1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/err.h> 11 #include <linux/kernel.h> 12 #include <linux/log2.h> 13 #include <linux/types.h> 14 #include <linux/zalloc.h> 15 16 #include <opencsd/ocsd_if_types.h> 17 #include <stdlib.h> 18 19 #include "auxtrace.h" 20 #include "color.h" 21 #include "cs-etm.h" 22 #include "cs-etm-decoder/cs-etm-decoder.h" 23 #include "debug.h" 24 #include "dso.h" 25 #include "evlist.h" 26 #include "intlist.h" 27 #include "machine.h" 28 #include "map.h" 29 #include "perf.h" 30 #include "session.h" 31 #include "map_symbol.h" 32 #include "branch.h" 33 #include "symbol.h" 34 #include "tool.h" 35 #include "thread.h" 36 #include "thread-stack.h" 37 #include <tools/libc_compat.h> 38 #include "util/synthetic-events.h" 39 40 #define MAX_TIMESTAMP (~0ULL) 41 42 struct cs_etm_auxtrace { 43 struct auxtrace auxtrace; 44 struct auxtrace_queues queues; 45 struct auxtrace_heap heap; 46 struct itrace_synth_opts synth_opts; 47 struct perf_session *session; 48 struct machine *machine; 49 struct thread *unknown_thread; 50 51 u8 timeless_decoding; 52 u8 snapshot_mode; 53 u8 data_queued; 54 u8 sample_branches; 55 u8 sample_instructions; 56 57 int num_cpu; 58 u32 auxtrace_type; 59 u64 branches_sample_type; 60 u64 branches_id; 61 u64 instructions_sample_type; 62 u64 instructions_sample_period; 63 u64 instructions_id; 64 u64 **metadata; 65 u64 kernel_start; 66 unsigned int pmu_type; 67 }; 68 69 struct cs_etm_traceid_queue { 70 u8 trace_chan_id; 71 pid_t pid, tid; 72 u64 period_instructions; 73 size_t last_branch_pos; 74 union perf_event *event_buf; 75 struct thread *thread; 76 struct branch_stack *last_branch; 77 struct branch_stack *last_branch_rb; 78 struct cs_etm_packet *prev_packet; 79 struct cs_etm_packet *packet; 80 struct cs_etm_packet_queue packet_queue; 81 }; 82 83 struct cs_etm_queue { 84 struct cs_etm_auxtrace *etm; 85 struct cs_etm_decoder *decoder; 86 struct auxtrace_buffer *buffer; 87 unsigned int queue_nr; 88 u8 pending_timestamp; 89 u64 offset; 90 const unsigned char *buf; 91 size_t buf_len, buf_used; 92 /* Conversion between traceID and index in traceid_queues array */ 93 struct intlist *traceid_queues_list; 94 struct cs_etm_traceid_queue **traceid_queues; 95 }; 96 97 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm); 98 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm); 99 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 100 pid_t tid); 101 static int cs_etm__get_data_block(struct cs_etm_queue *etmq); 102 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); 103 104 /* PTMs ETMIDR [11:8] set to b0011 */ 105 #define ETMIDR_PTM_VERSION 0x00000300 106 107 /* 108 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to 109 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply 110 * encode the etm queue number as the upper 16 bit and the channel as 111 * the lower 16 bit. 112 */ 113 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \ 114 (queue_nr << 16 | trace_chan_id) 115 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) 116 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) 117 118 static u32 cs_etm__get_v7_protocol_version(u32 etmidr) 119 { 120 etmidr &= ETMIDR_PTM_VERSION; 121 122 if (etmidr == ETMIDR_PTM_VERSION) 123 return CS_ETM_PROTO_PTM; 124 125 return CS_ETM_PROTO_ETMV3; 126 } 127 128 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) 129 { 130 struct int_node *inode; 131 u64 *metadata; 132 133 inode = intlist__find(traceid_list, trace_chan_id); 134 if (!inode) 135 return -EINVAL; 136 137 metadata = inode->priv; 138 *magic = metadata[CS_ETM_MAGIC]; 139 return 0; 140 } 141 142 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) 143 { 144 struct int_node *inode; 145 u64 *metadata; 146 147 inode = intlist__find(traceid_list, trace_chan_id); 148 if (!inode) 149 return -EINVAL; 150 151 metadata = inode->priv; 152 *cpu = (int)metadata[CS_ETM_CPU]; 153 return 0; 154 } 155 156 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, 157 u8 trace_chan_id) 158 { 159 /* 160 * Wnen a timestamp packet is encountered the backend code 161 * is stopped so that the front end has time to process packets 162 * that were accumulated in the traceID queue. Since there can 163 * be more than one channel per cs_etm_queue, we need to specify 164 * what traceID queue needs servicing. 165 */ 166 etmq->pending_timestamp = trace_chan_id; 167 } 168 169 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, 170 u8 *trace_chan_id) 171 { 172 struct cs_etm_packet_queue *packet_queue; 173 174 if (!etmq->pending_timestamp) 175 return 0; 176 177 if (trace_chan_id) 178 *trace_chan_id = etmq->pending_timestamp; 179 180 packet_queue = cs_etm__etmq_get_packet_queue(etmq, 181 etmq->pending_timestamp); 182 if (!packet_queue) 183 return 0; 184 185 /* Acknowledge pending status */ 186 etmq->pending_timestamp = 0; 187 188 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ 189 return packet_queue->timestamp; 190 } 191 192 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) 193 { 194 int i; 195 196 queue->head = 0; 197 queue->tail = 0; 198 queue->packet_count = 0; 199 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { 200 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; 201 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; 202 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; 203 queue->packet_buffer[i].instr_count = 0; 204 queue->packet_buffer[i].last_instr_taken_branch = false; 205 queue->packet_buffer[i].last_instr_size = 0; 206 queue->packet_buffer[i].last_instr_type = 0; 207 queue->packet_buffer[i].last_instr_subtype = 0; 208 queue->packet_buffer[i].last_instr_cond = 0; 209 queue->packet_buffer[i].flags = 0; 210 queue->packet_buffer[i].exception_number = UINT32_MAX; 211 queue->packet_buffer[i].trace_chan_id = UINT8_MAX; 212 queue->packet_buffer[i].cpu = INT_MIN; 213 } 214 } 215 216 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) 217 { 218 int idx; 219 struct int_node *inode; 220 struct cs_etm_traceid_queue *tidq; 221 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 222 223 intlist__for_each_entry(inode, traceid_queues_list) { 224 idx = (int)(intptr_t)inode->priv; 225 tidq = etmq->traceid_queues[idx]; 226 cs_etm__clear_packet_queue(&tidq->packet_queue); 227 } 228 } 229 230 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, 231 struct cs_etm_traceid_queue *tidq, 232 u8 trace_chan_id) 233 { 234 int rc = -ENOMEM; 235 struct auxtrace_queue *queue; 236 struct cs_etm_auxtrace *etm = etmq->etm; 237 238 cs_etm__clear_packet_queue(&tidq->packet_queue); 239 240 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 241 tidq->tid = queue->tid; 242 tidq->pid = -1; 243 tidq->trace_chan_id = trace_chan_id; 244 245 tidq->packet = zalloc(sizeof(struct cs_etm_packet)); 246 if (!tidq->packet) 247 goto out; 248 249 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); 250 if (!tidq->prev_packet) 251 goto out_free; 252 253 if (etm->synth_opts.last_branch) { 254 size_t sz = sizeof(struct branch_stack); 255 256 sz += etm->synth_opts.last_branch_sz * 257 sizeof(struct branch_entry); 258 tidq->last_branch = zalloc(sz); 259 if (!tidq->last_branch) 260 goto out_free; 261 tidq->last_branch_rb = zalloc(sz); 262 if (!tidq->last_branch_rb) 263 goto out_free; 264 } 265 266 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 267 if (!tidq->event_buf) 268 goto out_free; 269 270 return 0; 271 272 out_free: 273 zfree(&tidq->last_branch_rb); 274 zfree(&tidq->last_branch); 275 zfree(&tidq->prev_packet); 276 zfree(&tidq->packet); 277 out: 278 return rc; 279 } 280 281 static struct cs_etm_traceid_queue 282 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 283 { 284 int idx; 285 struct int_node *inode; 286 struct intlist *traceid_queues_list; 287 struct cs_etm_traceid_queue *tidq, **traceid_queues; 288 struct cs_etm_auxtrace *etm = etmq->etm; 289 290 if (etm->timeless_decoding) 291 trace_chan_id = CS_ETM_PER_THREAD_TRACEID; 292 293 traceid_queues_list = etmq->traceid_queues_list; 294 295 /* 296 * Check if the traceid_queue exist for this traceID by looking 297 * in the queue list. 298 */ 299 inode = intlist__find(traceid_queues_list, trace_chan_id); 300 if (inode) { 301 idx = (int)(intptr_t)inode->priv; 302 return etmq->traceid_queues[idx]; 303 } 304 305 /* We couldn't find a traceid_queue for this traceID, allocate one */ 306 tidq = malloc(sizeof(*tidq)); 307 if (!tidq) 308 return NULL; 309 310 memset(tidq, 0, sizeof(*tidq)); 311 312 /* Get a valid index for the new traceid_queue */ 313 idx = intlist__nr_entries(traceid_queues_list); 314 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ 315 inode = intlist__findnew(traceid_queues_list, trace_chan_id); 316 if (!inode) 317 goto out_free; 318 319 /* Associate this traceID with this index */ 320 inode->priv = (void *)(intptr_t)idx; 321 322 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) 323 goto out_free; 324 325 /* Grow the traceid_queues array by one unit */ 326 traceid_queues = etmq->traceid_queues; 327 traceid_queues = reallocarray(traceid_queues, 328 idx + 1, 329 sizeof(*traceid_queues)); 330 331 /* 332 * On failure reallocarray() returns NULL and the original block of 333 * memory is left untouched. 334 */ 335 if (!traceid_queues) 336 goto out_free; 337 338 traceid_queues[idx] = tidq; 339 etmq->traceid_queues = traceid_queues; 340 341 return etmq->traceid_queues[idx]; 342 343 out_free: 344 /* 345 * Function intlist__remove() removes the inode from the list 346 * and delete the memory associated to it. 347 */ 348 intlist__remove(traceid_queues_list, inode); 349 free(tidq); 350 351 return NULL; 352 } 353 354 struct cs_etm_packet_queue 355 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 356 { 357 struct cs_etm_traceid_queue *tidq; 358 359 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 360 if (tidq) 361 return &tidq->packet_queue; 362 363 return NULL; 364 } 365 366 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, 367 struct cs_etm_traceid_queue *tidq) 368 { 369 struct cs_etm_packet *tmp; 370 371 if (etm->sample_branches || etm->synth_opts.last_branch || 372 etm->sample_instructions) { 373 /* 374 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 375 * the next incoming packet. 376 */ 377 tmp = tidq->packet; 378 tidq->packet = tidq->prev_packet; 379 tidq->prev_packet = tmp; 380 } 381 } 382 383 static void cs_etm__packet_dump(const char *pkt_string) 384 { 385 const char *color = PERF_COLOR_BLUE; 386 int len = strlen(pkt_string); 387 388 if (len && (pkt_string[len-1] == '\n')) 389 color_fprintf(stdout, color, " %s", pkt_string); 390 else 391 color_fprintf(stdout, color, " %s\n", pkt_string); 392 393 fflush(stdout); 394 } 395 396 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, 397 struct cs_etm_auxtrace *etm, int idx, 398 u32 etmidr) 399 { 400 u64 **metadata = etm->metadata; 401 402 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr); 403 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR]; 404 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR]; 405 } 406 407 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, 408 struct cs_etm_auxtrace *etm, int idx) 409 { 410 u64 **metadata = etm->metadata; 411 412 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i; 413 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; 414 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; 415 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; 416 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; 417 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; 418 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; 419 } 420 421 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, 422 struct cs_etm_auxtrace *etm) 423 { 424 int i; 425 u32 etmidr; 426 u64 architecture; 427 428 for (i = 0; i < etm->num_cpu; i++) { 429 architecture = etm->metadata[i][CS_ETM_MAGIC]; 430 431 switch (architecture) { 432 case __perf_cs_etmv3_magic: 433 etmidr = etm->metadata[i][CS_ETM_ETMIDR]; 434 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr); 435 break; 436 case __perf_cs_etmv4_magic: 437 cs_etm__set_trace_param_etmv4(t_params, etm, i); 438 break; 439 default: 440 return -EINVAL; 441 } 442 } 443 444 return 0; 445 } 446 447 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, 448 struct cs_etm_queue *etmq, 449 enum cs_etm_decoder_operation mode) 450 { 451 int ret = -EINVAL; 452 453 if (!(mode < CS_ETM_OPERATION_MAX)) 454 goto out; 455 456 d_params->packet_printer = cs_etm__packet_dump; 457 d_params->operation = mode; 458 d_params->data = etmq; 459 d_params->formatted = true; 460 d_params->fsyncs = false; 461 d_params->hsyncs = false; 462 d_params->frame_aligned = true; 463 464 ret = 0; 465 out: 466 return ret; 467 } 468 469 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm, 470 struct auxtrace_buffer *buffer) 471 { 472 int ret; 473 const char *color = PERF_COLOR_BLUE; 474 struct cs_etm_decoder_params d_params; 475 struct cs_etm_trace_params *t_params; 476 struct cs_etm_decoder *decoder; 477 size_t buffer_used = 0; 478 479 fprintf(stdout, "\n"); 480 color_fprintf(stdout, color, 481 ". ... CoreSight ETM Trace data: size %zu bytes\n", 482 buffer->size); 483 484 /* Use metadata to fill in trace parameters for trace decoder */ 485 t_params = zalloc(sizeof(*t_params) * etm->num_cpu); 486 487 if (!t_params) 488 return; 489 490 if (cs_etm__init_trace_params(t_params, etm)) 491 goto out_free; 492 493 /* Set decoder parameters to simply print the trace packets */ 494 if (cs_etm__init_decoder_params(&d_params, NULL, 495 CS_ETM_OPERATION_PRINT)) 496 goto out_free; 497 498 decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); 499 500 if (!decoder) 501 goto out_free; 502 do { 503 size_t consumed; 504 505 ret = cs_etm_decoder__process_data_block( 506 decoder, buffer->offset, 507 &((u8 *)buffer->data)[buffer_used], 508 buffer->size - buffer_used, &consumed); 509 if (ret) 510 break; 511 512 buffer_used += consumed; 513 } while (buffer_used < buffer->size); 514 515 cs_etm_decoder__free(decoder); 516 517 out_free: 518 zfree(&t_params); 519 } 520 521 static int cs_etm__flush_events(struct perf_session *session, 522 struct perf_tool *tool) 523 { 524 int ret; 525 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 526 struct cs_etm_auxtrace, 527 auxtrace); 528 if (dump_trace) 529 return 0; 530 531 if (!tool->ordered_events) 532 return -EINVAL; 533 534 ret = cs_etm__update_queues(etm); 535 536 if (ret < 0) 537 return ret; 538 539 if (etm->timeless_decoding) 540 return cs_etm__process_timeless_queues(etm, -1); 541 542 return cs_etm__process_queues(etm); 543 } 544 545 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) 546 { 547 int idx; 548 uintptr_t priv; 549 struct int_node *inode, *tmp; 550 struct cs_etm_traceid_queue *tidq; 551 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 552 553 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { 554 priv = (uintptr_t)inode->priv; 555 idx = priv; 556 557 /* Free this traceid_queue from the array */ 558 tidq = etmq->traceid_queues[idx]; 559 thread__zput(tidq->thread); 560 zfree(&tidq->event_buf); 561 zfree(&tidq->last_branch); 562 zfree(&tidq->last_branch_rb); 563 zfree(&tidq->prev_packet); 564 zfree(&tidq->packet); 565 zfree(&tidq); 566 567 /* 568 * Function intlist__remove() removes the inode from the list 569 * and delete the memory associated to it. 570 */ 571 intlist__remove(traceid_queues_list, inode); 572 } 573 574 /* Then the RB tree itself */ 575 intlist__delete(traceid_queues_list); 576 etmq->traceid_queues_list = NULL; 577 578 /* finally free the traceid_queues array */ 579 zfree(&etmq->traceid_queues); 580 } 581 582 static void cs_etm__free_queue(void *priv) 583 { 584 struct cs_etm_queue *etmq = priv; 585 586 if (!etmq) 587 return; 588 589 cs_etm_decoder__free(etmq->decoder); 590 cs_etm__free_traceid_queues(etmq); 591 free(etmq); 592 } 593 594 static void cs_etm__free_events(struct perf_session *session) 595 { 596 unsigned int i; 597 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 598 struct cs_etm_auxtrace, 599 auxtrace); 600 struct auxtrace_queues *queues = &aux->queues; 601 602 for (i = 0; i < queues->nr_queues; i++) { 603 cs_etm__free_queue(queues->queue_array[i].priv); 604 queues->queue_array[i].priv = NULL; 605 } 606 607 auxtrace_queues__free(queues); 608 } 609 610 static void cs_etm__free(struct perf_session *session) 611 { 612 int i; 613 struct int_node *inode, *tmp; 614 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 615 struct cs_etm_auxtrace, 616 auxtrace); 617 cs_etm__free_events(session); 618 session->auxtrace = NULL; 619 620 /* First remove all traceID/metadata nodes for the RB tree */ 621 intlist__for_each_entry_safe(inode, tmp, traceid_list) 622 intlist__remove(traceid_list, inode); 623 /* Then the RB tree itself */ 624 intlist__delete(traceid_list); 625 626 for (i = 0; i < aux->num_cpu; i++) 627 zfree(&aux->metadata[i]); 628 629 thread__zput(aux->unknown_thread); 630 zfree(&aux->metadata); 631 zfree(&aux); 632 } 633 634 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, 635 struct evsel *evsel) 636 { 637 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 638 struct cs_etm_auxtrace, 639 auxtrace); 640 641 return evsel->core.attr.type == aux->pmu_type; 642 } 643 644 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address) 645 { 646 struct machine *machine; 647 648 machine = etmq->etm->machine; 649 650 if (address >= etmq->etm->kernel_start) { 651 if (machine__is_host(machine)) 652 return PERF_RECORD_MISC_KERNEL; 653 else 654 return PERF_RECORD_MISC_GUEST_KERNEL; 655 } else { 656 if (machine__is_host(machine)) 657 return PERF_RECORD_MISC_USER; 658 else if (perf_guest) 659 return PERF_RECORD_MISC_GUEST_USER; 660 else 661 return PERF_RECORD_MISC_HYPERVISOR; 662 } 663 } 664 665 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, 666 u64 address, size_t size, u8 *buffer) 667 { 668 u8 cpumode; 669 u64 offset; 670 int len; 671 struct thread *thread; 672 struct machine *machine; 673 struct addr_location al; 674 struct cs_etm_traceid_queue *tidq; 675 676 if (!etmq) 677 return 0; 678 679 machine = etmq->etm->machine; 680 cpumode = cs_etm__cpu_mode(etmq, address); 681 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 682 if (!tidq) 683 return 0; 684 685 thread = tidq->thread; 686 if (!thread) { 687 if (cpumode != PERF_RECORD_MISC_KERNEL) 688 return 0; 689 thread = etmq->etm->unknown_thread; 690 } 691 692 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso) 693 return 0; 694 695 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 696 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) 697 return 0; 698 699 offset = al.map->map_ip(al.map, address); 700 701 map__load(al.map); 702 703 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size); 704 705 if (len <= 0) 706 return 0; 707 708 return len; 709 } 710 711 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm) 712 { 713 struct cs_etm_decoder_params d_params; 714 struct cs_etm_trace_params *t_params = NULL; 715 struct cs_etm_queue *etmq; 716 717 etmq = zalloc(sizeof(*etmq)); 718 if (!etmq) 719 return NULL; 720 721 etmq->traceid_queues_list = intlist__new(NULL); 722 if (!etmq->traceid_queues_list) 723 goto out_free; 724 725 /* Use metadata to fill in trace parameters for trace decoder */ 726 t_params = zalloc(sizeof(*t_params) * etm->num_cpu); 727 728 if (!t_params) 729 goto out_free; 730 731 if (cs_etm__init_trace_params(t_params, etm)) 732 goto out_free; 733 734 /* Set decoder parameters to decode trace packets */ 735 if (cs_etm__init_decoder_params(&d_params, etmq, 736 CS_ETM_OPERATION_DECODE)) 737 goto out_free; 738 739 etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); 740 741 if (!etmq->decoder) 742 goto out_free; 743 744 /* 745 * Register a function to handle all memory accesses required by 746 * the trace decoder library. 747 */ 748 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 749 0x0L, ((u64) -1L), 750 cs_etm__mem_access)) 751 goto out_free_decoder; 752 753 zfree(&t_params); 754 return etmq; 755 756 out_free_decoder: 757 cs_etm_decoder__free(etmq->decoder); 758 out_free: 759 intlist__delete(etmq->traceid_queues_list); 760 free(etmq); 761 762 return NULL; 763 } 764 765 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 766 struct auxtrace_queue *queue, 767 unsigned int queue_nr) 768 { 769 int ret = 0; 770 unsigned int cs_queue_nr; 771 u8 trace_chan_id; 772 u64 timestamp; 773 struct cs_etm_queue *etmq = queue->priv; 774 775 if (list_empty(&queue->head) || etmq) 776 goto out; 777 778 etmq = cs_etm__alloc_queue(etm); 779 780 if (!etmq) { 781 ret = -ENOMEM; 782 goto out; 783 } 784 785 queue->priv = etmq; 786 etmq->etm = etm; 787 etmq->queue_nr = queue_nr; 788 etmq->offset = 0; 789 790 if (etm->timeless_decoding) 791 goto out; 792 793 /* 794 * We are under a CPU-wide trace scenario. As such we need to know 795 * when the code that generated the traces started to execute so that 796 * it can be correlated with execution on other CPUs. So we get a 797 * handle on the beginning of traces and decode until we find a 798 * timestamp. The timestamp is then added to the auxtrace min heap 799 * in order to know what nibble (of all the etmqs) to decode first. 800 */ 801 while (1) { 802 /* 803 * Fetch an aux_buffer from this etmq. Bail if no more 804 * blocks or an error has been encountered. 805 */ 806 ret = cs_etm__get_data_block(etmq); 807 if (ret <= 0) 808 goto out; 809 810 /* 811 * Run decoder on the trace block. The decoder will stop when 812 * encountering a timestamp, a full packet queue or the end of 813 * trace for that block. 814 */ 815 ret = cs_etm__decode_data_block(etmq); 816 if (ret) 817 goto out; 818 819 /* 820 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all 821 * the timestamp calculation for us. 822 */ 823 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 824 825 /* We found a timestamp, no need to continue. */ 826 if (timestamp) 827 break; 828 829 /* 830 * We didn't find a timestamp so empty all the traceid packet 831 * queues before looking for another timestamp packet, either 832 * in the current data block or a new one. Packets that were 833 * just decoded are useless since no timestamp has been 834 * associated with them. As such simply discard them. 835 */ 836 cs_etm__clear_all_packet_queues(etmq); 837 } 838 839 /* 840 * We have a timestamp. Add it to the min heap to reflect when 841 * instructions conveyed by the range packets of this traceID queue 842 * started to execute. Once the same has been done for all the traceID 843 * queues of each etmq, redenring and decoding can start in 844 * chronological order. 845 * 846 * Note that packets decoded above are still in the traceID's packet 847 * queue and will be processed in cs_etm__process_queues(). 848 */ 849 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 850 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp); 851 out: 852 return ret; 853 } 854 855 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm) 856 { 857 unsigned int i; 858 int ret; 859 860 if (!etm->kernel_start) 861 etm->kernel_start = machine__kernel_start(etm->machine); 862 863 for (i = 0; i < etm->queues.nr_queues; i++) { 864 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i); 865 if (ret) 866 return ret; 867 } 868 869 return 0; 870 } 871 872 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm) 873 { 874 if (etm->queues.new_data) { 875 etm->queues.new_data = false; 876 return cs_etm__setup_queues(etm); 877 } 878 879 return 0; 880 } 881 882 static inline 883 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, 884 struct cs_etm_traceid_queue *tidq) 885 { 886 struct branch_stack *bs_src = tidq->last_branch_rb; 887 struct branch_stack *bs_dst = tidq->last_branch; 888 size_t nr = 0; 889 890 /* 891 * Set the number of records before early exit: ->nr is used to 892 * determine how many branches to copy from ->entries. 893 */ 894 bs_dst->nr = bs_src->nr; 895 896 /* 897 * Early exit when there is nothing to copy. 898 */ 899 if (!bs_src->nr) 900 return; 901 902 /* 903 * As bs_src->entries is a circular buffer, we need to copy from it in 904 * two steps. First, copy the branches from the most recently inserted 905 * branch ->last_branch_pos until the end of bs_src->entries buffer. 906 */ 907 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; 908 memcpy(&bs_dst->entries[0], 909 &bs_src->entries[tidq->last_branch_pos], 910 sizeof(struct branch_entry) * nr); 911 912 /* 913 * If we wrapped around at least once, the branches from the beginning 914 * of the bs_src->entries buffer and until the ->last_branch_pos element 915 * are older valid branches: copy them over. The total number of 916 * branches copied over will be equal to the number of branches asked by 917 * the user in last_branch_sz. 918 */ 919 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 920 memcpy(&bs_dst->entries[nr], 921 &bs_src->entries[0], 922 sizeof(struct branch_entry) * tidq->last_branch_pos); 923 } 924 } 925 926 static inline 927 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) 928 { 929 tidq->last_branch_pos = 0; 930 tidq->last_branch_rb->nr = 0; 931 } 932 933 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, 934 u8 trace_chan_id, u64 addr) 935 { 936 u8 instrBytes[2]; 937 938 cs_etm__mem_access(etmq, trace_chan_id, addr, 939 ARRAY_SIZE(instrBytes), instrBytes); 940 /* 941 * T32 instruction size is indicated by bits[15:11] of the first 942 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 943 * denote a 32-bit instruction. 944 */ 945 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; 946 } 947 948 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) 949 { 950 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 951 if (packet->sample_type == CS_ETM_DISCONTINUITY) 952 return 0; 953 954 return packet->start_addr; 955 } 956 957 static inline 958 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) 959 { 960 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 961 if (packet->sample_type == CS_ETM_DISCONTINUITY) 962 return 0; 963 964 return packet->end_addr - packet->last_instr_size; 965 } 966 967 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, 968 u64 trace_chan_id, 969 const struct cs_etm_packet *packet, 970 u64 offset) 971 { 972 if (packet->isa == CS_ETM_ISA_T32) { 973 u64 addr = packet->start_addr; 974 975 while (offset) { 976 addr += cs_etm__t32_instr_size(etmq, 977 trace_chan_id, addr); 978 offset--; 979 } 980 return addr; 981 } 982 983 /* Assume a 4 byte instruction size (A32/A64) */ 984 return packet->start_addr + offset * 4; 985 } 986 987 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, 988 struct cs_etm_traceid_queue *tidq) 989 { 990 struct branch_stack *bs = tidq->last_branch_rb; 991 struct branch_entry *be; 992 993 /* 994 * The branches are recorded in a circular buffer in reverse 995 * chronological order: we start recording from the last element of the 996 * buffer down. After writing the first element of the stack, move the 997 * insert position back to the end of the buffer. 998 */ 999 if (!tidq->last_branch_pos) 1000 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 1001 1002 tidq->last_branch_pos -= 1; 1003 1004 be = &bs->entries[tidq->last_branch_pos]; 1005 be->from = cs_etm__last_executed_instr(tidq->prev_packet); 1006 be->to = cs_etm__first_executed_instr(tidq->packet); 1007 /* No support for mispredict */ 1008 be->flags.mispred = 0; 1009 be->flags.predicted = 1; 1010 1011 /* 1012 * Increment bs->nr until reaching the number of last branches asked by 1013 * the user on the command line. 1014 */ 1015 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 1016 bs->nr += 1; 1017 } 1018 1019 static int cs_etm__inject_event(union perf_event *event, 1020 struct perf_sample *sample, u64 type) 1021 { 1022 event->header.size = perf_event__sample_event_size(sample, type, 0); 1023 return perf_event__synthesize_sample(event, type, 0, sample); 1024 } 1025 1026 1027 static int 1028 cs_etm__get_trace(struct cs_etm_queue *etmq) 1029 { 1030 struct auxtrace_buffer *aux_buffer = etmq->buffer; 1031 struct auxtrace_buffer *old_buffer = aux_buffer; 1032 struct auxtrace_queue *queue; 1033 1034 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 1035 1036 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 1037 1038 /* If no more data, drop the previous auxtrace_buffer and return */ 1039 if (!aux_buffer) { 1040 if (old_buffer) 1041 auxtrace_buffer__drop_data(old_buffer); 1042 etmq->buf_len = 0; 1043 return 0; 1044 } 1045 1046 etmq->buffer = aux_buffer; 1047 1048 /* If the aux_buffer doesn't have data associated, try to load it */ 1049 if (!aux_buffer->data) { 1050 /* get the file desc associated with the perf data file */ 1051 int fd = perf_data__fd(etmq->etm->session->data); 1052 1053 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 1054 if (!aux_buffer->data) 1055 return -ENOMEM; 1056 } 1057 1058 /* If valid, drop the previous buffer */ 1059 if (old_buffer) 1060 auxtrace_buffer__drop_data(old_buffer); 1061 1062 etmq->buf_used = 0; 1063 etmq->buf_len = aux_buffer->size; 1064 etmq->buf = aux_buffer->data; 1065 1066 return etmq->buf_len; 1067 } 1068 1069 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, 1070 struct cs_etm_traceid_queue *tidq) 1071 { 1072 if ((!tidq->thread) && (tidq->tid != -1)) 1073 tidq->thread = machine__find_thread(etm->machine, -1, 1074 tidq->tid); 1075 1076 if (tidq->thread) 1077 tidq->pid = tidq->thread->pid_; 1078 } 1079 1080 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq, 1081 pid_t tid, u8 trace_chan_id) 1082 { 1083 int cpu, err = -EINVAL; 1084 struct cs_etm_auxtrace *etm = etmq->etm; 1085 struct cs_etm_traceid_queue *tidq; 1086 1087 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 1088 if (!tidq) 1089 return err; 1090 1091 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) 1092 return err; 1093 1094 err = machine__set_current_tid(etm->machine, cpu, tid, tid); 1095 if (err) 1096 return err; 1097 1098 tidq->tid = tid; 1099 thread__zput(tidq->thread); 1100 1101 cs_etm__set_pid_tid_cpu(etm, tidq); 1102 return 0; 1103 } 1104 1105 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) 1106 { 1107 return !!etmq->etm->timeless_decoding; 1108 } 1109 1110 static void cs_etm__copy_insn(struct cs_etm_queue *etmq, 1111 u64 trace_chan_id, 1112 const struct cs_etm_packet *packet, 1113 struct perf_sample *sample) 1114 { 1115 /* 1116 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY 1117 * packet, so directly bail out with 'insn_len' = 0. 1118 */ 1119 if (packet->sample_type == CS_ETM_DISCONTINUITY) { 1120 sample->insn_len = 0; 1121 return; 1122 } 1123 1124 /* 1125 * T32 instruction size might be 32-bit or 16-bit, decide by calling 1126 * cs_etm__t32_instr_size(). 1127 */ 1128 if (packet->isa == CS_ETM_ISA_T32) 1129 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, 1130 sample->ip); 1131 /* Otherwise, A64 and A32 instruction size are always 32-bit. */ 1132 else 1133 sample->insn_len = 4; 1134 1135 cs_etm__mem_access(etmq, trace_chan_id, sample->ip, 1136 sample->insn_len, (void *)sample->insn); 1137 } 1138 1139 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 1140 struct cs_etm_traceid_queue *tidq, 1141 u64 addr, u64 period) 1142 { 1143 int ret = 0; 1144 struct cs_etm_auxtrace *etm = etmq->etm; 1145 union perf_event *event = tidq->event_buf; 1146 struct perf_sample sample = {.ip = 0,}; 1147 1148 event->sample.header.type = PERF_RECORD_SAMPLE; 1149 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr); 1150 event->sample.header.size = sizeof(struct perf_event_header); 1151 1152 sample.ip = addr; 1153 sample.pid = tidq->pid; 1154 sample.tid = tidq->tid; 1155 sample.id = etmq->etm->instructions_id; 1156 sample.stream_id = etmq->etm->instructions_id; 1157 sample.period = period; 1158 sample.cpu = tidq->packet->cpu; 1159 sample.flags = tidq->prev_packet->flags; 1160 sample.cpumode = event->sample.header.misc; 1161 1162 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); 1163 1164 if (etm->synth_opts.last_branch) 1165 sample.branch_stack = tidq->last_branch; 1166 1167 if (etm->synth_opts.inject) { 1168 ret = cs_etm__inject_event(event, &sample, 1169 etm->instructions_sample_type); 1170 if (ret) 1171 return ret; 1172 } 1173 1174 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1175 1176 if (ret) 1177 pr_err( 1178 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1179 ret); 1180 1181 return ret; 1182 } 1183 1184 /* 1185 * The cs etm packet encodes an instruction range between a branch target 1186 * and the next taken branch. Generate sample accordingly. 1187 */ 1188 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, 1189 struct cs_etm_traceid_queue *tidq) 1190 { 1191 int ret = 0; 1192 struct cs_etm_auxtrace *etm = etmq->etm; 1193 struct perf_sample sample = {.ip = 0,}; 1194 union perf_event *event = tidq->event_buf; 1195 struct dummy_branch_stack { 1196 u64 nr; 1197 u64 hw_idx; 1198 struct branch_entry entries; 1199 } dummy_bs; 1200 u64 ip; 1201 1202 ip = cs_etm__last_executed_instr(tidq->prev_packet); 1203 1204 event->sample.header.type = PERF_RECORD_SAMPLE; 1205 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip); 1206 event->sample.header.size = sizeof(struct perf_event_header); 1207 1208 sample.ip = ip; 1209 sample.pid = tidq->pid; 1210 sample.tid = tidq->tid; 1211 sample.addr = cs_etm__first_executed_instr(tidq->packet); 1212 sample.id = etmq->etm->branches_id; 1213 sample.stream_id = etmq->etm->branches_id; 1214 sample.period = 1; 1215 sample.cpu = tidq->packet->cpu; 1216 sample.flags = tidq->prev_packet->flags; 1217 sample.cpumode = event->sample.header.misc; 1218 1219 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, 1220 &sample); 1221 1222 /* 1223 * perf report cannot handle events without a branch stack 1224 */ 1225 if (etm->synth_opts.last_branch) { 1226 dummy_bs = (struct dummy_branch_stack){ 1227 .nr = 1, 1228 .hw_idx = -1ULL, 1229 .entries = { 1230 .from = sample.ip, 1231 .to = sample.addr, 1232 }, 1233 }; 1234 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1235 } 1236 1237 if (etm->synth_opts.inject) { 1238 ret = cs_etm__inject_event(event, &sample, 1239 etm->branches_sample_type); 1240 if (ret) 1241 return ret; 1242 } 1243 1244 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1245 1246 if (ret) 1247 pr_err( 1248 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1249 ret); 1250 1251 return ret; 1252 } 1253 1254 struct cs_etm_synth { 1255 struct perf_tool dummy_tool; 1256 struct perf_session *session; 1257 }; 1258 1259 static int cs_etm__event_synth(struct perf_tool *tool, 1260 union perf_event *event, 1261 struct perf_sample *sample __maybe_unused, 1262 struct machine *machine __maybe_unused) 1263 { 1264 struct cs_etm_synth *cs_etm_synth = 1265 container_of(tool, struct cs_etm_synth, dummy_tool); 1266 1267 return perf_session__deliver_synth_event(cs_etm_synth->session, 1268 event, NULL); 1269 } 1270 1271 static int cs_etm__synth_event(struct perf_session *session, 1272 struct perf_event_attr *attr, u64 id) 1273 { 1274 struct cs_etm_synth cs_etm_synth; 1275 1276 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 1277 cs_etm_synth.session = session; 1278 1279 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 1280 &id, cs_etm__event_synth); 1281 } 1282 1283 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 1284 struct perf_session *session) 1285 { 1286 struct evlist *evlist = session->evlist; 1287 struct evsel *evsel; 1288 struct perf_event_attr attr; 1289 bool found = false; 1290 u64 id; 1291 int err; 1292 1293 evlist__for_each_entry(evlist, evsel) { 1294 if (evsel->core.attr.type == etm->pmu_type) { 1295 found = true; 1296 break; 1297 } 1298 } 1299 1300 if (!found) { 1301 pr_debug("No selected events with CoreSight Trace data\n"); 1302 return 0; 1303 } 1304 1305 memset(&attr, 0, sizeof(struct perf_event_attr)); 1306 attr.size = sizeof(struct perf_event_attr); 1307 attr.type = PERF_TYPE_HARDWARE; 1308 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 1309 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 1310 PERF_SAMPLE_PERIOD; 1311 if (etm->timeless_decoding) 1312 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 1313 else 1314 attr.sample_type |= PERF_SAMPLE_TIME; 1315 1316 attr.exclude_user = evsel->core.attr.exclude_user; 1317 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 1318 attr.exclude_hv = evsel->core.attr.exclude_hv; 1319 attr.exclude_host = evsel->core.attr.exclude_host; 1320 attr.exclude_guest = evsel->core.attr.exclude_guest; 1321 attr.sample_id_all = evsel->core.attr.sample_id_all; 1322 attr.read_format = evsel->core.attr.read_format; 1323 1324 /* create new id val to be a fixed offset from evsel id */ 1325 id = evsel->core.id[0] + 1000000000; 1326 1327 if (!id) 1328 id = 1; 1329 1330 if (etm->synth_opts.branches) { 1331 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 1332 attr.sample_period = 1; 1333 attr.sample_type |= PERF_SAMPLE_ADDR; 1334 err = cs_etm__synth_event(session, &attr, id); 1335 if (err) 1336 return err; 1337 etm->sample_branches = true; 1338 etm->branches_sample_type = attr.sample_type; 1339 etm->branches_id = id; 1340 id += 1; 1341 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 1342 } 1343 1344 if (etm->synth_opts.last_branch) 1345 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 1346 1347 if (etm->synth_opts.instructions) { 1348 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 1349 attr.sample_period = etm->synth_opts.period; 1350 etm->instructions_sample_period = attr.sample_period; 1351 err = cs_etm__synth_event(session, &attr, id); 1352 if (err) 1353 return err; 1354 etm->sample_instructions = true; 1355 etm->instructions_sample_type = attr.sample_type; 1356 etm->instructions_id = id; 1357 id += 1; 1358 } 1359 1360 return 0; 1361 } 1362 1363 static int cs_etm__sample(struct cs_etm_queue *etmq, 1364 struct cs_etm_traceid_queue *tidq) 1365 { 1366 struct cs_etm_auxtrace *etm = etmq->etm; 1367 int ret; 1368 u8 trace_chan_id = tidq->trace_chan_id; 1369 u64 instrs_prev; 1370 1371 /* Get instructions remainder from previous packet */ 1372 instrs_prev = tidq->period_instructions; 1373 1374 tidq->period_instructions += tidq->packet->instr_count; 1375 1376 /* 1377 * Record a branch when the last instruction in 1378 * PREV_PACKET is a branch. 1379 */ 1380 if (etm->synth_opts.last_branch && 1381 tidq->prev_packet->sample_type == CS_ETM_RANGE && 1382 tidq->prev_packet->last_instr_taken_branch) 1383 cs_etm__update_last_branch_rb(etmq, tidq); 1384 1385 if (etm->sample_instructions && 1386 tidq->period_instructions >= etm->instructions_sample_period) { 1387 /* 1388 * Emit instruction sample periodically 1389 * TODO: allow period to be defined in cycles and clock time 1390 */ 1391 1392 /* 1393 * Below diagram demonstrates the instruction samples 1394 * generation flows: 1395 * 1396 * Instrs Instrs Instrs Instrs 1397 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) 1398 * | | | | 1399 * V V V V 1400 * -------------------------------------------------- 1401 * ^ ^ 1402 * | | 1403 * Period Period 1404 * instructions(Pi) instructions(Pi') 1405 * 1406 * | | 1407 * \---------------- -----------------/ 1408 * V 1409 * tidq->packet->instr_count 1410 * 1411 * Instrs Sample(n...) are the synthesised samples occurring 1412 * every etm->instructions_sample_period instructions - as 1413 * defined on the perf command line. Sample(n) is being the 1414 * last sample before the current etm packet, n+1 to n+3 1415 * samples are generated from the current etm packet. 1416 * 1417 * tidq->packet->instr_count represents the number of 1418 * instructions in the current etm packet. 1419 * 1420 * Period instructions (Pi) contains the the number of 1421 * instructions executed after the sample point(n) from the 1422 * previous etm packet. This will always be less than 1423 * etm->instructions_sample_period. 1424 * 1425 * When generate new samples, it combines with two parts 1426 * instructions, one is the tail of the old packet and another 1427 * is the head of the new coming packet, to generate 1428 * sample(n+1); sample(n+2) and sample(n+3) consume the 1429 * instructions with sample period. After sample(n+3), the rest 1430 * instructions will be used by later packet and it is assigned 1431 * to tidq->period_instructions for next round calculation. 1432 */ 1433 1434 /* 1435 * Get the initial offset into the current packet instructions; 1436 * entry conditions ensure that instrs_prev is less than 1437 * etm->instructions_sample_period. 1438 */ 1439 u64 offset = etm->instructions_sample_period - instrs_prev; 1440 u64 addr; 1441 1442 /* Prepare last branches for instruction sample */ 1443 if (etm->synth_opts.last_branch) 1444 cs_etm__copy_last_branch_rb(etmq, tidq); 1445 1446 while (tidq->period_instructions >= 1447 etm->instructions_sample_period) { 1448 /* 1449 * Calculate the address of the sampled instruction (-1 1450 * as sample is reported as though instruction has just 1451 * been executed, but PC has not advanced to next 1452 * instruction) 1453 */ 1454 addr = cs_etm__instr_addr(etmq, trace_chan_id, 1455 tidq->packet, offset - 1); 1456 ret = cs_etm__synth_instruction_sample( 1457 etmq, tidq, addr, 1458 etm->instructions_sample_period); 1459 if (ret) 1460 return ret; 1461 1462 offset += etm->instructions_sample_period; 1463 tidq->period_instructions -= 1464 etm->instructions_sample_period; 1465 } 1466 } 1467 1468 if (etm->sample_branches) { 1469 bool generate_sample = false; 1470 1471 /* Generate sample for tracing on packet */ 1472 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1473 generate_sample = true; 1474 1475 /* Generate sample for branch taken packet */ 1476 if (tidq->prev_packet->sample_type == CS_ETM_RANGE && 1477 tidq->prev_packet->last_instr_taken_branch) 1478 generate_sample = true; 1479 1480 if (generate_sample) { 1481 ret = cs_etm__synth_branch_sample(etmq, tidq); 1482 if (ret) 1483 return ret; 1484 } 1485 } 1486 1487 cs_etm__packet_swap(etm, tidq); 1488 1489 return 0; 1490 } 1491 1492 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) 1493 { 1494 /* 1495 * When the exception packet is inserted, whether the last instruction 1496 * in previous range packet is taken branch or not, we need to force 1497 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures 1498 * to generate branch sample for the instruction range before the 1499 * exception is trapped to kernel or before the exception returning. 1500 * 1501 * The exception packet includes the dummy address values, so don't 1502 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful 1503 * for generating instruction and branch samples. 1504 */ 1505 if (tidq->prev_packet->sample_type == CS_ETM_RANGE) 1506 tidq->prev_packet->last_instr_taken_branch = true; 1507 1508 return 0; 1509 } 1510 1511 static int cs_etm__flush(struct cs_etm_queue *etmq, 1512 struct cs_etm_traceid_queue *tidq) 1513 { 1514 int err = 0; 1515 struct cs_etm_auxtrace *etm = etmq->etm; 1516 1517 /* Handle start tracing packet */ 1518 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) 1519 goto swap_packet; 1520 1521 if (etmq->etm->synth_opts.last_branch && 1522 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1523 u64 addr; 1524 1525 /* Prepare last branches for instruction sample */ 1526 cs_etm__copy_last_branch_rb(etmq, tidq); 1527 1528 /* 1529 * Generate a last branch event for the branches left in the 1530 * circular buffer at the end of the trace. 1531 * 1532 * Use the address of the end of the last reported execution 1533 * range 1534 */ 1535 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1536 1537 err = cs_etm__synth_instruction_sample( 1538 etmq, tidq, addr, 1539 tidq->period_instructions); 1540 if (err) 1541 return err; 1542 1543 tidq->period_instructions = 0; 1544 1545 } 1546 1547 if (etm->sample_branches && 1548 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1549 err = cs_etm__synth_branch_sample(etmq, tidq); 1550 if (err) 1551 return err; 1552 } 1553 1554 swap_packet: 1555 cs_etm__packet_swap(etm, tidq); 1556 1557 /* Reset last branches after flush the trace */ 1558 if (etm->synth_opts.last_branch) 1559 cs_etm__reset_last_branch_rb(tidq); 1560 1561 return err; 1562 } 1563 1564 static int cs_etm__end_block(struct cs_etm_queue *etmq, 1565 struct cs_etm_traceid_queue *tidq) 1566 { 1567 int err; 1568 1569 /* 1570 * It has no new packet coming and 'etmq->packet' contains the stale 1571 * packet which was set at the previous time with packets swapping; 1572 * so skip to generate branch sample to avoid stale packet. 1573 * 1574 * For this case only flush branch stack and generate a last branch 1575 * event for the branches left in the circular buffer at the end of 1576 * the trace. 1577 */ 1578 if (etmq->etm->synth_opts.last_branch && 1579 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1580 u64 addr; 1581 1582 /* Prepare last branches for instruction sample */ 1583 cs_etm__copy_last_branch_rb(etmq, tidq); 1584 1585 /* 1586 * Use the address of the end of the last reported execution 1587 * range. 1588 */ 1589 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1590 1591 err = cs_etm__synth_instruction_sample( 1592 etmq, tidq, addr, 1593 tidq->period_instructions); 1594 if (err) 1595 return err; 1596 1597 tidq->period_instructions = 0; 1598 } 1599 1600 return 0; 1601 } 1602 /* 1603 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue 1604 * if need be. 1605 * Returns: < 0 if error 1606 * = 0 if no more auxtrace_buffer to read 1607 * > 0 if the current buffer isn't empty yet 1608 */ 1609 static int cs_etm__get_data_block(struct cs_etm_queue *etmq) 1610 { 1611 int ret; 1612 1613 if (!etmq->buf_len) { 1614 ret = cs_etm__get_trace(etmq); 1615 if (ret <= 0) 1616 return ret; 1617 /* 1618 * We cannot assume consecutive blocks in the data file 1619 * are contiguous, reset the decoder to force re-sync. 1620 */ 1621 ret = cs_etm_decoder__reset(etmq->decoder); 1622 if (ret) 1623 return ret; 1624 } 1625 1626 return etmq->buf_len; 1627 } 1628 1629 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, 1630 struct cs_etm_packet *packet, 1631 u64 end_addr) 1632 { 1633 /* Initialise to keep compiler happy */ 1634 u16 instr16 = 0; 1635 u32 instr32 = 0; 1636 u64 addr; 1637 1638 switch (packet->isa) { 1639 case CS_ETM_ISA_T32: 1640 /* 1641 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: 1642 * 1643 * b'15 b'8 1644 * +-----------------+--------+ 1645 * | 1 1 0 1 1 1 1 1 | imm8 | 1646 * +-----------------+--------+ 1647 * 1648 * According to the specifiction, it only defines SVC for T32 1649 * with 16 bits instruction and has no definition for 32bits; 1650 * so below only read 2 bytes as instruction size for T32. 1651 */ 1652 addr = end_addr - 2; 1653 cs_etm__mem_access(etmq, trace_chan_id, addr, 1654 sizeof(instr16), (u8 *)&instr16); 1655 if ((instr16 & 0xFF00) == 0xDF00) 1656 return true; 1657 1658 break; 1659 case CS_ETM_ISA_A32: 1660 /* 1661 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: 1662 * 1663 * b'31 b'28 b'27 b'24 1664 * +---------+---------+-------------------------+ 1665 * | !1111 | 1 1 1 1 | imm24 | 1666 * +---------+---------+-------------------------+ 1667 */ 1668 addr = end_addr - 4; 1669 cs_etm__mem_access(etmq, trace_chan_id, addr, 1670 sizeof(instr32), (u8 *)&instr32); 1671 if ((instr32 & 0x0F000000) == 0x0F000000 && 1672 (instr32 & 0xF0000000) != 0xF0000000) 1673 return true; 1674 1675 break; 1676 case CS_ETM_ISA_A64: 1677 /* 1678 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: 1679 * 1680 * b'31 b'21 b'4 b'0 1681 * +-----------------------+---------+-----------+ 1682 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | 1683 * +-----------------------+---------+-----------+ 1684 */ 1685 addr = end_addr - 4; 1686 cs_etm__mem_access(etmq, trace_chan_id, addr, 1687 sizeof(instr32), (u8 *)&instr32); 1688 if ((instr32 & 0xFFE0001F) == 0xd4000001) 1689 return true; 1690 1691 break; 1692 case CS_ETM_ISA_UNKNOWN: 1693 default: 1694 break; 1695 } 1696 1697 return false; 1698 } 1699 1700 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, 1701 struct cs_etm_traceid_queue *tidq, u64 magic) 1702 { 1703 u8 trace_chan_id = tidq->trace_chan_id; 1704 struct cs_etm_packet *packet = tidq->packet; 1705 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1706 1707 if (magic == __perf_cs_etmv3_magic) 1708 if (packet->exception_number == CS_ETMV3_EXC_SVC) 1709 return true; 1710 1711 /* 1712 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and 1713 * HVC cases; need to check if it's SVC instruction based on 1714 * packet address. 1715 */ 1716 if (magic == __perf_cs_etmv4_magic) { 1717 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1718 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1719 prev_packet->end_addr)) 1720 return true; 1721 } 1722 1723 return false; 1724 } 1725 1726 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, 1727 u64 magic) 1728 { 1729 struct cs_etm_packet *packet = tidq->packet; 1730 1731 if (magic == __perf_cs_etmv3_magic) 1732 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || 1733 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || 1734 packet->exception_number == CS_ETMV3_EXC_PE_RESET || 1735 packet->exception_number == CS_ETMV3_EXC_IRQ || 1736 packet->exception_number == CS_ETMV3_EXC_FIQ) 1737 return true; 1738 1739 if (magic == __perf_cs_etmv4_magic) 1740 if (packet->exception_number == CS_ETMV4_EXC_RESET || 1741 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || 1742 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || 1743 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || 1744 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || 1745 packet->exception_number == CS_ETMV4_EXC_IRQ || 1746 packet->exception_number == CS_ETMV4_EXC_FIQ) 1747 return true; 1748 1749 return false; 1750 } 1751 1752 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, 1753 struct cs_etm_traceid_queue *tidq, 1754 u64 magic) 1755 { 1756 u8 trace_chan_id = tidq->trace_chan_id; 1757 struct cs_etm_packet *packet = tidq->packet; 1758 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1759 1760 if (magic == __perf_cs_etmv3_magic) 1761 if (packet->exception_number == CS_ETMV3_EXC_SMC || 1762 packet->exception_number == CS_ETMV3_EXC_HYP || 1763 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || 1764 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || 1765 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || 1766 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || 1767 packet->exception_number == CS_ETMV3_EXC_GENERIC) 1768 return true; 1769 1770 if (magic == __perf_cs_etmv4_magic) { 1771 if (packet->exception_number == CS_ETMV4_EXC_TRAP || 1772 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || 1773 packet->exception_number == CS_ETMV4_EXC_INST_FAULT || 1774 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) 1775 return true; 1776 1777 /* 1778 * For CS_ETMV4_EXC_CALL, except SVC other instructions 1779 * (SMC, HVC) are taken as sync exceptions. 1780 */ 1781 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1782 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1783 prev_packet->end_addr)) 1784 return true; 1785 1786 /* 1787 * ETMv4 has 5 bits for exception number; if the numbers 1788 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] 1789 * they are implementation defined exceptions. 1790 * 1791 * For this case, simply take it as sync exception. 1792 */ 1793 if (packet->exception_number > CS_ETMV4_EXC_FIQ && 1794 packet->exception_number <= CS_ETMV4_EXC_END) 1795 return true; 1796 } 1797 1798 return false; 1799 } 1800 1801 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, 1802 struct cs_etm_traceid_queue *tidq) 1803 { 1804 struct cs_etm_packet *packet = tidq->packet; 1805 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1806 u8 trace_chan_id = tidq->trace_chan_id; 1807 u64 magic; 1808 int ret; 1809 1810 switch (packet->sample_type) { 1811 case CS_ETM_RANGE: 1812 /* 1813 * Immediate branch instruction without neither link nor 1814 * return flag, it's normal branch instruction within 1815 * the function. 1816 */ 1817 if (packet->last_instr_type == OCSD_INSTR_BR && 1818 packet->last_instr_subtype == OCSD_S_INSTR_NONE) { 1819 packet->flags = PERF_IP_FLAG_BRANCH; 1820 1821 if (packet->last_instr_cond) 1822 packet->flags |= PERF_IP_FLAG_CONDITIONAL; 1823 } 1824 1825 /* 1826 * Immediate branch instruction with link (e.g. BL), this is 1827 * branch instruction for function call. 1828 */ 1829 if (packet->last_instr_type == OCSD_INSTR_BR && 1830 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 1831 packet->flags = PERF_IP_FLAG_BRANCH | 1832 PERF_IP_FLAG_CALL; 1833 1834 /* 1835 * Indirect branch instruction with link (e.g. BLR), this is 1836 * branch instruction for function call. 1837 */ 1838 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1839 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 1840 packet->flags = PERF_IP_FLAG_BRANCH | 1841 PERF_IP_FLAG_CALL; 1842 1843 /* 1844 * Indirect branch instruction with subtype of 1845 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for 1846 * function return for A32/T32. 1847 */ 1848 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1849 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) 1850 packet->flags = PERF_IP_FLAG_BRANCH | 1851 PERF_IP_FLAG_RETURN; 1852 1853 /* 1854 * Indirect branch instruction without link (e.g. BR), usually 1855 * this is used for function return, especially for functions 1856 * within dynamic link lib. 1857 */ 1858 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1859 packet->last_instr_subtype == OCSD_S_INSTR_NONE) 1860 packet->flags = PERF_IP_FLAG_BRANCH | 1861 PERF_IP_FLAG_RETURN; 1862 1863 /* Return instruction for function return. */ 1864 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1865 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) 1866 packet->flags = PERF_IP_FLAG_BRANCH | 1867 PERF_IP_FLAG_RETURN; 1868 1869 /* 1870 * Decoder might insert a discontinuity in the middle of 1871 * instruction packets, fixup prev_packet with flag 1872 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. 1873 */ 1874 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1875 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 1876 PERF_IP_FLAG_TRACE_BEGIN; 1877 1878 /* 1879 * If the previous packet is an exception return packet 1880 * and the return address just follows SVC instuction, 1881 * it needs to calibrate the previous packet sample flags 1882 * as PERF_IP_FLAG_SYSCALLRET. 1883 */ 1884 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | 1885 PERF_IP_FLAG_RETURN | 1886 PERF_IP_FLAG_INTERRUPT) && 1887 cs_etm__is_svc_instr(etmq, trace_chan_id, 1888 packet, packet->start_addr)) 1889 prev_packet->flags = PERF_IP_FLAG_BRANCH | 1890 PERF_IP_FLAG_RETURN | 1891 PERF_IP_FLAG_SYSCALLRET; 1892 break; 1893 case CS_ETM_DISCONTINUITY: 1894 /* 1895 * The trace is discontinuous, if the previous packet is 1896 * instruction packet, set flag PERF_IP_FLAG_TRACE_END 1897 * for previous packet. 1898 */ 1899 if (prev_packet->sample_type == CS_ETM_RANGE) 1900 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 1901 PERF_IP_FLAG_TRACE_END; 1902 break; 1903 case CS_ETM_EXCEPTION: 1904 ret = cs_etm__get_magic(packet->trace_chan_id, &magic); 1905 if (ret) 1906 return ret; 1907 1908 /* The exception is for system call. */ 1909 if (cs_etm__is_syscall(etmq, tidq, magic)) 1910 packet->flags = PERF_IP_FLAG_BRANCH | 1911 PERF_IP_FLAG_CALL | 1912 PERF_IP_FLAG_SYSCALLRET; 1913 /* 1914 * The exceptions are triggered by external signals from bus, 1915 * interrupt controller, debug module, PE reset or halt. 1916 */ 1917 else if (cs_etm__is_async_exception(tidq, magic)) 1918 packet->flags = PERF_IP_FLAG_BRANCH | 1919 PERF_IP_FLAG_CALL | 1920 PERF_IP_FLAG_ASYNC | 1921 PERF_IP_FLAG_INTERRUPT; 1922 /* 1923 * Otherwise, exception is caused by trap, instruction & 1924 * data fault, or alignment errors. 1925 */ 1926 else if (cs_etm__is_sync_exception(etmq, tidq, magic)) 1927 packet->flags = PERF_IP_FLAG_BRANCH | 1928 PERF_IP_FLAG_CALL | 1929 PERF_IP_FLAG_INTERRUPT; 1930 1931 /* 1932 * When the exception packet is inserted, since exception 1933 * packet is not used standalone for generating samples 1934 * and it's affiliation to the previous instruction range 1935 * packet; so set previous range packet flags to tell perf 1936 * it is an exception taken branch. 1937 */ 1938 if (prev_packet->sample_type == CS_ETM_RANGE) 1939 prev_packet->flags = packet->flags; 1940 break; 1941 case CS_ETM_EXCEPTION_RET: 1942 /* 1943 * When the exception return packet is inserted, since 1944 * exception return packet is not used standalone for 1945 * generating samples and it's affiliation to the previous 1946 * instruction range packet; so set previous range packet 1947 * flags to tell perf it is an exception return branch. 1948 * 1949 * The exception return can be for either system call or 1950 * other exception types; unfortunately the packet doesn't 1951 * contain exception type related info so we cannot decide 1952 * the exception type purely based on exception return packet. 1953 * If we record the exception number from exception packet and 1954 * reuse it for excpetion return packet, this is not reliable 1955 * due the trace can be discontinuity or the interrupt can 1956 * be nested, thus the recorded exception number cannot be 1957 * used for exception return packet for these two cases. 1958 * 1959 * For exception return packet, we only need to distinguish the 1960 * packet is for system call or for other types. Thus the 1961 * decision can be deferred when receive the next packet which 1962 * contains the return address, based on the return address we 1963 * can read out the previous instruction and check if it's a 1964 * system call instruction and then calibrate the sample flag 1965 * as needed. 1966 */ 1967 if (prev_packet->sample_type == CS_ETM_RANGE) 1968 prev_packet->flags = PERF_IP_FLAG_BRANCH | 1969 PERF_IP_FLAG_RETURN | 1970 PERF_IP_FLAG_INTERRUPT; 1971 break; 1972 case CS_ETM_EMPTY: 1973 default: 1974 break; 1975 } 1976 1977 return 0; 1978 } 1979 1980 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) 1981 { 1982 int ret = 0; 1983 size_t processed = 0; 1984 1985 /* 1986 * Packets are decoded and added to the decoder's packet queue 1987 * until the decoder packet processing callback has requested that 1988 * processing stops or there is nothing left in the buffer. Normal 1989 * operations that stop processing are a timestamp packet or a full 1990 * decoder buffer queue. 1991 */ 1992 ret = cs_etm_decoder__process_data_block(etmq->decoder, 1993 etmq->offset, 1994 &etmq->buf[etmq->buf_used], 1995 etmq->buf_len, 1996 &processed); 1997 if (ret) 1998 goto out; 1999 2000 etmq->offset += processed; 2001 etmq->buf_used += processed; 2002 etmq->buf_len -= processed; 2003 2004 out: 2005 return ret; 2006 } 2007 2008 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, 2009 struct cs_etm_traceid_queue *tidq) 2010 { 2011 int ret; 2012 struct cs_etm_packet_queue *packet_queue; 2013 2014 packet_queue = &tidq->packet_queue; 2015 2016 /* Process each packet in this chunk */ 2017 while (1) { 2018 ret = cs_etm_decoder__get_packet(packet_queue, 2019 tidq->packet); 2020 if (ret <= 0) 2021 /* 2022 * Stop processing this chunk on 2023 * end of data or error 2024 */ 2025 break; 2026 2027 /* 2028 * Since packet addresses are swapped in packet 2029 * handling within below switch() statements, 2030 * thus setting sample flags must be called 2031 * prior to switch() statement to use address 2032 * information before packets swapping. 2033 */ 2034 ret = cs_etm__set_sample_flags(etmq, tidq); 2035 if (ret < 0) 2036 break; 2037 2038 switch (tidq->packet->sample_type) { 2039 case CS_ETM_RANGE: 2040 /* 2041 * If the packet contains an instruction 2042 * range, generate instruction sequence 2043 * events. 2044 */ 2045 cs_etm__sample(etmq, tidq); 2046 break; 2047 case CS_ETM_EXCEPTION: 2048 case CS_ETM_EXCEPTION_RET: 2049 /* 2050 * If the exception packet is coming, 2051 * make sure the previous instruction 2052 * range packet to be handled properly. 2053 */ 2054 cs_etm__exception(tidq); 2055 break; 2056 case CS_ETM_DISCONTINUITY: 2057 /* 2058 * Discontinuity in trace, flush 2059 * previous branch stack 2060 */ 2061 cs_etm__flush(etmq, tidq); 2062 break; 2063 case CS_ETM_EMPTY: 2064 /* 2065 * Should not receive empty packet, 2066 * report error. 2067 */ 2068 pr_err("CS ETM Trace: empty packet\n"); 2069 return -EINVAL; 2070 default: 2071 break; 2072 } 2073 } 2074 2075 return ret; 2076 } 2077 2078 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) 2079 { 2080 int idx; 2081 struct int_node *inode; 2082 struct cs_etm_traceid_queue *tidq; 2083 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 2084 2085 intlist__for_each_entry(inode, traceid_queues_list) { 2086 idx = (int)(intptr_t)inode->priv; 2087 tidq = etmq->traceid_queues[idx]; 2088 2089 /* Ignore return value */ 2090 cs_etm__process_traceid_queue(etmq, tidq); 2091 2092 /* 2093 * Generate an instruction sample with the remaining 2094 * branchstack entries. 2095 */ 2096 cs_etm__flush(etmq, tidq); 2097 } 2098 } 2099 2100 static int cs_etm__run_decoder(struct cs_etm_queue *etmq) 2101 { 2102 int err = 0; 2103 struct cs_etm_traceid_queue *tidq; 2104 2105 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); 2106 if (!tidq) 2107 return -EINVAL; 2108 2109 /* Go through each buffer in the queue and decode them one by one */ 2110 while (1) { 2111 err = cs_etm__get_data_block(etmq); 2112 if (err <= 0) 2113 return err; 2114 2115 /* Run trace decoder until buffer consumed or end of trace */ 2116 do { 2117 err = cs_etm__decode_data_block(etmq); 2118 if (err) 2119 return err; 2120 2121 /* 2122 * Process each packet in this chunk, nothing to do if 2123 * an error occurs other than hoping the next one will 2124 * be better. 2125 */ 2126 err = cs_etm__process_traceid_queue(etmq, tidq); 2127 2128 } while (etmq->buf_len); 2129 2130 if (err == 0) 2131 /* Flush any remaining branch stack entries */ 2132 err = cs_etm__end_block(etmq, tidq); 2133 } 2134 2135 return err; 2136 } 2137 2138 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 2139 pid_t tid) 2140 { 2141 unsigned int i; 2142 struct auxtrace_queues *queues = &etm->queues; 2143 2144 for (i = 0; i < queues->nr_queues; i++) { 2145 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 2146 struct cs_etm_queue *etmq = queue->priv; 2147 struct cs_etm_traceid_queue *tidq; 2148 2149 if (!etmq) 2150 continue; 2151 2152 tidq = cs_etm__etmq_get_traceid_queue(etmq, 2153 CS_ETM_PER_THREAD_TRACEID); 2154 2155 if (!tidq) 2156 continue; 2157 2158 if ((tid == -1) || (tidq->tid == tid)) { 2159 cs_etm__set_pid_tid_cpu(etm, tidq); 2160 cs_etm__run_decoder(etmq); 2161 } 2162 } 2163 2164 return 0; 2165 } 2166 2167 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm) 2168 { 2169 int ret = 0; 2170 unsigned int cs_queue_nr, queue_nr; 2171 u8 trace_chan_id; 2172 u64 timestamp; 2173 struct auxtrace_queue *queue; 2174 struct cs_etm_queue *etmq; 2175 struct cs_etm_traceid_queue *tidq; 2176 2177 while (1) { 2178 if (!etm->heap.heap_cnt) 2179 goto out; 2180 2181 /* Take the entry at the top of the min heap */ 2182 cs_queue_nr = etm->heap.heap_array[0].queue_nr; 2183 queue_nr = TO_QUEUE_NR(cs_queue_nr); 2184 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); 2185 queue = &etm->queues.queue_array[queue_nr]; 2186 etmq = queue->priv; 2187 2188 /* 2189 * Remove the top entry from the heap since we are about 2190 * to process it. 2191 */ 2192 auxtrace_heap__pop(&etm->heap); 2193 2194 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 2195 if (!tidq) { 2196 /* 2197 * No traceID queue has been allocated for this traceID, 2198 * which means something somewhere went very wrong. No 2199 * other choice than simply exit. 2200 */ 2201 ret = -EINVAL; 2202 goto out; 2203 } 2204 2205 /* 2206 * Packets associated with this timestamp are already in 2207 * the etmq's traceID queue, so process them. 2208 */ 2209 ret = cs_etm__process_traceid_queue(etmq, tidq); 2210 if (ret < 0) 2211 goto out; 2212 2213 /* 2214 * Packets for this timestamp have been processed, time to 2215 * move on to the next timestamp, fetching a new auxtrace_buffer 2216 * if need be. 2217 */ 2218 refetch: 2219 ret = cs_etm__get_data_block(etmq); 2220 if (ret < 0) 2221 goto out; 2222 2223 /* 2224 * No more auxtrace_buffers to process in this etmq, simply 2225 * move on to another entry in the auxtrace_heap. 2226 */ 2227 if (!ret) 2228 continue; 2229 2230 ret = cs_etm__decode_data_block(etmq); 2231 if (ret) 2232 goto out; 2233 2234 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 2235 2236 if (!timestamp) { 2237 /* 2238 * Function cs_etm__decode_data_block() returns when 2239 * there is no more traces to decode in the current 2240 * auxtrace_buffer OR when a timestamp has been 2241 * encountered on any of the traceID queues. Since we 2242 * did not get a timestamp, there is no more traces to 2243 * process in this auxtrace_buffer. As such empty and 2244 * flush all traceID queues. 2245 */ 2246 cs_etm__clear_all_traceid_queues(etmq); 2247 2248 /* Fetch another auxtrace_buffer for this etmq */ 2249 goto refetch; 2250 } 2251 2252 /* 2253 * Add to the min heap the timestamp for packets that have 2254 * just been decoded. They will be processed and synthesized 2255 * during the next call to cs_etm__process_traceid_queue() for 2256 * this queue/traceID. 2257 */ 2258 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 2259 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp); 2260 } 2261 2262 out: 2263 return ret; 2264 } 2265 2266 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, 2267 union perf_event *event) 2268 { 2269 struct thread *th; 2270 2271 if (etm->timeless_decoding) 2272 return 0; 2273 2274 /* 2275 * Add the tid/pid to the log so that we can get a match when 2276 * we get a contextID from the decoder. 2277 */ 2278 th = machine__findnew_thread(etm->machine, 2279 event->itrace_start.pid, 2280 event->itrace_start.tid); 2281 if (!th) 2282 return -ENOMEM; 2283 2284 thread__put(th); 2285 2286 return 0; 2287 } 2288 2289 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, 2290 union perf_event *event) 2291 { 2292 struct thread *th; 2293 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2294 2295 /* 2296 * Context switch in per-thread mode are irrelevant since perf 2297 * will start/stop tracing as the process is scheduled. 2298 */ 2299 if (etm->timeless_decoding) 2300 return 0; 2301 2302 /* 2303 * SWITCH_IN events carry the next process to be switched out while 2304 * SWITCH_OUT events carry the process to be switched in. As such 2305 * we don't care about IN events. 2306 */ 2307 if (!out) 2308 return 0; 2309 2310 /* 2311 * Add the tid/pid to the log so that we can get a match when 2312 * we get a contextID from the decoder. 2313 */ 2314 th = machine__findnew_thread(etm->machine, 2315 event->context_switch.next_prev_pid, 2316 event->context_switch.next_prev_tid); 2317 if (!th) 2318 return -ENOMEM; 2319 2320 thread__put(th); 2321 2322 return 0; 2323 } 2324 2325 static int cs_etm__process_event(struct perf_session *session, 2326 union perf_event *event, 2327 struct perf_sample *sample, 2328 struct perf_tool *tool) 2329 { 2330 int err = 0; 2331 u64 timestamp; 2332 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2333 struct cs_etm_auxtrace, 2334 auxtrace); 2335 2336 if (dump_trace) 2337 return 0; 2338 2339 if (!tool->ordered_events) { 2340 pr_err("CoreSight ETM Trace requires ordered events\n"); 2341 return -EINVAL; 2342 } 2343 2344 if (sample->time && (sample->time != (u64) -1)) 2345 timestamp = sample->time; 2346 else 2347 timestamp = 0; 2348 2349 if (timestamp || etm->timeless_decoding) { 2350 err = cs_etm__update_queues(etm); 2351 if (err) 2352 return err; 2353 } 2354 2355 if (etm->timeless_decoding && 2356 event->header.type == PERF_RECORD_EXIT) 2357 return cs_etm__process_timeless_queues(etm, 2358 event->fork.tid); 2359 2360 if (event->header.type == PERF_RECORD_ITRACE_START) 2361 return cs_etm__process_itrace_start(etm, event); 2362 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2363 return cs_etm__process_switch_cpu_wide(etm, event); 2364 2365 if (!etm->timeless_decoding && 2366 event->header.type == PERF_RECORD_AUX) 2367 return cs_etm__process_queues(etm); 2368 2369 return 0; 2370 } 2371 2372 static int cs_etm__process_auxtrace_event(struct perf_session *session, 2373 union perf_event *event, 2374 struct perf_tool *tool __maybe_unused) 2375 { 2376 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2377 struct cs_etm_auxtrace, 2378 auxtrace); 2379 if (!etm->data_queued) { 2380 struct auxtrace_buffer *buffer; 2381 off_t data_offset; 2382 int fd = perf_data__fd(session->data); 2383 bool is_pipe = perf_data__is_pipe(session->data); 2384 int err; 2385 2386 if (is_pipe) 2387 data_offset = 0; 2388 else { 2389 data_offset = lseek(fd, 0, SEEK_CUR); 2390 if (data_offset == -1) 2391 return -errno; 2392 } 2393 2394 err = auxtrace_queues__add_event(&etm->queues, session, 2395 event, data_offset, &buffer); 2396 if (err) 2397 return err; 2398 2399 if (dump_trace) 2400 if (auxtrace_buffer__get_data(buffer, fd)) { 2401 cs_etm__dump_event(etm, buffer); 2402 auxtrace_buffer__put_data(buffer); 2403 } 2404 } 2405 2406 return 0; 2407 } 2408 2409 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) 2410 { 2411 struct evsel *evsel; 2412 struct evlist *evlist = etm->session->evlist; 2413 bool timeless_decoding = true; 2414 2415 /* 2416 * Circle through the list of event and complain if we find one 2417 * with the time bit set. 2418 */ 2419 evlist__for_each_entry(evlist, evsel) { 2420 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 2421 timeless_decoding = false; 2422 } 2423 2424 return timeless_decoding; 2425 } 2426 2427 static const char * const cs_etm_global_header_fmts[] = { 2428 [CS_HEADER_VERSION_0] = " Header version %llx\n", 2429 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n", 2430 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n", 2431 }; 2432 2433 static const char * const cs_etm_priv_fmts[] = { 2434 [CS_ETM_MAGIC] = " Magic number %llx\n", 2435 [CS_ETM_CPU] = " CPU %lld\n", 2436 [CS_ETM_ETMCR] = " ETMCR %llx\n", 2437 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n", 2438 [CS_ETM_ETMCCER] = " ETMCCER %llx\n", 2439 [CS_ETM_ETMIDR] = " ETMIDR %llx\n", 2440 }; 2441 2442 static const char * const cs_etmv4_priv_fmts[] = { 2443 [CS_ETM_MAGIC] = " Magic number %llx\n", 2444 [CS_ETM_CPU] = " CPU %lld\n", 2445 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n", 2446 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n", 2447 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n", 2448 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n", 2449 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n", 2450 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n", 2451 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n", 2452 }; 2453 2454 static void cs_etm__print_auxtrace_info(__u64 *val, int num) 2455 { 2456 int i, j, cpu = 0; 2457 2458 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) 2459 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]); 2460 2461 for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) { 2462 if (val[i] == __perf_cs_etmv3_magic) 2463 for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++) 2464 fprintf(stdout, cs_etm_priv_fmts[j], val[i]); 2465 else if (val[i] == __perf_cs_etmv4_magic) 2466 for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++) 2467 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); 2468 else 2469 /* failure.. return */ 2470 return; 2471 } 2472 } 2473 2474 int cs_etm__process_auxtrace_info(union perf_event *event, 2475 struct perf_session *session) 2476 { 2477 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 2478 struct cs_etm_auxtrace *etm = NULL; 2479 struct int_node *inode; 2480 unsigned int pmu_type; 2481 int event_header_size = sizeof(struct perf_event_header); 2482 int info_header_size; 2483 int total_size = auxtrace_info->header.size; 2484 int priv_size = 0; 2485 int num_cpu; 2486 int err = 0, idx = -1; 2487 int i, j, k; 2488 u64 *ptr, *hdr = NULL; 2489 u64 **metadata = NULL; 2490 2491 /* 2492 * sizeof(auxtrace_info_event::type) + 2493 * sizeof(auxtrace_info_event::reserved) == 8 2494 */ 2495 info_header_size = 8; 2496 2497 if (total_size < (event_header_size + info_header_size)) 2498 return -EINVAL; 2499 2500 priv_size = total_size - event_header_size - info_header_size; 2501 2502 /* First the global part */ 2503 ptr = (u64 *) auxtrace_info->priv; 2504 2505 /* Look for version '0' of the header */ 2506 if (ptr[0] != 0) 2507 return -EINVAL; 2508 2509 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX); 2510 if (!hdr) 2511 return -ENOMEM; 2512 2513 /* Extract header information - see cs-etm.h for format */ 2514 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) 2515 hdr[i] = ptr[i]; 2516 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff; 2517 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) & 2518 0xffffffff); 2519 2520 /* 2521 * Create an RB tree for traceID-metadata tuple. Since the conversion 2522 * has to be made for each packet that gets decoded, optimizing access 2523 * in anything other than a sequential array is worth doing. 2524 */ 2525 traceid_list = intlist__new(NULL); 2526 if (!traceid_list) { 2527 err = -ENOMEM; 2528 goto err_free_hdr; 2529 } 2530 2531 metadata = zalloc(sizeof(*metadata) * num_cpu); 2532 if (!metadata) { 2533 err = -ENOMEM; 2534 goto err_free_traceid_list; 2535 } 2536 2537 /* 2538 * The metadata is stored in the auxtrace_info section and encodes 2539 * the configuration of the ARM embedded trace macrocell which is 2540 * required by the trace decoder to properly decode the trace due 2541 * to its highly compressed nature. 2542 */ 2543 for (j = 0; j < num_cpu; j++) { 2544 if (ptr[i] == __perf_cs_etmv3_magic) { 2545 metadata[j] = zalloc(sizeof(*metadata[j]) * 2546 CS_ETM_PRIV_MAX); 2547 if (!metadata[j]) { 2548 err = -ENOMEM; 2549 goto err_free_metadata; 2550 } 2551 for (k = 0; k < CS_ETM_PRIV_MAX; k++) 2552 metadata[j][k] = ptr[i + k]; 2553 2554 /* The traceID is our handle */ 2555 idx = metadata[j][CS_ETM_ETMTRACEIDR]; 2556 i += CS_ETM_PRIV_MAX; 2557 } else if (ptr[i] == __perf_cs_etmv4_magic) { 2558 metadata[j] = zalloc(sizeof(*metadata[j]) * 2559 CS_ETMV4_PRIV_MAX); 2560 if (!metadata[j]) { 2561 err = -ENOMEM; 2562 goto err_free_metadata; 2563 } 2564 for (k = 0; k < CS_ETMV4_PRIV_MAX; k++) 2565 metadata[j][k] = ptr[i + k]; 2566 2567 /* The traceID is our handle */ 2568 idx = metadata[j][CS_ETMV4_TRCTRACEIDR]; 2569 i += CS_ETMV4_PRIV_MAX; 2570 } 2571 2572 /* Get an RB node for this CPU */ 2573 inode = intlist__findnew(traceid_list, idx); 2574 2575 /* Something went wrong, no need to continue */ 2576 if (!inode) { 2577 err = -ENOMEM; 2578 goto err_free_metadata; 2579 } 2580 2581 /* 2582 * The node for that CPU should not be taken. 2583 * Back out if that's the case. 2584 */ 2585 if (inode->priv) { 2586 err = -EINVAL; 2587 goto err_free_metadata; 2588 } 2589 /* All good, associate the traceID with the metadata pointer */ 2590 inode->priv = metadata[j]; 2591 } 2592 2593 /* 2594 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and 2595 * CS_ETMV4_PRIV_MAX mark how many double words are in the 2596 * global metadata, and each cpu's metadata respectively. 2597 * The following tests if the correct number of double words was 2598 * present in the auxtrace info section. 2599 */ 2600 if (i * 8 != priv_size) { 2601 err = -EINVAL; 2602 goto err_free_metadata; 2603 } 2604 2605 etm = zalloc(sizeof(*etm)); 2606 2607 if (!etm) { 2608 err = -ENOMEM; 2609 goto err_free_metadata; 2610 } 2611 2612 err = auxtrace_queues__init(&etm->queues); 2613 if (err) 2614 goto err_free_etm; 2615 2616 etm->session = session; 2617 etm->machine = &session->machines.host; 2618 2619 etm->num_cpu = num_cpu; 2620 etm->pmu_type = pmu_type; 2621 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0); 2622 etm->metadata = metadata; 2623 etm->auxtrace_type = auxtrace_info->type; 2624 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); 2625 2626 etm->auxtrace.process_event = cs_etm__process_event; 2627 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 2628 etm->auxtrace.flush_events = cs_etm__flush_events; 2629 etm->auxtrace.free_events = cs_etm__free_events; 2630 etm->auxtrace.free = cs_etm__free; 2631 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; 2632 session->auxtrace = &etm->auxtrace; 2633 2634 etm->unknown_thread = thread__new(999999999, 999999999); 2635 if (!etm->unknown_thread) { 2636 err = -ENOMEM; 2637 goto err_free_queues; 2638 } 2639 2640 /* 2641 * Initialize list node so that at thread__zput() we can avoid 2642 * segmentation fault at list_del_init(). 2643 */ 2644 INIT_LIST_HEAD(&etm->unknown_thread->node); 2645 2646 err = thread__set_comm(etm->unknown_thread, "unknown", 0); 2647 if (err) 2648 goto err_delete_thread; 2649 2650 if (thread__init_maps(etm->unknown_thread, etm->machine)) { 2651 err = -ENOMEM; 2652 goto err_delete_thread; 2653 } 2654 2655 if (dump_trace) { 2656 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); 2657 return 0; 2658 } 2659 2660 if (session->itrace_synth_opts->set) { 2661 etm->synth_opts = *session->itrace_synth_opts; 2662 } else { 2663 itrace_synth_opts__set_default(&etm->synth_opts, 2664 session->itrace_synth_opts->default_no_sample); 2665 etm->synth_opts.callchain = false; 2666 } 2667 2668 err = cs_etm__synth_events(etm, session); 2669 if (err) 2670 goto err_delete_thread; 2671 2672 err = auxtrace_queues__process_index(&etm->queues, session); 2673 if (err) 2674 goto err_delete_thread; 2675 2676 etm->data_queued = etm->queues.populated; 2677 2678 return 0; 2679 2680 err_delete_thread: 2681 thread__zput(etm->unknown_thread); 2682 err_free_queues: 2683 auxtrace_queues__free(&etm->queues); 2684 session->auxtrace = NULL; 2685 err_free_etm: 2686 zfree(&etm); 2687 err_free_metadata: 2688 /* No need to check @metadata[j], free(NULL) is supported */ 2689 for (j = 0; j < num_cpu; j++) 2690 zfree(&metadata[j]); 2691 zfree(&metadata); 2692 err_free_traceid_list: 2693 intlist__delete(traceid_list); 2694 err_free_hdr: 2695 zfree(&hdr); 2696 2697 return err; 2698 } 2699