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; 435 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; 436 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; 437 queue->packet_buffer[i].instr_count = 0; 438 queue->packet_buffer[i].last_instr_taken_branch = false; 439 queue->packet_buffer[i].last_instr_size = 0; 440 queue->packet_buffer[i].last_instr_type = 0; 441 queue->packet_buffer[i].last_instr_subtype = 0; 442 queue->packet_buffer[i].last_instr_cond = 0; 443 queue->packet_buffer[i].flags = 0; 444 queue->packet_buffer[i].exception_number = UINT32_MAX; 445 queue->packet_buffer[i].trace_chan_id = UINT8_MAX; 446 queue->packet_buffer[i].cpu = INT_MIN; 447 } 448 } 449 450 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) 451 { 452 int idx; 453 struct int_node *inode; 454 struct cs_etm_traceid_queue *tidq; 455 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 456 457 intlist__for_each_entry(inode, traceid_queues_list) { 458 idx = (int)(intptr_t)inode->priv; 459 tidq = etmq->traceid_queues[idx]; 460 cs_etm__clear_packet_queue(&tidq->packet_queue); 461 } 462 } 463 464 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, 465 struct cs_etm_traceid_queue *tidq, 466 u8 trace_chan_id) 467 { 468 int rc = -ENOMEM; 469 struct auxtrace_queue *queue; 470 struct cs_etm_auxtrace *etm = etmq->etm; 471 472 cs_etm__clear_packet_queue(&tidq->packet_queue); 473 474 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 475 tidq->trace_chan_id = trace_chan_id; 476 tidq->el = tidq->prev_packet_el = ocsd_EL_unknown; 477 tidq->thread = machine__findnew_thread(&etm->session->machines.host, -1, 478 queue->tid); 479 tidq->prev_packet_thread = machine__idle_thread(&etm->session->machines.host); 480 481 tidq->packet = zalloc(sizeof(struct cs_etm_packet)); 482 if (!tidq->packet) 483 goto out; 484 485 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); 486 if (!tidq->prev_packet) 487 goto out_free; 488 489 if (etm->synth_opts.last_branch) { 490 size_t sz = sizeof(struct branch_stack); 491 492 sz += etm->synth_opts.last_branch_sz * 493 sizeof(struct branch_entry); 494 tidq->last_branch = zalloc(sz); 495 if (!tidq->last_branch) 496 goto out_free; 497 tidq->last_branch_rb = zalloc(sz); 498 if (!tidq->last_branch_rb) 499 goto out_free; 500 } 501 502 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 503 if (!tidq->event_buf) 504 goto out_free; 505 506 return 0; 507 508 out_free: 509 zfree(&tidq->last_branch_rb); 510 zfree(&tidq->last_branch); 511 zfree(&tidq->prev_packet); 512 zfree(&tidq->packet); 513 out: 514 return rc; 515 } 516 517 static struct cs_etm_traceid_queue 518 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 519 { 520 int idx; 521 struct int_node *inode; 522 struct intlist *traceid_queues_list; 523 struct cs_etm_traceid_queue *tidq, **traceid_queues; 524 struct cs_etm_auxtrace *etm = etmq->etm; 525 526 if (etm->per_thread_decoding) 527 trace_chan_id = CS_ETM_PER_THREAD_TRACEID; 528 529 traceid_queues_list = etmq->traceid_queues_list; 530 531 /* 532 * Check if the traceid_queue exist for this traceID by looking 533 * in the queue list. 534 */ 535 inode = intlist__find(traceid_queues_list, trace_chan_id); 536 if (inode) { 537 idx = (int)(intptr_t)inode->priv; 538 return etmq->traceid_queues[idx]; 539 } 540 541 /* We couldn't find a traceid_queue for this traceID, allocate one */ 542 tidq = malloc(sizeof(*tidq)); 543 if (!tidq) 544 return NULL; 545 546 memset(tidq, 0, sizeof(*tidq)); 547 548 /* Get a valid index for the new traceid_queue */ 549 idx = intlist__nr_entries(traceid_queues_list); 550 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ 551 inode = intlist__findnew(traceid_queues_list, trace_chan_id); 552 if (!inode) 553 goto out_free; 554 555 /* Associate this traceID with this index */ 556 inode->priv = (void *)(intptr_t)idx; 557 558 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) 559 goto out_free; 560 561 /* Grow the traceid_queues array by one unit */ 562 traceid_queues = etmq->traceid_queues; 563 traceid_queues = reallocarray(traceid_queues, 564 idx + 1, 565 sizeof(*traceid_queues)); 566 567 /* 568 * On failure reallocarray() returns NULL and the original block of 569 * memory is left untouched. 570 */ 571 if (!traceid_queues) 572 goto out_free; 573 574 traceid_queues[idx] = tidq; 575 etmq->traceid_queues = traceid_queues; 576 577 return etmq->traceid_queues[idx]; 578 579 out_free: 580 /* 581 * Function intlist__remove() removes the inode from the list 582 * and delete the memory associated to it. 583 */ 584 intlist__remove(traceid_queues_list, inode); 585 free(tidq); 586 587 return NULL; 588 } 589 590 struct cs_etm_packet_queue 591 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 592 { 593 struct cs_etm_traceid_queue *tidq; 594 595 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 596 if (tidq) 597 return &tidq->packet_queue; 598 599 return NULL; 600 } 601 602 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, 603 struct cs_etm_traceid_queue *tidq) 604 { 605 struct cs_etm_packet *tmp; 606 607 if (etm->synth_opts.branches || etm->synth_opts.last_branch || 608 etm->synth_opts.instructions) { 609 /* 610 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 611 * the next incoming packet. 612 * 613 * Threads and exception levels are also tracked for both the 614 * previous and current packets. This is because the previous 615 * packet is used for the 'from' IP for branch samples, so the 616 * thread at that time must also be assigned to that sample. 617 * Across discontinuity packets the thread can change, so by 618 * tracking the thread for the previous packet the branch sample 619 * will have the correct info. 620 */ 621 tmp = tidq->packet; 622 tidq->packet = tidq->prev_packet; 623 tidq->prev_packet = tmp; 624 tidq->prev_packet_el = tidq->el; 625 thread__put(tidq->prev_packet_thread); 626 tidq->prev_packet_thread = thread__get(tidq->thread); 627 } 628 } 629 630 static void cs_etm__packet_dump(const char *pkt_string) 631 { 632 const char *color = PERF_COLOR_BLUE; 633 int len = strlen(pkt_string); 634 635 if (len && (pkt_string[len-1] == '\n')) 636 color_fprintf(stdout, color, " %s", pkt_string); 637 else 638 color_fprintf(stdout, color, " %s\n", pkt_string); 639 640 fflush(stdout); 641 } 642 643 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, 644 struct cs_etm_auxtrace *etm, int idx, 645 u32 etmidr) 646 { 647 u64 **metadata = etm->metadata; 648 649 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr); 650 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR]; 651 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR]; 652 } 653 654 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, 655 struct cs_etm_auxtrace *etm, int idx) 656 { 657 u64 **metadata = etm->metadata; 658 659 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i; 660 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; 661 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; 662 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; 663 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; 664 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; 665 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; 666 } 667 668 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params, 669 struct cs_etm_auxtrace *etm, int idx) 670 { 671 u64 **metadata = etm->metadata; 672 673 t_params[idx].protocol = CS_ETM_PROTO_ETE; 674 t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETE_TRCIDR0]; 675 t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETE_TRCIDR1]; 676 t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETE_TRCIDR2]; 677 t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETE_TRCIDR8]; 678 t_params[idx].ete.reg_configr = metadata[idx][CS_ETE_TRCCONFIGR]; 679 t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETE_TRCTRACEIDR]; 680 t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH]; 681 } 682 683 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, 684 struct cs_etm_auxtrace *etm, 685 int decoders) 686 { 687 int i; 688 u32 etmidr; 689 u64 architecture; 690 691 for (i = 0; i < decoders; i++) { 692 architecture = etm->metadata[i][CS_ETM_MAGIC]; 693 694 switch (architecture) { 695 case __perf_cs_etmv3_magic: 696 etmidr = etm->metadata[i][CS_ETM_ETMIDR]; 697 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr); 698 break; 699 case __perf_cs_etmv4_magic: 700 cs_etm__set_trace_param_etmv4(t_params, etm, i); 701 break; 702 case __perf_cs_ete_magic: 703 cs_etm__set_trace_param_ete(t_params, etm, i); 704 break; 705 default: 706 return -EINVAL; 707 } 708 } 709 710 return 0; 711 } 712 713 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, 714 struct cs_etm_queue *etmq, 715 enum cs_etm_decoder_operation mode, 716 bool formatted) 717 { 718 int ret = -EINVAL; 719 720 if (!(mode < CS_ETM_OPERATION_MAX)) 721 goto out; 722 723 d_params->packet_printer = cs_etm__packet_dump; 724 d_params->operation = mode; 725 d_params->data = etmq; 726 d_params->formatted = formatted; 727 d_params->fsyncs = false; 728 d_params->hsyncs = false; 729 d_params->frame_aligned = true; 730 731 ret = 0; 732 out: 733 return ret; 734 } 735 736 static void cs_etm__dump_event(struct cs_etm_queue *etmq, 737 struct auxtrace_buffer *buffer) 738 { 739 int ret; 740 const char *color = PERF_COLOR_BLUE; 741 size_t buffer_used = 0; 742 743 fprintf(stdout, "\n"); 744 color_fprintf(stdout, color, 745 ". ... CoreSight %s Trace data: size %#zx bytes\n", 746 cs_etm_decoder__get_name(etmq->decoder), buffer->size); 747 748 do { 749 size_t consumed; 750 751 ret = cs_etm_decoder__process_data_block( 752 etmq->decoder, buffer->offset, 753 &((u8 *)buffer->data)[buffer_used], 754 buffer->size - buffer_used, &consumed); 755 if (ret) 756 break; 757 758 buffer_used += consumed; 759 } while (buffer_used < buffer->size); 760 761 cs_etm_decoder__reset(etmq->decoder); 762 } 763 764 static int cs_etm__flush_events(struct perf_session *session, 765 struct perf_tool *tool) 766 { 767 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 768 struct cs_etm_auxtrace, 769 auxtrace); 770 if (dump_trace) 771 return 0; 772 773 if (!tool->ordered_events) 774 return -EINVAL; 775 776 if (etm->timeless_decoding) { 777 /* 778 * Pass tid = -1 to process all queues. But likely they will have 779 * already been processed on PERF_RECORD_EXIT anyway. 780 */ 781 return cs_etm__process_timeless_queues(etm, -1); 782 } 783 784 return cs_etm__process_timestamped_queues(etm); 785 } 786 787 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) 788 { 789 int idx; 790 uintptr_t priv; 791 struct int_node *inode, *tmp; 792 struct cs_etm_traceid_queue *tidq; 793 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 794 795 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { 796 priv = (uintptr_t)inode->priv; 797 idx = priv; 798 799 /* Free this traceid_queue from the array */ 800 tidq = etmq->traceid_queues[idx]; 801 thread__zput(tidq->thread); 802 thread__zput(tidq->prev_packet_thread); 803 zfree(&tidq->event_buf); 804 zfree(&tidq->last_branch); 805 zfree(&tidq->last_branch_rb); 806 zfree(&tidq->prev_packet); 807 zfree(&tidq->packet); 808 zfree(&tidq); 809 810 /* 811 * Function intlist__remove() removes the inode from the list 812 * and delete the memory associated to it. 813 */ 814 intlist__remove(traceid_queues_list, inode); 815 } 816 817 /* Then the RB tree itself */ 818 intlist__delete(traceid_queues_list); 819 etmq->traceid_queues_list = NULL; 820 821 /* finally free the traceid_queues array */ 822 zfree(&etmq->traceid_queues); 823 } 824 825 static void cs_etm__free_queue(void *priv) 826 { 827 struct cs_etm_queue *etmq = priv; 828 829 if (!etmq) 830 return; 831 832 cs_etm_decoder__free(etmq->decoder); 833 cs_etm__free_traceid_queues(etmq); 834 free(etmq); 835 } 836 837 static void cs_etm__free_events(struct perf_session *session) 838 { 839 unsigned int i; 840 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 841 struct cs_etm_auxtrace, 842 auxtrace); 843 struct auxtrace_queues *queues = &aux->queues; 844 845 for (i = 0; i < queues->nr_queues; i++) { 846 cs_etm__free_queue(queues->queue_array[i].priv); 847 queues->queue_array[i].priv = NULL; 848 } 849 850 auxtrace_queues__free(queues); 851 } 852 853 static void cs_etm__free(struct perf_session *session) 854 { 855 int i; 856 struct int_node *inode, *tmp; 857 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 858 struct cs_etm_auxtrace, 859 auxtrace); 860 cs_etm__free_events(session); 861 session->auxtrace = NULL; 862 863 /* First remove all traceID/metadata nodes for the RB tree */ 864 intlist__for_each_entry_safe(inode, tmp, traceid_list) 865 intlist__remove(traceid_list, inode); 866 /* Then the RB tree itself */ 867 intlist__delete(traceid_list); 868 869 for (i = 0; i < aux->num_cpu; i++) 870 zfree(&aux->metadata[i]); 871 872 zfree(&aux->metadata); 873 zfree(&aux); 874 } 875 876 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, 877 struct evsel *evsel) 878 { 879 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 880 struct cs_etm_auxtrace, 881 auxtrace); 882 883 return evsel->core.attr.type == aux->pmu_type; 884 } 885 886 static struct machine *cs_etm__get_machine(struct cs_etm_queue *etmq, 887 ocsd_ex_level el) 888 { 889 enum cs_etm_pid_fmt pid_fmt = cs_etm__get_pid_fmt(etmq); 890 891 /* 892 * For any virtualisation based on nVHE (e.g. pKVM), or host kernels 893 * running at EL1 assume everything is the host. 894 */ 895 if (pid_fmt == CS_ETM_PIDFMT_CTXTID) 896 return &etmq->etm->session->machines.host; 897 898 /* 899 * Not perfect, but otherwise assume anything in EL1 is the default 900 * guest, and everything else is the host. Distinguishing between guest 901 * and host userspaces isn't currently supported either. Neither is 902 * multiple guest support. All this does is reduce the likeliness of 903 * decode errors where we look into the host kernel maps when it should 904 * have been the guest maps. 905 */ 906 switch (el) { 907 case ocsd_EL1: 908 return machines__find_guest(&etmq->etm->session->machines, 909 DEFAULT_GUEST_KERNEL_ID); 910 case ocsd_EL3: 911 case ocsd_EL2: 912 case ocsd_EL0: 913 case ocsd_EL_unknown: 914 default: 915 return &etmq->etm->session->machines.host; 916 } 917 } 918 919 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address, 920 ocsd_ex_level el) 921 { 922 struct machine *machine = cs_etm__get_machine(etmq, el); 923 924 if (address >= machine__kernel_start(machine)) { 925 if (machine__is_host(machine)) 926 return PERF_RECORD_MISC_KERNEL; 927 else 928 return PERF_RECORD_MISC_GUEST_KERNEL; 929 } else { 930 if (machine__is_host(machine)) 931 return PERF_RECORD_MISC_USER; 932 else { 933 /* 934 * Can't really happen at the moment because 935 * cs_etm__get_machine() will always return 936 * machines.host for any non EL1 trace. 937 */ 938 return PERF_RECORD_MISC_GUEST_USER; 939 } 940 } 941 } 942 943 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, 944 u64 address, size_t size, u8 *buffer, 945 const ocsd_mem_space_acc_t mem_space) 946 { 947 u8 cpumode; 948 u64 offset; 949 int len; 950 struct addr_location al; 951 struct dso *dso; 952 struct cs_etm_traceid_queue *tidq; 953 int ret = 0; 954 955 if (!etmq) 956 return 0; 957 958 addr_location__init(&al); 959 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 960 if (!tidq) 961 goto out; 962 963 /* 964 * We've already tracked EL along side the PID in cs_etm__set_thread() 965 * so double check that it matches what OpenCSD thinks as well. It 966 * doesn't distinguish between EL0 and EL1 for this mem access callback 967 * so we had to do the extra tracking. Skip validation if it's any of 968 * the 'any' values. 969 */ 970 if (!(mem_space == OCSD_MEM_SPACE_ANY || 971 mem_space == OCSD_MEM_SPACE_N || mem_space == OCSD_MEM_SPACE_S)) { 972 if (mem_space & OCSD_MEM_SPACE_EL1N) { 973 /* Includes both non secure EL1 and EL0 */ 974 assert(tidq->el == ocsd_EL1 || tidq->el == ocsd_EL0); 975 } else if (mem_space & OCSD_MEM_SPACE_EL2) 976 assert(tidq->el == ocsd_EL2); 977 else if (mem_space & OCSD_MEM_SPACE_EL3) 978 assert(tidq->el == ocsd_EL3); 979 } 980 981 cpumode = cs_etm__cpu_mode(etmq, address, tidq->el); 982 983 if (!thread__find_map(tidq->thread, cpumode, address, &al)) 984 goto out; 985 986 dso = map__dso(al.map); 987 if (!dso) 988 goto out; 989 990 if (dso->data.status == DSO_DATA_STATUS_ERROR && 991 dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) 992 goto out; 993 994 offset = map__map_ip(al.map, address); 995 996 map__load(al.map); 997 998 len = dso__data_read_offset(dso, maps__machine(thread__maps(tidq->thread)), 999 offset, buffer, size); 1000 1001 if (len <= 0) { 1002 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n" 1003 " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n"); 1004 if (!dso->auxtrace_warned) { 1005 pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n", 1006 address, 1007 dso->long_name ? dso->long_name : "Unknown"); 1008 dso->auxtrace_warned = true; 1009 } 1010 goto out; 1011 } 1012 ret = len; 1013 out: 1014 addr_location__exit(&al); 1015 return ret; 1016 } 1017 1018 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, 1019 bool formatted) 1020 { 1021 struct cs_etm_decoder_params d_params; 1022 struct cs_etm_trace_params *t_params = NULL; 1023 struct cs_etm_queue *etmq; 1024 /* 1025 * Each queue can only contain data from one CPU when unformatted, so only one decoder is 1026 * needed. 1027 */ 1028 int decoders = formatted ? etm->num_cpu : 1; 1029 1030 etmq = zalloc(sizeof(*etmq)); 1031 if (!etmq) 1032 return NULL; 1033 1034 etmq->traceid_queues_list = intlist__new(NULL); 1035 if (!etmq->traceid_queues_list) 1036 goto out_free; 1037 1038 /* Use metadata to fill in trace parameters for trace decoder */ 1039 t_params = zalloc(sizeof(*t_params) * decoders); 1040 1041 if (!t_params) 1042 goto out_free; 1043 1044 if (cs_etm__init_trace_params(t_params, etm, decoders)) 1045 goto out_free; 1046 1047 /* Set decoder parameters to decode trace packets */ 1048 if (cs_etm__init_decoder_params(&d_params, etmq, 1049 dump_trace ? CS_ETM_OPERATION_PRINT : 1050 CS_ETM_OPERATION_DECODE, 1051 formatted)) 1052 goto out_free; 1053 1054 etmq->decoder = cs_etm_decoder__new(decoders, &d_params, 1055 t_params); 1056 1057 if (!etmq->decoder) 1058 goto out_free; 1059 1060 /* 1061 * Register a function to handle all memory accesses required by 1062 * the trace decoder library. 1063 */ 1064 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 1065 0x0L, ((u64) -1L), 1066 cs_etm__mem_access)) 1067 goto out_free_decoder; 1068 1069 zfree(&t_params); 1070 return etmq; 1071 1072 out_free_decoder: 1073 cs_etm_decoder__free(etmq->decoder); 1074 out_free: 1075 intlist__delete(etmq->traceid_queues_list); 1076 free(etmq); 1077 1078 return NULL; 1079 } 1080 1081 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 1082 struct auxtrace_queue *queue, 1083 unsigned int queue_nr, 1084 bool formatted) 1085 { 1086 struct cs_etm_queue *etmq = queue->priv; 1087 1088 if (list_empty(&queue->head) || etmq) 1089 return 0; 1090 1091 etmq = cs_etm__alloc_queue(etm, formatted); 1092 1093 if (!etmq) 1094 return -ENOMEM; 1095 1096 queue->priv = etmq; 1097 etmq->etm = etm; 1098 etmq->queue_nr = queue_nr; 1099 etmq->offset = 0; 1100 1101 return 0; 1102 } 1103 1104 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm, 1105 struct cs_etm_queue *etmq, 1106 unsigned int queue_nr) 1107 { 1108 int ret = 0; 1109 unsigned int cs_queue_nr; 1110 u8 trace_chan_id; 1111 u64 cs_timestamp; 1112 1113 /* 1114 * We are under a CPU-wide trace scenario. As such we need to know 1115 * when the code that generated the traces started to execute so that 1116 * it can be correlated with execution on other CPUs. So we get a 1117 * handle on the beginning of traces and decode until we find a 1118 * timestamp. The timestamp is then added to the auxtrace min heap 1119 * in order to know what nibble (of all the etmqs) to decode first. 1120 */ 1121 while (1) { 1122 /* 1123 * Fetch an aux_buffer from this etmq. Bail if no more 1124 * blocks or an error has been encountered. 1125 */ 1126 ret = cs_etm__get_data_block(etmq); 1127 if (ret <= 0) 1128 goto out; 1129 1130 /* 1131 * Run decoder on the trace block. The decoder will stop when 1132 * encountering a CS timestamp, a full packet queue or the end of 1133 * trace for that block. 1134 */ 1135 ret = cs_etm__decode_data_block(etmq); 1136 if (ret) 1137 goto out; 1138 1139 /* 1140 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all 1141 * the timestamp calculation for us. 1142 */ 1143 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 1144 1145 /* We found a timestamp, no need to continue. */ 1146 if (cs_timestamp) 1147 break; 1148 1149 /* 1150 * We didn't find a timestamp so empty all the traceid packet 1151 * queues before looking for another timestamp packet, either 1152 * in the current data block or a new one. Packets that were 1153 * just decoded are useless since no timestamp has been 1154 * associated with them. As such simply discard them. 1155 */ 1156 cs_etm__clear_all_packet_queues(etmq); 1157 } 1158 1159 /* 1160 * We have a timestamp. Add it to the min heap to reflect when 1161 * instructions conveyed by the range packets of this traceID queue 1162 * started to execute. Once the same has been done for all the traceID 1163 * queues of each etmq, redenring and decoding can start in 1164 * chronological order. 1165 * 1166 * Note that packets decoded above are still in the traceID's packet 1167 * queue and will be processed in cs_etm__process_timestamped_queues(). 1168 */ 1169 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 1170 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 1171 out: 1172 return ret; 1173 } 1174 1175 static inline 1176 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, 1177 struct cs_etm_traceid_queue *tidq) 1178 { 1179 struct branch_stack *bs_src = tidq->last_branch_rb; 1180 struct branch_stack *bs_dst = tidq->last_branch; 1181 size_t nr = 0; 1182 1183 /* 1184 * Set the number of records before early exit: ->nr is used to 1185 * determine how many branches to copy from ->entries. 1186 */ 1187 bs_dst->nr = bs_src->nr; 1188 1189 /* 1190 * Early exit when there is nothing to copy. 1191 */ 1192 if (!bs_src->nr) 1193 return; 1194 1195 /* 1196 * As bs_src->entries is a circular buffer, we need to copy from it in 1197 * two steps. First, copy the branches from the most recently inserted 1198 * branch ->last_branch_pos until the end of bs_src->entries buffer. 1199 */ 1200 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; 1201 memcpy(&bs_dst->entries[0], 1202 &bs_src->entries[tidq->last_branch_pos], 1203 sizeof(struct branch_entry) * nr); 1204 1205 /* 1206 * If we wrapped around at least once, the branches from the beginning 1207 * of the bs_src->entries buffer and until the ->last_branch_pos element 1208 * are older valid branches: copy them over. The total number of 1209 * branches copied over will be equal to the number of branches asked by 1210 * the user in last_branch_sz. 1211 */ 1212 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 1213 memcpy(&bs_dst->entries[nr], 1214 &bs_src->entries[0], 1215 sizeof(struct branch_entry) * tidq->last_branch_pos); 1216 } 1217 } 1218 1219 static inline 1220 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) 1221 { 1222 tidq->last_branch_pos = 0; 1223 tidq->last_branch_rb->nr = 0; 1224 } 1225 1226 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, 1227 u8 trace_chan_id, u64 addr) 1228 { 1229 u8 instrBytes[2]; 1230 1231 cs_etm__mem_access(etmq, trace_chan_id, addr, ARRAY_SIZE(instrBytes), 1232 instrBytes, 0); 1233 /* 1234 * T32 instruction size is indicated by bits[15:11] of the first 1235 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 1236 * denote a 32-bit instruction. 1237 */ 1238 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; 1239 } 1240 1241 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) 1242 { 1243 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 1244 if (packet->sample_type == CS_ETM_DISCONTINUITY) 1245 return 0; 1246 1247 return packet->start_addr; 1248 } 1249 1250 static inline 1251 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) 1252 { 1253 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 1254 if (packet->sample_type == CS_ETM_DISCONTINUITY) 1255 return 0; 1256 1257 return packet->end_addr - packet->last_instr_size; 1258 } 1259 1260 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, 1261 u64 trace_chan_id, 1262 const struct cs_etm_packet *packet, 1263 u64 offset) 1264 { 1265 if (packet->isa == CS_ETM_ISA_T32) { 1266 u64 addr = packet->start_addr; 1267 1268 while (offset) { 1269 addr += cs_etm__t32_instr_size(etmq, 1270 trace_chan_id, addr); 1271 offset--; 1272 } 1273 return addr; 1274 } 1275 1276 /* Assume a 4 byte instruction size (A32/A64) */ 1277 return packet->start_addr + offset * 4; 1278 } 1279 1280 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, 1281 struct cs_etm_traceid_queue *tidq) 1282 { 1283 struct branch_stack *bs = tidq->last_branch_rb; 1284 struct branch_entry *be; 1285 1286 /* 1287 * The branches are recorded in a circular buffer in reverse 1288 * chronological order: we start recording from the last element of the 1289 * buffer down. After writing the first element of the stack, move the 1290 * insert position back to the end of the buffer. 1291 */ 1292 if (!tidq->last_branch_pos) 1293 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 1294 1295 tidq->last_branch_pos -= 1; 1296 1297 be = &bs->entries[tidq->last_branch_pos]; 1298 be->from = cs_etm__last_executed_instr(tidq->prev_packet); 1299 be->to = cs_etm__first_executed_instr(tidq->packet); 1300 /* No support for mispredict */ 1301 be->flags.mispred = 0; 1302 be->flags.predicted = 1; 1303 1304 /* 1305 * Increment bs->nr until reaching the number of last branches asked by 1306 * the user on the command line. 1307 */ 1308 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 1309 bs->nr += 1; 1310 } 1311 1312 static int cs_etm__inject_event(union perf_event *event, 1313 struct perf_sample *sample, u64 type) 1314 { 1315 event->header.size = perf_event__sample_event_size(sample, type, 0); 1316 return perf_event__synthesize_sample(event, type, 0, sample); 1317 } 1318 1319 1320 static int 1321 cs_etm__get_trace(struct cs_etm_queue *etmq) 1322 { 1323 struct auxtrace_buffer *aux_buffer = etmq->buffer; 1324 struct auxtrace_buffer *old_buffer = aux_buffer; 1325 struct auxtrace_queue *queue; 1326 1327 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 1328 1329 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 1330 1331 /* If no more data, drop the previous auxtrace_buffer and return */ 1332 if (!aux_buffer) { 1333 if (old_buffer) 1334 auxtrace_buffer__drop_data(old_buffer); 1335 etmq->buf_len = 0; 1336 return 0; 1337 } 1338 1339 etmq->buffer = aux_buffer; 1340 1341 /* If the aux_buffer doesn't have data associated, try to load it */ 1342 if (!aux_buffer->data) { 1343 /* get the file desc associated with the perf data file */ 1344 int fd = perf_data__fd(etmq->etm->session->data); 1345 1346 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 1347 if (!aux_buffer->data) 1348 return -ENOMEM; 1349 } 1350 1351 /* If valid, drop the previous buffer */ 1352 if (old_buffer) 1353 auxtrace_buffer__drop_data(old_buffer); 1354 1355 etmq->buf_used = 0; 1356 etmq->buf_len = aux_buffer->size; 1357 etmq->buf = aux_buffer->data; 1358 1359 return etmq->buf_len; 1360 } 1361 1362 static void cs_etm__set_thread(struct cs_etm_queue *etmq, 1363 struct cs_etm_traceid_queue *tidq, pid_t tid, 1364 ocsd_ex_level el) 1365 { 1366 struct machine *machine = cs_etm__get_machine(etmq, el); 1367 1368 if (tid != -1) { 1369 thread__zput(tidq->thread); 1370 tidq->thread = machine__find_thread(machine, -1, tid); 1371 } 1372 1373 /* Couldn't find a known thread */ 1374 if (!tidq->thread) 1375 tidq->thread = machine__idle_thread(machine); 1376 1377 tidq->el = el; 1378 } 1379 1380 int cs_etm__etmq_set_tid_el(struct cs_etm_queue *etmq, pid_t tid, 1381 u8 trace_chan_id, ocsd_ex_level el) 1382 { 1383 struct cs_etm_traceid_queue *tidq; 1384 1385 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 1386 if (!tidq) 1387 return -EINVAL; 1388 1389 cs_etm__set_thread(etmq, tidq, tid, el); 1390 return 0; 1391 } 1392 1393 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) 1394 { 1395 return !!etmq->etm->timeless_decoding; 1396 } 1397 1398 static void cs_etm__copy_insn(struct cs_etm_queue *etmq, 1399 u64 trace_chan_id, 1400 const struct cs_etm_packet *packet, 1401 struct perf_sample *sample) 1402 { 1403 /* 1404 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY 1405 * packet, so directly bail out with 'insn_len' = 0. 1406 */ 1407 if (packet->sample_type == CS_ETM_DISCONTINUITY) { 1408 sample->insn_len = 0; 1409 return; 1410 } 1411 1412 /* 1413 * T32 instruction size might be 32-bit or 16-bit, decide by calling 1414 * cs_etm__t32_instr_size(). 1415 */ 1416 if (packet->isa == CS_ETM_ISA_T32) 1417 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, 1418 sample->ip); 1419 /* Otherwise, A64 and A32 instruction size are always 32-bit. */ 1420 else 1421 sample->insn_len = 4; 1422 1423 cs_etm__mem_access(etmq, trace_chan_id, sample->ip, sample->insn_len, 1424 (void *)sample->insn, 0); 1425 } 1426 1427 u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp) 1428 { 1429 struct cs_etm_auxtrace *etm = etmq->etm; 1430 1431 if (etm->has_virtual_ts) 1432 return tsc_to_perf_time(cs_timestamp, &etm->tc); 1433 else 1434 return cs_timestamp; 1435 } 1436 1437 static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq, 1438 struct cs_etm_traceid_queue *tidq) 1439 { 1440 struct cs_etm_auxtrace *etm = etmq->etm; 1441 struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue; 1442 1443 if (!etm->timeless_decoding && etm->has_virtual_ts) 1444 return packet_queue->cs_timestamp; 1445 else 1446 return etm->latest_kernel_timestamp; 1447 } 1448 1449 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 1450 struct cs_etm_traceid_queue *tidq, 1451 u64 addr, u64 period) 1452 { 1453 int ret = 0; 1454 struct cs_etm_auxtrace *etm = etmq->etm; 1455 union perf_event *event = tidq->event_buf; 1456 struct perf_sample sample = {.ip = 0,}; 1457 1458 event->sample.header.type = PERF_RECORD_SAMPLE; 1459 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr, tidq->el); 1460 event->sample.header.size = sizeof(struct perf_event_header); 1461 1462 /* Set time field based on etm auxtrace config. */ 1463 sample.time = cs_etm__resolve_sample_time(etmq, tidq); 1464 1465 sample.ip = addr; 1466 sample.pid = thread__pid(tidq->thread); 1467 sample.tid = thread__tid(tidq->thread); 1468 sample.id = etmq->etm->instructions_id; 1469 sample.stream_id = etmq->etm->instructions_id; 1470 sample.period = period; 1471 sample.cpu = tidq->packet->cpu; 1472 sample.flags = tidq->prev_packet->flags; 1473 sample.cpumode = event->sample.header.misc; 1474 1475 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); 1476 1477 if (etm->synth_opts.last_branch) 1478 sample.branch_stack = tidq->last_branch; 1479 1480 if (etm->synth_opts.inject) { 1481 ret = cs_etm__inject_event(event, &sample, 1482 etm->instructions_sample_type); 1483 if (ret) 1484 return ret; 1485 } 1486 1487 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1488 1489 if (ret) 1490 pr_err( 1491 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1492 ret); 1493 1494 return ret; 1495 } 1496 1497 /* 1498 * The cs etm packet encodes an instruction range between a branch target 1499 * and the next taken branch. Generate sample accordingly. 1500 */ 1501 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, 1502 struct cs_etm_traceid_queue *tidq) 1503 { 1504 int ret = 0; 1505 struct cs_etm_auxtrace *etm = etmq->etm; 1506 struct perf_sample sample = {.ip = 0,}; 1507 union perf_event *event = tidq->event_buf; 1508 struct dummy_branch_stack { 1509 u64 nr; 1510 u64 hw_idx; 1511 struct branch_entry entries; 1512 } dummy_bs; 1513 u64 ip; 1514 1515 ip = cs_etm__last_executed_instr(tidq->prev_packet); 1516 1517 event->sample.header.type = PERF_RECORD_SAMPLE; 1518 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip, 1519 tidq->prev_packet_el); 1520 event->sample.header.size = sizeof(struct perf_event_header); 1521 1522 /* Set time field based on etm auxtrace config. */ 1523 sample.time = cs_etm__resolve_sample_time(etmq, tidq); 1524 1525 sample.ip = ip; 1526 sample.pid = thread__pid(tidq->prev_packet_thread); 1527 sample.tid = thread__tid(tidq->prev_packet_thread); 1528 sample.addr = cs_etm__first_executed_instr(tidq->packet); 1529 sample.id = etmq->etm->branches_id; 1530 sample.stream_id = etmq->etm->branches_id; 1531 sample.period = 1; 1532 sample.cpu = tidq->packet->cpu; 1533 sample.flags = tidq->prev_packet->flags; 1534 sample.cpumode = event->sample.header.misc; 1535 1536 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, 1537 &sample); 1538 1539 /* 1540 * perf report cannot handle events without a branch stack 1541 */ 1542 if (etm->synth_opts.last_branch) { 1543 dummy_bs = (struct dummy_branch_stack){ 1544 .nr = 1, 1545 .hw_idx = -1ULL, 1546 .entries = { 1547 .from = sample.ip, 1548 .to = sample.addr, 1549 }, 1550 }; 1551 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1552 } 1553 1554 if (etm->synth_opts.inject) { 1555 ret = cs_etm__inject_event(event, &sample, 1556 etm->branches_sample_type); 1557 if (ret) 1558 return ret; 1559 } 1560 1561 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1562 1563 if (ret) 1564 pr_err( 1565 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1566 ret); 1567 1568 return ret; 1569 } 1570 1571 struct cs_etm_synth { 1572 struct perf_tool dummy_tool; 1573 struct perf_session *session; 1574 }; 1575 1576 static int cs_etm__event_synth(struct perf_tool *tool, 1577 union perf_event *event, 1578 struct perf_sample *sample __maybe_unused, 1579 struct machine *machine __maybe_unused) 1580 { 1581 struct cs_etm_synth *cs_etm_synth = 1582 container_of(tool, struct cs_etm_synth, dummy_tool); 1583 1584 return perf_session__deliver_synth_event(cs_etm_synth->session, 1585 event, NULL); 1586 } 1587 1588 static int cs_etm__synth_event(struct perf_session *session, 1589 struct perf_event_attr *attr, u64 id) 1590 { 1591 struct cs_etm_synth cs_etm_synth; 1592 1593 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 1594 cs_etm_synth.session = session; 1595 1596 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 1597 &id, cs_etm__event_synth); 1598 } 1599 1600 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 1601 struct perf_session *session) 1602 { 1603 struct evlist *evlist = session->evlist; 1604 struct evsel *evsel; 1605 struct perf_event_attr attr; 1606 bool found = false; 1607 u64 id; 1608 int err; 1609 1610 evlist__for_each_entry(evlist, evsel) { 1611 if (evsel->core.attr.type == etm->pmu_type) { 1612 found = true; 1613 break; 1614 } 1615 } 1616 1617 if (!found) { 1618 pr_debug("No selected events with CoreSight Trace data\n"); 1619 return 0; 1620 } 1621 1622 memset(&attr, 0, sizeof(struct perf_event_attr)); 1623 attr.size = sizeof(struct perf_event_attr); 1624 attr.type = PERF_TYPE_HARDWARE; 1625 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 1626 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 1627 PERF_SAMPLE_PERIOD; 1628 if (etm->timeless_decoding) 1629 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 1630 else 1631 attr.sample_type |= PERF_SAMPLE_TIME; 1632 1633 attr.exclude_user = evsel->core.attr.exclude_user; 1634 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 1635 attr.exclude_hv = evsel->core.attr.exclude_hv; 1636 attr.exclude_host = evsel->core.attr.exclude_host; 1637 attr.exclude_guest = evsel->core.attr.exclude_guest; 1638 attr.sample_id_all = evsel->core.attr.sample_id_all; 1639 attr.read_format = evsel->core.attr.read_format; 1640 1641 /* create new id val to be a fixed offset from evsel id */ 1642 id = evsel->core.id[0] + 1000000000; 1643 1644 if (!id) 1645 id = 1; 1646 1647 if (etm->synth_opts.branches) { 1648 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 1649 attr.sample_period = 1; 1650 attr.sample_type |= PERF_SAMPLE_ADDR; 1651 err = cs_etm__synth_event(session, &attr, id); 1652 if (err) 1653 return err; 1654 etm->branches_sample_type = attr.sample_type; 1655 etm->branches_id = id; 1656 id += 1; 1657 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 1658 } 1659 1660 if (etm->synth_opts.last_branch) { 1661 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 1662 /* 1663 * We don't use the hardware index, but the sample generation 1664 * code uses the new format branch_stack with this field, 1665 * so the event attributes must indicate that it's present. 1666 */ 1667 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 1668 } 1669 1670 if (etm->synth_opts.instructions) { 1671 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 1672 attr.sample_period = etm->synth_opts.period; 1673 etm->instructions_sample_period = attr.sample_period; 1674 err = cs_etm__synth_event(session, &attr, id); 1675 if (err) 1676 return err; 1677 etm->instructions_sample_type = attr.sample_type; 1678 etm->instructions_id = id; 1679 id += 1; 1680 } 1681 1682 return 0; 1683 } 1684 1685 static int cs_etm__sample(struct cs_etm_queue *etmq, 1686 struct cs_etm_traceid_queue *tidq) 1687 { 1688 struct cs_etm_auxtrace *etm = etmq->etm; 1689 int ret; 1690 u8 trace_chan_id = tidq->trace_chan_id; 1691 u64 instrs_prev; 1692 1693 /* Get instructions remainder from previous packet */ 1694 instrs_prev = tidq->period_instructions; 1695 1696 tidq->period_instructions += tidq->packet->instr_count; 1697 1698 /* 1699 * Record a branch when the last instruction in 1700 * PREV_PACKET is a branch. 1701 */ 1702 if (etm->synth_opts.last_branch && 1703 tidq->prev_packet->sample_type == CS_ETM_RANGE && 1704 tidq->prev_packet->last_instr_taken_branch) 1705 cs_etm__update_last_branch_rb(etmq, tidq); 1706 1707 if (etm->synth_opts.instructions && 1708 tidq->period_instructions >= etm->instructions_sample_period) { 1709 /* 1710 * Emit instruction sample periodically 1711 * TODO: allow period to be defined in cycles and clock time 1712 */ 1713 1714 /* 1715 * Below diagram demonstrates the instruction samples 1716 * generation flows: 1717 * 1718 * Instrs Instrs Instrs Instrs 1719 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) 1720 * | | | | 1721 * V V V V 1722 * -------------------------------------------------- 1723 * ^ ^ 1724 * | | 1725 * Period Period 1726 * instructions(Pi) instructions(Pi') 1727 * 1728 * | | 1729 * \---------------- -----------------/ 1730 * V 1731 * tidq->packet->instr_count 1732 * 1733 * Instrs Sample(n...) are the synthesised samples occurring 1734 * every etm->instructions_sample_period instructions - as 1735 * defined on the perf command line. Sample(n) is being the 1736 * last sample before the current etm packet, n+1 to n+3 1737 * samples are generated from the current etm packet. 1738 * 1739 * tidq->packet->instr_count represents the number of 1740 * instructions in the current etm packet. 1741 * 1742 * Period instructions (Pi) contains the number of 1743 * instructions executed after the sample point(n) from the 1744 * previous etm packet. This will always be less than 1745 * etm->instructions_sample_period. 1746 * 1747 * When generate new samples, it combines with two parts 1748 * instructions, one is the tail of the old packet and another 1749 * is the head of the new coming packet, to generate 1750 * sample(n+1); sample(n+2) and sample(n+3) consume the 1751 * instructions with sample period. After sample(n+3), the rest 1752 * instructions will be used by later packet and it is assigned 1753 * to tidq->period_instructions for next round calculation. 1754 */ 1755 1756 /* 1757 * Get the initial offset into the current packet instructions; 1758 * entry conditions ensure that instrs_prev is less than 1759 * etm->instructions_sample_period. 1760 */ 1761 u64 offset = etm->instructions_sample_period - instrs_prev; 1762 u64 addr; 1763 1764 /* Prepare last branches for instruction sample */ 1765 if (etm->synth_opts.last_branch) 1766 cs_etm__copy_last_branch_rb(etmq, tidq); 1767 1768 while (tidq->period_instructions >= 1769 etm->instructions_sample_period) { 1770 /* 1771 * Calculate the address of the sampled instruction (-1 1772 * as sample is reported as though instruction has just 1773 * been executed, but PC has not advanced to next 1774 * instruction) 1775 */ 1776 addr = cs_etm__instr_addr(etmq, trace_chan_id, 1777 tidq->packet, offset - 1); 1778 ret = cs_etm__synth_instruction_sample( 1779 etmq, tidq, addr, 1780 etm->instructions_sample_period); 1781 if (ret) 1782 return ret; 1783 1784 offset += etm->instructions_sample_period; 1785 tidq->period_instructions -= 1786 etm->instructions_sample_period; 1787 } 1788 } 1789 1790 if (etm->synth_opts.branches) { 1791 bool generate_sample = false; 1792 1793 /* Generate sample for tracing on packet */ 1794 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1795 generate_sample = true; 1796 1797 /* Generate sample for branch taken packet */ 1798 if (tidq->prev_packet->sample_type == CS_ETM_RANGE && 1799 tidq->prev_packet->last_instr_taken_branch) 1800 generate_sample = true; 1801 1802 if (generate_sample) { 1803 ret = cs_etm__synth_branch_sample(etmq, tidq); 1804 if (ret) 1805 return ret; 1806 } 1807 } 1808 1809 cs_etm__packet_swap(etm, tidq); 1810 1811 return 0; 1812 } 1813 1814 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) 1815 { 1816 /* 1817 * When the exception packet is inserted, whether the last instruction 1818 * in previous range packet is taken branch or not, we need to force 1819 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures 1820 * to generate branch sample for the instruction range before the 1821 * exception is trapped to kernel or before the exception returning. 1822 * 1823 * The exception packet includes the dummy address values, so don't 1824 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful 1825 * for generating instruction and branch samples. 1826 */ 1827 if (tidq->prev_packet->sample_type == CS_ETM_RANGE) 1828 tidq->prev_packet->last_instr_taken_branch = true; 1829 1830 return 0; 1831 } 1832 1833 static int cs_etm__flush(struct cs_etm_queue *etmq, 1834 struct cs_etm_traceid_queue *tidq) 1835 { 1836 int err = 0; 1837 struct cs_etm_auxtrace *etm = etmq->etm; 1838 1839 /* Handle start tracing packet */ 1840 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) 1841 goto swap_packet; 1842 1843 if (etmq->etm->synth_opts.last_branch && 1844 etmq->etm->synth_opts.instructions && 1845 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1846 u64 addr; 1847 1848 /* Prepare last branches for instruction sample */ 1849 cs_etm__copy_last_branch_rb(etmq, tidq); 1850 1851 /* 1852 * Generate a last branch event for the branches left in the 1853 * circular buffer at the end of the trace. 1854 * 1855 * Use the address of the end of the last reported execution 1856 * range 1857 */ 1858 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1859 1860 err = cs_etm__synth_instruction_sample( 1861 etmq, tidq, addr, 1862 tidq->period_instructions); 1863 if (err) 1864 return err; 1865 1866 tidq->period_instructions = 0; 1867 1868 } 1869 1870 if (etm->synth_opts.branches && 1871 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1872 err = cs_etm__synth_branch_sample(etmq, tidq); 1873 if (err) 1874 return err; 1875 } 1876 1877 swap_packet: 1878 cs_etm__packet_swap(etm, tidq); 1879 1880 /* Reset last branches after flush the trace */ 1881 if (etm->synth_opts.last_branch) 1882 cs_etm__reset_last_branch_rb(tidq); 1883 1884 return err; 1885 } 1886 1887 static int cs_etm__end_block(struct cs_etm_queue *etmq, 1888 struct cs_etm_traceid_queue *tidq) 1889 { 1890 int err; 1891 1892 /* 1893 * It has no new packet coming and 'etmq->packet' contains the stale 1894 * packet which was set at the previous time with packets swapping; 1895 * so skip to generate branch sample to avoid stale packet. 1896 * 1897 * For this case only flush branch stack and generate a last branch 1898 * event for the branches left in the circular buffer at the end of 1899 * the trace. 1900 */ 1901 if (etmq->etm->synth_opts.last_branch && 1902 etmq->etm->synth_opts.instructions && 1903 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1904 u64 addr; 1905 1906 /* Prepare last branches for instruction sample */ 1907 cs_etm__copy_last_branch_rb(etmq, tidq); 1908 1909 /* 1910 * Use the address of the end of the last reported execution 1911 * range. 1912 */ 1913 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1914 1915 err = cs_etm__synth_instruction_sample( 1916 etmq, tidq, addr, 1917 tidq->period_instructions); 1918 if (err) 1919 return err; 1920 1921 tidq->period_instructions = 0; 1922 } 1923 1924 return 0; 1925 } 1926 /* 1927 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue 1928 * if need be. 1929 * Returns: < 0 if error 1930 * = 0 if no more auxtrace_buffer to read 1931 * > 0 if the current buffer isn't empty yet 1932 */ 1933 static int cs_etm__get_data_block(struct cs_etm_queue *etmq) 1934 { 1935 int ret; 1936 1937 if (!etmq->buf_len) { 1938 ret = cs_etm__get_trace(etmq); 1939 if (ret <= 0) 1940 return ret; 1941 /* 1942 * We cannot assume consecutive blocks in the data file 1943 * are contiguous, reset the decoder to force re-sync. 1944 */ 1945 ret = cs_etm_decoder__reset(etmq->decoder); 1946 if (ret) 1947 return ret; 1948 } 1949 1950 return etmq->buf_len; 1951 } 1952 1953 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, 1954 struct cs_etm_packet *packet, 1955 u64 end_addr) 1956 { 1957 /* Initialise to keep compiler happy */ 1958 u16 instr16 = 0; 1959 u32 instr32 = 0; 1960 u64 addr; 1961 1962 switch (packet->isa) { 1963 case CS_ETM_ISA_T32: 1964 /* 1965 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: 1966 * 1967 * b'15 b'8 1968 * +-----------------+--------+ 1969 * | 1 1 0 1 1 1 1 1 | imm8 | 1970 * +-----------------+--------+ 1971 * 1972 * According to the specification, it only defines SVC for T32 1973 * with 16 bits instruction and has no definition for 32bits; 1974 * so below only read 2 bytes as instruction size for T32. 1975 */ 1976 addr = end_addr - 2; 1977 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr16), 1978 (u8 *)&instr16, 0); 1979 if ((instr16 & 0xFF00) == 0xDF00) 1980 return true; 1981 1982 break; 1983 case CS_ETM_ISA_A32: 1984 /* 1985 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: 1986 * 1987 * b'31 b'28 b'27 b'24 1988 * +---------+---------+-------------------------+ 1989 * | !1111 | 1 1 1 1 | imm24 | 1990 * +---------+---------+-------------------------+ 1991 */ 1992 addr = end_addr - 4; 1993 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32), 1994 (u8 *)&instr32, 0); 1995 if ((instr32 & 0x0F000000) == 0x0F000000 && 1996 (instr32 & 0xF0000000) != 0xF0000000) 1997 return true; 1998 1999 break; 2000 case CS_ETM_ISA_A64: 2001 /* 2002 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: 2003 * 2004 * b'31 b'21 b'4 b'0 2005 * +-----------------------+---------+-----------+ 2006 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | 2007 * +-----------------------+---------+-----------+ 2008 */ 2009 addr = end_addr - 4; 2010 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32), 2011 (u8 *)&instr32, 0); 2012 if ((instr32 & 0xFFE0001F) == 0xd4000001) 2013 return true; 2014 2015 break; 2016 case CS_ETM_ISA_UNKNOWN: 2017 default: 2018 break; 2019 } 2020 2021 return false; 2022 } 2023 2024 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, 2025 struct cs_etm_traceid_queue *tidq, u64 magic) 2026 { 2027 u8 trace_chan_id = tidq->trace_chan_id; 2028 struct cs_etm_packet *packet = tidq->packet; 2029 struct cs_etm_packet *prev_packet = tidq->prev_packet; 2030 2031 if (magic == __perf_cs_etmv3_magic) 2032 if (packet->exception_number == CS_ETMV3_EXC_SVC) 2033 return true; 2034 2035 /* 2036 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and 2037 * HVC cases; need to check if it's SVC instruction based on 2038 * packet address. 2039 */ 2040 if (magic == __perf_cs_etmv4_magic) { 2041 if (packet->exception_number == CS_ETMV4_EXC_CALL && 2042 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 2043 prev_packet->end_addr)) 2044 return true; 2045 } 2046 2047 return false; 2048 } 2049 2050 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, 2051 u64 magic) 2052 { 2053 struct cs_etm_packet *packet = tidq->packet; 2054 2055 if (magic == __perf_cs_etmv3_magic) 2056 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || 2057 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || 2058 packet->exception_number == CS_ETMV3_EXC_PE_RESET || 2059 packet->exception_number == CS_ETMV3_EXC_IRQ || 2060 packet->exception_number == CS_ETMV3_EXC_FIQ) 2061 return true; 2062 2063 if (magic == __perf_cs_etmv4_magic) 2064 if (packet->exception_number == CS_ETMV4_EXC_RESET || 2065 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || 2066 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || 2067 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || 2068 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || 2069 packet->exception_number == CS_ETMV4_EXC_IRQ || 2070 packet->exception_number == CS_ETMV4_EXC_FIQ) 2071 return true; 2072 2073 return false; 2074 } 2075 2076 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, 2077 struct cs_etm_traceid_queue *tidq, 2078 u64 magic) 2079 { 2080 u8 trace_chan_id = tidq->trace_chan_id; 2081 struct cs_etm_packet *packet = tidq->packet; 2082 struct cs_etm_packet *prev_packet = tidq->prev_packet; 2083 2084 if (magic == __perf_cs_etmv3_magic) 2085 if (packet->exception_number == CS_ETMV3_EXC_SMC || 2086 packet->exception_number == CS_ETMV3_EXC_HYP || 2087 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || 2088 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || 2089 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || 2090 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || 2091 packet->exception_number == CS_ETMV3_EXC_GENERIC) 2092 return true; 2093 2094 if (magic == __perf_cs_etmv4_magic) { 2095 if (packet->exception_number == CS_ETMV4_EXC_TRAP || 2096 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || 2097 packet->exception_number == CS_ETMV4_EXC_INST_FAULT || 2098 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) 2099 return true; 2100 2101 /* 2102 * For CS_ETMV4_EXC_CALL, except SVC other instructions 2103 * (SMC, HVC) are taken as sync exceptions. 2104 */ 2105 if (packet->exception_number == CS_ETMV4_EXC_CALL && 2106 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 2107 prev_packet->end_addr)) 2108 return true; 2109 2110 /* 2111 * ETMv4 has 5 bits for exception number; if the numbers 2112 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] 2113 * they are implementation defined exceptions. 2114 * 2115 * For this case, simply take it as sync exception. 2116 */ 2117 if (packet->exception_number > CS_ETMV4_EXC_FIQ && 2118 packet->exception_number <= CS_ETMV4_EXC_END) 2119 return true; 2120 } 2121 2122 return false; 2123 } 2124 2125 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, 2126 struct cs_etm_traceid_queue *tidq) 2127 { 2128 struct cs_etm_packet *packet = tidq->packet; 2129 struct cs_etm_packet *prev_packet = tidq->prev_packet; 2130 u8 trace_chan_id = tidq->trace_chan_id; 2131 u64 magic; 2132 int ret; 2133 2134 switch (packet->sample_type) { 2135 case CS_ETM_RANGE: 2136 /* 2137 * Immediate branch instruction without neither link nor 2138 * return flag, it's normal branch instruction within 2139 * the function. 2140 */ 2141 if (packet->last_instr_type == OCSD_INSTR_BR && 2142 packet->last_instr_subtype == OCSD_S_INSTR_NONE) { 2143 packet->flags = PERF_IP_FLAG_BRANCH; 2144 2145 if (packet->last_instr_cond) 2146 packet->flags |= PERF_IP_FLAG_CONDITIONAL; 2147 } 2148 2149 /* 2150 * Immediate branch instruction with link (e.g. BL), this is 2151 * branch instruction for function call. 2152 */ 2153 if (packet->last_instr_type == OCSD_INSTR_BR && 2154 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 2155 packet->flags = PERF_IP_FLAG_BRANCH | 2156 PERF_IP_FLAG_CALL; 2157 2158 /* 2159 * Indirect branch instruction with link (e.g. BLR), this is 2160 * branch instruction for function call. 2161 */ 2162 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2163 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 2164 packet->flags = PERF_IP_FLAG_BRANCH | 2165 PERF_IP_FLAG_CALL; 2166 2167 /* 2168 * Indirect branch instruction with subtype of 2169 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for 2170 * function return for A32/T32. 2171 */ 2172 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2173 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) 2174 packet->flags = PERF_IP_FLAG_BRANCH | 2175 PERF_IP_FLAG_RETURN; 2176 2177 /* 2178 * Indirect branch instruction without link (e.g. BR), usually 2179 * this is used for function return, especially for functions 2180 * within dynamic link lib. 2181 */ 2182 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2183 packet->last_instr_subtype == OCSD_S_INSTR_NONE) 2184 packet->flags = PERF_IP_FLAG_BRANCH | 2185 PERF_IP_FLAG_RETURN; 2186 2187 /* Return instruction for function return. */ 2188 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2189 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) 2190 packet->flags = PERF_IP_FLAG_BRANCH | 2191 PERF_IP_FLAG_RETURN; 2192 2193 /* 2194 * Decoder might insert a discontinuity in the middle of 2195 * instruction packets, fixup prev_packet with flag 2196 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. 2197 */ 2198 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) 2199 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 2200 PERF_IP_FLAG_TRACE_BEGIN; 2201 2202 /* 2203 * If the previous packet is an exception return packet 2204 * and the return address just follows SVC instruction, 2205 * it needs to calibrate the previous packet sample flags 2206 * as PERF_IP_FLAG_SYSCALLRET. 2207 */ 2208 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | 2209 PERF_IP_FLAG_RETURN | 2210 PERF_IP_FLAG_INTERRUPT) && 2211 cs_etm__is_svc_instr(etmq, trace_chan_id, 2212 packet, packet->start_addr)) 2213 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2214 PERF_IP_FLAG_RETURN | 2215 PERF_IP_FLAG_SYSCALLRET; 2216 break; 2217 case CS_ETM_DISCONTINUITY: 2218 /* 2219 * The trace is discontinuous, if the previous packet is 2220 * instruction packet, set flag PERF_IP_FLAG_TRACE_END 2221 * for previous packet. 2222 */ 2223 if (prev_packet->sample_type == CS_ETM_RANGE) 2224 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 2225 PERF_IP_FLAG_TRACE_END; 2226 break; 2227 case CS_ETM_EXCEPTION: 2228 ret = cs_etm__get_magic(packet->trace_chan_id, &magic); 2229 if (ret) 2230 return ret; 2231 2232 /* The exception is for system call. */ 2233 if (cs_etm__is_syscall(etmq, tidq, magic)) 2234 packet->flags = PERF_IP_FLAG_BRANCH | 2235 PERF_IP_FLAG_CALL | 2236 PERF_IP_FLAG_SYSCALLRET; 2237 /* 2238 * The exceptions are triggered by external signals from bus, 2239 * interrupt controller, debug module, PE reset or halt. 2240 */ 2241 else if (cs_etm__is_async_exception(tidq, magic)) 2242 packet->flags = PERF_IP_FLAG_BRANCH | 2243 PERF_IP_FLAG_CALL | 2244 PERF_IP_FLAG_ASYNC | 2245 PERF_IP_FLAG_INTERRUPT; 2246 /* 2247 * Otherwise, exception is caused by trap, instruction & 2248 * data fault, or alignment errors. 2249 */ 2250 else if (cs_etm__is_sync_exception(etmq, tidq, magic)) 2251 packet->flags = PERF_IP_FLAG_BRANCH | 2252 PERF_IP_FLAG_CALL | 2253 PERF_IP_FLAG_INTERRUPT; 2254 2255 /* 2256 * When the exception packet is inserted, since exception 2257 * packet is not used standalone for generating samples 2258 * and it's affiliation to the previous instruction range 2259 * packet; so set previous range packet flags to tell perf 2260 * it is an exception taken branch. 2261 */ 2262 if (prev_packet->sample_type == CS_ETM_RANGE) 2263 prev_packet->flags = packet->flags; 2264 break; 2265 case CS_ETM_EXCEPTION_RET: 2266 /* 2267 * When the exception return packet is inserted, since 2268 * exception return packet is not used standalone for 2269 * generating samples and it's affiliation to the previous 2270 * instruction range packet; so set previous range packet 2271 * flags to tell perf it is an exception return branch. 2272 * 2273 * The exception return can be for either system call or 2274 * other exception types; unfortunately the packet doesn't 2275 * contain exception type related info so we cannot decide 2276 * the exception type purely based on exception return packet. 2277 * If we record the exception number from exception packet and 2278 * reuse it for exception return packet, this is not reliable 2279 * due the trace can be discontinuity or the interrupt can 2280 * be nested, thus the recorded exception number cannot be 2281 * used for exception return packet for these two cases. 2282 * 2283 * For exception return packet, we only need to distinguish the 2284 * packet is for system call or for other types. Thus the 2285 * decision can be deferred when receive the next packet which 2286 * contains the return address, based on the return address we 2287 * can read out the previous instruction and check if it's a 2288 * system call instruction and then calibrate the sample flag 2289 * as needed. 2290 */ 2291 if (prev_packet->sample_type == CS_ETM_RANGE) 2292 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2293 PERF_IP_FLAG_RETURN | 2294 PERF_IP_FLAG_INTERRUPT; 2295 break; 2296 case CS_ETM_EMPTY: 2297 default: 2298 break; 2299 } 2300 2301 return 0; 2302 } 2303 2304 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) 2305 { 2306 int ret = 0; 2307 size_t processed = 0; 2308 2309 /* 2310 * Packets are decoded and added to the decoder's packet queue 2311 * until the decoder packet processing callback has requested that 2312 * processing stops or there is nothing left in the buffer. Normal 2313 * operations that stop processing are a timestamp packet or a full 2314 * decoder buffer queue. 2315 */ 2316 ret = cs_etm_decoder__process_data_block(etmq->decoder, 2317 etmq->offset, 2318 &etmq->buf[etmq->buf_used], 2319 etmq->buf_len, 2320 &processed); 2321 if (ret) 2322 goto out; 2323 2324 etmq->offset += processed; 2325 etmq->buf_used += processed; 2326 etmq->buf_len -= processed; 2327 2328 out: 2329 return ret; 2330 } 2331 2332 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, 2333 struct cs_etm_traceid_queue *tidq) 2334 { 2335 int ret; 2336 struct cs_etm_packet_queue *packet_queue; 2337 2338 packet_queue = &tidq->packet_queue; 2339 2340 /* Process each packet in this chunk */ 2341 while (1) { 2342 ret = cs_etm_decoder__get_packet(packet_queue, 2343 tidq->packet); 2344 if (ret <= 0) 2345 /* 2346 * Stop processing this chunk on 2347 * end of data or error 2348 */ 2349 break; 2350 2351 /* 2352 * Since packet addresses are swapped in packet 2353 * handling within below switch() statements, 2354 * thus setting sample flags must be called 2355 * prior to switch() statement to use address 2356 * information before packets swapping. 2357 */ 2358 ret = cs_etm__set_sample_flags(etmq, tidq); 2359 if (ret < 0) 2360 break; 2361 2362 switch (tidq->packet->sample_type) { 2363 case CS_ETM_RANGE: 2364 /* 2365 * If the packet contains an instruction 2366 * range, generate instruction sequence 2367 * events. 2368 */ 2369 cs_etm__sample(etmq, tidq); 2370 break; 2371 case CS_ETM_EXCEPTION: 2372 case CS_ETM_EXCEPTION_RET: 2373 /* 2374 * If the exception packet is coming, 2375 * make sure the previous instruction 2376 * range packet to be handled properly. 2377 */ 2378 cs_etm__exception(tidq); 2379 break; 2380 case CS_ETM_DISCONTINUITY: 2381 /* 2382 * Discontinuity in trace, flush 2383 * previous branch stack 2384 */ 2385 cs_etm__flush(etmq, tidq); 2386 break; 2387 case CS_ETM_EMPTY: 2388 /* 2389 * Should not receive empty packet, 2390 * report error. 2391 */ 2392 pr_err("CS ETM Trace: empty packet\n"); 2393 return -EINVAL; 2394 default: 2395 break; 2396 } 2397 } 2398 2399 return ret; 2400 } 2401 2402 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) 2403 { 2404 int idx; 2405 struct int_node *inode; 2406 struct cs_etm_traceid_queue *tidq; 2407 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 2408 2409 intlist__for_each_entry(inode, traceid_queues_list) { 2410 idx = (int)(intptr_t)inode->priv; 2411 tidq = etmq->traceid_queues[idx]; 2412 2413 /* Ignore return value */ 2414 cs_etm__process_traceid_queue(etmq, tidq); 2415 2416 /* 2417 * Generate an instruction sample with the remaining 2418 * branchstack entries. 2419 */ 2420 cs_etm__flush(etmq, tidq); 2421 } 2422 } 2423 2424 static int cs_etm__run_per_thread_timeless_decoder(struct cs_etm_queue *etmq) 2425 { 2426 int err = 0; 2427 struct cs_etm_traceid_queue *tidq; 2428 2429 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); 2430 if (!tidq) 2431 return -EINVAL; 2432 2433 /* Go through each buffer in the queue and decode them one by one */ 2434 while (1) { 2435 err = cs_etm__get_data_block(etmq); 2436 if (err <= 0) 2437 return err; 2438 2439 /* Run trace decoder until buffer consumed or end of trace */ 2440 do { 2441 err = cs_etm__decode_data_block(etmq); 2442 if (err) 2443 return err; 2444 2445 /* 2446 * Process each packet in this chunk, nothing to do if 2447 * an error occurs other than hoping the next one will 2448 * be better. 2449 */ 2450 err = cs_etm__process_traceid_queue(etmq, tidq); 2451 2452 } while (etmq->buf_len); 2453 2454 if (err == 0) 2455 /* Flush any remaining branch stack entries */ 2456 err = cs_etm__end_block(etmq, tidq); 2457 } 2458 2459 return err; 2460 } 2461 2462 static int cs_etm__run_per_cpu_timeless_decoder(struct cs_etm_queue *etmq) 2463 { 2464 int idx, err = 0; 2465 struct cs_etm_traceid_queue *tidq; 2466 struct int_node *inode; 2467 2468 /* Go through each buffer in the queue and decode them one by one */ 2469 while (1) { 2470 err = cs_etm__get_data_block(etmq); 2471 if (err <= 0) 2472 return err; 2473 2474 /* Run trace decoder until buffer consumed or end of trace */ 2475 do { 2476 err = cs_etm__decode_data_block(etmq); 2477 if (err) 2478 return err; 2479 2480 /* 2481 * cs_etm__run_per_thread_timeless_decoder() runs on a 2482 * single traceID queue because each TID has a separate 2483 * buffer. But here in per-cpu mode we need to iterate 2484 * over each channel instead. 2485 */ 2486 intlist__for_each_entry(inode, 2487 etmq->traceid_queues_list) { 2488 idx = (int)(intptr_t)inode->priv; 2489 tidq = etmq->traceid_queues[idx]; 2490 cs_etm__process_traceid_queue(etmq, tidq); 2491 } 2492 } while (etmq->buf_len); 2493 2494 intlist__for_each_entry(inode, etmq->traceid_queues_list) { 2495 idx = (int)(intptr_t)inode->priv; 2496 tidq = etmq->traceid_queues[idx]; 2497 /* Flush any remaining branch stack entries */ 2498 err = cs_etm__end_block(etmq, tidq); 2499 if (err) 2500 return err; 2501 } 2502 } 2503 2504 return err; 2505 } 2506 2507 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 2508 pid_t tid) 2509 { 2510 unsigned int i; 2511 struct auxtrace_queues *queues = &etm->queues; 2512 2513 for (i = 0; i < queues->nr_queues; i++) { 2514 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 2515 struct cs_etm_queue *etmq = queue->priv; 2516 struct cs_etm_traceid_queue *tidq; 2517 2518 if (!etmq) 2519 continue; 2520 2521 if (etm->per_thread_decoding) { 2522 tidq = cs_etm__etmq_get_traceid_queue( 2523 etmq, CS_ETM_PER_THREAD_TRACEID); 2524 2525 if (!tidq) 2526 continue; 2527 2528 if (tid == -1 || thread__tid(tidq->thread) == tid) 2529 cs_etm__run_per_thread_timeless_decoder(etmq); 2530 } else 2531 cs_etm__run_per_cpu_timeless_decoder(etmq); 2532 } 2533 2534 return 0; 2535 } 2536 2537 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm) 2538 { 2539 int ret = 0; 2540 unsigned int cs_queue_nr, queue_nr, i; 2541 u8 trace_chan_id; 2542 u64 cs_timestamp; 2543 struct auxtrace_queue *queue; 2544 struct cs_etm_queue *etmq; 2545 struct cs_etm_traceid_queue *tidq; 2546 2547 /* 2548 * Pre-populate the heap with one entry from each queue so that we can 2549 * start processing in time order across all queues. 2550 */ 2551 for (i = 0; i < etm->queues.nr_queues; i++) { 2552 etmq = etm->queues.queue_array[i].priv; 2553 if (!etmq) 2554 continue; 2555 2556 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i); 2557 if (ret) 2558 return ret; 2559 } 2560 2561 while (1) { 2562 if (!etm->heap.heap_cnt) 2563 goto out; 2564 2565 /* Take the entry at the top of the min heap */ 2566 cs_queue_nr = etm->heap.heap_array[0].queue_nr; 2567 queue_nr = TO_QUEUE_NR(cs_queue_nr); 2568 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); 2569 queue = &etm->queues.queue_array[queue_nr]; 2570 etmq = queue->priv; 2571 2572 /* 2573 * Remove the top entry from the heap since we are about 2574 * to process it. 2575 */ 2576 auxtrace_heap__pop(&etm->heap); 2577 2578 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 2579 if (!tidq) { 2580 /* 2581 * No traceID queue has been allocated for this traceID, 2582 * which means something somewhere went very wrong. No 2583 * other choice than simply exit. 2584 */ 2585 ret = -EINVAL; 2586 goto out; 2587 } 2588 2589 /* 2590 * Packets associated with this timestamp are already in 2591 * the etmq's traceID queue, so process them. 2592 */ 2593 ret = cs_etm__process_traceid_queue(etmq, tidq); 2594 if (ret < 0) 2595 goto out; 2596 2597 /* 2598 * Packets for this timestamp have been processed, time to 2599 * move on to the next timestamp, fetching a new auxtrace_buffer 2600 * if need be. 2601 */ 2602 refetch: 2603 ret = cs_etm__get_data_block(etmq); 2604 if (ret < 0) 2605 goto out; 2606 2607 /* 2608 * No more auxtrace_buffers to process in this etmq, simply 2609 * move on to another entry in the auxtrace_heap. 2610 */ 2611 if (!ret) 2612 continue; 2613 2614 ret = cs_etm__decode_data_block(etmq); 2615 if (ret) 2616 goto out; 2617 2618 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 2619 2620 if (!cs_timestamp) { 2621 /* 2622 * Function cs_etm__decode_data_block() returns when 2623 * there is no more traces to decode in the current 2624 * auxtrace_buffer OR when a timestamp has been 2625 * encountered on any of the traceID queues. Since we 2626 * did not get a timestamp, there is no more traces to 2627 * process in this auxtrace_buffer. As such empty and 2628 * flush all traceID queues. 2629 */ 2630 cs_etm__clear_all_traceid_queues(etmq); 2631 2632 /* Fetch another auxtrace_buffer for this etmq */ 2633 goto refetch; 2634 } 2635 2636 /* 2637 * Add to the min heap the timestamp for packets that have 2638 * just been decoded. They will be processed and synthesized 2639 * during the next call to cs_etm__process_traceid_queue() for 2640 * this queue/traceID. 2641 */ 2642 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 2643 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 2644 } 2645 2646 out: 2647 return ret; 2648 } 2649 2650 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, 2651 union perf_event *event) 2652 { 2653 struct thread *th; 2654 2655 if (etm->timeless_decoding) 2656 return 0; 2657 2658 /* 2659 * Add the tid/pid to the log so that we can get a match when we get a 2660 * contextID from the decoder. Only track for the host: only kernel 2661 * trace is supported for guests which wouldn't need pids so this should 2662 * be fine. 2663 */ 2664 th = machine__findnew_thread(&etm->session->machines.host, 2665 event->itrace_start.pid, 2666 event->itrace_start.tid); 2667 if (!th) 2668 return -ENOMEM; 2669 2670 thread__put(th); 2671 2672 return 0; 2673 } 2674 2675 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, 2676 union perf_event *event) 2677 { 2678 struct thread *th; 2679 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2680 2681 /* 2682 * Context switch in per-thread mode are irrelevant since perf 2683 * will start/stop tracing as the process is scheduled. 2684 */ 2685 if (etm->timeless_decoding) 2686 return 0; 2687 2688 /* 2689 * SWITCH_IN events carry the next process to be switched out while 2690 * SWITCH_OUT events carry the process to be switched in. As such 2691 * we don't care about IN events. 2692 */ 2693 if (!out) 2694 return 0; 2695 2696 /* 2697 * Add the tid/pid to the log so that we can get a match when we get a 2698 * contextID from the decoder. Only track for the host: only kernel 2699 * trace is supported for guests which wouldn't need pids so this should 2700 * be fine. 2701 */ 2702 th = machine__findnew_thread(&etm->session->machines.host, 2703 event->context_switch.next_prev_pid, 2704 event->context_switch.next_prev_tid); 2705 if (!th) 2706 return -ENOMEM; 2707 2708 thread__put(th); 2709 2710 return 0; 2711 } 2712 2713 static int cs_etm__process_event(struct perf_session *session, 2714 union perf_event *event, 2715 struct perf_sample *sample, 2716 struct perf_tool *tool) 2717 { 2718 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2719 struct cs_etm_auxtrace, 2720 auxtrace); 2721 2722 if (dump_trace) 2723 return 0; 2724 2725 if (!tool->ordered_events) { 2726 pr_err("CoreSight ETM Trace requires ordered events\n"); 2727 return -EINVAL; 2728 } 2729 2730 switch (event->header.type) { 2731 case PERF_RECORD_EXIT: 2732 /* 2733 * Don't need to wait for cs_etm__flush_events() in per-thread mode to 2734 * start the decode because we know there will be no more trace from 2735 * this thread. All this does is emit samples earlier than waiting for 2736 * the flush in other modes, but with timestamps it makes sense to wait 2737 * for flush so that events from different threads are interleaved 2738 * properly. 2739 */ 2740 if (etm->per_thread_decoding && etm->timeless_decoding) 2741 return cs_etm__process_timeless_queues(etm, 2742 event->fork.tid); 2743 break; 2744 2745 case PERF_RECORD_ITRACE_START: 2746 return cs_etm__process_itrace_start(etm, event); 2747 2748 case PERF_RECORD_SWITCH_CPU_WIDE: 2749 return cs_etm__process_switch_cpu_wide(etm, event); 2750 2751 case PERF_RECORD_AUX: 2752 /* 2753 * Record the latest kernel timestamp available in the header 2754 * for samples so that synthesised samples occur from this point 2755 * onwards. 2756 */ 2757 if (sample->time && (sample->time != (u64)-1)) 2758 etm->latest_kernel_timestamp = sample->time; 2759 break; 2760 2761 default: 2762 break; 2763 } 2764 2765 return 0; 2766 } 2767 2768 static void dump_queued_data(struct cs_etm_auxtrace *etm, 2769 struct perf_record_auxtrace *event) 2770 { 2771 struct auxtrace_buffer *buf; 2772 unsigned int i; 2773 /* 2774 * Find all buffers with same reference in the queues and dump them. 2775 * This is because the queues can contain multiple entries of the same 2776 * buffer that were split on aux records. 2777 */ 2778 for (i = 0; i < etm->queues.nr_queues; ++i) 2779 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list) 2780 if (buf->reference == event->reference) 2781 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf); 2782 } 2783 2784 static int cs_etm__process_auxtrace_event(struct perf_session *session, 2785 union perf_event *event, 2786 struct perf_tool *tool __maybe_unused) 2787 { 2788 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2789 struct cs_etm_auxtrace, 2790 auxtrace); 2791 if (!etm->data_queued) { 2792 struct auxtrace_buffer *buffer; 2793 off_t data_offset; 2794 int fd = perf_data__fd(session->data); 2795 bool is_pipe = perf_data__is_pipe(session->data); 2796 int err; 2797 int idx = event->auxtrace.idx; 2798 2799 if (is_pipe) 2800 data_offset = 0; 2801 else { 2802 data_offset = lseek(fd, 0, SEEK_CUR); 2803 if (data_offset == -1) 2804 return -errno; 2805 } 2806 2807 err = auxtrace_queues__add_event(&etm->queues, session, 2808 event, data_offset, &buffer); 2809 if (err) 2810 return err; 2811 2812 /* 2813 * Knowing if the trace is formatted or not requires a lookup of 2814 * the aux record so only works in non-piped mode where data is 2815 * queued in cs_etm__queue_aux_records(). Always assume 2816 * formatted in piped mode (true). 2817 */ 2818 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2819 idx, true); 2820 if (err) 2821 return err; 2822 2823 if (dump_trace) 2824 if (auxtrace_buffer__get_data(buffer, fd)) { 2825 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer); 2826 auxtrace_buffer__put_data(buffer); 2827 } 2828 } else if (dump_trace) 2829 dump_queued_data(etm, &event->auxtrace); 2830 2831 return 0; 2832 } 2833 2834 static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm) 2835 { 2836 struct evsel *evsel; 2837 struct evlist *evlist = etm->session->evlist; 2838 2839 /* Override timeless mode with user input from --itrace=Z */ 2840 if (etm->synth_opts.timeless_decoding) { 2841 etm->timeless_decoding = true; 2842 return 0; 2843 } 2844 2845 /* 2846 * Find the cs_etm evsel and look at what its timestamp setting was 2847 */ 2848 evlist__for_each_entry(evlist, evsel) 2849 if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) { 2850 etm->timeless_decoding = 2851 !(evsel->core.attr.config & BIT(ETM_OPT_TS)); 2852 return 0; 2853 } 2854 2855 pr_err("CS ETM: Couldn't find ETM evsel\n"); 2856 return -EINVAL; 2857 } 2858 2859 /* 2860 * Read a single cpu parameter block from the auxtrace_info priv block. 2861 * 2862 * For version 1 there is a per cpu nr_params entry. If we are handling 2863 * version 1 file, then there may be less, the same, or more params 2864 * indicated by this value than the compile time number we understand. 2865 * 2866 * For a version 0 info block, there are a fixed number, and we need to 2867 * fill out the nr_param value in the metadata we create. 2868 */ 2869 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset, 2870 int out_blk_size, int nr_params_v0) 2871 { 2872 u64 *metadata = NULL; 2873 int hdr_version; 2874 int nr_in_params, nr_out_params, nr_cmn_params; 2875 int i, k; 2876 2877 metadata = zalloc(sizeof(*metadata) * out_blk_size); 2878 if (!metadata) 2879 return NULL; 2880 2881 /* read block current index & version */ 2882 i = *buff_in_offset; 2883 hdr_version = buff_in[CS_HEADER_VERSION]; 2884 2885 if (!hdr_version) { 2886 /* read version 0 info block into a version 1 metadata block */ 2887 nr_in_params = nr_params_v0; 2888 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC]; 2889 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU]; 2890 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params; 2891 /* remaining block params at offset +1 from source */ 2892 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++) 2893 metadata[k + 1] = buff_in[i + k]; 2894 /* version 0 has 2 common params */ 2895 nr_cmn_params = 2; 2896 } else { 2897 /* read version 1 info block - input and output nr_params may differ */ 2898 /* version 1 has 3 common params */ 2899 nr_cmn_params = 3; 2900 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS]; 2901 2902 /* if input has more params than output - skip excess */ 2903 nr_out_params = nr_in_params + nr_cmn_params; 2904 if (nr_out_params > out_blk_size) 2905 nr_out_params = out_blk_size; 2906 2907 for (k = CS_ETM_MAGIC; k < nr_out_params; k++) 2908 metadata[k] = buff_in[i + k]; 2909 2910 /* record the actual nr params we copied */ 2911 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params; 2912 } 2913 2914 /* adjust in offset by number of in params used */ 2915 i += nr_in_params + nr_cmn_params; 2916 *buff_in_offset = i; 2917 return metadata; 2918 } 2919 2920 /** 2921 * Puts a fragment of an auxtrace buffer into the auxtrace queues based 2922 * on the bounds of aux_event, if it matches with the buffer that's at 2923 * file_offset. 2924 * 2925 * Normally, whole auxtrace buffers would be added to the queue. But we 2926 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder 2927 * is reset across each buffer, so splitting the buffers up in advance has 2928 * the same effect. 2929 */ 2930 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz, 2931 struct perf_record_aux *aux_event, struct perf_sample *sample) 2932 { 2933 int err; 2934 char buf[PERF_SAMPLE_MAX_SIZE]; 2935 union perf_event *auxtrace_event_union; 2936 struct perf_record_auxtrace *auxtrace_event; 2937 union perf_event auxtrace_fragment; 2938 __u64 aux_offset, aux_size; 2939 __u32 idx; 2940 bool formatted; 2941 2942 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2943 struct cs_etm_auxtrace, 2944 auxtrace); 2945 2946 /* 2947 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got 2948 * from looping through the auxtrace index. 2949 */ 2950 err = perf_session__peek_event(session, file_offset, buf, 2951 PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL); 2952 if (err) 2953 return err; 2954 auxtrace_event = &auxtrace_event_union->auxtrace; 2955 if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE) 2956 return -EINVAL; 2957 2958 if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) || 2959 auxtrace_event->header.size != sz) { 2960 return -EINVAL; 2961 } 2962 2963 /* 2964 * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See 2965 * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a 2966 * CPU as we set this always for the AUX_OUTPUT_HW_ID event. 2967 * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1. 2968 * Return 'not found' if mismatch. 2969 */ 2970 if (auxtrace_event->cpu == (__u32) -1) { 2971 etm->per_thread_decoding = true; 2972 if (auxtrace_event->tid != sample->tid) 2973 return 1; 2974 } else if (auxtrace_event->cpu != sample->cpu) { 2975 if (etm->per_thread_decoding) { 2976 /* 2977 * Found a per-cpu buffer after a per-thread one was 2978 * already found 2979 */ 2980 pr_err("CS ETM: Inconsistent per-thread/per-cpu mode.\n"); 2981 return -EINVAL; 2982 } 2983 return 1; 2984 } 2985 2986 if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) { 2987 /* 2988 * Clamp size in snapshot mode. The buffer size is clamped in 2989 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect 2990 * the buffer size. 2991 */ 2992 aux_size = min(aux_event->aux_size, auxtrace_event->size); 2993 2994 /* 2995 * In this mode, the head also points to the end of the buffer so aux_offset 2996 * needs to have the size subtracted so it points to the beginning as in normal mode 2997 */ 2998 aux_offset = aux_event->aux_offset - aux_size; 2999 } else { 3000 aux_size = aux_event->aux_size; 3001 aux_offset = aux_event->aux_offset; 3002 } 3003 3004 if (aux_offset >= auxtrace_event->offset && 3005 aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) { 3006 /* 3007 * If this AUX event was inside this buffer somewhere, create a new auxtrace event 3008 * based on the sizes of the aux event, and queue that fragment. 3009 */ 3010 auxtrace_fragment.auxtrace = *auxtrace_event; 3011 auxtrace_fragment.auxtrace.size = aux_size; 3012 auxtrace_fragment.auxtrace.offset = aux_offset; 3013 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size; 3014 3015 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64 3016 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu); 3017 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment, 3018 file_offset, NULL); 3019 if (err) 3020 return err; 3021 3022 idx = auxtrace_event->idx; 3023 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW); 3024 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 3025 idx, formatted); 3026 } 3027 3028 /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */ 3029 return 1; 3030 } 3031 3032 static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event, 3033 u64 offset __maybe_unused, void *data __maybe_unused) 3034 { 3035 /* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */ 3036 if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) { 3037 (*(int *)data)++; /* increment found count */ 3038 return cs_etm__process_aux_output_hw_id(session, event); 3039 } 3040 return 0; 3041 } 3042 3043 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event, 3044 u64 offset __maybe_unused, void *data __maybe_unused) 3045 { 3046 struct perf_sample sample; 3047 int ret; 3048 struct auxtrace_index_entry *ent; 3049 struct auxtrace_index *auxtrace_index; 3050 struct evsel *evsel; 3051 size_t i; 3052 3053 /* Don't care about any other events, we're only queuing buffers for AUX events */ 3054 if (event->header.type != PERF_RECORD_AUX) 3055 return 0; 3056 3057 if (event->header.size < sizeof(struct perf_record_aux)) 3058 return -EINVAL; 3059 3060 /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */ 3061 if (!event->aux.aux_size) 3062 return 0; 3063 3064 /* 3065 * Parse the sample, we need the sample_id_all data that comes after the event so that the 3066 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID. 3067 */ 3068 evsel = evlist__event2evsel(session->evlist, event); 3069 if (!evsel) 3070 return -EINVAL; 3071 ret = evsel__parse_sample(evsel, event, &sample); 3072 if (ret) 3073 return ret; 3074 3075 /* 3076 * Loop through the auxtrace index to find the buffer that matches up with this aux event. 3077 */ 3078 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 3079 for (i = 0; i < auxtrace_index->nr; i++) { 3080 ent = &auxtrace_index->entries[i]; 3081 ret = cs_etm__queue_aux_fragment(session, ent->file_offset, 3082 ent->sz, &event->aux, &sample); 3083 /* 3084 * Stop search on error or successful values. Continue search on 3085 * 1 ('not found') 3086 */ 3087 if (ret != 1) 3088 return ret; 3089 } 3090 } 3091 3092 /* 3093 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but 3094 * don't exit with an error because it will still be possible to decode other aux records. 3095 */ 3096 pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64 3097 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu); 3098 return 0; 3099 } 3100 3101 static int cs_etm__queue_aux_records(struct perf_session *session) 3102 { 3103 struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index, 3104 struct auxtrace_index, list); 3105 if (index && index->nr > 0) 3106 return perf_session__peek_events(session, session->header.data_offset, 3107 session->header.data_size, 3108 cs_etm__queue_aux_records_cb, NULL); 3109 3110 /* 3111 * We would get here if there are no entries in the index (either no auxtrace 3112 * buffers or no index at all). Fail silently as there is the possibility of 3113 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still 3114 * false. 3115 * 3116 * In that scenario, buffers will not be split by AUX records. 3117 */ 3118 return 0; 3119 } 3120 3121 #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \ 3122 (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1)) 3123 3124 /* 3125 * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual 3126 * timestamps). 3127 */ 3128 static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu) 3129 { 3130 int j; 3131 3132 for (j = 0; j < num_cpu; j++) { 3133 switch (metadata[j][CS_ETM_MAGIC]) { 3134 case __perf_cs_etmv4_magic: 3135 if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1) 3136 return false; 3137 break; 3138 case __perf_cs_ete_magic: 3139 if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1) 3140 return false; 3141 break; 3142 default: 3143 /* Unknown / unsupported magic number. */ 3144 return false; 3145 } 3146 } 3147 return true; 3148 } 3149 3150 /* map trace ids to correct metadata block, from information in metadata */ 3151 static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata) 3152 { 3153 u64 cs_etm_magic; 3154 u8 trace_chan_id; 3155 int i, err; 3156 3157 for (i = 0; i < num_cpu; i++) { 3158 cs_etm_magic = metadata[i][CS_ETM_MAGIC]; 3159 switch (cs_etm_magic) { 3160 case __perf_cs_etmv3_magic: 3161 metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; 3162 trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]); 3163 break; 3164 case __perf_cs_etmv4_magic: 3165 case __perf_cs_ete_magic: 3166 metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; 3167 trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]); 3168 break; 3169 default: 3170 /* unknown magic number */ 3171 return -EINVAL; 3172 } 3173 err = cs_etm__map_trace_id(trace_chan_id, metadata[i]); 3174 if (err) 3175 return err; 3176 } 3177 return 0; 3178 } 3179 3180 /* 3181 * If we found AUX_HW_ID packets, then set any metadata marked as unused to the 3182 * unused value to reduce the number of unneeded decoders created. 3183 */ 3184 static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata) 3185 { 3186 u64 cs_etm_magic; 3187 int i; 3188 3189 for (i = 0; i < num_cpu; i++) { 3190 cs_etm_magic = metadata[i][CS_ETM_MAGIC]; 3191 switch (cs_etm_magic) { 3192 case __perf_cs_etmv3_magic: 3193 if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) 3194 metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; 3195 break; 3196 case __perf_cs_etmv4_magic: 3197 case __perf_cs_ete_magic: 3198 if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) 3199 metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; 3200 break; 3201 default: 3202 /* unknown magic number */ 3203 return -EINVAL; 3204 } 3205 } 3206 return 0; 3207 } 3208 3209 int cs_etm__process_auxtrace_info_full(union perf_event *event, 3210 struct perf_session *session) 3211 { 3212 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3213 struct cs_etm_auxtrace *etm = NULL; 3214 struct perf_record_time_conv *tc = &session->time_conv; 3215 int event_header_size = sizeof(struct perf_event_header); 3216 int total_size = auxtrace_info->header.size; 3217 int priv_size = 0; 3218 int num_cpu; 3219 int err = 0; 3220 int aux_hw_id_found; 3221 int i, j; 3222 u64 *ptr = NULL; 3223 u64 **metadata = NULL; 3224 3225 /* 3226 * Create an RB tree for traceID-metadata tuple. Since the conversion 3227 * has to be made for each packet that gets decoded, optimizing access 3228 * in anything other than a sequential array is worth doing. 3229 */ 3230 traceid_list = intlist__new(NULL); 3231 if (!traceid_list) 3232 return -ENOMEM; 3233 3234 /* First the global part */ 3235 ptr = (u64 *) auxtrace_info->priv; 3236 num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff; 3237 metadata = zalloc(sizeof(*metadata) * num_cpu); 3238 if (!metadata) { 3239 err = -ENOMEM; 3240 goto err_free_traceid_list; 3241 } 3242 3243 /* Start parsing after the common part of the header */ 3244 i = CS_HEADER_VERSION_MAX; 3245 3246 /* 3247 * The metadata is stored in the auxtrace_info section and encodes 3248 * the configuration of the ARM embedded trace macrocell which is 3249 * required by the trace decoder to properly decode the trace due 3250 * to its highly compressed nature. 3251 */ 3252 for (j = 0; j < num_cpu; j++) { 3253 if (ptr[i] == __perf_cs_etmv3_magic) { 3254 metadata[j] = 3255 cs_etm__create_meta_blk(ptr, &i, 3256 CS_ETM_PRIV_MAX, 3257 CS_ETM_NR_TRC_PARAMS_V0); 3258 } else if (ptr[i] == __perf_cs_etmv4_magic) { 3259 metadata[j] = 3260 cs_etm__create_meta_blk(ptr, &i, 3261 CS_ETMV4_PRIV_MAX, 3262 CS_ETMV4_NR_TRC_PARAMS_V0); 3263 } else if (ptr[i] == __perf_cs_ete_magic) { 3264 metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1); 3265 } else { 3266 ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n", 3267 ptr[i]); 3268 err = -EINVAL; 3269 goto err_free_metadata; 3270 } 3271 3272 if (!metadata[j]) { 3273 err = -ENOMEM; 3274 goto err_free_metadata; 3275 } 3276 } 3277 3278 /* 3279 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and 3280 * CS_ETMV4_PRIV_MAX mark how many double words are in the 3281 * global metadata, and each cpu's metadata respectively. 3282 * The following tests if the correct number of double words was 3283 * present in the auxtrace info section. 3284 */ 3285 priv_size = total_size - event_header_size - INFO_HEADER_SIZE; 3286 if (i * 8 != priv_size) { 3287 err = -EINVAL; 3288 goto err_free_metadata; 3289 } 3290 3291 etm = zalloc(sizeof(*etm)); 3292 3293 if (!etm) { 3294 err = -ENOMEM; 3295 goto err_free_metadata; 3296 } 3297 3298 /* 3299 * As all the ETMs run at the same exception level, the system should 3300 * have the same PID format crossing CPUs. So cache the PID format 3301 * and reuse it for sequential decoding. 3302 */ 3303 etm->pid_fmt = cs_etm__init_pid_fmt(metadata[0]); 3304 3305 err = auxtrace_queues__init(&etm->queues); 3306 if (err) 3307 goto err_free_etm; 3308 3309 if (session->itrace_synth_opts->set) { 3310 etm->synth_opts = *session->itrace_synth_opts; 3311 } else { 3312 itrace_synth_opts__set_default(&etm->synth_opts, 3313 session->itrace_synth_opts->default_no_sample); 3314 etm->synth_opts.callchain = false; 3315 } 3316 3317 etm->session = session; 3318 3319 etm->num_cpu = num_cpu; 3320 etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff); 3321 etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0); 3322 etm->metadata = metadata; 3323 etm->auxtrace_type = auxtrace_info->type; 3324 3325 /* Use virtual timestamps if all ETMs report ts_source = 1 */ 3326 etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu); 3327 3328 if (!etm->has_virtual_ts) 3329 ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n" 3330 "The time field of the samples will not be set accurately.\n\n"); 3331 3332 etm->auxtrace.process_event = cs_etm__process_event; 3333 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 3334 etm->auxtrace.flush_events = cs_etm__flush_events; 3335 etm->auxtrace.free_events = cs_etm__free_events; 3336 etm->auxtrace.free = cs_etm__free; 3337 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; 3338 session->auxtrace = &etm->auxtrace; 3339 3340 err = cs_etm__setup_timeless_decoding(etm); 3341 if (err) 3342 return err; 3343 3344 etm->tc.time_shift = tc->time_shift; 3345 etm->tc.time_mult = tc->time_mult; 3346 etm->tc.time_zero = tc->time_zero; 3347 if (event_contains(*tc, time_cycles)) { 3348 etm->tc.time_cycles = tc->time_cycles; 3349 etm->tc.time_mask = tc->time_mask; 3350 etm->tc.cap_user_time_zero = tc->cap_user_time_zero; 3351 etm->tc.cap_user_time_short = tc->cap_user_time_short; 3352 } 3353 err = cs_etm__synth_events(etm, session); 3354 if (err) 3355 goto err_free_queues; 3356 3357 /* 3358 * Map Trace ID values to CPU metadata. 3359 * 3360 * Trace metadata will always contain Trace ID values from the legacy algorithm. If the 3361 * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata 3362 * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set. 3363 * 3364 * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use 3365 * the same IDs as the old algorithm as far as is possible, unless there are clashes 3366 * in which case a different value will be used. This means an older perf may still 3367 * be able to record and read files generate on a newer system. 3368 * 3369 * For a perf able to interpret AUX_HW_ID packets we first check for the presence of 3370 * those packets. If they are there then the values will be mapped and plugged into 3371 * the metadata. We then set any remaining metadata values with the used flag to a 3372 * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required. 3373 * 3374 * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel 3375 * then we map Trace ID values to CPU directly from the metadata - clearing any unused 3376 * flags if present. 3377 */ 3378 3379 /* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */ 3380 aux_hw_id_found = 0; 3381 err = perf_session__peek_events(session, session->header.data_offset, 3382 session->header.data_size, 3383 cs_etm__process_aux_hw_id_cb, &aux_hw_id_found); 3384 if (err) 3385 goto err_free_queues; 3386 3387 /* if HW ID found then clear any unused metadata ID values */ 3388 if (aux_hw_id_found) 3389 err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata); 3390 /* otherwise, this is a file with metadata values only, map from metadata */ 3391 else 3392 err = cs_etm__map_trace_ids_metadata(num_cpu, metadata); 3393 3394 if (err) 3395 goto err_free_queues; 3396 3397 err = cs_etm__queue_aux_records(session); 3398 if (err) 3399 goto err_free_queues; 3400 3401 etm->data_queued = etm->queues.populated; 3402 return 0; 3403 3404 err_free_queues: 3405 auxtrace_queues__free(&etm->queues); 3406 session->auxtrace = NULL; 3407 err_free_etm: 3408 zfree(&etm); 3409 err_free_metadata: 3410 /* No need to check @metadata[j], free(NULL) is supported */ 3411 for (j = 0; j < num_cpu; j++) 3412 zfree(&metadata[j]); 3413 zfree(&metadata); 3414 err_free_traceid_list: 3415 intlist__delete(traceid_list); 3416 return err; 3417 } 3418