xref: /openbmc/linux/tools/perf/util/cs-etm.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include <opencsd/ocsd_if_types.h>
17 #include <stdlib.h>
18 
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "cs-etm.h"
22 #include "cs-etm-decoder/cs-etm-decoder.h"
23 #include "debug.h"
24 #include "dso.h"
25 #include "evlist.h"
26 #include "intlist.h"
27 #include "machine.h"
28 #include "map.h"
29 #include "perf.h"
30 #include "session.h"
31 #include "map_symbol.h"
32 #include "branch.h"
33 #include "symbol.h"
34 #include "tool.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include <tools/libc_compat.h>
38 #include "util/synthetic-events.h"
39 
40 #define MAX_TIMESTAMP (~0ULL)
41 
42 struct cs_etm_auxtrace {
43 	struct auxtrace auxtrace;
44 	struct auxtrace_queues queues;
45 	struct auxtrace_heap heap;
46 	struct itrace_synth_opts synth_opts;
47 	struct perf_session *session;
48 	struct machine *machine;
49 	struct thread *unknown_thread;
50 
51 	u8 timeless_decoding;
52 	u8 snapshot_mode;
53 	u8 data_queued;
54 	u8 sample_branches;
55 	u8 sample_instructions;
56 
57 	int num_cpu;
58 	u32 auxtrace_type;
59 	u64 branches_sample_type;
60 	u64 branches_id;
61 	u64 instructions_sample_type;
62 	u64 instructions_sample_period;
63 	u64 instructions_id;
64 	u64 **metadata;
65 	u64 kernel_start;
66 	unsigned int pmu_type;
67 };
68 
69 struct cs_etm_traceid_queue {
70 	u8 trace_chan_id;
71 	pid_t pid, tid;
72 	u64 period_instructions;
73 	size_t last_branch_pos;
74 	union perf_event *event_buf;
75 	struct thread *thread;
76 	struct branch_stack *last_branch;
77 	struct branch_stack *last_branch_rb;
78 	struct cs_etm_packet *prev_packet;
79 	struct cs_etm_packet *packet;
80 	struct cs_etm_packet_queue packet_queue;
81 };
82 
83 struct cs_etm_queue {
84 	struct cs_etm_auxtrace *etm;
85 	struct cs_etm_decoder *decoder;
86 	struct auxtrace_buffer *buffer;
87 	unsigned int queue_nr;
88 	u8 pending_timestamp;
89 	u64 offset;
90 	const unsigned char *buf;
91 	size_t buf_len, buf_used;
92 	/* Conversion between traceID and index in traceid_queues array */
93 	struct intlist *traceid_queues_list;
94 	struct cs_etm_traceid_queue **traceid_queues;
95 };
96 
97 /* RB tree for quick conversion between traceID and metadata pointers */
98 static struct intlist *traceid_list;
99 
100 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
101 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
102 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
103 					   pid_t tid);
104 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
105 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
106 
107 /* PTMs ETMIDR [11:8] set to b0011 */
108 #define ETMIDR_PTM_VERSION 0x00000300
109 
110 /*
111  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
112  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
113  * encode the etm queue number as the upper 16 bit and the channel as
114  * the lower 16 bit.
115  */
116 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
117 		      (queue_nr << 16 | trace_chan_id)
118 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
119 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
120 
121 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
122 {
123 	etmidr &= ETMIDR_PTM_VERSION;
124 
125 	if (etmidr == ETMIDR_PTM_VERSION)
126 		return CS_ETM_PROTO_PTM;
127 
128 	return CS_ETM_PROTO_ETMV3;
129 }
130 
131 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
132 {
133 	struct int_node *inode;
134 	u64 *metadata;
135 
136 	inode = intlist__find(traceid_list, trace_chan_id);
137 	if (!inode)
138 		return -EINVAL;
139 
140 	metadata = inode->priv;
141 	*magic = metadata[CS_ETM_MAGIC];
142 	return 0;
143 }
144 
145 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
146 {
147 	struct int_node *inode;
148 	u64 *metadata;
149 
150 	inode = intlist__find(traceid_list, trace_chan_id);
151 	if (!inode)
152 		return -EINVAL;
153 
154 	metadata = inode->priv;
155 	*cpu = (int)metadata[CS_ETM_CPU];
156 	return 0;
157 }
158 
159 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
160 					      u8 trace_chan_id)
161 {
162 	/*
163 	 * Wnen a timestamp packet is encountered the backend code
164 	 * is stopped so that the front end has time to process packets
165 	 * that were accumulated in the traceID queue.  Since there can
166 	 * be more than one channel per cs_etm_queue, we need to specify
167 	 * what traceID queue needs servicing.
168 	 */
169 	etmq->pending_timestamp = trace_chan_id;
170 }
171 
172 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
173 				      u8 *trace_chan_id)
174 {
175 	struct cs_etm_packet_queue *packet_queue;
176 
177 	if (!etmq->pending_timestamp)
178 		return 0;
179 
180 	if (trace_chan_id)
181 		*trace_chan_id = etmq->pending_timestamp;
182 
183 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
184 						     etmq->pending_timestamp);
185 	if (!packet_queue)
186 		return 0;
187 
188 	/* Acknowledge pending status */
189 	etmq->pending_timestamp = 0;
190 
191 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
192 	return packet_queue->timestamp;
193 }
194 
195 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
196 {
197 	int i;
198 
199 	queue->head = 0;
200 	queue->tail = 0;
201 	queue->packet_count = 0;
202 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
203 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
204 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
205 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
206 		queue->packet_buffer[i].instr_count = 0;
207 		queue->packet_buffer[i].last_instr_taken_branch = false;
208 		queue->packet_buffer[i].last_instr_size = 0;
209 		queue->packet_buffer[i].last_instr_type = 0;
210 		queue->packet_buffer[i].last_instr_subtype = 0;
211 		queue->packet_buffer[i].last_instr_cond = 0;
212 		queue->packet_buffer[i].flags = 0;
213 		queue->packet_buffer[i].exception_number = UINT32_MAX;
214 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
215 		queue->packet_buffer[i].cpu = INT_MIN;
216 	}
217 }
218 
219 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
220 {
221 	int idx;
222 	struct int_node *inode;
223 	struct cs_etm_traceid_queue *tidq;
224 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
225 
226 	intlist__for_each_entry(inode, traceid_queues_list) {
227 		idx = (int)(intptr_t)inode->priv;
228 		tidq = etmq->traceid_queues[idx];
229 		cs_etm__clear_packet_queue(&tidq->packet_queue);
230 	}
231 }
232 
233 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
234 				      struct cs_etm_traceid_queue *tidq,
235 				      u8 trace_chan_id)
236 {
237 	int rc = -ENOMEM;
238 	struct auxtrace_queue *queue;
239 	struct cs_etm_auxtrace *etm = etmq->etm;
240 
241 	cs_etm__clear_packet_queue(&tidq->packet_queue);
242 
243 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
244 	tidq->tid = queue->tid;
245 	tidq->pid = -1;
246 	tidq->trace_chan_id = trace_chan_id;
247 
248 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
249 	if (!tidq->packet)
250 		goto out;
251 
252 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
253 	if (!tidq->prev_packet)
254 		goto out_free;
255 
256 	if (etm->synth_opts.last_branch) {
257 		size_t sz = sizeof(struct branch_stack);
258 
259 		sz += etm->synth_opts.last_branch_sz *
260 		      sizeof(struct branch_entry);
261 		tidq->last_branch = zalloc(sz);
262 		if (!tidq->last_branch)
263 			goto out_free;
264 		tidq->last_branch_rb = zalloc(sz);
265 		if (!tidq->last_branch_rb)
266 			goto out_free;
267 	}
268 
269 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
270 	if (!tidq->event_buf)
271 		goto out_free;
272 
273 	return 0;
274 
275 out_free:
276 	zfree(&tidq->last_branch_rb);
277 	zfree(&tidq->last_branch);
278 	zfree(&tidq->prev_packet);
279 	zfree(&tidq->packet);
280 out:
281 	return rc;
282 }
283 
284 static struct cs_etm_traceid_queue
285 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
286 {
287 	int idx;
288 	struct int_node *inode;
289 	struct intlist *traceid_queues_list;
290 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
291 	struct cs_etm_auxtrace *etm = etmq->etm;
292 
293 	if (etm->timeless_decoding)
294 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
295 
296 	traceid_queues_list = etmq->traceid_queues_list;
297 
298 	/*
299 	 * Check if the traceid_queue exist for this traceID by looking
300 	 * in the queue list.
301 	 */
302 	inode = intlist__find(traceid_queues_list, trace_chan_id);
303 	if (inode) {
304 		idx = (int)(intptr_t)inode->priv;
305 		return etmq->traceid_queues[idx];
306 	}
307 
308 	/* We couldn't find a traceid_queue for this traceID, allocate one */
309 	tidq = malloc(sizeof(*tidq));
310 	if (!tidq)
311 		return NULL;
312 
313 	memset(tidq, 0, sizeof(*tidq));
314 
315 	/* Get a valid index for the new traceid_queue */
316 	idx = intlist__nr_entries(traceid_queues_list);
317 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
318 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
319 	if (!inode)
320 		goto out_free;
321 
322 	/* Associate this traceID with this index */
323 	inode->priv = (void *)(intptr_t)idx;
324 
325 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
326 		goto out_free;
327 
328 	/* Grow the traceid_queues array by one unit */
329 	traceid_queues = etmq->traceid_queues;
330 	traceid_queues = reallocarray(traceid_queues,
331 				      idx + 1,
332 				      sizeof(*traceid_queues));
333 
334 	/*
335 	 * On failure reallocarray() returns NULL and the original block of
336 	 * memory is left untouched.
337 	 */
338 	if (!traceid_queues)
339 		goto out_free;
340 
341 	traceid_queues[idx] = tidq;
342 	etmq->traceid_queues = traceid_queues;
343 
344 	return etmq->traceid_queues[idx];
345 
346 out_free:
347 	/*
348 	 * Function intlist__remove() removes the inode from the list
349 	 * and delete the memory associated to it.
350 	 */
351 	intlist__remove(traceid_queues_list, inode);
352 	free(tidq);
353 
354 	return NULL;
355 }
356 
357 struct cs_etm_packet_queue
358 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
359 {
360 	struct cs_etm_traceid_queue *tidq;
361 
362 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
363 	if (tidq)
364 		return &tidq->packet_queue;
365 
366 	return NULL;
367 }
368 
369 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
370 				struct cs_etm_traceid_queue *tidq)
371 {
372 	struct cs_etm_packet *tmp;
373 
374 	if (etm->sample_branches || etm->synth_opts.last_branch ||
375 	    etm->sample_instructions) {
376 		/*
377 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
378 		 * the next incoming packet.
379 		 */
380 		tmp = tidq->packet;
381 		tidq->packet = tidq->prev_packet;
382 		tidq->prev_packet = tmp;
383 	}
384 }
385 
386 static void cs_etm__packet_dump(const char *pkt_string)
387 {
388 	const char *color = PERF_COLOR_BLUE;
389 	int len = strlen(pkt_string);
390 
391 	if (len && (pkt_string[len-1] == '\n'))
392 		color_fprintf(stdout, color, "	%s", pkt_string);
393 	else
394 		color_fprintf(stdout, color, "	%s\n", pkt_string);
395 
396 	fflush(stdout);
397 }
398 
399 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
400 					  struct cs_etm_auxtrace *etm, int idx,
401 					  u32 etmidr)
402 {
403 	u64 **metadata = etm->metadata;
404 
405 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
406 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
407 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
408 }
409 
410 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
411 					  struct cs_etm_auxtrace *etm, int idx)
412 {
413 	u64 **metadata = etm->metadata;
414 
415 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
416 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
417 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
418 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
419 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
420 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
421 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
422 }
423 
424 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
425 				     struct cs_etm_auxtrace *etm)
426 {
427 	int i;
428 	u32 etmidr;
429 	u64 architecture;
430 
431 	for (i = 0; i < etm->num_cpu; i++) {
432 		architecture = etm->metadata[i][CS_ETM_MAGIC];
433 
434 		switch (architecture) {
435 		case __perf_cs_etmv3_magic:
436 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
437 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
438 			break;
439 		case __perf_cs_etmv4_magic:
440 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
441 			break;
442 		default:
443 			return -EINVAL;
444 		}
445 	}
446 
447 	return 0;
448 }
449 
450 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
451 				       struct cs_etm_queue *etmq,
452 				       enum cs_etm_decoder_operation mode)
453 {
454 	int ret = -EINVAL;
455 
456 	if (!(mode < CS_ETM_OPERATION_MAX))
457 		goto out;
458 
459 	d_params->packet_printer = cs_etm__packet_dump;
460 	d_params->operation = mode;
461 	d_params->data = etmq;
462 	d_params->formatted = true;
463 	d_params->fsyncs = false;
464 	d_params->hsyncs = false;
465 	d_params->frame_aligned = true;
466 
467 	ret = 0;
468 out:
469 	return ret;
470 }
471 
472 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
473 			       struct auxtrace_buffer *buffer)
474 {
475 	int ret;
476 	const char *color = PERF_COLOR_BLUE;
477 	struct cs_etm_decoder_params d_params;
478 	struct cs_etm_trace_params *t_params;
479 	struct cs_etm_decoder *decoder;
480 	size_t buffer_used = 0;
481 
482 	fprintf(stdout, "\n");
483 	color_fprintf(stdout, color,
484 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
485 		     buffer->size);
486 
487 	/* Use metadata to fill in trace parameters for trace decoder */
488 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
489 
490 	if (!t_params)
491 		return;
492 
493 	if (cs_etm__init_trace_params(t_params, etm))
494 		goto out_free;
495 
496 	/* Set decoder parameters to simply print the trace packets */
497 	if (cs_etm__init_decoder_params(&d_params, NULL,
498 					CS_ETM_OPERATION_PRINT))
499 		goto out_free;
500 
501 	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
502 
503 	if (!decoder)
504 		goto out_free;
505 	do {
506 		size_t consumed;
507 
508 		ret = cs_etm_decoder__process_data_block(
509 				decoder, buffer->offset,
510 				&((u8 *)buffer->data)[buffer_used],
511 				buffer->size - buffer_used, &consumed);
512 		if (ret)
513 			break;
514 
515 		buffer_used += consumed;
516 	} while (buffer_used < buffer->size);
517 
518 	cs_etm_decoder__free(decoder);
519 
520 out_free:
521 	zfree(&t_params);
522 }
523 
524 static int cs_etm__flush_events(struct perf_session *session,
525 				struct perf_tool *tool)
526 {
527 	int ret;
528 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
529 						   struct cs_etm_auxtrace,
530 						   auxtrace);
531 	if (dump_trace)
532 		return 0;
533 
534 	if (!tool->ordered_events)
535 		return -EINVAL;
536 
537 	ret = cs_etm__update_queues(etm);
538 
539 	if (ret < 0)
540 		return ret;
541 
542 	if (etm->timeless_decoding)
543 		return cs_etm__process_timeless_queues(etm, -1);
544 
545 	return cs_etm__process_queues(etm);
546 }
547 
548 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
549 {
550 	int idx;
551 	uintptr_t priv;
552 	struct int_node *inode, *tmp;
553 	struct cs_etm_traceid_queue *tidq;
554 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
555 
556 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
557 		priv = (uintptr_t)inode->priv;
558 		idx = priv;
559 
560 		/* Free this traceid_queue from the array */
561 		tidq = etmq->traceid_queues[idx];
562 		thread__zput(tidq->thread);
563 		zfree(&tidq->event_buf);
564 		zfree(&tidq->last_branch);
565 		zfree(&tidq->last_branch_rb);
566 		zfree(&tidq->prev_packet);
567 		zfree(&tidq->packet);
568 		zfree(&tidq);
569 
570 		/*
571 		 * Function intlist__remove() removes the inode from the list
572 		 * and delete the memory associated to it.
573 		 */
574 		intlist__remove(traceid_queues_list, inode);
575 	}
576 
577 	/* Then the RB tree itself */
578 	intlist__delete(traceid_queues_list);
579 	etmq->traceid_queues_list = NULL;
580 
581 	/* finally free the traceid_queues array */
582 	zfree(&etmq->traceid_queues);
583 }
584 
585 static void cs_etm__free_queue(void *priv)
586 {
587 	struct cs_etm_queue *etmq = priv;
588 
589 	if (!etmq)
590 		return;
591 
592 	cs_etm_decoder__free(etmq->decoder);
593 	cs_etm__free_traceid_queues(etmq);
594 	free(etmq);
595 }
596 
597 static void cs_etm__free_events(struct perf_session *session)
598 {
599 	unsigned int i;
600 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
601 						   struct cs_etm_auxtrace,
602 						   auxtrace);
603 	struct auxtrace_queues *queues = &aux->queues;
604 
605 	for (i = 0; i < queues->nr_queues; i++) {
606 		cs_etm__free_queue(queues->queue_array[i].priv);
607 		queues->queue_array[i].priv = NULL;
608 	}
609 
610 	auxtrace_queues__free(queues);
611 }
612 
613 static void cs_etm__free(struct perf_session *session)
614 {
615 	int i;
616 	struct int_node *inode, *tmp;
617 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
618 						   struct cs_etm_auxtrace,
619 						   auxtrace);
620 	cs_etm__free_events(session);
621 	session->auxtrace = NULL;
622 
623 	/* First remove all traceID/metadata nodes for the RB tree */
624 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
625 		intlist__remove(traceid_list, inode);
626 	/* Then the RB tree itself */
627 	intlist__delete(traceid_list);
628 
629 	for (i = 0; i < aux->num_cpu; i++)
630 		zfree(&aux->metadata[i]);
631 
632 	thread__zput(aux->unknown_thread);
633 	zfree(&aux->metadata);
634 	zfree(&aux);
635 }
636 
637 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
638 				      struct evsel *evsel)
639 {
640 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
641 						   struct cs_etm_auxtrace,
642 						   auxtrace);
643 
644 	return evsel->core.attr.type == aux->pmu_type;
645 }
646 
647 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
648 {
649 	struct machine *machine;
650 
651 	machine = etmq->etm->machine;
652 
653 	if (address >= etmq->etm->kernel_start) {
654 		if (machine__is_host(machine))
655 			return PERF_RECORD_MISC_KERNEL;
656 		else
657 			return PERF_RECORD_MISC_GUEST_KERNEL;
658 	} else {
659 		if (machine__is_host(machine))
660 			return PERF_RECORD_MISC_USER;
661 		else if (perf_guest)
662 			return PERF_RECORD_MISC_GUEST_USER;
663 		else
664 			return PERF_RECORD_MISC_HYPERVISOR;
665 	}
666 }
667 
668 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
669 			      u64 address, size_t size, u8 *buffer)
670 {
671 	u8  cpumode;
672 	u64 offset;
673 	int len;
674 	struct thread *thread;
675 	struct machine *machine;
676 	struct addr_location al;
677 	struct cs_etm_traceid_queue *tidq;
678 
679 	if (!etmq)
680 		return 0;
681 
682 	machine = etmq->etm->machine;
683 	cpumode = cs_etm__cpu_mode(etmq, address);
684 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
685 	if (!tidq)
686 		return 0;
687 
688 	thread = tidq->thread;
689 	if (!thread) {
690 		if (cpumode != PERF_RECORD_MISC_KERNEL)
691 			return 0;
692 		thread = etmq->etm->unknown_thread;
693 	}
694 
695 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
696 		return 0;
697 
698 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
699 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
700 		return 0;
701 
702 	offset = al.map->map_ip(al.map, address);
703 
704 	map__load(al.map);
705 
706 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
707 
708 	if (len <= 0)
709 		return 0;
710 
711 	return len;
712 }
713 
714 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
715 {
716 	struct cs_etm_decoder_params d_params;
717 	struct cs_etm_trace_params  *t_params = NULL;
718 	struct cs_etm_queue *etmq;
719 
720 	etmq = zalloc(sizeof(*etmq));
721 	if (!etmq)
722 		return NULL;
723 
724 	etmq->traceid_queues_list = intlist__new(NULL);
725 	if (!etmq->traceid_queues_list)
726 		goto out_free;
727 
728 	/* Use metadata to fill in trace parameters for trace decoder */
729 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
730 
731 	if (!t_params)
732 		goto out_free;
733 
734 	if (cs_etm__init_trace_params(t_params, etm))
735 		goto out_free;
736 
737 	/* Set decoder parameters to decode trace packets */
738 	if (cs_etm__init_decoder_params(&d_params, etmq,
739 					CS_ETM_OPERATION_DECODE))
740 		goto out_free;
741 
742 	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
743 
744 	if (!etmq->decoder)
745 		goto out_free;
746 
747 	/*
748 	 * Register a function to handle all memory accesses required by
749 	 * the trace decoder library.
750 	 */
751 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
752 					      0x0L, ((u64) -1L),
753 					      cs_etm__mem_access))
754 		goto out_free_decoder;
755 
756 	zfree(&t_params);
757 	return etmq;
758 
759 out_free_decoder:
760 	cs_etm_decoder__free(etmq->decoder);
761 out_free:
762 	intlist__delete(etmq->traceid_queues_list);
763 	free(etmq);
764 
765 	return NULL;
766 }
767 
768 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
769 			       struct auxtrace_queue *queue,
770 			       unsigned int queue_nr)
771 {
772 	int ret = 0;
773 	unsigned int cs_queue_nr;
774 	u8 trace_chan_id;
775 	u64 timestamp;
776 	struct cs_etm_queue *etmq = queue->priv;
777 
778 	if (list_empty(&queue->head) || etmq)
779 		goto out;
780 
781 	etmq = cs_etm__alloc_queue(etm);
782 
783 	if (!etmq) {
784 		ret = -ENOMEM;
785 		goto out;
786 	}
787 
788 	queue->priv = etmq;
789 	etmq->etm = etm;
790 	etmq->queue_nr = queue_nr;
791 	etmq->offset = 0;
792 
793 	if (etm->timeless_decoding)
794 		goto out;
795 
796 	/*
797 	 * We are under a CPU-wide trace scenario.  As such we need to know
798 	 * when the code that generated the traces started to execute so that
799 	 * it can be correlated with execution on other CPUs.  So we get a
800 	 * handle on the beginning of traces and decode until we find a
801 	 * timestamp.  The timestamp is then added to the auxtrace min heap
802 	 * in order to know what nibble (of all the etmqs) to decode first.
803 	 */
804 	while (1) {
805 		/*
806 		 * Fetch an aux_buffer from this etmq.  Bail if no more
807 		 * blocks or an error has been encountered.
808 		 */
809 		ret = cs_etm__get_data_block(etmq);
810 		if (ret <= 0)
811 			goto out;
812 
813 		/*
814 		 * Run decoder on the trace block.  The decoder will stop when
815 		 * encountering a timestamp, a full packet queue or the end of
816 		 * trace for that block.
817 		 */
818 		ret = cs_etm__decode_data_block(etmq);
819 		if (ret)
820 			goto out;
821 
822 		/*
823 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
824 		 * the timestamp calculation for us.
825 		 */
826 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
827 
828 		/* We found a timestamp, no need to continue. */
829 		if (timestamp)
830 			break;
831 
832 		/*
833 		 * We didn't find a timestamp so empty all the traceid packet
834 		 * queues before looking for another timestamp packet, either
835 		 * in the current data block or a new one.  Packets that were
836 		 * just decoded are useless since no timestamp has been
837 		 * associated with them.  As such simply discard them.
838 		 */
839 		cs_etm__clear_all_packet_queues(etmq);
840 	}
841 
842 	/*
843 	 * We have a timestamp.  Add it to the min heap to reflect when
844 	 * instructions conveyed by the range packets of this traceID queue
845 	 * started to execute.  Once the same has been done for all the traceID
846 	 * queues of each etmq, redenring and decoding can start in
847 	 * chronological order.
848 	 *
849 	 * Note that packets decoded above are still in the traceID's packet
850 	 * queue and will be processed in cs_etm__process_queues().
851 	 */
852 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
853 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
854 out:
855 	return ret;
856 }
857 
858 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
859 {
860 	unsigned int i;
861 	int ret;
862 
863 	if (!etm->kernel_start)
864 		etm->kernel_start = machine__kernel_start(etm->machine);
865 
866 	for (i = 0; i < etm->queues.nr_queues; i++) {
867 		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
868 		if (ret)
869 			return ret;
870 	}
871 
872 	return 0;
873 }
874 
875 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
876 {
877 	if (etm->queues.new_data) {
878 		etm->queues.new_data = false;
879 		return cs_etm__setup_queues(etm);
880 	}
881 
882 	return 0;
883 }
884 
885 static inline
886 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
887 				 struct cs_etm_traceid_queue *tidq)
888 {
889 	struct branch_stack *bs_src = tidq->last_branch_rb;
890 	struct branch_stack *bs_dst = tidq->last_branch;
891 	size_t nr = 0;
892 
893 	/*
894 	 * Set the number of records before early exit: ->nr is used to
895 	 * determine how many branches to copy from ->entries.
896 	 */
897 	bs_dst->nr = bs_src->nr;
898 
899 	/*
900 	 * Early exit when there is nothing to copy.
901 	 */
902 	if (!bs_src->nr)
903 		return;
904 
905 	/*
906 	 * As bs_src->entries is a circular buffer, we need to copy from it in
907 	 * two steps.  First, copy the branches from the most recently inserted
908 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
909 	 */
910 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
911 	memcpy(&bs_dst->entries[0],
912 	       &bs_src->entries[tidq->last_branch_pos],
913 	       sizeof(struct branch_entry) * nr);
914 
915 	/*
916 	 * If we wrapped around at least once, the branches from the beginning
917 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
918 	 * are older valid branches: copy them over.  The total number of
919 	 * branches copied over will be equal to the number of branches asked by
920 	 * the user in last_branch_sz.
921 	 */
922 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
923 		memcpy(&bs_dst->entries[nr],
924 		       &bs_src->entries[0],
925 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
926 	}
927 }
928 
929 static inline
930 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
931 {
932 	tidq->last_branch_pos = 0;
933 	tidq->last_branch_rb->nr = 0;
934 }
935 
936 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
937 					 u8 trace_chan_id, u64 addr)
938 {
939 	u8 instrBytes[2];
940 
941 	cs_etm__mem_access(etmq, trace_chan_id, addr,
942 			   ARRAY_SIZE(instrBytes), instrBytes);
943 	/*
944 	 * T32 instruction size is indicated by bits[15:11] of the first
945 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
946 	 * denote a 32-bit instruction.
947 	 */
948 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
949 }
950 
951 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
952 {
953 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
954 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
955 		return 0;
956 
957 	return packet->start_addr;
958 }
959 
960 static inline
961 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
962 {
963 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
964 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
965 		return 0;
966 
967 	return packet->end_addr - packet->last_instr_size;
968 }
969 
970 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
971 				     u64 trace_chan_id,
972 				     const struct cs_etm_packet *packet,
973 				     u64 offset)
974 {
975 	if (packet->isa == CS_ETM_ISA_T32) {
976 		u64 addr = packet->start_addr;
977 
978 		while (offset) {
979 			addr += cs_etm__t32_instr_size(etmq,
980 						       trace_chan_id, addr);
981 			offset--;
982 		}
983 		return addr;
984 	}
985 
986 	/* Assume a 4 byte instruction size (A32/A64) */
987 	return packet->start_addr + offset * 4;
988 }
989 
990 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
991 					  struct cs_etm_traceid_queue *tidq)
992 {
993 	struct branch_stack *bs = tidq->last_branch_rb;
994 	struct branch_entry *be;
995 
996 	/*
997 	 * The branches are recorded in a circular buffer in reverse
998 	 * chronological order: we start recording from the last element of the
999 	 * buffer down.  After writing the first element of the stack, move the
1000 	 * insert position back to the end of the buffer.
1001 	 */
1002 	if (!tidq->last_branch_pos)
1003 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1004 
1005 	tidq->last_branch_pos -= 1;
1006 
1007 	be       = &bs->entries[tidq->last_branch_pos];
1008 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1009 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1010 	/* No support for mispredict */
1011 	be->flags.mispred = 0;
1012 	be->flags.predicted = 1;
1013 
1014 	/*
1015 	 * Increment bs->nr until reaching the number of last branches asked by
1016 	 * the user on the command line.
1017 	 */
1018 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1019 		bs->nr += 1;
1020 }
1021 
1022 static int cs_etm__inject_event(union perf_event *event,
1023 			       struct perf_sample *sample, u64 type)
1024 {
1025 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1026 	return perf_event__synthesize_sample(event, type, 0, sample);
1027 }
1028 
1029 
1030 static int
1031 cs_etm__get_trace(struct cs_etm_queue *etmq)
1032 {
1033 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1034 	struct auxtrace_buffer *old_buffer = aux_buffer;
1035 	struct auxtrace_queue *queue;
1036 
1037 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1038 
1039 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1040 
1041 	/* If no more data, drop the previous auxtrace_buffer and return */
1042 	if (!aux_buffer) {
1043 		if (old_buffer)
1044 			auxtrace_buffer__drop_data(old_buffer);
1045 		etmq->buf_len = 0;
1046 		return 0;
1047 	}
1048 
1049 	etmq->buffer = aux_buffer;
1050 
1051 	/* If the aux_buffer doesn't have data associated, try to load it */
1052 	if (!aux_buffer->data) {
1053 		/* get the file desc associated with the perf data file */
1054 		int fd = perf_data__fd(etmq->etm->session->data);
1055 
1056 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1057 		if (!aux_buffer->data)
1058 			return -ENOMEM;
1059 	}
1060 
1061 	/* If valid, drop the previous buffer */
1062 	if (old_buffer)
1063 		auxtrace_buffer__drop_data(old_buffer);
1064 
1065 	etmq->buf_used = 0;
1066 	etmq->buf_len = aux_buffer->size;
1067 	etmq->buf = aux_buffer->data;
1068 
1069 	return etmq->buf_len;
1070 }
1071 
1072 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1073 				    struct cs_etm_traceid_queue *tidq)
1074 {
1075 	if ((!tidq->thread) && (tidq->tid != -1))
1076 		tidq->thread = machine__find_thread(etm->machine, -1,
1077 						    tidq->tid);
1078 
1079 	if (tidq->thread)
1080 		tidq->pid = tidq->thread->pid_;
1081 }
1082 
1083 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1084 			 pid_t tid, u8 trace_chan_id)
1085 {
1086 	int cpu, err = -EINVAL;
1087 	struct cs_etm_auxtrace *etm = etmq->etm;
1088 	struct cs_etm_traceid_queue *tidq;
1089 
1090 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1091 	if (!tidq)
1092 		return err;
1093 
1094 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1095 		return err;
1096 
1097 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1098 	if (err)
1099 		return err;
1100 
1101 	tidq->tid = tid;
1102 	thread__zput(tidq->thread);
1103 
1104 	cs_etm__set_pid_tid_cpu(etm, tidq);
1105 	return 0;
1106 }
1107 
1108 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1109 {
1110 	return !!etmq->etm->timeless_decoding;
1111 }
1112 
1113 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1114 			      u64 trace_chan_id,
1115 			      const struct cs_etm_packet *packet,
1116 			      struct perf_sample *sample)
1117 {
1118 	/*
1119 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1120 	 * packet, so directly bail out with 'insn_len' = 0.
1121 	 */
1122 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1123 		sample->insn_len = 0;
1124 		return;
1125 	}
1126 
1127 	/*
1128 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1129 	 * cs_etm__t32_instr_size().
1130 	 */
1131 	if (packet->isa == CS_ETM_ISA_T32)
1132 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1133 							  sample->ip);
1134 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1135 	else
1136 		sample->insn_len = 4;
1137 
1138 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1139 			   sample->insn_len, (void *)sample->insn);
1140 }
1141 
1142 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1143 					    struct cs_etm_traceid_queue *tidq,
1144 					    u64 addr, u64 period)
1145 {
1146 	int ret = 0;
1147 	struct cs_etm_auxtrace *etm = etmq->etm;
1148 	union perf_event *event = tidq->event_buf;
1149 	struct perf_sample sample = {.ip = 0,};
1150 
1151 	event->sample.header.type = PERF_RECORD_SAMPLE;
1152 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1153 	event->sample.header.size = sizeof(struct perf_event_header);
1154 
1155 	sample.ip = addr;
1156 	sample.pid = tidq->pid;
1157 	sample.tid = tidq->tid;
1158 	sample.id = etmq->etm->instructions_id;
1159 	sample.stream_id = etmq->etm->instructions_id;
1160 	sample.period = period;
1161 	sample.cpu = tidq->packet->cpu;
1162 	sample.flags = tidq->prev_packet->flags;
1163 	sample.cpumode = event->sample.header.misc;
1164 
1165 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1166 
1167 	if (etm->synth_opts.last_branch)
1168 		sample.branch_stack = tidq->last_branch;
1169 
1170 	if (etm->synth_opts.inject) {
1171 		ret = cs_etm__inject_event(event, &sample,
1172 					   etm->instructions_sample_type);
1173 		if (ret)
1174 			return ret;
1175 	}
1176 
1177 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1178 
1179 	if (ret)
1180 		pr_err(
1181 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1182 			ret);
1183 
1184 	return ret;
1185 }
1186 
1187 /*
1188  * The cs etm packet encodes an instruction range between a branch target
1189  * and the next taken branch. Generate sample accordingly.
1190  */
1191 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1192 				       struct cs_etm_traceid_queue *tidq)
1193 {
1194 	int ret = 0;
1195 	struct cs_etm_auxtrace *etm = etmq->etm;
1196 	struct perf_sample sample = {.ip = 0,};
1197 	union perf_event *event = tidq->event_buf;
1198 	struct dummy_branch_stack {
1199 		u64			nr;
1200 		u64			hw_idx;
1201 		struct branch_entry	entries;
1202 	} dummy_bs;
1203 	u64 ip;
1204 
1205 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1206 
1207 	event->sample.header.type = PERF_RECORD_SAMPLE;
1208 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1209 	event->sample.header.size = sizeof(struct perf_event_header);
1210 
1211 	sample.ip = ip;
1212 	sample.pid = tidq->pid;
1213 	sample.tid = tidq->tid;
1214 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1215 	sample.id = etmq->etm->branches_id;
1216 	sample.stream_id = etmq->etm->branches_id;
1217 	sample.period = 1;
1218 	sample.cpu = tidq->packet->cpu;
1219 	sample.flags = tidq->prev_packet->flags;
1220 	sample.cpumode = event->sample.header.misc;
1221 
1222 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1223 			  &sample);
1224 
1225 	/*
1226 	 * perf report cannot handle events without a branch stack
1227 	 */
1228 	if (etm->synth_opts.last_branch) {
1229 		dummy_bs = (struct dummy_branch_stack){
1230 			.nr = 1,
1231 			.hw_idx = -1ULL,
1232 			.entries = {
1233 				.from = sample.ip,
1234 				.to = sample.addr,
1235 			},
1236 		};
1237 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1238 	}
1239 
1240 	if (etm->synth_opts.inject) {
1241 		ret = cs_etm__inject_event(event, &sample,
1242 					   etm->branches_sample_type);
1243 		if (ret)
1244 			return ret;
1245 	}
1246 
1247 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1248 
1249 	if (ret)
1250 		pr_err(
1251 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1252 		ret);
1253 
1254 	return ret;
1255 }
1256 
1257 struct cs_etm_synth {
1258 	struct perf_tool dummy_tool;
1259 	struct perf_session *session;
1260 };
1261 
1262 static int cs_etm__event_synth(struct perf_tool *tool,
1263 			       union perf_event *event,
1264 			       struct perf_sample *sample __maybe_unused,
1265 			       struct machine *machine __maybe_unused)
1266 {
1267 	struct cs_etm_synth *cs_etm_synth =
1268 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1269 
1270 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1271 						 event, NULL);
1272 }
1273 
1274 static int cs_etm__synth_event(struct perf_session *session,
1275 			       struct perf_event_attr *attr, u64 id)
1276 {
1277 	struct cs_etm_synth cs_etm_synth;
1278 
1279 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1280 	cs_etm_synth.session = session;
1281 
1282 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1283 					   &id, cs_etm__event_synth);
1284 }
1285 
1286 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1287 				struct perf_session *session)
1288 {
1289 	struct evlist *evlist = session->evlist;
1290 	struct evsel *evsel;
1291 	struct perf_event_attr attr;
1292 	bool found = false;
1293 	u64 id;
1294 	int err;
1295 
1296 	evlist__for_each_entry(evlist, evsel) {
1297 		if (evsel->core.attr.type == etm->pmu_type) {
1298 			found = true;
1299 			break;
1300 		}
1301 	}
1302 
1303 	if (!found) {
1304 		pr_debug("No selected events with CoreSight Trace data\n");
1305 		return 0;
1306 	}
1307 
1308 	memset(&attr, 0, sizeof(struct perf_event_attr));
1309 	attr.size = sizeof(struct perf_event_attr);
1310 	attr.type = PERF_TYPE_HARDWARE;
1311 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1312 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1313 			    PERF_SAMPLE_PERIOD;
1314 	if (etm->timeless_decoding)
1315 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1316 	else
1317 		attr.sample_type |= PERF_SAMPLE_TIME;
1318 
1319 	attr.exclude_user = evsel->core.attr.exclude_user;
1320 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1321 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1322 	attr.exclude_host = evsel->core.attr.exclude_host;
1323 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1324 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1325 	attr.read_format = evsel->core.attr.read_format;
1326 
1327 	/* create new id val to be a fixed offset from evsel id */
1328 	id = evsel->core.id[0] + 1000000000;
1329 
1330 	if (!id)
1331 		id = 1;
1332 
1333 	if (etm->synth_opts.branches) {
1334 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1335 		attr.sample_period = 1;
1336 		attr.sample_type |= PERF_SAMPLE_ADDR;
1337 		err = cs_etm__synth_event(session, &attr, id);
1338 		if (err)
1339 			return err;
1340 		etm->sample_branches = true;
1341 		etm->branches_sample_type = attr.sample_type;
1342 		etm->branches_id = id;
1343 		id += 1;
1344 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1345 	}
1346 
1347 	if (etm->synth_opts.last_branch) {
1348 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1349 		/*
1350 		 * We don't use the hardware index, but the sample generation
1351 		 * code uses the new format branch_stack with this field,
1352 		 * so the event attributes must indicate that it's present.
1353 		 */
1354 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1355 	}
1356 
1357 	if (etm->synth_opts.instructions) {
1358 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1359 		attr.sample_period = etm->synth_opts.period;
1360 		etm->instructions_sample_period = attr.sample_period;
1361 		err = cs_etm__synth_event(session, &attr, id);
1362 		if (err)
1363 			return err;
1364 		etm->sample_instructions = true;
1365 		etm->instructions_sample_type = attr.sample_type;
1366 		etm->instructions_id = id;
1367 		id += 1;
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static int cs_etm__sample(struct cs_etm_queue *etmq,
1374 			  struct cs_etm_traceid_queue *tidq)
1375 {
1376 	struct cs_etm_auxtrace *etm = etmq->etm;
1377 	int ret;
1378 	u8 trace_chan_id = tidq->trace_chan_id;
1379 	u64 instrs_prev;
1380 
1381 	/* Get instructions remainder from previous packet */
1382 	instrs_prev = tidq->period_instructions;
1383 
1384 	tidq->period_instructions += tidq->packet->instr_count;
1385 
1386 	/*
1387 	 * Record a branch when the last instruction in
1388 	 * PREV_PACKET is a branch.
1389 	 */
1390 	if (etm->synth_opts.last_branch &&
1391 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1392 	    tidq->prev_packet->last_instr_taken_branch)
1393 		cs_etm__update_last_branch_rb(etmq, tidq);
1394 
1395 	if (etm->sample_instructions &&
1396 	    tidq->period_instructions >= etm->instructions_sample_period) {
1397 		/*
1398 		 * Emit instruction sample periodically
1399 		 * TODO: allow period to be defined in cycles and clock time
1400 		 */
1401 
1402 		/*
1403 		 * Below diagram demonstrates the instruction samples
1404 		 * generation flows:
1405 		 *
1406 		 *    Instrs     Instrs       Instrs       Instrs
1407 		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1408 		 *    |            |            |            |
1409 		 *    V            V            V            V
1410 		 *   --------------------------------------------------
1411 		 *            ^                                  ^
1412 		 *            |                                  |
1413 		 *         Period                             Period
1414 		 *    instructions(Pi)                   instructions(Pi')
1415 		 *
1416 		 *            |                                  |
1417 		 *            \---------------- -----------------/
1418 		 *                             V
1419 		 *                 tidq->packet->instr_count
1420 		 *
1421 		 * Instrs Sample(n...) are the synthesised samples occurring
1422 		 * every etm->instructions_sample_period instructions - as
1423 		 * defined on the perf command line.  Sample(n) is being the
1424 		 * last sample before the current etm packet, n+1 to n+3
1425 		 * samples are generated from the current etm packet.
1426 		 *
1427 		 * tidq->packet->instr_count represents the number of
1428 		 * instructions in the current etm packet.
1429 		 *
1430 		 * Period instructions (Pi) contains the the number of
1431 		 * instructions executed after the sample point(n) from the
1432 		 * previous etm packet.  This will always be less than
1433 		 * etm->instructions_sample_period.
1434 		 *
1435 		 * When generate new samples, it combines with two parts
1436 		 * instructions, one is the tail of the old packet and another
1437 		 * is the head of the new coming packet, to generate
1438 		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1439 		 * instructions with sample period.  After sample(n+3), the rest
1440 		 * instructions will be used by later packet and it is assigned
1441 		 * to tidq->period_instructions for next round calculation.
1442 		 */
1443 
1444 		/*
1445 		 * Get the initial offset into the current packet instructions;
1446 		 * entry conditions ensure that instrs_prev is less than
1447 		 * etm->instructions_sample_period.
1448 		 */
1449 		u64 offset = etm->instructions_sample_period - instrs_prev;
1450 		u64 addr;
1451 
1452 		/* Prepare last branches for instruction sample */
1453 		if (etm->synth_opts.last_branch)
1454 			cs_etm__copy_last_branch_rb(etmq, tidq);
1455 
1456 		while (tidq->period_instructions >=
1457 				etm->instructions_sample_period) {
1458 			/*
1459 			 * Calculate the address of the sampled instruction (-1
1460 			 * as sample is reported as though instruction has just
1461 			 * been executed, but PC has not advanced to next
1462 			 * instruction)
1463 			 */
1464 			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1465 						  tidq->packet, offset - 1);
1466 			ret = cs_etm__synth_instruction_sample(
1467 				etmq, tidq, addr,
1468 				etm->instructions_sample_period);
1469 			if (ret)
1470 				return ret;
1471 
1472 			offset += etm->instructions_sample_period;
1473 			tidq->period_instructions -=
1474 				etm->instructions_sample_period;
1475 		}
1476 	}
1477 
1478 	if (etm->sample_branches) {
1479 		bool generate_sample = false;
1480 
1481 		/* Generate sample for tracing on packet */
1482 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1483 			generate_sample = true;
1484 
1485 		/* Generate sample for branch taken packet */
1486 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1487 		    tidq->prev_packet->last_instr_taken_branch)
1488 			generate_sample = true;
1489 
1490 		if (generate_sample) {
1491 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1492 			if (ret)
1493 				return ret;
1494 		}
1495 	}
1496 
1497 	cs_etm__packet_swap(etm, tidq);
1498 
1499 	return 0;
1500 }
1501 
1502 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1503 {
1504 	/*
1505 	 * When the exception packet is inserted, whether the last instruction
1506 	 * in previous range packet is taken branch or not, we need to force
1507 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1508 	 * to generate branch sample for the instruction range before the
1509 	 * exception is trapped to kernel or before the exception returning.
1510 	 *
1511 	 * The exception packet includes the dummy address values, so don't
1512 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1513 	 * for generating instruction and branch samples.
1514 	 */
1515 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1516 		tidq->prev_packet->last_instr_taken_branch = true;
1517 
1518 	return 0;
1519 }
1520 
1521 static int cs_etm__flush(struct cs_etm_queue *etmq,
1522 			 struct cs_etm_traceid_queue *tidq)
1523 {
1524 	int err = 0;
1525 	struct cs_etm_auxtrace *etm = etmq->etm;
1526 
1527 	/* Handle start tracing packet */
1528 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1529 		goto swap_packet;
1530 
1531 	if (etmq->etm->synth_opts.last_branch &&
1532 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1533 		u64 addr;
1534 
1535 		/* Prepare last branches for instruction sample */
1536 		cs_etm__copy_last_branch_rb(etmq, tidq);
1537 
1538 		/*
1539 		 * Generate a last branch event for the branches left in the
1540 		 * circular buffer at the end of the trace.
1541 		 *
1542 		 * Use the address of the end of the last reported execution
1543 		 * range
1544 		 */
1545 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1546 
1547 		err = cs_etm__synth_instruction_sample(
1548 			etmq, tidq, addr,
1549 			tidq->period_instructions);
1550 		if (err)
1551 			return err;
1552 
1553 		tidq->period_instructions = 0;
1554 
1555 	}
1556 
1557 	if (etm->sample_branches &&
1558 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1559 		err = cs_etm__synth_branch_sample(etmq, tidq);
1560 		if (err)
1561 			return err;
1562 	}
1563 
1564 swap_packet:
1565 	cs_etm__packet_swap(etm, tidq);
1566 
1567 	/* Reset last branches after flush the trace */
1568 	if (etm->synth_opts.last_branch)
1569 		cs_etm__reset_last_branch_rb(tidq);
1570 
1571 	return err;
1572 }
1573 
1574 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1575 			     struct cs_etm_traceid_queue *tidq)
1576 {
1577 	int err;
1578 
1579 	/*
1580 	 * It has no new packet coming and 'etmq->packet' contains the stale
1581 	 * packet which was set at the previous time with packets swapping;
1582 	 * so skip to generate branch sample to avoid stale packet.
1583 	 *
1584 	 * For this case only flush branch stack and generate a last branch
1585 	 * event for the branches left in the circular buffer at the end of
1586 	 * the trace.
1587 	 */
1588 	if (etmq->etm->synth_opts.last_branch &&
1589 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1590 		u64 addr;
1591 
1592 		/* Prepare last branches for instruction sample */
1593 		cs_etm__copy_last_branch_rb(etmq, tidq);
1594 
1595 		/*
1596 		 * Use the address of the end of the last reported execution
1597 		 * range.
1598 		 */
1599 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1600 
1601 		err = cs_etm__synth_instruction_sample(
1602 			etmq, tidq, addr,
1603 			tidq->period_instructions);
1604 		if (err)
1605 			return err;
1606 
1607 		tidq->period_instructions = 0;
1608 	}
1609 
1610 	return 0;
1611 }
1612 /*
1613  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1614  *			   if need be.
1615  * Returns:	< 0	if error
1616  *		= 0	if no more auxtrace_buffer to read
1617  *		> 0	if the current buffer isn't empty yet
1618  */
1619 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1620 {
1621 	int ret;
1622 
1623 	if (!etmq->buf_len) {
1624 		ret = cs_etm__get_trace(etmq);
1625 		if (ret <= 0)
1626 			return ret;
1627 		/*
1628 		 * We cannot assume consecutive blocks in the data file
1629 		 * are contiguous, reset the decoder to force re-sync.
1630 		 */
1631 		ret = cs_etm_decoder__reset(etmq->decoder);
1632 		if (ret)
1633 			return ret;
1634 	}
1635 
1636 	return etmq->buf_len;
1637 }
1638 
1639 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1640 				 struct cs_etm_packet *packet,
1641 				 u64 end_addr)
1642 {
1643 	/* Initialise to keep compiler happy */
1644 	u16 instr16 = 0;
1645 	u32 instr32 = 0;
1646 	u64 addr;
1647 
1648 	switch (packet->isa) {
1649 	case CS_ETM_ISA_T32:
1650 		/*
1651 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1652 		 *
1653 		 *  b'15         b'8
1654 		 * +-----------------+--------+
1655 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1656 		 * +-----------------+--------+
1657 		 *
1658 		 * According to the specifiction, it only defines SVC for T32
1659 		 * with 16 bits instruction and has no definition for 32bits;
1660 		 * so below only read 2 bytes as instruction size for T32.
1661 		 */
1662 		addr = end_addr - 2;
1663 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1664 				   sizeof(instr16), (u8 *)&instr16);
1665 		if ((instr16 & 0xFF00) == 0xDF00)
1666 			return true;
1667 
1668 		break;
1669 	case CS_ETM_ISA_A32:
1670 		/*
1671 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1672 		 *
1673 		 *  b'31 b'28 b'27 b'24
1674 		 * +---------+---------+-------------------------+
1675 		 * |  !1111  | 1 1 1 1 |        imm24            |
1676 		 * +---------+---------+-------------------------+
1677 		 */
1678 		addr = end_addr - 4;
1679 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1680 				   sizeof(instr32), (u8 *)&instr32);
1681 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1682 		    (instr32 & 0xF0000000) != 0xF0000000)
1683 			return true;
1684 
1685 		break;
1686 	case CS_ETM_ISA_A64:
1687 		/*
1688 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1689 		 *
1690 		 *  b'31               b'21           b'4     b'0
1691 		 * +-----------------------+---------+-----------+
1692 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1693 		 * +-----------------------+---------+-----------+
1694 		 */
1695 		addr = end_addr - 4;
1696 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1697 				   sizeof(instr32), (u8 *)&instr32);
1698 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1699 			return true;
1700 
1701 		break;
1702 	case CS_ETM_ISA_UNKNOWN:
1703 	default:
1704 		break;
1705 	}
1706 
1707 	return false;
1708 }
1709 
1710 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1711 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1712 {
1713 	u8 trace_chan_id = tidq->trace_chan_id;
1714 	struct cs_etm_packet *packet = tidq->packet;
1715 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1716 
1717 	if (magic == __perf_cs_etmv3_magic)
1718 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1719 			return true;
1720 
1721 	/*
1722 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1723 	 * HVC cases; need to check if it's SVC instruction based on
1724 	 * packet address.
1725 	 */
1726 	if (magic == __perf_cs_etmv4_magic) {
1727 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1728 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1729 					 prev_packet->end_addr))
1730 			return true;
1731 	}
1732 
1733 	return false;
1734 }
1735 
1736 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1737 				       u64 magic)
1738 {
1739 	struct cs_etm_packet *packet = tidq->packet;
1740 
1741 	if (magic == __perf_cs_etmv3_magic)
1742 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1743 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1744 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1745 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1746 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1747 			return true;
1748 
1749 	if (magic == __perf_cs_etmv4_magic)
1750 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1751 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1752 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1753 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1754 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1755 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1756 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1757 			return true;
1758 
1759 	return false;
1760 }
1761 
1762 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1763 				      struct cs_etm_traceid_queue *tidq,
1764 				      u64 magic)
1765 {
1766 	u8 trace_chan_id = tidq->trace_chan_id;
1767 	struct cs_etm_packet *packet = tidq->packet;
1768 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1769 
1770 	if (magic == __perf_cs_etmv3_magic)
1771 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1772 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1773 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1774 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1775 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1776 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1777 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1778 			return true;
1779 
1780 	if (magic == __perf_cs_etmv4_magic) {
1781 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1782 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1783 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1784 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1785 			return true;
1786 
1787 		/*
1788 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1789 		 * (SMC, HVC) are taken as sync exceptions.
1790 		 */
1791 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1792 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1793 					  prev_packet->end_addr))
1794 			return true;
1795 
1796 		/*
1797 		 * ETMv4 has 5 bits for exception number; if the numbers
1798 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1799 		 * they are implementation defined exceptions.
1800 		 *
1801 		 * For this case, simply take it as sync exception.
1802 		 */
1803 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1804 		    packet->exception_number <= CS_ETMV4_EXC_END)
1805 			return true;
1806 	}
1807 
1808 	return false;
1809 }
1810 
1811 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1812 				    struct cs_etm_traceid_queue *tidq)
1813 {
1814 	struct cs_etm_packet *packet = tidq->packet;
1815 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1816 	u8 trace_chan_id = tidq->trace_chan_id;
1817 	u64 magic;
1818 	int ret;
1819 
1820 	switch (packet->sample_type) {
1821 	case CS_ETM_RANGE:
1822 		/*
1823 		 * Immediate branch instruction without neither link nor
1824 		 * return flag, it's normal branch instruction within
1825 		 * the function.
1826 		 */
1827 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1828 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1829 			packet->flags = PERF_IP_FLAG_BRANCH;
1830 
1831 			if (packet->last_instr_cond)
1832 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1833 		}
1834 
1835 		/*
1836 		 * Immediate branch instruction with link (e.g. BL), this is
1837 		 * branch instruction for function call.
1838 		 */
1839 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1840 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1841 			packet->flags = PERF_IP_FLAG_BRANCH |
1842 					PERF_IP_FLAG_CALL;
1843 
1844 		/*
1845 		 * Indirect branch instruction with link (e.g. BLR), this is
1846 		 * branch instruction for function call.
1847 		 */
1848 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1849 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1850 			packet->flags = PERF_IP_FLAG_BRANCH |
1851 					PERF_IP_FLAG_CALL;
1852 
1853 		/*
1854 		 * Indirect branch instruction with subtype of
1855 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1856 		 * function return for A32/T32.
1857 		 */
1858 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1859 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1860 			packet->flags = PERF_IP_FLAG_BRANCH |
1861 					PERF_IP_FLAG_RETURN;
1862 
1863 		/*
1864 		 * Indirect branch instruction without link (e.g. BR), usually
1865 		 * this is used for function return, especially for functions
1866 		 * within dynamic link lib.
1867 		 */
1868 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1869 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1870 			packet->flags = PERF_IP_FLAG_BRANCH |
1871 					PERF_IP_FLAG_RETURN;
1872 
1873 		/* Return instruction for function return. */
1874 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1875 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1876 			packet->flags = PERF_IP_FLAG_BRANCH |
1877 					PERF_IP_FLAG_RETURN;
1878 
1879 		/*
1880 		 * Decoder might insert a discontinuity in the middle of
1881 		 * instruction packets, fixup prev_packet with flag
1882 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1883 		 */
1884 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1885 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1886 					      PERF_IP_FLAG_TRACE_BEGIN;
1887 
1888 		/*
1889 		 * If the previous packet is an exception return packet
1890 		 * and the return address just follows SVC instuction,
1891 		 * it needs to calibrate the previous packet sample flags
1892 		 * as PERF_IP_FLAG_SYSCALLRET.
1893 		 */
1894 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1895 					   PERF_IP_FLAG_RETURN |
1896 					   PERF_IP_FLAG_INTERRUPT) &&
1897 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1898 					 packet, packet->start_addr))
1899 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1900 					     PERF_IP_FLAG_RETURN |
1901 					     PERF_IP_FLAG_SYSCALLRET;
1902 		break;
1903 	case CS_ETM_DISCONTINUITY:
1904 		/*
1905 		 * The trace is discontinuous, if the previous packet is
1906 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1907 		 * for previous packet.
1908 		 */
1909 		if (prev_packet->sample_type == CS_ETM_RANGE)
1910 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1911 					      PERF_IP_FLAG_TRACE_END;
1912 		break;
1913 	case CS_ETM_EXCEPTION:
1914 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1915 		if (ret)
1916 			return ret;
1917 
1918 		/* The exception is for system call. */
1919 		if (cs_etm__is_syscall(etmq, tidq, magic))
1920 			packet->flags = PERF_IP_FLAG_BRANCH |
1921 					PERF_IP_FLAG_CALL |
1922 					PERF_IP_FLAG_SYSCALLRET;
1923 		/*
1924 		 * The exceptions are triggered by external signals from bus,
1925 		 * interrupt controller, debug module, PE reset or halt.
1926 		 */
1927 		else if (cs_etm__is_async_exception(tidq, magic))
1928 			packet->flags = PERF_IP_FLAG_BRANCH |
1929 					PERF_IP_FLAG_CALL |
1930 					PERF_IP_FLAG_ASYNC |
1931 					PERF_IP_FLAG_INTERRUPT;
1932 		/*
1933 		 * Otherwise, exception is caused by trap, instruction &
1934 		 * data fault, or alignment errors.
1935 		 */
1936 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1937 			packet->flags = PERF_IP_FLAG_BRANCH |
1938 					PERF_IP_FLAG_CALL |
1939 					PERF_IP_FLAG_INTERRUPT;
1940 
1941 		/*
1942 		 * When the exception packet is inserted, since exception
1943 		 * packet is not used standalone for generating samples
1944 		 * and it's affiliation to the previous instruction range
1945 		 * packet; so set previous range packet flags to tell perf
1946 		 * it is an exception taken branch.
1947 		 */
1948 		if (prev_packet->sample_type == CS_ETM_RANGE)
1949 			prev_packet->flags = packet->flags;
1950 		break;
1951 	case CS_ETM_EXCEPTION_RET:
1952 		/*
1953 		 * When the exception return packet is inserted, since
1954 		 * exception return packet is not used standalone for
1955 		 * generating samples and it's affiliation to the previous
1956 		 * instruction range packet; so set previous range packet
1957 		 * flags to tell perf it is an exception return branch.
1958 		 *
1959 		 * The exception return can be for either system call or
1960 		 * other exception types; unfortunately the packet doesn't
1961 		 * contain exception type related info so we cannot decide
1962 		 * the exception type purely based on exception return packet.
1963 		 * If we record the exception number from exception packet and
1964 		 * reuse it for excpetion return packet, this is not reliable
1965 		 * due the trace can be discontinuity or the interrupt can
1966 		 * be nested, thus the recorded exception number cannot be
1967 		 * used for exception return packet for these two cases.
1968 		 *
1969 		 * For exception return packet, we only need to distinguish the
1970 		 * packet is for system call or for other types.  Thus the
1971 		 * decision can be deferred when receive the next packet which
1972 		 * contains the return address, based on the return address we
1973 		 * can read out the previous instruction and check if it's a
1974 		 * system call instruction and then calibrate the sample flag
1975 		 * as needed.
1976 		 */
1977 		if (prev_packet->sample_type == CS_ETM_RANGE)
1978 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1979 					     PERF_IP_FLAG_RETURN |
1980 					     PERF_IP_FLAG_INTERRUPT;
1981 		break;
1982 	case CS_ETM_EMPTY:
1983 	default:
1984 		break;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1991 {
1992 	int ret = 0;
1993 	size_t processed = 0;
1994 
1995 	/*
1996 	 * Packets are decoded and added to the decoder's packet queue
1997 	 * until the decoder packet processing callback has requested that
1998 	 * processing stops or there is nothing left in the buffer.  Normal
1999 	 * operations that stop processing are a timestamp packet or a full
2000 	 * decoder buffer queue.
2001 	 */
2002 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2003 						 etmq->offset,
2004 						 &etmq->buf[etmq->buf_used],
2005 						 etmq->buf_len,
2006 						 &processed);
2007 	if (ret)
2008 		goto out;
2009 
2010 	etmq->offset += processed;
2011 	etmq->buf_used += processed;
2012 	etmq->buf_len -= processed;
2013 
2014 out:
2015 	return ret;
2016 }
2017 
2018 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2019 					 struct cs_etm_traceid_queue *tidq)
2020 {
2021 	int ret;
2022 	struct cs_etm_packet_queue *packet_queue;
2023 
2024 	packet_queue = &tidq->packet_queue;
2025 
2026 	/* Process each packet in this chunk */
2027 	while (1) {
2028 		ret = cs_etm_decoder__get_packet(packet_queue,
2029 						 tidq->packet);
2030 		if (ret <= 0)
2031 			/*
2032 			 * Stop processing this chunk on
2033 			 * end of data or error
2034 			 */
2035 			break;
2036 
2037 		/*
2038 		 * Since packet addresses are swapped in packet
2039 		 * handling within below switch() statements,
2040 		 * thus setting sample flags must be called
2041 		 * prior to switch() statement to use address
2042 		 * information before packets swapping.
2043 		 */
2044 		ret = cs_etm__set_sample_flags(etmq, tidq);
2045 		if (ret < 0)
2046 			break;
2047 
2048 		switch (tidq->packet->sample_type) {
2049 		case CS_ETM_RANGE:
2050 			/*
2051 			 * If the packet contains an instruction
2052 			 * range, generate instruction sequence
2053 			 * events.
2054 			 */
2055 			cs_etm__sample(etmq, tidq);
2056 			break;
2057 		case CS_ETM_EXCEPTION:
2058 		case CS_ETM_EXCEPTION_RET:
2059 			/*
2060 			 * If the exception packet is coming,
2061 			 * make sure the previous instruction
2062 			 * range packet to be handled properly.
2063 			 */
2064 			cs_etm__exception(tidq);
2065 			break;
2066 		case CS_ETM_DISCONTINUITY:
2067 			/*
2068 			 * Discontinuity in trace, flush
2069 			 * previous branch stack
2070 			 */
2071 			cs_etm__flush(etmq, tidq);
2072 			break;
2073 		case CS_ETM_EMPTY:
2074 			/*
2075 			 * Should not receive empty packet,
2076 			 * report error.
2077 			 */
2078 			pr_err("CS ETM Trace: empty packet\n");
2079 			return -EINVAL;
2080 		default:
2081 			break;
2082 		}
2083 	}
2084 
2085 	return ret;
2086 }
2087 
2088 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2089 {
2090 	int idx;
2091 	struct int_node *inode;
2092 	struct cs_etm_traceid_queue *tidq;
2093 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2094 
2095 	intlist__for_each_entry(inode, traceid_queues_list) {
2096 		idx = (int)(intptr_t)inode->priv;
2097 		tidq = etmq->traceid_queues[idx];
2098 
2099 		/* Ignore return value */
2100 		cs_etm__process_traceid_queue(etmq, tidq);
2101 
2102 		/*
2103 		 * Generate an instruction sample with the remaining
2104 		 * branchstack entries.
2105 		 */
2106 		cs_etm__flush(etmq, tidq);
2107 	}
2108 }
2109 
2110 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2111 {
2112 	int err = 0;
2113 	struct cs_etm_traceid_queue *tidq;
2114 
2115 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2116 	if (!tidq)
2117 		return -EINVAL;
2118 
2119 	/* Go through each buffer in the queue and decode them one by one */
2120 	while (1) {
2121 		err = cs_etm__get_data_block(etmq);
2122 		if (err <= 0)
2123 			return err;
2124 
2125 		/* Run trace decoder until buffer consumed or end of trace */
2126 		do {
2127 			err = cs_etm__decode_data_block(etmq);
2128 			if (err)
2129 				return err;
2130 
2131 			/*
2132 			 * Process each packet in this chunk, nothing to do if
2133 			 * an error occurs other than hoping the next one will
2134 			 * be better.
2135 			 */
2136 			err = cs_etm__process_traceid_queue(etmq, tidq);
2137 
2138 		} while (etmq->buf_len);
2139 
2140 		if (err == 0)
2141 			/* Flush any remaining branch stack entries */
2142 			err = cs_etm__end_block(etmq, tidq);
2143 	}
2144 
2145 	return err;
2146 }
2147 
2148 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2149 					   pid_t tid)
2150 {
2151 	unsigned int i;
2152 	struct auxtrace_queues *queues = &etm->queues;
2153 
2154 	for (i = 0; i < queues->nr_queues; i++) {
2155 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2156 		struct cs_etm_queue *etmq = queue->priv;
2157 		struct cs_etm_traceid_queue *tidq;
2158 
2159 		if (!etmq)
2160 			continue;
2161 
2162 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2163 						CS_ETM_PER_THREAD_TRACEID);
2164 
2165 		if (!tidq)
2166 			continue;
2167 
2168 		if ((tid == -1) || (tidq->tid == tid)) {
2169 			cs_etm__set_pid_tid_cpu(etm, tidq);
2170 			cs_etm__run_decoder(etmq);
2171 		}
2172 	}
2173 
2174 	return 0;
2175 }
2176 
2177 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2178 {
2179 	int ret = 0;
2180 	unsigned int cs_queue_nr, queue_nr;
2181 	u8 trace_chan_id;
2182 	u64 timestamp;
2183 	struct auxtrace_queue *queue;
2184 	struct cs_etm_queue *etmq;
2185 	struct cs_etm_traceid_queue *tidq;
2186 
2187 	while (1) {
2188 		if (!etm->heap.heap_cnt)
2189 			goto out;
2190 
2191 		/* Take the entry at the top of the min heap */
2192 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2193 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2194 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2195 		queue = &etm->queues.queue_array[queue_nr];
2196 		etmq = queue->priv;
2197 
2198 		/*
2199 		 * Remove the top entry from the heap since we are about
2200 		 * to process it.
2201 		 */
2202 		auxtrace_heap__pop(&etm->heap);
2203 
2204 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2205 		if (!tidq) {
2206 			/*
2207 			 * No traceID queue has been allocated for this traceID,
2208 			 * which means something somewhere went very wrong.  No
2209 			 * other choice than simply exit.
2210 			 */
2211 			ret = -EINVAL;
2212 			goto out;
2213 		}
2214 
2215 		/*
2216 		 * Packets associated with this timestamp are already in
2217 		 * the etmq's traceID queue, so process them.
2218 		 */
2219 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2220 		if (ret < 0)
2221 			goto out;
2222 
2223 		/*
2224 		 * Packets for this timestamp have been processed, time to
2225 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2226 		 * if need be.
2227 		 */
2228 refetch:
2229 		ret = cs_etm__get_data_block(etmq);
2230 		if (ret < 0)
2231 			goto out;
2232 
2233 		/*
2234 		 * No more auxtrace_buffers to process in this etmq, simply
2235 		 * move on to another entry in the auxtrace_heap.
2236 		 */
2237 		if (!ret)
2238 			continue;
2239 
2240 		ret = cs_etm__decode_data_block(etmq);
2241 		if (ret)
2242 			goto out;
2243 
2244 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2245 
2246 		if (!timestamp) {
2247 			/*
2248 			 * Function cs_etm__decode_data_block() returns when
2249 			 * there is no more traces to decode in the current
2250 			 * auxtrace_buffer OR when a timestamp has been
2251 			 * encountered on any of the traceID queues.  Since we
2252 			 * did not get a timestamp, there is no more traces to
2253 			 * process in this auxtrace_buffer.  As such empty and
2254 			 * flush all traceID queues.
2255 			 */
2256 			cs_etm__clear_all_traceid_queues(etmq);
2257 
2258 			/* Fetch another auxtrace_buffer for this etmq */
2259 			goto refetch;
2260 		}
2261 
2262 		/*
2263 		 * Add to the min heap the timestamp for packets that have
2264 		 * just been decoded.  They will be processed and synthesized
2265 		 * during the next call to cs_etm__process_traceid_queue() for
2266 		 * this queue/traceID.
2267 		 */
2268 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2269 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2270 	}
2271 
2272 out:
2273 	return ret;
2274 }
2275 
2276 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2277 					union perf_event *event)
2278 {
2279 	struct thread *th;
2280 
2281 	if (etm->timeless_decoding)
2282 		return 0;
2283 
2284 	/*
2285 	 * Add the tid/pid to the log so that we can get a match when
2286 	 * we get a contextID from the decoder.
2287 	 */
2288 	th = machine__findnew_thread(etm->machine,
2289 				     event->itrace_start.pid,
2290 				     event->itrace_start.tid);
2291 	if (!th)
2292 		return -ENOMEM;
2293 
2294 	thread__put(th);
2295 
2296 	return 0;
2297 }
2298 
2299 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2300 					   union perf_event *event)
2301 {
2302 	struct thread *th;
2303 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2304 
2305 	/*
2306 	 * Context switch in per-thread mode are irrelevant since perf
2307 	 * will start/stop tracing as the process is scheduled.
2308 	 */
2309 	if (etm->timeless_decoding)
2310 		return 0;
2311 
2312 	/*
2313 	 * SWITCH_IN events carry the next process to be switched out while
2314 	 * SWITCH_OUT events carry the process to be switched in.  As such
2315 	 * we don't care about IN events.
2316 	 */
2317 	if (!out)
2318 		return 0;
2319 
2320 	/*
2321 	 * Add the tid/pid to the log so that we can get a match when
2322 	 * we get a contextID from the decoder.
2323 	 */
2324 	th = machine__findnew_thread(etm->machine,
2325 				     event->context_switch.next_prev_pid,
2326 				     event->context_switch.next_prev_tid);
2327 	if (!th)
2328 		return -ENOMEM;
2329 
2330 	thread__put(th);
2331 
2332 	return 0;
2333 }
2334 
2335 static int cs_etm__process_event(struct perf_session *session,
2336 				 union perf_event *event,
2337 				 struct perf_sample *sample,
2338 				 struct perf_tool *tool)
2339 {
2340 	int err = 0;
2341 	u64 timestamp;
2342 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2343 						   struct cs_etm_auxtrace,
2344 						   auxtrace);
2345 
2346 	if (dump_trace)
2347 		return 0;
2348 
2349 	if (!tool->ordered_events) {
2350 		pr_err("CoreSight ETM Trace requires ordered events\n");
2351 		return -EINVAL;
2352 	}
2353 
2354 	if (sample->time && (sample->time != (u64) -1))
2355 		timestamp = sample->time;
2356 	else
2357 		timestamp = 0;
2358 
2359 	if (timestamp || etm->timeless_decoding) {
2360 		err = cs_etm__update_queues(etm);
2361 		if (err)
2362 			return err;
2363 	}
2364 
2365 	if (etm->timeless_decoding &&
2366 	    event->header.type == PERF_RECORD_EXIT)
2367 		return cs_etm__process_timeless_queues(etm,
2368 						       event->fork.tid);
2369 
2370 	if (event->header.type == PERF_RECORD_ITRACE_START)
2371 		return cs_etm__process_itrace_start(etm, event);
2372 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2373 		return cs_etm__process_switch_cpu_wide(etm, event);
2374 
2375 	if (!etm->timeless_decoding &&
2376 	    event->header.type == PERF_RECORD_AUX)
2377 		return cs_etm__process_queues(etm);
2378 
2379 	return 0;
2380 }
2381 
2382 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2383 					  union perf_event *event,
2384 					  struct perf_tool *tool __maybe_unused)
2385 {
2386 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2387 						   struct cs_etm_auxtrace,
2388 						   auxtrace);
2389 	if (!etm->data_queued) {
2390 		struct auxtrace_buffer *buffer;
2391 		off_t  data_offset;
2392 		int fd = perf_data__fd(session->data);
2393 		bool is_pipe = perf_data__is_pipe(session->data);
2394 		int err;
2395 
2396 		if (is_pipe)
2397 			data_offset = 0;
2398 		else {
2399 			data_offset = lseek(fd, 0, SEEK_CUR);
2400 			if (data_offset == -1)
2401 				return -errno;
2402 		}
2403 
2404 		err = auxtrace_queues__add_event(&etm->queues, session,
2405 						 event, data_offset, &buffer);
2406 		if (err)
2407 			return err;
2408 
2409 		if (dump_trace)
2410 			if (auxtrace_buffer__get_data(buffer, fd)) {
2411 				cs_etm__dump_event(etm, buffer);
2412 				auxtrace_buffer__put_data(buffer);
2413 			}
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2420 {
2421 	struct evsel *evsel;
2422 	struct evlist *evlist = etm->session->evlist;
2423 	bool timeless_decoding = true;
2424 
2425 	/*
2426 	 * Circle through the list of event and complain if we find one
2427 	 * with the time bit set.
2428 	 */
2429 	evlist__for_each_entry(evlist, evsel) {
2430 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2431 			timeless_decoding = false;
2432 	}
2433 
2434 	return timeless_decoding;
2435 }
2436 
2437 static const char * const cs_etm_global_header_fmts[] = {
2438 	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
2439 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2440 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2441 };
2442 
2443 static const char * const cs_etm_priv_fmts[] = {
2444 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2445 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2446 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2447 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2448 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2449 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2450 };
2451 
2452 static const char * const cs_etmv4_priv_fmts[] = {
2453 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2454 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2455 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2456 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2457 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2458 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2459 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2460 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2461 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2462 };
2463 
2464 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2465 {
2466 	int i, j, cpu = 0;
2467 
2468 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2469 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2470 
2471 	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2472 		if (val[i] == __perf_cs_etmv3_magic)
2473 			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2474 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2475 		else if (val[i] == __perf_cs_etmv4_magic)
2476 			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2477 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2478 		else
2479 			/* failure.. return */
2480 			return;
2481 	}
2482 }
2483 
2484 int cs_etm__process_auxtrace_info(union perf_event *event,
2485 				  struct perf_session *session)
2486 {
2487 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2488 	struct cs_etm_auxtrace *etm = NULL;
2489 	struct int_node *inode;
2490 	unsigned int pmu_type;
2491 	int event_header_size = sizeof(struct perf_event_header);
2492 	int info_header_size;
2493 	int total_size = auxtrace_info->header.size;
2494 	int priv_size = 0;
2495 	int num_cpu;
2496 	int err = 0, idx = -1;
2497 	int i, j, k;
2498 	u64 *ptr, *hdr = NULL;
2499 	u64 **metadata = NULL;
2500 
2501 	/*
2502 	 * sizeof(auxtrace_info_event::type) +
2503 	 * sizeof(auxtrace_info_event::reserved) == 8
2504 	 */
2505 	info_header_size = 8;
2506 
2507 	if (total_size < (event_header_size + info_header_size))
2508 		return -EINVAL;
2509 
2510 	priv_size = total_size - event_header_size - info_header_size;
2511 
2512 	/* First the global part */
2513 	ptr = (u64 *) auxtrace_info->priv;
2514 
2515 	/* Look for version '0' of the header */
2516 	if (ptr[0] != 0)
2517 		return -EINVAL;
2518 
2519 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2520 	if (!hdr)
2521 		return -ENOMEM;
2522 
2523 	/* Extract header information - see cs-etm.h for format */
2524 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2525 		hdr[i] = ptr[i];
2526 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2527 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2528 				    0xffffffff);
2529 
2530 	/*
2531 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2532 	 * has to be made for each packet that gets decoded, optimizing access
2533 	 * in anything other than a sequential array is worth doing.
2534 	 */
2535 	traceid_list = intlist__new(NULL);
2536 	if (!traceid_list) {
2537 		err = -ENOMEM;
2538 		goto err_free_hdr;
2539 	}
2540 
2541 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2542 	if (!metadata) {
2543 		err = -ENOMEM;
2544 		goto err_free_traceid_list;
2545 	}
2546 
2547 	/*
2548 	 * The metadata is stored in the auxtrace_info section and encodes
2549 	 * the configuration of the ARM embedded trace macrocell which is
2550 	 * required by the trace decoder to properly decode the trace due
2551 	 * to its highly compressed nature.
2552 	 */
2553 	for (j = 0; j < num_cpu; j++) {
2554 		if (ptr[i] == __perf_cs_etmv3_magic) {
2555 			metadata[j] = zalloc(sizeof(*metadata[j]) *
2556 					     CS_ETM_PRIV_MAX);
2557 			if (!metadata[j]) {
2558 				err = -ENOMEM;
2559 				goto err_free_metadata;
2560 			}
2561 			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2562 				metadata[j][k] = ptr[i + k];
2563 
2564 			/* The traceID is our handle */
2565 			idx = metadata[j][CS_ETM_ETMTRACEIDR];
2566 			i += CS_ETM_PRIV_MAX;
2567 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2568 			metadata[j] = zalloc(sizeof(*metadata[j]) *
2569 					     CS_ETMV4_PRIV_MAX);
2570 			if (!metadata[j]) {
2571 				err = -ENOMEM;
2572 				goto err_free_metadata;
2573 			}
2574 			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2575 				metadata[j][k] = ptr[i + k];
2576 
2577 			/* The traceID is our handle */
2578 			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2579 			i += CS_ETMV4_PRIV_MAX;
2580 		}
2581 
2582 		/* Get an RB node for this CPU */
2583 		inode = intlist__findnew(traceid_list, idx);
2584 
2585 		/* Something went wrong, no need to continue */
2586 		if (!inode) {
2587 			err = -ENOMEM;
2588 			goto err_free_metadata;
2589 		}
2590 
2591 		/*
2592 		 * The node for that CPU should not be taken.
2593 		 * Back out if that's the case.
2594 		 */
2595 		if (inode->priv) {
2596 			err = -EINVAL;
2597 			goto err_free_metadata;
2598 		}
2599 		/* All good, associate the traceID with the metadata pointer */
2600 		inode->priv = metadata[j];
2601 	}
2602 
2603 	/*
2604 	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2605 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2606 	 * global metadata, and each cpu's metadata respectively.
2607 	 * The following tests if the correct number of double words was
2608 	 * present in the auxtrace info section.
2609 	 */
2610 	if (i * 8 != priv_size) {
2611 		err = -EINVAL;
2612 		goto err_free_metadata;
2613 	}
2614 
2615 	etm = zalloc(sizeof(*etm));
2616 
2617 	if (!etm) {
2618 		err = -ENOMEM;
2619 		goto err_free_metadata;
2620 	}
2621 
2622 	err = auxtrace_queues__init(&etm->queues);
2623 	if (err)
2624 		goto err_free_etm;
2625 
2626 	etm->session = session;
2627 	etm->machine = &session->machines.host;
2628 
2629 	etm->num_cpu = num_cpu;
2630 	etm->pmu_type = pmu_type;
2631 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2632 	etm->metadata = metadata;
2633 	etm->auxtrace_type = auxtrace_info->type;
2634 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2635 
2636 	etm->auxtrace.process_event = cs_etm__process_event;
2637 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2638 	etm->auxtrace.flush_events = cs_etm__flush_events;
2639 	etm->auxtrace.free_events = cs_etm__free_events;
2640 	etm->auxtrace.free = cs_etm__free;
2641 	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
2642 	session->auxtrace = &etm->auxtrace;
2643 
2644 	etm->unknown_thread = thread__new(999999999, 999999999);
2645 	if (!etm->unknown_thread) {
2646 		err = -ENOMEM;
2647 		goto err_free_queues;
2648 	}
2649 
2650 	/*
2651 	 * Initialize list node so that at thread__zput() we can avoid
2652 	 * segmentation fault at list_del_init().
2653 	 */
2654 	INIT_LIST_HEAD(&etm->unknown_thread->node);
2655 
2656 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2657 	if (err)
2658 		goto err_delete_thread;
2659 
2660 	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2661 		err = -ENOMEM;
2662 		goto err_delete_thread;
2663 	}
2664 
2665 	if (dump_trace) {
2666 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2667 		return 0;
2668 	}
2669 
2670 	if (session->itrace_synth_opts->set) {
2671 		etm->synth_opts = *session->itrace_synth_opts;
2672 	} else {
2673 		itrace_synth_opts__set_default(&etm->synth_opts,
2674 				session->itrace_synth_opts->default_no_sample);
2675 		etm->synth_opts.callchain = false;
2676 	}
2677 
2678 	err = cs_etm__synth_events(etm, session);
2679 	if (err)
2680 		goto err_delete_thread;
2681 
2682 	err = auxtrace_queues__process_index(&etm->queues, session);
2683 	if (err)
2684 		goto err_delete_thread;
2685 
2686 	etm->data_queued = etm->queues.populated;
2687 
2688 	return 0;
2689 
2690 err_delete_thread:
2691 	thread__zput(etm->unknown_thread);
2692 err_free_queues:
2693 	auxtrace_queues__free(&etm->queues);
2694 	session->auxtrace = NULL;
2695 err_free_etm:
2696 	zfree(&etm);
2697 err_free_metadata:
2698 	/* No need to check @metadata[j], free(NULL) is supported */
2699 	for (j = 0; j < num_cpu; j++)
2700 		zfree(&metadata[j]);
2701 	zfree(&metadata);
2702 err_free_traceid_list:
2703 	intlist__delete(traceid_list);
2704 err_free_hdr:
2705 	zfree(&hdr);
2706 
2707 	return err;
2708 }
2709