xref: /openbmc/linux/tools/perf/util/cs-etm.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19 
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40 
41 struct cs_etm_auxtrace {
42 	struct auxtrace auxtrace;
43 	struct auxtrace_queues queues;
44 	struct auxtrace_heap heap;
45 	struct itrace_synth_opts synth_opts;
46 	struct perf_session *session;
47 	struct machine *machine;
48 	struct thread *unknown_thread;
49 
50 	u8 timeless_decoding;
51 	u8 snapshot_mode;
52 	u8 data_queued;
53 	u8 sample_branches;
54 	u8 sample_instructions;
55 
56 	int num_cpu;
57 	u64 latest_kernel_timestamp;
58 	u32 auxtrace_type;
59 	u64 branches_sample_type;
60 	u64 branches_id;
61 	u64 instructions_sample_type;
62 	u64 instructions_sample_period;
63 	u64 instructions_id;
64 	u64 **metadata;
65 	u64 kernel_start;
66 	unsigned int pmu_type;
67 };
68 
69 struct cs_etm_traceid_queue {
70 	u8 trace_chan_id;
71 	pid_t pid, tid;
72 	u64 period_instructions;
73 	size_t last_branch_pos;
74 	union perf_event *event_buf;
75 	struct thread *thread;
76 	struct branch_stack *last_branch;
77 	struct branch_stack *last_branch_rb;
78 	struct cs_etm_packet *prev_packet;
79 	struct cs_etm_packet *packet;
80 	struct cs_etm_packet_queue packet_queue;
81 };
82 
83 struct cs_etm_queue {
84 	struct cs_etm_auxtrace *etm;
85 	struct cs_etm_decoder *decoder;
86 	struct auxtrace_buffer *buffer;
87 	unsigned int queue_nr;
88 	u8 pending_timestamp_chan_id;
89 	u64 offset;
90 	const unsigned char *buf;
91 	size_t buf_len, buf_used;
92 	/* Conversion between traceID and index in traceid_queues array */
93 	struct intlist *traceid_queues_list;
94 	struct cs_etm_traceid_queue **traceid_queues;
95 };
96 
97 /* RB tree for quick conversion between traceID and metadata pointers */
98 static struct intlist *traceid_list;
99 
100 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
101 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
102 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
103 					   pid_t tid);
104 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
105 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
106 
107 /* PTMs ETMIDR [11:8] set to b0011 */
108 #define ETMIDR_PTM_VERSION 0x00000300
109 
110 /*
111  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
112  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
113  * encode the etm queue number as the upper 16 bit and the channel as
114  * the lower 16 bit.
115  */
116 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
117 		      (queue_nr << 16 | trace_chan_id)
118 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
119 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
120 
121 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
122 {
123 	etmidr &= ETMIDR_PTM_VERSION;
124 
125 	if (etmidr == ETMIDR_PTM_VERSION)
126 		return CS_ETM_PROTO_PTM;
127 
128 	return CS_ETM_PROTO_ETMV3;
129 }
130 
131 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
132 {
133 	struct int_node *inode;
134 	u64 *metadata;
135 
136 	inode = intlist__find(traceid_list, trace_chan_id);
137 	if (!inode)
138 		return -EINVAL;
139 
140 	metadata = inode->priv;
141 	*magic = metadata[CS_ETM_MAGIC];
142 	return 0;
143 }
144 
145 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
146 {
147 	struct int_node *inode;
148 	u64 *metadata;
149 
150 	inode = intlist__find(traceid_list, trace_chan_id);
151 	if (!inode)
152 		return -EINVAL;
153 
154 	metadata = inode->priv;
155 	*cpu = (int)metadata[CS_ETM_CPU];
156 	return 0;
157 }
158 
159 /*
160  * The returned PID format is presented by two bits:
161  *
162  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
163  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
164  *
165  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
166  * are enabled at the same time when the session runs on an EL2 kernel.
167  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
168  * recorded in the trace data, the tool will selectively use
169  * CONTEXTIDR_EL2 as PID.
170  */
171 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
172 {
173 	struct int_node *inode;
174 	u64 *metadata, val;
175 
176 	inode = intlist__find(traceid_list, trace_chan_id);
177 	if (!inode)
178 		return -EINVAL;
179 
180 	metadata = inode->priv;
181 
182 	if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
183 		val = metadata[CS_ETM_ETMCR];
184 		/* CONTEXTIDR is traced */
185 		if (val & BIT(ETM_OPT_CTXTID))
186 			*pid_fmt = BIT(ETM_OPT_CTXTID);
187 	} else {
188 		val = metadata[CS_ETMV4_TRCCONFIGR];
189 		/* CONTEXTIDR_EL2 is traced */
190 		if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
191 			*pid_fmt = BIT(ETM_OPT_CTXTID2);
192 		/* CONTEXTIDR_EL1 is traced */
193 		else if (val & BIT(ETM4_CFG_BIT_CTXTID))
194 			*pid_fmt = BIT(ETM_OPT_CTXTID);
195 	}
196 
197 	return 0;
198 }
199 
200 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
201 					      u8 trace_chan_id)
202 {
203 	/*
204 	 * When a timestamp packet is encountered the backend code
205 	 * is stopped so that the front end has time to process packets
206 	 * that were accumulated in the traceID queue.  Since there can
207 	 * be more than one channel per cs_etm_queue, we need to specify
208 	 * what traceID queue needs servicing.
209 	 */
210 	etmq->pending_timestamp_chan_id = trace_chan_id;
211 }
212 
213 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
214 				      u8 *trace_chan_id)
215 {
216 	struct cs_etm_packet_queue *packet_queue;
217 
218 	if (!etmq->pending_timestamp_chan_id)
219 		return 0;
220 
221 	if (trace_chan_id)
222 		*trace_chan_id = etmq->pending_timestamp_chan_id;
223 
224 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
225 						     etmq->pending_timestamp_chan_id);
226 	if (!packet_queue)
227 		return 0;
228 
229 	/* Acknowledge pending status */
230 	etmq->pending_timestamp_chan_id = 0;
231 
232 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
233 	return packet_queue->cs_timestamp;
234 }
235 
236 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
237 {
238 	int i;
239 
240 	queue->head = 0;
241 	queue->tail = 0;
242 	queue->packet_count = 0;
243 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
244 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
245 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
246 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
247 		queue->packet_buffer[i].instr_count = 0;
248 		queue->packet_buffer[i].last_instr_taken_branch = false;
249 		queue->packet_buffer[i].last_instr_size = 0;
250 		queue->packet_buffer[i].last_instr_type = 0;
251 		queue->packet_buffer[i].last_instr_subtype = 0;
252 		queue->packet_buffer[i].last_instr_cond = 0;
253 		queue->packet_buffer[i].flags = 0;
254 		queue->packet_buffer[i].exception_number = UINT32_MAX;
255 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
256 		queue->packet_buffer[i].cpu = INT_MIN;
257 	}
258 }
259 
260 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
261 {
262 	int idx;
263 	struct int_node *inode;
264 	struct cs_etm_traceid_queue *tidq;
265 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
266 
267 	intlist__for_each_entry(inode, traceid_queues_list) {
268 		idx = (int)(intptr_t)inode->priv;
269 		tidq = etmq->traceid_queues[idx];
270 		cs_etm__clear_packet_queue(&tidq->packet_queue);
271 	}
272 }
273 
274 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
275 				      struct cs_etm_traceid_queue *tidq,
276 				      u8 trace_chan_id)
277 {
278 	int rc = -ENOMEM;
279 	struct auxtrace_queue *queue;
280 	struct cs_etm_auxtrace *etm = etmq->etm;
281 
282 	cs_etm__clear_packet_queue(&tidq->packet_queue);
283 
284 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
285 	tidq->tid = queue->tid;
286 	tidq->pid = -1;
287 	tidq->trace_chan_id = trace_chan_id;
288 
289 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
290 	if (!tidq->packet)
291 		goto out;
292 
293 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
294 	if (!tidq->prev_packet)
295 		goto out_free;
296 
297 	if (etm->synth_opts.last_branch) {
298 		size_t sz = sizeof(struct branch_stack);
299 
300 		sz += etm->synth_opts.last_branch_sz *
301 		      sizeof(struct branch_entry);
302 		tidq->last_branch = zalloc(sz);
303 		if (!tidq->last_branch)
304 			goto out_free;
305 		tidq->last_branch_rb = zalloc(sz);
306 		if (!tidq->last_branch_rb)
307 			goto out_free;
308 	}
309 
310 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
311 	if (!tidq->event_buf)
312 		goto out_free;
313 
314 	return 0;
315 
316 out_free:
317 	zfree(&tidq->last_branch_rb);
318 	zfree(&tidq->last_branch);
319 	zfree(&tidq->prev_packet);
320 	zfree(&tidq->packet);
321 out:
322 	return rc;
323 }
324 
325 static struct cs_etm_traceid_queue
326 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
327 {
328 	int idx;
329 	struct int_node *inode;
330 	struct intlist *traceid_queues_list;
331 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
332 	struct cs_etm_auxtrace *etm = etmq->etm;
333 
334 	if (etm->timeless_decoding)
335 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
336 
337 	traceid_queues_list = etmq->traceid_queues_list;
338 
339 	/*
340 	 * Check if the traceid_queue exist for this traceID by looking
341 	 * in the queue list.
342 	 */
343 	inode = intlist__find(traceid_queues_list, trace_chan_id);
344 	if (inode) {
345 		idx = (int)(intptr_t)inode->priv;
346 		return etmq->traceid_queues[idx];
347 	}
348 
349 	/* We couldn't find a traceid_queue for this traceID, allocate one */
350 	tidq = malloc(sizeof(*tidq));
351 	if (!tidq)
352 		return NULL;
353 
354 	memset(tidq, 0, sizeof(*tidq));
355 
356 	/* Get a valid index for the new traceid_queue */
357 	idx = intlist__nr_entries(traceid_queues_list);
358 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
359 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
360 	if (!inode)
361 		goto out_free;
362 
363 	/* Associate this traceID with this index */
364 	inode->priv = (void *)(intptr_t)idx;
365 
366 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
367 		goto out_free;
368 
369 	/* Grow the traceid_queues array by one unit */
370 	traceid_queues = etmq->traceid_queues;
371 	traceid_queues = reallocarray(traceid_queues,
372 				      idx + 1,
373 				      sizeof(*traceid_queues));
374 
375 	/*
376 	 * On failure reallocarray() returns NULL and the original block of
377 	 * memory is left untouched.
378 	 */
379 	if (!traceid_queues)
380 		goto out_free;
381 
382 	traceid_queues[idx] = tidq;
383 	etmq->traceid_queues = traceid_queues;
384 
385 	return etmq->traceid_queues[idx];
386 
387 out_free:
388 	/*
389 	 * Function intlist__remove() removes the inode from the list
390 	 * and delete the memory associated to it.
391 	 */
392 	intlist__remove(traceid_queues_list, inode);
393 	free(tidq);
394 
395 	return NULL;
396 }
397 
398 struct cs_etm_packet_queue
399 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
400 {
401 	struct cs_etm_traceid_queue *tidq;
402 
403 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
404 	if (tidq)
405 		return &tidq->packet_queue;
406 
407 	return NULL;
408 }
409 
410 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
411 				struct cs_etm_traceid_queue *tidq)
412 {
413 	struct cs_etm_packet *tmp;
414 
415 	if (etm->sample_branches || etm->synth_opts.last_branch ||
416 	    etm->sample_instructions) {
417 		/*
418 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
419 		 * the next incoming packet.
420 		 */
421 		tmp = tidq->packet;
422 		tidq->packet = tidq->prev_packet;
423 		tidq->prev_packet = tmp;
424 	}
425 }
426 
427 static void cs_etm__packet_dump(const char *pkt_string)
428 {
429 	const char *color = PERF_COLOR_BLUE;
430 	int len = strlen(pkt_string);
431 
432 	if (len && (pkt_string[len-1] == '\n'))
433 		color_fprintf(stdout, color, "	%s", pkt_string);
434 	else
435 		color_fprintf(stdout, color, "	%s\n", pkt_string);
436 
437 	fflush(stdout);
438 }
439 
440 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
441 					  struct cs_etm_auxtrace *etm, int idx,
442 					  u32 etmidr)
443 {
444 	u64 **metadata = etm->metadata;
445 
446 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
447 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
448 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
449 }
450 
451 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
452 					  struct cs_etm_auxtrace *etm, int idx)
453 {
454 	u64 **metadata = etm->metadata;
455 
456 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
457 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
458 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
459 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
460 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
461 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
462 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
463 }
464 
465 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
466 				     struct cs_etm_auxtrace *etm)
467 {
468 	int i;
469 	u32 etmidr;
470 	u64 architecture;
471 
472 	for (i = 0; i < etm->num_cpu; i++) {
473 		architecture = etm->metadata[i][CS_ETM_MAGIC];
474 
475 		switch (architecture) {
476 		case __perf_cs_etmv3_magic:
477 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
478 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
479 			break;
480 		case __perf_cs_etmv4_magic:
481 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
482 			break;
483 		default:
484 			return -EINVAL;
485 		}
486 	}
487 
488 	return 0;
489 }
490 
491 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
492 				       struct cs_etm_queue *etmq,
493 				       enum cs_etm_decoder_operation mode)
494 {
495 	int ret = -EINVAL;
496 
497 	if (!(mode < CS_ETM_OPERATION_MAX))
498 		goto out;
499 
500 	d_params->packet_printer = cs_etm__packet_dump;
501 	d_params->operation = mode;
502 	d_params->data = etmq;
503 	d_params->formatted = true;
504 	d_params->fsyncs = false;
505 	d_params->hsyncs = false;
506 	d_params->frame_aligned = true;
507 
508 	ret = 0;
509 out:
510 	return ret;
511 }
512 
513 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
514 			       struct auxtrace_buffer *buffer)
515 {
516 	int ret;
517 	const char *color = PERF_COLOR_BLUE;
518 	struct cs_etm_decoder_params d_params;
519 	struct cs_etm_trace_params *t_params;
520 	struct cs_etm_decoder *decoder;
521 	size_t buffer_used = 0;
522 
523 	fprintf(stdout, "\n");
524 	color_fprintf(stdout, color,
525 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
526 		     buffer->size);
527 
528 	/* Use metadata to fill in trace parameters for trace decoder */
529 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
530 
531 	if (!t_params)
532 		return;
533 
534 	if (cs_etm__init_trace_params(t_params, etm))
535 		goto out_free;
536 
537 	/* Set decoder parameters to simply print the trace packets */
538 	if (cs_etm__init_decoder_params(&d_params, NULL,
539 					CS_ETM_OPERATION_PRINT))
540 		goto out_free;
541 
542 	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
543 
544 	if (!decoder)
545 		goto out_free;
546 	do {
547 		size_t consumed;
548 
549 		ret = cs_etm_decoder__process_data_block(
550 				decoder, buffer->offset,
551 				&((u8 *)buffer->data)[buffer_used],
552 				buffer->size - buffer_used, &consumed);
553 		if (ret)
554 			break;
555 
556 		buffer_used += consumed;
557 	} while (buffer_used < buffer->size);
558 
559 	cs_etm_decoder__free(decoder);
560 
561 out_free:
562 	zfree(&t_params);
563 }
564 
565 static int cs_etm__flush_events(struct perf_session *session,
566 				struct perf_tool *tool)
567 {
568 	int ret;
569 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
570 						   struct cs_etm_auxtrace,
571 						   auxtrace);
572 	if (dump_trace)
573 		return 0;
574 
575 	if (!tool->ordered_events)
576 		return -EINVAL;
577 
578 	ret = cs_etm__update_queues(etm);
579 
580 	if (ret < 0)
581 		return ret;
582 
583 	if (etm->timeless_decoding)
584 		return cs_etm__process_timeless_queues(etm, -1);
585 
586 	return cs_etm__process_queues(etm);
587 }
588 
589 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
590 {
591 	int idx;
592 	uintptr_t priv;
593 	struct int_node *inode, *tmp;
594 	struct cs_etm_traceid_queue *tidq;
595 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
596 
597 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
598 		priv = (uintptr_t)inode->priv;
599 		idx = priv;
600 
601 		/* Free this traceid_queue from the array */
602 		tidq = etmq->traceid_queues[idx];
603 		thread__zput(tidq->thread);
604 		zfree(&tidq->event_buf);
605 		zfree(&tidq->last_branch);
606 		zfree(&tidq->last_branch_rb);
607 		zfree(&tidq->prev_packet);
608 		zfree(&tidq->packet);
609 		zfree(&tidq);
610 
611 		/*
612 		 * Function intlist__remove() removes the inode from the list
613 		 * and delete the memory associated to it.
614 		 */
615 		intlist__remove(traceid_queues_list, inode);
616 	}
617 
618 	/* Then the RB tree itself */
619 	intlist__delete(traceid_queues_list);
620 	etmq->traceid_queues_list = NULL;
621 
622 	/* finally free the traceid_queues array */
623 	zfree(&etmq->traceid_queues);
624 }
625 
626 static void cs_etm__free_queue(void *priv)
627 {
628 	struct cs_etm_queue *etmq = priv;
629 
630 	if (!etmq)
631 		return;
632 
633 	cs_etm_decoder__free(etmq->decoder);
634 	cs_etm__free_traceid_queues(etmq);
635 	free(etmq);
636 }
637 
638 static void cs_etm__free_events(struct perf_session *session)
639 {
640 	unsigned int i;
641 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
642 						   struct cs_etm_auxtrace,
643 						   auxtrace);
644 	struct auxtrace_queues *queues = &aux->queues;
645 
646 	for (i = 0; i < queues->nr_queues; i++) {
647 		cs_etm__free_queue(queues->queue_array[i].priv);
648 		queues->queue_array[i].priv = NULL;
649 	}
650 
651 	auxtrace_queues__free(queues);
652 }
653 
654 static void cs_etm__free(struct perf_session *session)
655 {
656 	int i;
657 	struct int_node *inode, *tmp;
658 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
659 						   struct cs_etm_auxtrace,
660 						   auxtrace);
661 	cs_etm__free_events(session);
662 	session->auxtrace = NULL;
663 
664 	/* First remove all traceID/metadata nodes for the RB tree */
665 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
666 		intlist__remove(traceid_list, inode);
667 	/* Then the RB tree itself */
668 	intlist__delete(traceid_list);
669 
670 	for (i = 0; i < aux->num_cpu; i++)
671 		zfree(&aux->metadata[i]);
672 
673 	thread__zput(aux->unknown_thread);
674 	zfree(&aux->metadata);
675 	zfree(&aux);
676 }
677 
678 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
679 				      struct evsel *evsel)
680 {
681 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
682 						   struct cs_etm_auxtrace,
683 						   auxtrace);
684 
685 	return evsel->core.attr.type == aux->pmu_type;
686 }
687 
688 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
689 {
690 	struct machine *machine;
691 
692 	machine = etmq->etm->machine;
693 
694 	if (address >= etmq->etm->kernel_start) {
695 		if (machine__is_host(machine))
696 			return PERF_RECORD_MISC_KERNEL;
697 		else
698 			return PERF_RECORD_MISC_GUEST_KERNEL;
699 	} else {
700 		if (machine__is_host(machine))
701 			return PERF_RECORD_MISC_USER;
702 		else if (perf_guest)
703 			return PERF_RECORD_MISC_GUEST_USER;
704 		else
705 			return PERF_RECORD_MISC_HYPERVISOR;
706 	}
707 }
708 
709 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
710 			      u64 address, size_t size, u8 *buffer)
711 {
712 	u8  cpumode;
713 	u64 offset;
714 	int len;
715 	struct thread *thread;
716 	struct machine *machine;
717 	struct addr_location al;
718 	struct cs_etm_traceid_queue *tidq;
719 
720 	if (!etmq)
721 		return 0;
722 
723 	machine = etmq->etm->machine;
724 	cpumode = cs_etm__cpu_mode(etmq, address);
725 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
726 	if (!tidq)
727 		return 0;
728 
729 	thread = tidq->thread;
730 	if (!thread) {
731 		if (cpumode != PERF_RECORD_MISC_KERNEL)
732 			return 0;
733 		thread = etmq->etm->unknown_thread;
734 	}
735 
736 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
737 		return 0;
738 
739 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
740 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
741 		return 0;
742 
743 	offset = al.map->map_ip(al.map, address);
744 
745 	map__load(al.map);
746 
747 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
748 
749 	if (len <= 0)
750 		return 0;
751 
752 	return len;
753 }
754 
755 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
756 {
757 	struct cs_etm_decoder_params d_params;
758 	struct cs_etm_trace_params  *t_params = NULL;
759 	struct cs_etm_queue *etmq;
760 
761 	etmq = zalloc(sizeof(*etmq));
762 	if (!etmq)
763 		return NULL;
764 
765 	etmq->traceid_queues_list = intlist__new(NULL);
766 	if (!etmq->traceid_queues_list)
767 		goto out_free;
768 
769 	/* Use metadata to fill in trace parameters for trace decoder */
770 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
771 
772 	if (!t_params)
773 		goto out_free;
774 
775 	if (cs_etm__init_trace_params(t_params, etm))
776 		goto out_free;
777 
778 	/* Set decoder parameters to decode trace packets */
779 	if (cs_etm__init_decoder_params(&d_params, etmq,
780 					CS_ETM_OPERATION_DECODE))
781 		goto out_free;
782 
783 	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
784 
785 	if (!etmq->decoder)
786 		goto out_free;
787 
788 	/*
789 	 * Register a function to handle all memory accesses required by
790 	 * the trace decoder library.
791 	 */
792 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
793 					      0x0L, ((u64) -1L),
794 					      cs_etm__mem_access))
795 		goto out_free_decoder;
796 
797 	zfree(&t_params);
798 	return etmq;
799 
800 out_free_decoder:
801 	cs_etm_decoder__free(etmq->decoder);
802 out_free:
803 	intlist__delete(etmq->traceid_queues_list);
804 	free(etmq);
805 
806 	return NULL;
807 }
808 
809 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
810 			       struct auxtrace_queue *queue,
811 			       unsigned int queue_nr)
812 {
813 	int ret = 0;
814 	unsigned int cs_queue_nr;
815 	u8 trace_chan_id;
816 	u64 cs_timestamp;
817 	struct cs_etm_queue *etmq = queue->priv;
818 
819 	if (list_empty(&queue->head) || etmq)
820 		goto out;
821 
822 	etmq = cs_etm__alloc_queue(etm);
823 
824 	if (!etmq) {
825 		ret = -ENOMEM;
826 		goto out;
827 	}
828 
829 	queue->priv = etmq;
830 	etmq->etm = etm;
831 	etmq->queue_nr = queue_nr;
832 	etmq->offset = 0;
833 
834 	if (etm->timeless_decoding)
835 		goto out;
836 
837 	/*
838 	 * We are under a CPU-wide trace scenario.  As such we need to know
839 	 * when the code that generated the traces started to execute so that
840 	 * it can be correlated with execution on other CPUs.  So we get a
841 	 * handle on the beginning of traces and decode until we find a
842 	 * timestamp.  The timestamp is then added to the auxtrace min heap
843 	 * in order to know what nibble (of all the etmqs) to decode first.
844 	 */
845 	while (1) {
846 		/*
847 		 * Fetch an aux_buffer from this etmq.  Bail if no more
848 		 * blocks or an error has been encountered.
849 		 */
850 		ret = cs_etm__get_data_block(etmq);
851 		if (ret <= 0)
852 			goto out;
853 
854 		/*
855 		 * Run decoder on the trace block.  The decoder will stop when
856 		 * encountering a CS timestamp, a full packet queue or the end of
857 		 * trace for that block.
858 		 */
859 		ret = cs_etm__decode_data_block(etmq);
860 		if (ret)
861 			goto out;
862 
863 		/*
864 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
865 		 * the timestamp calculation for us.
866 		 */
867 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
868 
869 		/* We found a timestamp, no need to continue. */
870 		if (cs_timestamp)
871 			break;
872 
873 		/*
874 		 * We didn't find a timestamp so empty all the traceid packet
875 		 * queues before looking for another timestamp packet, either
876 		 * in the current data block or a new one.  Packets that were
877 		 * just decoded are useless since no timestamp has been
878 		 * associated with them.  As such simply discard them.
879 		 */
880 		cs_etm__clear_all_packet_queues(etmq);
881 	}
882 
883 	/*
884 	 * We have a timestamp.  Add it to the min heap to reflect when
885 	 * instructions conveyed by the range packets of this traceID queue
886 	 * started to execute.  Once the same has been done for all the traceID
887 	 * queues of each etmq, redenring and decoding can start in
888 	 * chronological order.
889 	 *
890 	 * Note that packets decoded above are still in the traceID's packet
891 	 * queue and will be processed in cs_etm__process_queues().
892 	 */
893 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
894 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
895 out:
896 	return ret;
897 }
898 
899 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
900 {
901 	unsigned int i;
902 	int ret;
903 
904 	if (!etm->kernel_start)
905 		etm->kernel_start = machine__kernel_start(etm->machine);
906 
907 	for (i = 0; i < etm->queues.nr_queues; i++) {
908 		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
909 		if (ret)
910 			return ret;
911 	}
912 
913 	return 0;
914 }
915 
916 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
917 {
918 	if (etm->queues.new_data) {
919 		etm->queues.new_data = false;
920 		return cs_etm__setup_queues(etm);
921 	}
922 
923 	return 0;
924 }
925 
926 static inline
927 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
928 				 struct cs_etm_traceid_queue *tidq)
929 {
930 	struct branch_stack *bs_src = tidq->last_branch_rb;
931 	struct branch_stack *bs_dst = tidq->last_branch;
932 	size_t nr = 0;
933 
934 	/*
935 	 * Set the number of records before early exit: ->nr is used to
936 	 * determine how many branches to copy from ->entries.
937 	 */
938 	bs_dst->nr = bs_src->nr;
939 
940 	/*
941 	 * Early exit when there is nothing to copy.
942 	 */
943 	if (!bs_src->nr)
944 		return;
945 
946 	/*
947 	 * As bs_src->entries is a circular buffer, we need to copy from it in
948 	 * two steps.  First, copy the branches from the most recently inserted
949 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
950 	 */
951 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
952 	memcpy(&bs_dst->entries[0],
953 	       &bs_src->entries[tidq->last_branch_pos],
954 	       sizeof(struct branch_entry) * nr);
955 
956 	/*
957 	 * If we wrapped around at least once, the branches from the beginning
958 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
959 	 * are older valid branches: copy them over.  The total number of
960 	 * branches copied over will be equal to the number of branches asked by
961 	 * the user in last_branch_sz.
962 	 */
963 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
964 		memcpy(&bs_dst->entries[nr],
965 		       &bs_src->entries[0],
966 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
967 	}
968 }
969 
970 static inline
971 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
972 {
973 	tidq->last_branch_pos = 0;
974 	tidq->last_branch_rb->nr = 0;
975 }
976 
977 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
978 					 u8 trace_chan_id, u64 addr)
979 {
980 	u8 instrBytes[2];
981 
982 	cs_etm__mem_access(etmq, trace_chan_id, addr,
983 			   ARRAY_SIZE(instrBytes), instrBytes);
984 	/*
985 	 * T32 instruction size is indicated by bits[15:11] of the first
986 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
987 	 * denote a 32-bit instruction.
988 	 */
989 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
990 }
991 
992 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
993 {
994 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
995 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
996 		return 0;
997 
998 	return packet->start_addr;
999 }
1000 
1001 static inline
1002 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
1003 {
1004 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1005 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
1006 		return 0;
1007 
1008 	return packet->end_addr - packet->last_instr_size;
1009 }
1010 
1011 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
1012 				     u64 trace_chan_id,
1013 				     const struct cs_etm_packet *packet,
1014 				     u64 offset)
1015 {
1016 	if (packet->isa == CS_ETM_ISA_T32) {
1017 		u64 addr = packet->start_addr;
1018 
1019 		while (offset) {
1020 			addr += cs_etm__t32_instr_size(etmq,
1021 						       trace_chan_id, addr);
1022 			offset--;
1023 		}
1024 		return addr;
1025 	}
1026 
1027 	/* Assume a 4 byte instruction size (A32/A64) */
1028 	return packet->start_addr + offset * 4;
1029 }
1030 
1031 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1032 					  struct cs_etm_traceid_queue *tidq)
1033 {
1034 	struct branch_stack *bs = tidq->last_branch_rb;
1035 	struct branch_entry *be;
1036 
1037 	/*
1038 	 * The branches are recorded in a circular buffer in reverse
1039 	 * chronological order: we start recording from the last element of the
1040 	 * buffer down.  After writing the first element of the stack, move the
1041 	 * insert position back to the end of the buffer.
1042 	 */
1043 	if (!tidq->last_branch_pos)
1044 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1045 
1046 	tidq->last_branch_pos -= 1;
1047 
1048 	be       = &bs->entries[tidq->last_branch_pos];
1049 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1050 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1051 	/* No support for mispredict */
1052 	be->flags.mispred = 0;
1053 	be->flags.predicted = 1;
1054 
1055 	/*
1056 	 * Increment bs->nr until reaching the number of last branches asked by
1057 	 * the user on the command line.
1058 	 */
1059 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1060 		bs->nr += 1;
1061 }
1062 
1063 static int cs_etm__inject_event(union perf_event *event,
1064 			       struct perf_sample *sample, u64 type)
1065 {
1066 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1067 	return perf_event__synthesize_sample(event, type, 0, sample);
1068 }
1069 
1070 
1071 static int
1072 cs_etm__get_trace(struct cs_etm_queue *etmq)
1073 {
1074 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1075 	struct auxtrace_buffer *old_buffer = aux_buffer;
1076 	struct auxtrace_queue *queue;
1077 
1078 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1079 
1080 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1081 
1082 	/* If no more data, drop the previous auxtrace_buffer and return */
1083 	if (!aux_buffer) {
1084 		if (old_buffer)
1085 			auxtrace_buffer__drop_data(old_buffer);
1086 		etmq->buf_len = 0;
1087 		return 0;
1088 	}
1089 
1090 	etmq->buffer = aux_buffer;
1091 
1092 	/* If the aux_buffer doesn't have data associated, try to load it */
1093 	if (!aux_buffer->data) {
1094 		/* get the file desc associated with the perf data file */
1095 		int fd = perf_data__fd(etmq->etm->session->data);
1096 
1097 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1098 		if (!aux_buffer->data)
1099 			return -ENOMEM;
1100 	}
1101 
1102 	/* If valid, drop the previous buffer */
1103 	if (old_buffer)
1104 		auxtrace_buffer__drop_data(old_buffer);
1105 
1106 	etmq->buf_used = 0;
1107 	etmq->buf_len = aux_buffer->size;
1108 	etmq->buf = aux_buffer->data;
1109 
1110 	return etmq->buf_len;
1111 }
1112 
1113 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1114 				    struct cs_etm_traceid_queue *tidq)
1115 {
1116 	if ((!tidq->thread) && (tidq->tid != -1))
1117 		tidq->thread = machine__find_thread(etm->machine, -1,
1118 						    tidq->tid);
1119 
1120 	if (tidq->thread)
1121 		tidq->pid = tidq->thread->pid_;
1122 }
1123 
1124 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1125 			 pid_t tid, u8 trace_chan_id)
1126 {
1127 	int cpu, err = -EINVAL;
1128 	struct cs_etm_auxtrace *etm = etmq->etm;
1129 	struct cs_etm_traceid_queue *tidq;
1130 
1131 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1132 	if (!tidq)
1133 		return err;
1134 
1135 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1136 		return err;
1137 
1138 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1139 	if (err)
1140 		return err;
1141 
1142 	tidq->tid = tid;
1143 	thread__zput(tidq->thread);
1144 
1145 	cs_etm__set_pid_tid_cpu(etm, tidq);
1146 	return 0;
1147 }
1148 
1149 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1150 {
1151 	return !!etmq->etm->timeless_decoding;
1152 }
1153 
1154 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1155 			      u64 trace_chan_id,
1156 			      const struct cs_etm_packet *packet,
1157 			      struct perf_sample *sample)
1158 {
1159 	/*
1160 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1161 	 * packet, so directly bail out with 'insn_len' = 0.
1162 	 */
1163 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1164 		sample->insn_len = 0;
1165 		return;
1166 	}
1167 
1168 	/*
1169 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1170 	 * cs_etm__t32_instr_size().
1171 	 */
1172 	if (packet->isa == CS_ETM_ISA_T32)
1173 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1174 							  sample->ip);
1175 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1176 	else
1177 		sample->insn_len = 4;
1178 
1179 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1180 			   sample->insn_len, (void *)sample->insn);
1181 }
1182 
1183 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1184 					    struct cs_etm_traceid_queue *tidq,
1185 					    u64 addr, u64 period)
1186 {
1187 	int ret = 0;
1188 	struct cs_etm_auxtrace *etm = etmq->etm;
1189 	union perf_event *event = tidq->event_buf;
1190 	struct perf_sample sample = {.ip = 0,};
1191 
1192 	event->sample.header.type = PERF_RECORD_SAMPLE;
1193 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1194 	event->sample.header.size = sizeof(struct perf_event_header);
1195 
1196 	if (!etm->timeless_decoding)
1197 		sample.time = etm->latest_kernel_timestamp;
1198 	sample.ip = addr;
1199 	sample.pid = tidq->pid;
1200 	sample.tid = tidq->tid;
1201 	sample.id = etmq->etm->instructions_id;
1202 	sample.stream_id = etmq->etm->instructions_id;
1203 	sample.period = period;
1204 	sample.cpu = tidq->packet->cpu;
1205 	sample.flags = tidq->prev_packet->flags;
1206 	sample.cpumode = event->sample.header.misc;
1207 
1208 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1209 
1210 	if (etm->synth_opts.last_branch)
1211 		sample.branch_stack = tidq->last_branch;
1212 
1213 	if (etm->synth_opts.inject) {
1214 		ret = cs_etm__inject_event(event, &sample,
1215 					   etm->instructions_sample_type);
1216 		if (ret)
1217 			return ret;
1218 	}
1219 
1220 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1221 
1222 	if (ret)
1223 		pr_err(
1224 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1225 			ret);
1226 
1227 	return ret;
1228 }
1229 
1230 /*
1231  * The cs etm packet encodes an instruction range between a branch target
1232  * and the next taken branch. Generate sample accordingly.
1233  */
1234 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1235 				       struct cs_etm_traceid_queue *tidq)
1236 {
1237 	int ret = 0;
1238 	struct cs_etm_auxtrace *etm = etmq->etm;
1239 	struct perf_sample sample = {.ip = 0,};
1240 	union perf_event *event = tidq->event_buf;
1241 	struct dummy_branch_stack {
1242 		u64			nr;
1243 		u64			hw_idx;
1244 		struct branch_entry	entries;
1245 	} dummy_bs;
1246 	u64 ip;
1247 
1248 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1249 
1250 	event->sample.header.type = PERF_RECORD_SAMPLE;
1251 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1252 	event->sample.header.size = sizeof(struct perf_event_header);
1253 
1254 	if (!etm->timeless_decoding)
1255 		sample.time = etm->latest_kernel_timestamp;
1256 	sample.ip = ip;
1257 	sample.pid = tidq->pid;
1258 	sample.tid = tidq->tid;
1259 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1260 	sample.id = etmq->etm->branches_id;
1261 	sample.stream_id = etmq->etm->branches_id;
1262 	sample.period = 1;
1263 	sample.cpu = tidq->packet->cpu;
1264 	sample.flags = tidq->prev_packet->flags;
1265 	sample.cpumode = event->sample.header.misc;
1266 
1267 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1268 			  &sample);
1269 
1270 	/*
1271 	 * perf report cannot handle events without a branch stack
1272 	 */
1273 	if (etm->synth_opts.last_branch) {
1274 		dummy_bs = (struct dummy_branch_stack){
1275 			.nr = 1,
1276 			.hw_idx = -1ULL,
1277 			.entries = {
1278 				.from = sample.ip,
1279 				.to = sample.addr,
1280 			},
1281 		};
1282 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1283 	}
1284 
1285 	if (etm->synth_opts.inject) {
1286 		ret = cs_etm__inject_event(event, &sample,
1287 					   etm->branches_sample_type);
1288 		if (ret)
1289 			return ret;
1290 	}
1291 
1292 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1293 
1294 	if (ret)
1295 		pr_err(
1296 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1297 		ret);
1298 
1299 	return ret;
1300 }
1301 
1302 struct cs_etm_synth {
1303 	struct perf_tool dummy_tool;
1304 	struct perf_session *session;
1305 };
1306 
1307 static int cs_etm__event_synth(struct perf_tool *tool,
1308 			       union perf_event *event,
1309 			       struct perf_sample *sample __maybe_unused,
1310 			       struct machine *machine __maybe_unused)
1311 {
1312 	struct cs_etm_synth *cs_etm_synth =
1313 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1314 
1315 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1316 						 event, NULL);
1317 }
1318 
1319 static int cs_etm__synth_event(struct perf_session *session,
1320 			       struct perf_event_attr *attr, u64 id)
1321 {
1322 	struct cs_etm_synth cs_etm_synth;
1323 
1324 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1325 	cs_etm_synth.session = session;
1326 
1327 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1328 					   &id, cs_etm__event_synth);
1329 }
1330 
1331 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1332 				struct perf_session *session)
1333 {
1334 	struct evlist *evlist = session->evlist;
1335 	struct evsel *evsel;
1336 	struct perf_event_attr attr;
1337 	bool found = false;
1338 	u64 id;
1339 	int err;
1340 
1341 	evlist__for_each_entry(evlist, evsel) {
1342 		if (evsel->core.attr.type == etm->pmu_type) {
1343 			found = true;
1344 			break;
1345 		}
1346 	}
1347 
1348 	if (!found) {
1349 		pr_debug("No selected events with CoreSight Trace data\n");
1350 		return 0;
1351 	}
1352 
1353 	memset(&attr, 0, sizeof(struct perf_event_attr));
1354 	attr.size = sizeof(struct perf_event_attr);
1355 	attr.type = PERF_TYPE_HARDWARE;
1356 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1357 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1358 			    PERF_SAMPLE_PERIOD;
1359 	if (etm->timeless_decoding)
1360 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1361 	else
1362 		attr.sample_type |= PERF_SAMPLE_TIME;
1363 
1364 	attr.exclude_user = evsel->core.attr.exclude_user;
1365 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1366 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1367 	attr.exclude_host = evsel->core.attr.exclude_host;
1368 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1369 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1370 	attr.read_format = evsel->core.attr.read_format;
1371 
1372 	/* create new id val to be a fixed offset from evsel id */
1373 	id = evsel->core.id[0] + 1000000000;
1374 
1375 	if (!id)
1376 		id = 1;
1377 
1378 	if (etm->synth_opts.branches) {
1379 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1380 		attr.sample_period = 1;
1381 		attr.sample_type |= PERF_SAMPLE_ADDR;
1382 		err = cs_etm__synth_event(session, &attr, id);
1383 		if (err)
1384 			return err;
1385 		etm->sample_branches = true;
1386 		etm->branches_sample_type = attr.sample_type;
1387 		etm->branches_id = id;
1388 		id += 1;
1389 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1390 	}
1391 
1392 	if (etm->synth_opts.last_branch) {
1393 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1394 		/*
1395 		 * We don't use the hardware index, but the sample generation
1396 		 * code uses the new format branch_stack with this field,
1397 		 * so the event attributes must indicate that it's present.
1398 		 */
1399 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1400 	}
1401 
1402 	if (etm->synth_opts.instructions) {
1403 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1404 		attr.sample_period = etm->synth_opts.period;
1405 		etm->instructions_sample_period = attr.sample_period;
1406 		err = cs_etm__synth_event(session, &attr, id);
1407 		if (err)
1408 			return err;
1409 		etm->sample_instructions = true;
1410 		etm->instructions_sample_type = attr.sample_type;
1411 		etm->instructions_id = id;
1412 		id += 1;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static int cs_etm__sample(struct cs_etm_queue *etmq,
1419 			  struct cs_etm_traceid_queue *tidq)
1420 {
1421 	struct cs_etm_auxtrace *etm = etmq->etm;
1422 	int ret;
1423 	u8 trace_chan_id = tidq->trace_chan_id;
1424 	u64 instrs_prev;
1425 
1426 	/* Get instructions remainder from previous packet */
1427 	instrs_prev = tidq->period_instructions;
1428 
1429 	tidq->period_instructions += tidq->packet->instr_count;
1430 
1431 	/*
1432 	 * Record a branch when the last instruction in
1433 	 * PREV_PACKET is a branch.
1434 	 */
1435 	if (etm->synth_opts.last_branch &&
1436 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1437 	    tidq->prev_packet->last_instr_taken_branch)
1438 		cs_etm__update_last_branch_rb(etmq, tidq);
1439 
1440 	if (etm->sample_instructions &&
1441 	    tidq->period_instructions >= etm->instructions_sample_period) {
1442 		/*
1443 		 * Emit instruction sample periodically
1444 		 * TODO: allow period to be defined in cycles and clock time
1445 		 */
1446 
1447 		/*
1448 		 * Below diagram demonstrates the instruction samples
1449 		 * generation flows:
1450 		 *
1451 		 *    Instrs     Instrs       Instrs       Instrs
1452 		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1453 		 *    |            |            |            |
1454 		 *    V            V            V            V
1455 		 *   --------------------------------------------------
1456 		 *            ^                                  ^
1457 		 *            |                                  |
1458 		 *         Period                             Period
1459 		 *    instructions(Pi)                   instructions(Pi')
1460 		 *
1461 		 *            |                                  |
1462 		 *            \---------------- -----------------/
1463 		 *                             V
1464 		 *                 tidq->packet->instr_count
1465 		 *
1466 		 * Instrs Sample(n...) are the synthesised samples occurring
1467 		 * every etm->instructions_sample_period instructions - as
1468 		 * defined on the perf command line.  Sample(n) is being the
1469 		 * last sample before the current etm packet, n+1 to n+3
1470 		 * samples are generated from the current etm packet.
1471 		 *
1472 		 * tidq->packet->instr_count represents the number of
1473 		 * instructions in the current etm packet.
1474 		 *
1475 		 * Period instructions (Pi) contains the the number of
1476 		 * instructions executed after the sample point(n) from the
1477 		 * previous etm packet.  This will always be less than
1478 		 * etm->instructions_sample_period.
1479 		 *
1480 		 * When generate new samples, it combines with two parts
1481 		 * instructions, one is the tail of the old packet and another
1482 		 * is the head of the new coming packet, to generate
1483 		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1484 		 * instructions with sample period.  After sample(n+3), the rest
1485 		 * instructions will be used by later packet and it is assigned
1486 		 * to tidq->period_instructions for next round calculation.
1487 		 */
1488 
1489 		/*
1490 		 * Get the initial offset into the current packet instructions;
1491 		 * entry conditions ensure that instrs_prev is less than
1492 		 * etm->instructions_sample_period.
1493 		 */
1494 		u64 offset = etm->instructions_sample_period - instrs_prev;
1495 		u64 addr;
1496 
1497 		/* Prepare last branches for instruction sample */
1498 		if (etm->synth_opts.last_branch)
1499 			cs_etm__copy_last_branch_rb(etmq, tidq);
1500 
1501 		while (tidq->period_instructions >=
1502 				etm->instructions_sample_period) {
1503 			/*
1504 			 * Calculate the address of the sampled instruction (-1
1505 			 * as sample is reported as though instruction has just
1506 			 * been executed, but PC has not advanced to next
1507 			 * instruction)
1508 			 */
1509 			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1510 						  tidq->packet, offset - 1);
1511 			ret = cs_etm__synth_instruction_sample(
1512 				etmq, tidq, addr,
1513 				etm->instructions_sample_period);
1514 			if (ret)
1515 				return ret;
1516 
1517 			offset += etm->instructions_sample_period;
1518 			tidq->period_instructions -=
1519 				etm->instructions_sample_period;
1520 		}
1521 	}
1522 
1523 	if (etm->sample_branches) {
1524 		bool generate_sample = false;
1525 
1526 		/* Generate sample for tracing on packet */
1527 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1528 			generate_sample = true;
1529 
1530 		/* Generate sample for branch taken packet */
1531 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1532 		    tidq->prev_packet->last_instr_taken_branch)
1533 			generate_sample = true;
1534 
1535 		if (generate_sample) {
1536 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1537 			if (ret)
1538 				return ret;
1539 		}
1540 	}
1541 
1542 	cs_etm__packet_swap(etm, tidq);
1543 
1544 	return 0;
1545 }
1546 
1547 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1548 {
1549 	/*
1550 	 * When the exception packet is inserted, whether the last instruction
1551 	 * in previous range packet is taken branch or not, we need to force
1552 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1553 	 * to generate branch sample for the instruction range before the
1554 	 * exception is trapped to kernel or before the exception returning.
1555 	 *
1556 	 * The exception packet includes the dummy address values, so don't
1557 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1558 	 * for generating instruction and branch samples.
1559 	 */
1560 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1561 		tidq->prev_packet->last_instr_taken_branch = true;
1562 
1563 	return 0;
1564 }
1565 
1566 static int cs_etm__flush(struct cs_etm_queue *etmq,
1567 			 struct cs_etm_traceid_queue *tidq)
1568 {
1569 	int err = 0;
1570 	struct cs_etm_auxtrace *etm = etmq->etm;
1571 
1572 	/* Handle start tracing packet */
1573 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1574 		goto swap_packet;
1575 
1576 	if (etmq->etm->synth_opts.last_branch &&
1577 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1578 		u64 addr;
1579 
1580 		/* Prepare last branches for instruction sample */
1581 		cs_etm__copy_last_branch_rb(etmq, tidq);
1582 
1583 		/*
1584 		 * Generate a last branch event for the branches left in the
1585 		 * circular buffer at the end of the trace.
1586 		 *
1587 		 * Use the address of the end of the last reported execution
1588 		 * range
1589 		 */
1590 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1591 
1592 		err = cs_etm__synth_instruction_sample(
1593 			etmq, tidq, addr,
1594 			tidq->period_instructions);
1595 		if (err)
1596 			return err;
1597 
1598 		tidq->period_instructions = 0;
1599 
1600 	}
1601 
1602 	if (etm->sample_branches &&
1603 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1604 		err = cs_etm__synth_branch_sample(etmq, tidq);
1605 		if (err)
1606 			return err;
1607 	}
1608 
1609 swap_packet:
1610 	cs_etm__packet_swap(etm, tidq);
1611 
1612 	/* Reset last branches after flush the trace */
1613 	if (etm->synth_opts.last_branch)
1614 		cs_etm__reset_last_branch_rb(tidq);
1615 
1616 	return err;
1617 }
1618 
1619 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1620 			     struct cs_etm_traceid_queue *tidq)
1621 {
1622 	int err;
1623 
1624 	/*
1625 	 * It has no new packet coming and 'etmq->packet' contains the stale
1626 	 * packet which was set at the previous time with packets swapping;
1627 	 * so skip to generate branch sample to avoid stale packet.
1628 	 *
1629 	 * For this case only flush branch stack and generate a last branch
1630 	 * event for the branches left in the circular buffer at the end of
1631 	 * the trace.
1632 	 */
1633 	if (etmq->etm->synth_opts.last_branch &&
1634 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1635 		u64 addr;
1636 
1637 		/* Prepare last branches for instruction sample */
1638 		cs_etm__copy_last_branch_rb(etmq, tidq);
1639 
1640 		/*
1641 		 * Use the address of the end of the last reported execution
1642 		 * range.
1643 		 */
1644 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1645 
1646 		err = cs_etm__synth_instruction_sample(
1647 			etmq, tidq, addr,
1648 			tidq->period_instructions);
1649 		if (err)
1650 			return err;
1651 
1652 		tidq->period_instructions = 0;
1653 	}
1654 
1655 	return 0;
1656 }
1657 /*
1658  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1659  *			   if need be.
1660  * Returns:	< 0	if error
1661  *		= 0	if no more auxtrace_buffer to read
1662  *		> 0	if the current buffer isn't empty yet
1663  */
1664 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1665 {
1666 	int ret;
1667 
1668 	if (!etmq->buf_len) {
1669 		ret = cs_etm__get_trace(etmq);
1670 		if (ret <= 0)
1671 			return ret;
1672 		/*
1673 		 * We cannot assume consecutive blocks in the data file
1674 		 * are contiguous, reset the decoder to force re-sync.
1675 		 */
1676 		ret = cs_etm_decoder__reset(etmq->decoder);
1677 		if (ret)
1678 			return ret;
1679 	}
1680 
1681 	return etmq->buf_len;
1682 }
1683 
1684 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1685 				 struct cs_etm_packet *packet,
1686 				 u64 end_addr)
1687 {
1688 	/* Initialise to keep compiler happy */
1689 	u16 instr16 = 0;
1690 	u32 instr32 = 0;
1691 	u64 addr;
1692 
1693 	switch (packet->isa) {
1694 	case CS_ETM_ISA_T32:
1695 		/*
1696 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1697 		 *
1698 		 *  b'15         b'8
1699 		 * +-----------------+--------+
1700 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1701 		 * +-----------------+--------+
1702 		 *
1703 		 * According to the specification, it only defines SVC for T32
1704 		 * with 16 bits instruction and has no definition for 32bits;
1705 		 * so below only read 2 bytes as instruction size for T32.
1706 		 */
1707 		addr = end_addr - 2;
1708 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1709 				   sizeof(instr16), (u8 *)&instr16);
1710 		if ((instr16 & 0xFF00) == 0xDF00)
1711 			return true;
1712 
1713 		break;
1714 	case CS_ETM_ISA_A32:
1715 		/*
1716 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1717 		 *
1718 		 *  b'31 b'28 b'27 b'24
1719 		 * +---------+---------+-------------------------+
1720 		 * |  !1111  | 1 1 1 1 |        imm24            |
1721 		 * +---------+---------+-------------------------+
1722 		 */
1723 		addr = end_addr - 4;
1724 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1725 				   sizeof(instr32), (u8 *)&instr32);
1726 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1727 		    (instr32 & 0xF0000000) != 0xF0000000)
1728 			return true;
1729 
1730 		break;
1731 	case CS_ETM_ISA_A64:
1732 		/*
1733 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1734 		 *
1735 		 *  b'31               b'21           b'4     b'0
1736 		 * +-----------------------+---------+-----------+
1737 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1738 		 * +-----------------------+---------+-----------+
1739 		 */
1740 		addr = end_addr - 4;
1741 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1742 				   sizeof(instr32), (u8 *)&instr32);
1743 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1744 			return true;
1745 
1746 		break;
1747 	case CS_ETM_ISA_UNKNOWN:
1748 	default:
1749 		break;
1750 	}
1751 
1752 	return false;
1753 }
1754 
1755 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1756 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1757 {
1758 	u8 trace_chan_id = tidq->trace_chan_id;
1759 	struct cs_etm_packet *packet = tidq->packet;
1760 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1761 
1762 	if (magic == __perf_cs_etmv3_magic)
1763 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1764 			return true;
1765 
1766 	/*
1767 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1768 	 * HVC cases; need to check if it's SVC instruction based on
1769 	 * packet address.
1770 	 */
1771 	if (magic == __perf_cs_etmv4_magic) {
1772 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1773 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1774 					 prev_packet->end_addr))
1775 			return true;
1776 	}
1777 
1778 	return false;
1779 }
1780 
1781 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1782 				       u64 magic)
1783 {
1784 	struct cs_etm_packet *packet = tidq->packet;
1785 
1786 	if (magic == __perf_cs_etmv3_magic)
1787 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1788 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1789 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1790 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1791 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1792 			return true;
1793 
1794 	if (magic == __perf_cs_etmv4_magic)
1795 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1796 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1797 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1798 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1799 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1800 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1801 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1802 			return true;
1803 
1804 	return false;
1805 }
1806 
1807 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1808 				      struct cs_etm_traceid_queue *tidq,
1809 				      u64 magic)
1810 {
1811 	u8 trace_chan_id = tidq->trace_chan_id;
1812 	struct cs_etm_packet *packet = tidq->packet;
1813 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1814 
1815 	if (magic == __perf_cs_etmv3_magic)
1816 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1817 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1818 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1819 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1820 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1821 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1822 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1823 			return true;
1824 
1825 	if (magic == __perf_cs_etmv4_magic) {
1826 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1827 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1828 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1829 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1830 			return true;
1831 
1832 		/*
1833 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1834 		 * (SMC, HVC) are taken as sync exceptions.
1835 		 */
1836 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1837 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1838 					  prev_packet->end_addr))
1839 			return true;
1840 
1841 		/*
1842 		 * ETMv4 has 5 bits for exception number; if the numbers
1843 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1844 		 * they are implementation defined exceptions.
1845 		 *
1846 		 * For this case, simply take it as sync exception.
1847 		 */
1848 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1849 		    packet->exception_number <= CS_ETMV4_EXC_END)
1850 			return true;
1851 	}
1852 
1853 	return false;
1854 }
1855 
1856 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1857 				    struct cs_etm_traceid_queue *tidq)
1858 {
1859 	struct cs_etm_packet *packet = tidq->packet;
1860 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1861 	u8 trace_chan_id = tidq->trace_chan_id;
1862 	u64 magic;
1863 	int ret;
1864 
1865 	switch (packet->sample_type) {
1866 	case CS_ETM_RANGE:
1867 		/*
1868 		 * Immediate branch instruction without neither link nor
1869 		 * return flag, it's normal branch instruction within
1870 		 * the function.
1871 		 */
1872 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1873 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1874 			packet->flags = PERF_IP_FLAG_BRANCH;
1875 
1876 			if (packet->last_instr_cond)
1877 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1878 		}
1879 
1880 		/*
1881 		 * Immediate branch instruction with link (e.g. BL), this is
1882 		 * branch instruction for function call.
1883 		 */
1884 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1885 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1886 			packet->flags = PERF_IP_FLAG_BRANCH |
1887 					PERF_IP_FLAG_CALL;
1888 
1889 		/*
1890 		 * Indirect branch instruction with link (e.g. BLR), this is
1891 		 * branch instruction for function call.
1892 		 */
1893 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1894 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1895 			packet->flags = PERF_IP_FLAG_BRANCH |
1896 					PERF_IP_FLAG_CALL;
1897 
1898 		/*
1899 		 * Indirect branch instruction with subtype of
1900 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1901 		 * function return for A32/T32.
1902 		 */
1903 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1904 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1905 			packet->flags = PERF_IP_FLAG_BRANCH |
1906 					PERF_IP_FLAG_RETURN;
1907 
1908 		/*
1909 		 * Indirect branch instruction without link (e.g. BR), usually
1910 		 * this is used for function return, especially for functions
1911 		 * within dynamic link lib.
1912 		 */
1913 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1914 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1915 			packet->flags = PERF_IP_FLAG_BRANCH |
1916 					PERF_IP_FLAG_RETURN;
1917 
1918 		/* Return instruction for function return. */
1919 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1920 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1921 			packet->flags = PERF_IP_FLAG_BRANCH |
1922 					PERF_IP_FLAG_RETURN;
1923 
1924 		/*
1925 		 * Decoder might insert a discontinuity in the middle of
1926 		 * instruction packets, fixup prev_packet with flag
1927 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1928 		 */
1929 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1930 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1931 					      PERF_IP_FLAG_TRACE_BEGIN;
1932 
1933 		/*
1934 		 * If the previous packet is an exception return packet
1935 		 * and the return address just follows SVC instruction,
1936 		 * it needs to calibrate the previous packet sample flags
1937 		 * as PERF_IP_FLAG_SYSCALLRET.
1938 		 */
1939 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1940 					   PERF_IP_FLAG_RETURN |
1941 					   PERF_IP_FLAG_INTERRUPT) &&
1942 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1943 					 packet, packet->start_addr))
1944 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1945 					     PERF_IP_FLAG_RETURN |
1946 					     PERF_IP_FLAG_SYSCALLRET;
1947 		break;
1948 	case CS_ETM_DISCONTINUITY:
1949 		/*
1950 		 * The trace is discontinuous, if the previous packet is
1951 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1952 		 * for previous packet.
1953 		 */
1954 		if (prev_packet->sample_type == CS_ETM_RANGE)
1955 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1956 					      PERF_IP_FLAG_TRACE_END;
1957 		break;
1958 	case CS_ETM_EXCEPTION:
1959 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1960 		if (ret)
1961 			return ret;
1962 
1963 		/* The exception is for system call. */
1964 		if (cs_etm__is_syscall(etmq, tidq, magic))
1965 			packet->flags = PERF_IP_FLAG_BRANCH |
1966 					PERF_IP_FLAG_CALL |
1967 					PERF_IP_FLAG_SYSCALLRET;
1968 		/*
1969 		 * The exceptions are triggered by external signals from bus,
1970 		 * interrupt controller, debug module, PE reset or halt.
1971 		 */
1972 		else if (cs_etm__is_async_exception(tidq, magic))
1973 			packet->flags = PERF_IP_FLAG_BRANCH |
1974 					PERF_IP_FLAG_CALL |
1975 					PERF_IP_FLAG_ASYNC |
1976 					PERF_IP_FLAG_INTERRUPT;
1977 		/*
1978 		 * Otherwise, exception is caused by trap, instruction &
1979 		 * data fault, or alignment errors.
1980 		 */
1981 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1982 			packet->flags = PERF_IP_FLAG_BRANCH |
1983 					PERF_IP_FLAG_CALL |
1984 					PERF_IP_FLAG_INTERRUPT;
1985 
1986 		/*
1987 		 * When the exception packet is inserted, since exception
1988 		 * packet is not used standalone for generating samples
1989 		 * and it's affiliation to the previous instruction range
1990 		 * packet; so set previous range packet flags to tell perf
1991 		 * it is an exception taken branch.
1992 		 */
1993 		if (prev_packet->sample_type == CS_ETM_RANGE)
1994 			prev_packet->flags = packet->flags;
1995 		break;
1996 	case CS_ETM_EXCEPTION_RET:
1997 		/*
1998 		 * When the exception return packet is inserted, since
1999 		 * exception return packet is not used standalone for
2000 		 * generating samples and it's affiliation to the previous
2001 		 * instruction range packet; so set previous range packet
2002 		 * flags to tell perf it is an exception return branch.
2003 		 *
2004 		 * The exception return can be for either system call or
2005 		 * other exception types; unfortunately the packet doesn't
2006 		 * contain exception type related info so we cannot decide
2007 		 * the exception type purely based on exception return packet.
2008 		 * If we record the exception number from exception packet and
2009 		 * reuse it for exception return packet, this is not reliable
2010 		 * due the trace can be discontinuity or the interrupt can
2011 		 * be nested, thus the recorded exception number cannot be
2012 		 * used for exception return packet for these two cases.
2013 		 *
2014 		 * For exception return packet, we only need to distinguish the
2015 		 * packet is for system call or for other types.  Thus the
2016 		 * decision can be deferred when receive the next packet which
2017 		 * contains the return address, based on the return address we
2018 		 * can read out the previous instruction and check if it's a
2019 		 * system call instruction and then calibrate the sample flag
2020 		 * as needed.
2021 		 */
2022 		if (prev_packet->sample_type == CS_ETM_RANGE)
2023 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
2024 					     PERF_IP_FLAG_RETURN |
2025 					     PERF_IP_FLAG_INTERRUPT;
2026 		break;
2027 	case CS_ETM_EMPTY:
2028 	default:
2029 		break;
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2036 {
2037 	int ret = 0;
2038 	size_t processed = 0;
2039 
2040 	/*
2041 	 * Packets are decoded and added to the decoder's packet queue
2042 	 * until the decoder packet processing callback has requested that
2043 	 * processing stops or there is nothing left in the buffer.  Normal
2044 	 * operations that stop processing are a timestamp packet or a full
2045 	 * decoder buffer queue.
2046 	 */
2047 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2048 						 etmq->offset,
2049 						 &etmq->buf[etmq->buf_used],
2050 						 etmq->buf_len,
2051 						 &processed);
2052 	if (ret)
2053 		goto out;
2054 
2055 	etmq->offset += processed;
2056 	etmq->buf_used += processed;
2057 	etmq->buf_len -= processed;
2058 
2059 out:
2060 	return ret;
2061 }
2062 
2063 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2064 					 struct cs_etm_traceid_queue *tidq)
2065 {
2066 	int ret;
2067 	struct cs_etm_packet_queue *packet_queue;
2068 
2069 	packet_queue = &tidq->packet_queue;
2070 
2071 	/* Process each packet in this chunk */
2072 	while (1) {
2073 		ret = cs_etm_decoder__get_packet(packet_queue,
2074 						 tidq->packet);
2075 		if (ret <= 0)
2076 			/*
2077 			 * Stop processing this chunk on
2078 			 * end of data or error
2079 			 */
2080 			break;
2081 
2082 		/*
2083 		 * Since packet addresses are swapped in packet
2084 		 * handling within below switch() statements,
2085 		 * thus setting sample flags must be called
2086 		 * prior to switch() statement to use address
2087 		 * information before packets swapping.
2088 		 */
2089 		ret = cs_etm__set_sample_flags(etmq, tidq);
2090 		if (ret < 0)
2091 			break;
2092 
2093 		switch (tidq->packet->sample_type) {
2094 		case CS_ETM_RANGE:
2095 			/*
2096 			 * If the packet contains an instruction
2097 			 * range, generate instruction sequence
2098 			 * events.
2099 			 */
2100 			cs_etm__sample(etmq, tidq);
2101 			break;
2102 		case CS_ETM_EXCEPTION:
2103 		case CS_ETM_EXCEPTION_RET:
2104 			/*
2105 			 * If the exception packet is coming,
2106 			 * make sure the previous instruction
2107 			 * range packet to be handled properly.
2108 			 */
2109 			cs_etm__exception(tidq);
2110 			break;
2111 		case CS_ETM_DISCONTINUITY:
2112 			/*
2113 			 * Discontinuity in trace, flush
2114 			 * previous branch stack
2115 			 */
2116 			cs_etm__flush(etmq, tidq);
2117 			break;
2118 		case CS_ETM_EMPTY:
2119 			/*
2120 			 * Should not receive empty packet,
2121 			 * report error.
2122 			 */
2123 			pr_err("CS ETM Trace: empty packet\n");
2124 			return -EINVAL;
2125 		default:
2126 			break;
2127 		}
2128 	}
2129 
2130 	return ret;
2131 }
2132 
2133 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2134 {
2135 	int idx;
2136 	struct int_node *inode;
2137 	struct cs_etm_traceid_queue *tidq;
2138 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2139 
2140 	intlist__for_each_entry(inode, traceid_queues_list) {
2141 		idx = (int)(intptr_t)inode->priv;
2142 		tidq = etmq->traceid_queues[idx];
2143 
2144 		/* Ignore return value */
2145 		cs_etm__process_traceid_queue(etmq, tidq);
2146 
2147 		/*
2148 		 * Generate an instruction sample with the remaining
2149 		 * branchstack entries.
2150 		 */
2151 		cs_etm__flush(etmq, tidq);
2152 	}
2153 }
2154 
2155 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2156 {
2157 	int err = 0;
2158 	struct cs_etm_traceid_queue *tidq;
2159 
2160 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2161 	if (!tidq)
2162 		return -EINVAL;
2163 
2164 	/* Go through each buffer in the queue and decode them one by one */
2165 	while (1) {
2166 		err = cs_etm__get_data_block(etmq);
2167 		if (err <= 0)
2168 			return err;
2169 
2170 		/* Run trace decoder until buffer consumed or end of trace */
2171 		do {
2172 			err = cs_etm__decode_data_block(etmq);
2173 			if (err)
2174 				return err;
2175 
2176 			/*
2177 			 * Process each packet in this chunk, nothing to do if
2178 			 * an error occurs other than hoping the next one will
2179 			 * be better.
2180 			 */
2181 			err = cs_etm__process_traceid_queue(etmq, tidq);
2182 
2183 		} while (etmq->buf_len);
2184 
2185 		if (err == 0)
2186 			/* Flush any remaining branch stack entries */
2187 			err = cs_etm__end_block(etmq, tidq);
2188 	}
2189 
2190 	return err;
2191 }
2192 
2193 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2194 					   pid_t tid)
2195 {
2196 	unsigned int i;
2197 	struct auxtrace_queues *queues = &etm->queues;
2198 
2199 	for (i = 0; i < queues->nr_queues; i++) {
2200 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2201 		struct cs_etm_queue *etmq = queue->priv;
2202 		struct cs_etm_traceid_queue *tidq;
2203 
2204 		if (!etmq)
2205 			continue;
2206 
2207 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2208 						CS_ETM_PER_THREAD_TRACEID);
2209 
2210 		if (!tidq)
2211 			continue;
2212 
2213 		if ((tid == -1) || (tidq->tid == tid)) {
2214 			cs_etm__set_pid_tid_cpu(etm, tidq);
2215 			cs_etm__run_decoder(etmq);
2216 		}
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2223 {
2224 	int ret = 0;
2225 	unsigned int cs_queue_nr, queue_nr;
2226 	u8 trace_chan_id;
2227 	u64 cs_timestamp;
2228 	struct auxtrace_queue *queue;
2229 	struct cs_etm_queue *etmq;
2230 	struct cs_etm_traceid_queue *tidq;
2231 
2232 	while (1) {
2233 		if (!etm->heap.heap_cnt)
2234 			goto out;
2235 
2236 		/* Take the entry at the top of the min heap */
2237 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2238 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2239 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2240 		queue = &etm->queues.queue_array[queue_nr];
2241 		etmq = queue->priv;
2242 
2243 		/*
2244 		 * Remove the top entry from the heap since we are about
2245 		 * to process it.
2246 		 */
2247 		auxtrace_heap__pop(&etm->heap);
2248 
2249 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2250 		if (!tidq) {
2251 			/*
2252 			 * No traceID queue has been allocated for this traceID,
2253 			 * which means something somewhere went very wrong.  No
2254 			 * other choice than simply exit.
2255 			 */
2256 			ret = -EINVAL;
2257 			goto out;
2258 		}
2259 
2260 		/*
2261 		 * Packets associated with this timestamp are already in
2262 		 * the etmq's traceID queue, so process them.
2263 		 */
2264 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2265 		if (ret < 0)
2266 			goto out;
2267 
2268 		/*
2269 		 * Packets for this timestamp have been processed, time to
2270 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2271 		 * if need be.
2272 		 */
2273 refetch:
2274 		ret = cs_etm__get_data_block(etmq);
2275 		if (ret < 0)
2276 			goto out;
2277 
2278 		/*
2279 		 * No more auxtrace_buffers to process in this etmq, simply
2280 		 * move on to another entry in the auxtrace_heap.
2281 		 */
2282 		if (!ret)
2283 			continue;
2284 
2285 		ret = cs_etm__decode_data_block(etmq);
2286 		if (ret)
2287 			goto out;
2288 
2289 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2290 
2291 		if (!cs_timestamp) {
2292 			/*
2293 			 * Function cs_etm__decode_data_block() returns when
2294 			 * there is no more traces to decode in the current
2295 			 * auxtrace_buffer OR when a timestamp has been
2296 			 * encountered on any of the traceID queues.  Since we
2297 			 * did not get a timestamp, there is no more traces to
2298 			 * process in this auxtrace_buffer.  As such empty and
2299 			 * flush all traceID queues.
2300 			 */
2301 			cs_etm__clear_all_traceid_queues(etmq);
2302 
2303 			/* Fetch another auxtrace_buffer for this etmq */
2304 			goto refetch;
2305 		}
2306 
2307 		/*
2308 		 * Add to the min heap the timestamp for packets that have
2309 		 * just been decoded.  They will be processed and synthesized
2310 		 * during the next call to cs_etm__process_traceid_queue() for
2311 		 * this queue/traceID.
2312 		 */
2313 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2314 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2315 	}
2316 
2317 out:
2318 	return ret;
2319 }
2320 
2321 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2322 					union perf_event *event)
2323 {
2324 	struct thread *th;
2325 
2326 	if (etm->timeless_decoding)
2327 		return 0;
2328 
2329 	/*
2330 	 * Add the tid/pid to the log so that we can get a match when
2331 	 * we get a contextID from the decoder.
2332 	 */
2333 	th = machine__findnew_thread(etm->machine,
2334 				     event->itrace_start.pid,
2335 				     event->itrace_start.tid);
2336 	if (!th)
2337 		return -ENOMEM;
2338 
2339 	thread__put(th);
2340 
2341 	return 0;
2342 }
2343 
2344 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2345 					   union perf_event *event)
2346 {
2347 	struct thread *th;
2348 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2349 
2350 	/*
2351 	 * Context switch in per-thread mode are irrelevant since perf
2352 	 * will start/stop tracing as the process is scheduled.
2353 	 */
2354 	if (etm->timeless_decoding)
2355 		return 0;
2356 
2357 	/*
2358 	 * SWITCH_IN events carry the next process to be switched out while
2359 	 * SWITCH_OUT events carry the process to be switched in.  As such
2360 	 * we don't care about IN events.
2361 	 */
2362 	if (!out)
2363 		return 0;
2364 
2365 	/*
2366 	 * Add the tid/pid to the log so that we can get a match when
2367 	 * we get a contextID from the decoder.
2368 	 */
2369 	th = machine__findnew_thread(etm->machine,
2370 				     event->context_switch.next_prev_pid,
2371 				     event->context_switch.next_prev_tid);
2372 	if (!th)
2373 		return -ENOMEM;
2374 
2375 	thread__put(th);
2376 
2377 	return 0;
2378 }
2379 
2380 static int cs_etm__process_event(struct perf_session *session,
2381 				 union perf_event *event,
2382 				 struct perf_sample *sample,
2383 				 struct perf_tool *tool)
2384 {
2385 	int err = 0;
2386 	u64 sample_kernel_timestamp;
2387 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2388 						   struct cs_etm_auxtrace,
2389 						   auxtrace);
2390 
2391 	if (dump_trace)
2392 		return 0;
2393 
2394 	if (!tool->ordered_events) {
2395 		pr_err("CoreSight ETM Trace requires ordered events\n");
2396 		return -EINVAL;
2397 	}
2398 
2399 	if (sample->time && (sample->time != (u64) -1))
2400 		sample_kernel_timestamp = sample->time;
2401 	else
2402 		sample_kernel_timestamp = 0;
2403 
2404 	if (sample_kernel_timestamp || etm->timeless_decoding) {
2405 		err = cs_etm__update_queues(etm);
2406 		if (err)
2407 			return err;
2408 	}
2409 
2410 	/*
2411 	 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2412 	 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2413 	 * ETM_OPT_CTXTID is not enabled.
2414 	 */
2415 	if (etm->timeless_decoding &&
2416 	    event->header.type == PERF_RECORD_EXIT)
2417 		return cs_etm__process_timeless_queues(etm,
2418 						       event->fork.tid);
2419 
2420 	if (event->header.type == PERF_RECORD_ITRACE_START)
2421 		return cs_etm__process_itrace_start(etm, event);
2422 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2423 		return cs_etm__process_switch_cpu_wide(etm, event);
2424 
2425 	if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2426 		/*
2427 		 * Record the latest kernel timestamp available in the header
2428 		 * for samples so that synthesised samples occur from this point
2429 		 * onwards.
2430 		 */
2431 		etm->latest_kernel_timestamp = sample_kernel_timestamp;
2432 	}
2433 
2434 	return 0;
2435 }
2436 
2437 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2438 			     struct perf_record_auxtrace *event)
2439 {
2440 	struct auxtrace_buffer *buf;
2441 	unsigned int i;
2442 	/*
2443 	 * Find all buffers with same reference in the queues and dump them.
2444 	 * This is because the queues can contain multiple entries of the same
2445 	 * buffer that were split on aux records.
2446 	 */
2447 	for (i = 0; i < etm->queues.nr_queues; ++i)
2448 		list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2449 			if (buf->reference == event->reference)
2450 				cs_etm__dump_event(etm, buf);
2451 }
2452 
2453 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2454 					  union perf_event *event,
2455 					  struct perf_tool *tool __maybe_unused)
2456 {
2457 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2458 						   struct cs_etm_auxtrace,
2459 						   auxtrace);
2460 	if (!etm->data_queued) {
2461 		struct auxtrace_buffer *buffer;
2462 		off_t  data_offset;
2463 		int fd = perf_data__fd(session->data);
2464 		bool is_pipe = perf_data__is_pipe(session->data);
2465 		int err;
2466 
2467 		if (is_pipe)
2468 			data_offset = 0;
2469 		else {
2470 			data_offset = lseek(fd, 0, SEEK_CUR);
2471 			if (data_offset == -1)
2472 				return -errno;
2473 		}
2474 
2475 		err = auxtrace_queues__add_event(&etm->queues, session,
2476 						 event, data_offset, &buffer);
2477 		if (err)
2478 			return err;
2479 
2480 		if (dump_trace)
2481 			if (auxtrace_buffer__get_data(buffer, fd)) {
2482 				cs_etm__dump_event(etm, buffer);
2483 				auxtrace_buffer__put_data(buffer);
2484 			}
2485 	} else if (dump_trace)
2486 		dump_queued_data(etm, &event->auxtrace);
2487 
2488 	return 0;
2489 }
2490 
2491 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2492 {
2493 	struct evsel *evsel;
2494 	struct evlist *evlist = etm->session->evlist;
2495 	bool timeless_decoding = true;
2496 
2497 	/* Override timeless mode with user input from --itrace=Z */
2498 	if (etm->synth_opts.timeless_decoding)
2499 		return true;
2500 
2501 	/*
2502 	 * Circle through the list of event and complain if we find one
2503 	 * with the time bit set.
2504 	 */
2505 	evlist__for_each_entry(evlist, evsel) {
2506 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2507 			timeless_decoding = false;
2508 	}
2509 
2510 	return timeless_decoding;
2511 }
2512 
2513 static const char * const cs_etm_global_header_fmts[] = {
2514 	[CS_HEADER_VERSION]	= "	Header version		       %llx\n",
2515 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2516 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2517 };
2518 
2519 static const char * const cs_etm_priv_fmts[] = {
2520 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2521 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2522 	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2523 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2524 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2525 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2526 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2527 };
2528 
2529 static const char * const cs_etmv4_priv_fmts[] = {
2530 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2531 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2532 	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2533 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2534 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2535 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2536 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2537 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2538 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2539 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2540 };
2541 
2542 static const char * const param_unk_fmt =
2543 	"	Unknown parameter [%d]	       %llx\n";
2544 static const char * const magic_unk_fmt =
2545 	"	Magic number Unknown	       %llx\n";
2546 
2547 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2548 {
2549 	int i = *offset, j, nr_params = 0, fmt_offset;
2550 	__u64 magic;
2551 
2552 	/* check magic value */
2553 	magic = val[i + CS_ETM_MAGIC];
2554 	if ((magic != __perf_cs_etmv3_magic) &&
2555 	    (magic != __perf_cs_etmv4_magic)) {
2556 		/* failure - note bad magic value */
2557 		fprintf(stdout, magic_unk_fmt, magic);
2558 		return -EINVAL;
2559 	}
2560 
2561 	/* print common header block */
2562 	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2563 	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2564 
2565 	if (magic == __perf_cs_etmv3_magic) {
2566 		nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2567 		fmt_offset = CS_ETM_ETMCR;
2568 		/* after common block, offset format index past NR_PARAMS */
2569 		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2570 			fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2571 	} else if (magic == __perf_cs_etmv4_magic) {
2572 		nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2573 		fmt_offset = CS_ETMV4_TRCCONFIGR;
2574 		/* after common block, offset format index past NR_PARAMS */
2575 		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2576 			fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2577 	}
2578 	*offset = i;
2579 	return 0;
2580 }
2581 
2582 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2583 {
2584 	int i = *offset, j, total_params = 0;
2585 	__u64 magic;
2586 
2587 	magic = val[i + CS_ETM_MAGIC];
2588 	/* total params to print is NR_PARAMS + common block size for v1 */
2589 	total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2590 
2591 	if (magic == __perf_cs_etmv3_magic) {
2592 		for (j = 0; j < total_params; j++, i++) {
2593 			/* if newer record - could be excess params */
2594 			if (j >= CS_ETM_PRIV_MAX)
2595 				fprintf(stdout, param_unk_fmt, j, val[i]);
2596 			else
2597 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2598 		}
2599 	} else if (magic == __perf_cs_etmv4_magic) {
2600 		for (j = 0; j < total_params; j++, i++) {
2601 			/* if newer record - could be excess params */
2602 			if (j >= CS_ETMV4_PRIV_MAX)
2603 				fprintf(stdout, param_unk_fmt, j, val[i]);
2604 			else
2605 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2606 		}
2607 	} else {
2608 		/* failure - note bad magic value and error out */
2609 		fprintf(stdout, magic_unk_fmt, magic);
2610 		return -EINVAL;
2611 	}
2612 	*offset = i;
2613 	return 0;
2614 }
2615 
2616 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2617 {
2618 	int i, cpu = 0, version, err;
2619 
2620 	/* bail out early on bad header version */
2621 	version = val[0];
2622 	if (version > CS_HEADER_CURRENT_VERSION) {
2623 		/* failure.. return */
2624 		fprintf(stdout, "	Unknown Header Version = %x, ", version);
2625 		fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2626 		return;
2627 	}
2628 
2629 	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2630 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2631 
2632 	for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2633 		if (version == 0)
2634 			err = cs_etm__print_cpu_metadata_v0(val, &i);
2635 		else if (version == 1)
2636 			err = cs_etm__print_cpu_metadata_v1(val, &i);
2637 		if (err)
2638 			return;
2639 	}
2640 }
2641 
2642 /*
2643  * Read a single cpu parameter block from the auxtrace_info priv block.
2644  *
2645  * For version 1 there is a per cpu nr_params entry. If we are handling
2646  * version 1 file, then there may be less, the same, or more params
2647  * indicated by this value than the compile time number we understand.
2648  *
2649  * For a version 0 info block, there are a fixed number, and we need to
2650  * fill out the nr_param value in the metadata we create.
2651  */
2652 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2653 				    int out_blk_size, int nr_params_v0)
2654 {
2655 	u64 *metadata = NULL;
2656 	int hdr_version;
2657 	int nr_in_params, nr_out_params, nr_cmn_params;
2658 	int i, k;
2659 
2660 	metadata = zalloc(sizeof(*metadata) * out_blk_size);
2661 	if (!metadata)
2662 		return NULL;
2663 
2664 	/* read block current index & version */
2665 	i = *buff_in_offset;
2666 	hdr_version = buff_in[CS_HEADER_VERSION];
2667 
2668 	if (!hdr_version) {
2669 	/* read version 0 info block into a version 1 metadata block  */
2670 		nr_in_params = nr_params_v0;
2671 		metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2672 		metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2673 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2674 		/* remaining block params at offset +1 from source */
2675 		for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2676 			metadata[k + 1] = buff_in[i + k];
2677 		/* version 0 has 2 common params */
2678 		nr_cmn_params = 2;
2679 	} else {
2680 	/* read version 1 info block - input and output nr_params may differ */
2681 		/* version 1 has 3 common params */
2682 		nr_cmn_params = 3;
2683 		nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2684 
2685 		/* if input has more params than output - skip excess */
2686 		nr_out_params = nr_in_params + nr_cmn_params;
2687 		if (nr_out_params > out_blk_size)
2688 			nr_out_params = out_blk_size;
2689 
2690 		for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2691 			metadata[k] = buff_in[i + k];
2692 
2693 		/* record the actual nr params we copied */
2694 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2695 	}
2696 
2697 	/* adjust in offset by number of in params used */
2698 	i += nr_in_params + nr_cmn_params;
2699 	*buff_in_offset = i;
2700 	return metadata;
2701 }
2702 
2703 /**
2704  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2705  * on the bounds of aux_event, if it matches with the buffer that's at
2706  * file_offset.
2707  *
2708  * Normally, whole auxtrace buffers would be added to the queue. But we
2709  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2710  * is reset across each buffer, so splitting the buffers up in advance has
2711  * the same effect.
2712  */
2713 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2714 				      struct perf_record_aux *aux_event, struct perf_sample *sample)
2715 {
2716 	int err;
2717 	char buf[PERF_SAMPLE_MAX_SIZE];
2718 	union perf_event *auxtrace_event_union;
2719 	struct perf_record_auxtrace *auxtrace_event;
2720 	union perf_event auxtrace_fragment;
2721 	__u64 aux_offset, aux_size;
2722 
2723 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2724 						   struct cs_etm_auxtrace,
2725 						   auxtrace);
2726 
2727 	/*
2728 	 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2729 	 * from looping through the auxtrace index.
2730 	 */
2731 	err = perf_session__peek_event(session, file_offset, buf,
2732 				       PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2733 	if (err)
2734 		return err;
2735 	auxtrace_event = &auxtrace_event_union->auxtrace;
2736 	if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2737 		return -EINVAL;
2738 
2739 	if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2740 		auxtrace_event->header.size != sz) {
2741 		return -EINVAL;
2742 	}
2743 
2744 	/*
2745 	 * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2746 	 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2747 	 */
2748 	if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2749 			auxtrace_event->cpu != sample->cpu)
2750 		return 1;
2751 
2752 	if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2753 		/*
2754 		 * Clamp size in snapshot mode. The buffer size is clamped in
2755 		 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2756 		 * the buffer size.
2757 		 */
2758 		aux_size = min(aux_event->aux_size, auxtrace_event->size);
2759 
2760 		/*
2761 		 * In this mode, the head also points to the end of the buffer so aux_offset
2762 		 * needs to have the size subtracted so it points to the beginning as in normal mode
2763 		 */
2764 		aux_offset = aux_event->aux_offset - aux_size;
2765 	} else {
2766 		aux_size = aux_event->aux_size;
2767 		aux_offset = aux_event->aux_offset;
2768 	}
2769 
2770 	if (aux_offset >= auxtrace_event->offset &&
2771 	    aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2772 		/*
2773 		 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2774 		 * based on the sizes of the aux event, and queue that fragment.
2775 		 */
2776 		auxtrace_fragment.auxtrace = *auxtrace_event;
2777 		auxtrace_fragment.auxtrace.size = aux_size;
2778 		auxtrace_fragment.auxtrace.offset = aux_offset;
2779 		file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2780 
2781 		pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2782 			  " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2783 		return auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2784 						  file_offset, NULL);
2785 	}
2786 
2787 	/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2788 	return 1;
2789 }
2790 
2791 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2792 					u64 offset __maybe_unused, void *data __maybe_unused)
2793 {
2794 	struct perf_sample sample;
2795 	int ret;
2796 	struct auxtrace_index_entry *ent;
2797 	struct auxtrace_index *auxtrace_index;
2798 	struct evsel *evsel;
2799 	size_t i;
2800 
2801 	/* Don't care about any other events, we're only queuing buffers for AUX events */
2802 	if (event->header.type != PERF_RECORD_AUX)
2803 		return 0;
2804 
2805 	if (event->header.size < sizeof(struct perf_record_aux))
2806 		return -EINVAL;
2807 
2808 	/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2809 	if (!event->aux.aux_size)
2810 		return 0;
2811 
2812 	/*
2813 	 * Parse the sample, we need the sample_id_all data that comes after the event so that the
2814 	 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2815 	 */
2816 	evsel = evlist__event2evsel(session->evlist, event);
2817 	if (!evsel)
2818 		return -EINVAL;
2819 	ret = evsel__parse_sample(evsel, event, &sample);
2820 	if (ret)
2821 		return ret;
2822 
2823 	/*
2824 	 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2825 	 */
2826 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2827 		for (i = 0; i < auxtrace_index->nr; i++) {
2828 			ent = &auxtrace_index->entries[i];
2829 			ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2830 							 ent->sz, &event->aux, &sample);
2831 			/*
2832 			 * Stop search on error or successful values. Continue search on
2833 			 * 1 ('not found')
2834 			 */
2835 			if (ret != 1)
2836 				return ret;
2837 		}
2838 	}
2839 
2840 	/*
2841 	 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2842 	 * don't exit with an error because it will still be possible to decode other aux records.
2843 	 */
2844 	pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2845 	       " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2846 	return 0;
2847 }
2848 
2849 static int cs_etm__queue_aux_records(struct perf_session *session)
2850 {
2851 	struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2852 								struct auxtrace_index, list);
2853 	if (index && index->nr > 0)
2854 		return perf_session__peek_events(session, session->header.data_offset,
2855 						 session->header.data_size,
2856 						 cs_etm__queue_aux_records_cb, NULL);
2857 
2858 	/*
2859 	 * We would get here if there are no entries in the index (either no auxtrace
2860 	 * buffers or no index at all). Fail silently as there is the possibility of
2861 	 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2862 	 * false.
2863 	 *
2864 	 * In that scenario, buffers will not be split by AUX records.
2865 	 */
2866 	return 0;
2867 }
2868 
2869 int cs_etm__process_auxtrace_info(union perf_event *event,
2870 				  struct perf_session *session)
2871 {
2872 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2873 	struct cs_etm_auxtrace *etm = NULL;
2874 	struct int_node *inode;
2875 	unsigned int pmu_type;
2876 	int event_header_size = sizeof(struct perf_event_header);
2877 	int info_header_size;
2878 	int total_size = auxtrace_info->header.size;
2879 	int priv_size = 0;
2880 	int num_cpu, trcidr_idx;
2881 	int err = 0;
2882 	int i, j;
2883 	u64 *ptr, *hdr = NULL;
2884 	u64 **metadata = NULL;
2885 	u64 hdr_version;
2886 
2887 	/*
2888 	 * sizeof(auxtrace_info_event::type) +
2889 	 * sizeof(auxtrace_info_event::reserved) == 8
2890 	 */
2891 	info_header_size = 8;
2892 
2893 	if (total_size < (event_header_size + info_header_size))
2894 		return -EINVAL;
2895 
2896 	priv_size = total_size - event_header_size - info_header_size;
2897 
2898 	/* First the global part */
2899 	ptr = (u64 *) auxtrace_info->priv;
2900 
2901 	/* Look for version of the header */
2902 	hdr_version = ptr[0];
2903 	if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2904 		/* print routine will print an error on bad version */
2905 		if (dump_trace)
2906 			cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2907 		return -EINVAL;
2908 	}
2909 
2910 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2911 	if (!hdr)
2912 		return -ENOMEM;
2913 
2914 	/* Extract header information - see cs-etm.h for format */
2915 	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2916 		hdr[i] = ptr[i];
2917 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2918 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2919 				    0xffffffff);
2920 
2921 	/*
2922 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2923 	 * has to be made for each packet that gets decoded, optimizing access
2924 	 * in anything other than a sequential array is worth doing.
2925 	 */
2926 	traceid_list = intlist__new(NULL);
2927 	if (!traceid_list) {
2928 		err = -ENOMEM;
2929 		goto err_free_hdr;
2930 	}
2931 
2932 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2933 	if (!metadata) {
2934 		err = -ENOMEM;
2935 		goto err_free_traceid_list;
2936 	}
2937 
2938 	/*
2939 	 * The metadata is stored in the auxtrace_info section and encodes
2940 	 * the configuration of the ARM embedded trace macrocell which is
2941 	 * required by the trace decoder to properly decode the trace due
2942 	 * to its highly compressed nature.
2943 	 */
2944 	for (j = 0; j < num_cpu; j++) {
2945 		if (ptr[i] == __perf_cs_etmv3_magic) {
2946 			metadata[j] =
2947 				cs_etm__create_meta_blk(ptr, &i,
2948 							CS_ETM_PRIV_MAX,
2949 							CS_ETM_NR_TRC_PARAMS_V0);
2950 
2951 			/* The traceID is our handle */
2952 			trcidr_idx = CS_ETM_ETMTRACEIDR;
2953 
2954 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2955 			metadata[j] =
2956 				cs_etm__create_meta_blk(ptr, &i,
2957 							CS_ETMV4_PRIV_MAX,
2958 							CS_ETMV4_NR_TRC_PARAMS_V0);
2959 
2960 			/* The traceID is our handle */
2961 			trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2962 		}
2963 
2964 		if (!metadata[j]) {
2965 			err = -ENOMEM;
2966 			goto err_free_metadata;
2967 		}
2968 
2969 		/* Get an RB node for this CPU */
2970 		inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2971 
2972 		/* Something went wrong, no need to continue */
2973 		if (!inode) {
2974 			err = -ENOMEM;
2975 			goto err_free_metadata;
2976 		}
2977 
2978 		/*
2979 		 * The node for that CPU should not be taken.
2980 		 * Back out if that's the case.
2981 		 */
2982 		if (inode->priv) {
2983 			err = -EINVAL;
2984 			goto err_free_metadata;
2985 		}
2986 		/* All good, associate the traceID with the metadata pointer */
2987 		inode->priv = metadata[j];
2988 	}
2989 
2990 	/*
2991 	 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2992 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2993 	 * global metadata, and each cpu's metadata respectively.
2994 	 * The following tests if the correct number of double words was
2995 	 * present in the auxtrace info section.
2996 	 */
2997 	if (i * 8 != priv_size) {
2998 		err = -EINVAL;
2999 		goto err_free_metadata;
3000 	}
3001 
3002 	etm = zalloc(sizeof(*etm));
3003 
3004 	if (!etm) {
3005 		err = -ENOMEM;
3006 		goto err_free_metadata;
3007 	}
3008 
3009 	err = auxtrace_queues__init(&etm->queues);
3010 	if (err)
3011 		goto err_free_etm;
3012 
3013 	if (session->itrace_synth_opts->set) {
3014 		etm->synth_opts = *session->itrace_synth_opts;
3015 	} else {
3016 		itrace_synth_opts__set_default(&etm->synth_opts,
3017 				session->itrace_synth_opts->default_no_sample);
3018 		etm->synth_opts.callchain = false;
3019 	}
3020 
3021 	etm->session = session;
3022 	etm->machine = &session->machines.host;
3023 
3024 	etm->num_cpu = num_cpu;
3025 	etm->pmu_type = pmu_type;
3026 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
3027 	etm->metadata = metadata;
3028 	etm->auxtrace_type = auxtrace_info->type;
3029 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
3030 
3031 	etm->auxtrace.process_event = cs_etm__process_event;
3032 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3033 	etm->auxtrace.flush_events = cs_etm__flush_events;
3034 	etm->auxtrace.free_events = cs_etm__free_events;
3035 	etm->auxtrace.free = cs_etm__free;
3036 	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3037 	session->auxtrace = &etm->auxtrace;
3038 
3039 	etm->unknown_thread = thread__new(999999999, 999999999);
3040 	if (!etm->unknown_thread) {
3041 		err = -ENOMEM;
3042 		goto err_free_queues;
3043 	}
3044 
3045 	/*
3046 	 * Initialize list node so that at thread__zput() we can avoid
3047 	 * segmentation fault at list_del_init().
3048 	 */
3049 	INIT_LIST_HEAD(&etm->unknown_thread->node);
3050 
3051 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
3052 	if (err)
3053 		goto err_delete_thread;
3054 
3055 	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3056 		err = -ENOMEM;
3057 		goto err_delete_thread;
3058 	}
3059 
3060 	if (dump_trace) {
3061 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3062 	}
3063 
3064 	err = cs_etm__synth_events(etm, session);
3065 	if (err)
3066 		goto err_delete_thread;
3067 
3068 	err = cs_etm__queue_aux_records(session);
3069 	if (err)
3070 		goto err_delete_thread;
3071 
3072 	etm->data_queued = etm->queues.populated;
3073 
3074 	return 0;
3075 
3076 err_delete_thread:
3077 	thread__zput(etm->unknown_thread);
3078 err_free_queues:
3079 	auxtrace_queues__free(&etm->queues);
3080 	session->auxtrace = NULL;
3081 err_free_etm:
3082 	zfree(&etm);
3083 err_free_metadata:
3084 	/* No need to check @metadata[j], free(NULL) is supported */
3085 	for (j = 0; j < num_cpu; j++)
3086 		zfree(&metadata[j]);
3087 	zfree(&metadata);
3088 err_free_traceid_list:
3089 	intlist__delete(traceid_list);
3090 err_free_hdr:
3091 	zfree(&hdr);
3092 	/*
3093 	 * At this point, as a minimum we have valid header. Dump the rest of
3094 	 * the info section - the print routines will error out on structural
3095 	 * issues.
3096 	 */
3097 	if (dump_trace)
3098 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3099 	return err;
3100 }
3101