xref: /openbmc/linux/tools/perf/util/cs-etm.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 
15 #include <opencsd/ocsd_if_types.h>
16 #include <stdlib.h>
17 
18 #include "auxtrace.h"
19 #include "color.h"
20 #include "cs-etm.h"
21 #include "cs-etm-decoder/cs-etm-decoder.h"
22 #include "debug.h"
23 #include "evlist.h"
24 #include "intlist.h"
25 #include "machine.h"
26 #include "map.h"
27 #include "perf.h"
28 #include "symbol.h"
29 #include "thread.h"
30 #include "thread_map.h"
31 #include "thread-stack.h"
32 #include "util.h"
33 
34 #define MAX_TIMESTAMP (~0ULL)
35 
36 struct cs_etm_auxtrace {
37 	struct auxtrace auxtrace;
38 	struct auxtrace_queues queues;
39 	struct auxtrace_heap heap;
40 	struct itrace_synth_opts synth_opts;
41 	struct perf_session *session;
42 	struct machine *machine;
43 	struct thread *unknown_thread;
44 
45 	u8 timeless_decoding;
46 	u8 snapshot_mode;
47 	u8 data_queued;
48 	u8 sample_branches;
49 	u8 sample_instructions;
50 
51 	int num_cpu;
52 	u32 auxtrace_type;
53 	u64 branches_sample_type;
54 	u64 branches_id;
55 	u64 instructions_sample_type;
56 	u64 instructions_sample_period;
57 	u64 instructions_id;
58 	u64 **metadata;
59 	u64 kernel_start;
60 	unsigned int pmu_type;
61 };
62 
63 struct cs_etm_queue {
64 	struct cs_etm_auxtrace *etm;
65 	struct thread *thread;
66 	struct cs_etm_decoder *decoder;
67 	struct auxtrace_buffer *buffer;
68 	union perf_event *event_buf;
69 	unsigned int queue_nr;
70 	pid_t pid, tid;
71 	int cpu;
72 	u64 offset;
73 	u64 period_instructions;
74 	struct branch_stack *last_branch;
75 	struct branch_stack *last_branch_rb;
76 	size_t last_branch_pos;
77 	struct cs_etm_packet *prev_packet;
78 	struct cs_etm_packet *packet;
79 	const unsigned char *buf;
80 	size_t buf_len, buf_used;
81 };
82 
83 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
84 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
85 					   pid_t tid);
86 
87 /* PTMs ETMIDR [11:8] set to b0011 */
88 #define ETMIDR_PTM_VERSION 0x00000300
89 
90 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
91 {
92 	etmidr &= ETMIDR_PTM_VERSION;
93 
94 	if (etmidr == ETMIDR_PTM_VERSION)
95 		return CS_ETM_PROTO_PTM;
96 
97 	return CS_ETM_PROTO_ETMV3;
98 }
99 
100 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
101 {
102 	struct int_node *inode;
103 	u64 *metadata;
104 
105 	inode = intlist__find(traceid_list, trace_chan_id);
106 	if (!inode)
107 		return -EINVAL;
108 
109 	metadata = inode->priv;
110 	*magic = metadata[CS_ETM_MAGIC];
111 	return 0;
112 }
113 
114 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
115 {
116 	struct int_node *inode;
117 	u64 *metadata;
118 
119 	inode = intlist__find(traceid_list, trace_chan_id);
120 	if (!inode)
121 		return -EINVAL;
122 
123 	metadata = inode->priv;
124 	*cpu = (int)metadata[CS_ETM_CPU];
125 	return 0;
126 }
127 
128 static void cs_etm__packet_dump(const char *pkt_string)
129 {
130 	const char *color = PERF_COLOR_BLUE;
131 	int len = strlen(pkt_string);
132 
133 	if (len && (pkt_string[len-1] == '\n'))
134 		color_fprintf(stdout, color, "	%s", pkt_string);
135 	else
136 		color_fprintf(stdout, color, "	%s\n", pkt_string);
137 
138 	fflush(stdout);
139 }
140 
141 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
142 					  struct cs_etm_auxtrace *etm, int idx,
143 					  u32 etmidr)
144 {
145 	u64 **metadata = etm->metadata;
146 
147 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
148 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
149 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
150 }
151 
152 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
153 					  struct cs_etm_auxtrace *etm, int idx)
154 {
155 	u64 **metadata = etm->metadata;
156 
157 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
158 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
159 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
160 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
161 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
162 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
163 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
164 }
165 
166 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
167 				     struct cs_etm_auxtrace *etm)
168 {
169 	int i;
170 	u32 etmidr;
171 	u64 architecture;
172 
173 	for (i = 0; i < etm->num_cpu; i++) {
174 		architecture = etm->metadata[i][CS_ETM_MAGIC];
175 
176 		switch (architecture) {
177 		case __perf_cs_etmv3_magic:
178 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
179 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
180 			break;
181 		case __perf_cs_etmv4_magic:
182 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
183 			break;
184 		default:
185 			return -EINVAL;
186 		}
187 	}
188 
189 	return 0;
190 }
191 
192 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
193 				       struct cs_etm_queue *etmq,
194 				       enum cs_etm_decoder_operation mode)
195 {
196 	int ret = -EINVAL;
197 
198 	if (!(mode < CS_ETM_OPERATION_MAX))
199 		goto out;
200 
201 	d_params->packet_printer = cs_etm__packet_dump;
202 	d_params->operation = mode;
203 	d_params->data = etmq;
204 	d_params->formatted = true;
205 	d_params->fsyncs = false;
206 	d_params->hsyncs = false;
207 	d_params->frame_aligned = true;
208 
209 	ret = 0;
210 out:
211 	return ret;
212 }
213 
214 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
215 			       struct auxtrace_buffer *buffer)
216 {
217 	int ret;
218 	const char *color = PERF_COLOR_BLUE;
219 	struct cs_etm_decoder_params d_params;
220 	struct cs_etm_trace_params *t_params;
221 	struct cs_etm_decoder *decoder;
222 	size_t buffer_used = 0;
223 
224 	fprintf(stdout, "\n");
225 	color_fprintf(stdout, color,
226 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
227 		     buffer->size);
228 
229 	/* Use metadata to fill in trace parameters for trace decoder */
230 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
231 
232 	if (!t_params)
233 		return;
234 
235 	if (cs_etm__init_trace_params(t_params, etm))
236 		goto out_free;
237 
238 	/* Set decoder parameters to simply print the trace packets */
239 	if (cs_etm__init_decoder_params(&d_params, NULL,
240 					CS_ETM_OPERATION_PRINT))
241 		goto out_free;
242 
243 	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
244 
245 	if (!decoder)
246 		goto out_free;
247 	do {
248 		size_t consumed;
249 
250 		ret = cs_etm_decoder__process_data_block(
251 				decoder, buffer->offset,
252 				&((u8 *)buffer->data)[buffer_used],
253 				buffer->size - buffer_used, &consumed);
254 		if (ret)
255 			break;
256 
257 		buffer_used += consumed;
258 	} while (buffer_used < buffer->size);
259 
260 	cs_etm_decoder__free(decoder);
261 
262 out_free:
263 	zfree(&t_params);
264 }
265 
266 static int cs_etm__flush_events(struct perf_session *session,
267 				struct perf_tool *tool)
268 {
269 	int ret;
270 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
271 						   struct cs_etm_auxtrace,
272 						   auxtrace);
273 	if (dump_trace)
274 		return 0;
275 
276 	if (!tool->ordered_events)
277 		return -EINVAL;
278 
279 	if (!etm->timeless_decoding)
280 		return -EINVAL;
281 
282 	ret = cs_etm__update_queues(etm);
283 
284 	if (ret < 0)
285 		return ret;
286 
287 	return cs_etm__process_timeless_queues(etm, -1);
288 }
289 
290 static void cs_etm__free_queue(void *priv)
291 {
292 	struct cs_etm_queue *etmq = priv;
293 
294 	if (!etmq)
295 		return;
296 
297 	thread__zput(etmq->thread);
298 	cs_etm_decoder__free(etmq->decoder);
299 	zfree(&etmq->event_buf);
300 	zfree(&etmq->last_branch);
301 	zfree(&etmq->last_branch_rb);
302 	zfree(&etmq->prev_packet);
303 	zfree(&etmq->packet);
304 	free(etmq);
305 }
306 
307 static void cs_etm__free_events(struct perf_session *session)
308 {
309 	unsigned int i;
310 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
311 						   struct cs_etm_auxtrace,
312 						   auxtrace);
313 	struct auxtrace_queues *queues = &aux->queues;
314 
315 	for (i = 0; i < queues->nr_queues; i++) {
316 		cs_etm__free_queue(queues->queue_array[i].priv);
317 		queues->queue_array[i].priv = NULL;
318 	}
319 
320 	auxtrace_queues__free(queues);
321 }
322 
323 static void cs_etm__free(struct perf_session *session)
324 {
325 	int i;
326 	struct int_node *inode, *tmp;
327 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
328 						   struct cs_etm_auxtrace,
329 						   auxtrace);
330 	cs_etm__free_events(session);
331 	session->auxtrace = NULL;
332 
333 	/* First remove all traceID/metadata nodes for the RB tree */
334 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
335 		intlist__remove(traceid_list, inode);
336 	/* Then the RB tree itself */
337 	intlist__delete(traceid_list);
338 
339 	for (i = 0; i < aux->num_cpu; i++)
340 		zfree(&aux->metadata[i]);
341 
342 	thread__zput(aux->unknown_thread);
343 	zfree(&aux->metadata);
344 	zfree(&aux);
345 }
346 
347 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
348 {
349 	struct machine *machine;
350 
351 	machine = etmq->etm->machine;
352 
353 	if (address >= etmq->etm->kernel_start) {
354 		if (machine__is_host(machine))
355 			return PERF_RECORD_MISC_KERNEL;
356 		else
357 			return PERF_RECORD_MISC_GUEST_KERNEL;
358 	} else {
359 		if (machine__is_host(machine))
360 			return PERF_RECORD_MISC_USER;
361 		else if (perf_guest)
362 			return PERF_RECORD_MISC_GUEST_USER;
363 		else
364 			return PERF_RECORD_MISC_HYPERVISOR;
365 	}
366 }
367 
368 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address,
369 			      size_t size, u8 *buffer)
370 {
371 	u8  cpumode;
372 	u64 offset;
373 	int len;
374 	struct	 thread *thread;
375 	struct	 machine *machine;
376 	struct	 addr_location al;
377 
378 	if (!etmq)
379 		return 0;
380 
381 	machine = etmq->etm->machine;
382 	cpumode = cs_etm__cpu_mode(etmq, address);
383 
384 	thread = etmq->thread;
385 	if (!thread) {
386 		if (cpumode != PERF_RECORD_MISC_KERNEL)
387 			return 0;
388 		thread = etmq->etm->unknown_thread;
389 	}
390 
391 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
392 		return 0;
393 
394 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
395 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
396 		return 0;
397 
398 	offset = al.map->map_ip(al.map, address);
399 
400 	map__load(al.map);
401 
402 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
403 
404 	if (len <= 0)
405 		return 0;
406 
407 	return len;
408 }
409 
410 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
411 {
412 	struct cs_etm_decoder_params d_params;
413 	struct cs_etm_trace_params  *t_params = NULL;
414 	struct cs_etm_queue *etmq;
415 	size_t szp = sizeof(struct cs_etm_packet);
416 
417 	etmq = zalloc(sizeof(*etmq));
418 	if (!etmq)
419 		return NULL;
420 
421 	etmq->packet = zalloc(szp);
422 	if (!etmq->packet)
423 		goto out_free;
424 
425 	etmq->prev_packet = zalloc(szp);
426 	if (!etmq->prev_packet)
427 		goto out_free;
428 
429 	if (etm->synth_opts.last_branch) {
430 		size_t sz = sizeof(struct branch_stack);
431 
432 		sz += etm->synth_opts.last_branch_sz *
433 		      sizeof(struct branch_entry);
434 		etmq->last_branch = zalloc(sz);
435 		if (!etmq->last_branch)
436 			goto out_free;
437 		etmq->last_branch_rb = zalloc(sz);
438 		if (!etmq->last_branch_rb)
439 			goto out_free;
440 	}
441 
442 	etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
443 	if (!etmq->event_buf)
444 		goto out_free;
445 
446 	/* Use metadata to fill in trace parameters for trace decoder */
447 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
448 
449 	if (!t_params)
450 		goto out_free;
451 
452 	if (cs_etm__init_trace_params(t_params, etm))
453 		goto out_free;
454 
455 	/* Set decoder parameters to decode trace packets */
456 	if (cs_etm__init_decoder_params(&d_params, etmq,
457 					CS_ETM_OPERATION_DECODE))
458 		goto out_free;
459 
460 	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
461 
462 	if (!etmq->decoder)
463 		goto out_free;
464 
465 	/*
466 	 * Register a function to handle all memory accesses required by
467 	 * the trace decoder library.
468 	 */
469 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
470 					      0x0L, ((u64) -1L),
471 					      cs_etm__mem_access))
472 		goto out_free_decoder;
473 
474 	zfree(&t_params);
475 	return etmq;
476 
477 out_free_decoder:
478 	cs_etm_decoder__free(etmq->decoder);
479 out_free:
480 	zfree(&t_params);
481 	zfree(&etmq->event_buf);
482 	zfree(&etmq->last_branch);
483 	zfree(&etmq->last_branch_rb);
484 	zfree(&etmq->prev_packet);
485 	zfree(&etmq->packet);
486 	free(etmq);
487 
488 	return NULL;
489 }
490 
491 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
492 			       struct auxtrace_queue *queue,
493 			       unsigned int queue_nr)
494 {
495 	int ret = 0;
496 	struct cs_etm_queue *etmq = queue->priv;
497 
498 	if (list_empty(&queue->head) || etmq)
499 		goto out;
500 
501 	etmq = cs_etm__alloc_queue(etm);
502 
503 	if (!etmq) {
504 		ret = -ENOMEM;
505 		goto out;
506 	}
507 
508 	queue->priv = etmq;
509 	etmq->etm = etm;
510 	etmq->queue_nr = queue_nr;
511 	etmq->cpu = queue->cpu;
512 	etmq->tid = queue->tid;
513 	etmq->pid = -1;
514 	etmq->offset = 0;
515 	etmq->period_instructions = 0;
516 
517 out:
518 	return ret;
519 }
520 
521 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
522 {
523 	unsigned int i;
524 	int ret;
525 
526 	if (!etm->kernel_start)
527 		etm->kernel_start = machine__kernel_start(etm->machine);
528 
529 	for (i = 0; i < etm->queues.nr_queues; i++) {
530 		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
531 		if (ret)
532 			return ret;
533 	}
534 
535 	return 0;
536 }
537 
538 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
539 {
540 	if (etm->queues.new_data) {
541 		etm->queues.new_data = false;
542 		return cs_etm__setup_queues(etm);
543 	}
544 
545 	return 0;
546 }
547 
548 static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq)
549 {
550 	struct branch_stack *bs_src = etmq->last_branch_rb;
551 	struct branch_stack *bs_dst = etmq->last_branch;
552 	size_t nr = 0;
553 
554 	/*
555 	 * Set the number of records before early exit: ->nr is used to
556 	 * determine how many branches to copy from ->entries.
557 	 */
558 	bs_dst->nr = bs_src->nr;
559 
560 	/*
561 	 * Early exit when there is nothing to copy.
562 	 */
563 	if (!bs_src->nr)
564 		return;
565 
566 	/*
567 	 * As bs_src->entries is a circular buffer, we need to copy from it in
568 	 * two steps.  First, copy the branches from the most recently inserted
569 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
570 	 */
571 	nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos;
572 	memcpy(&bs_dst->entries[0],
573 	       &bs_src->entries[etmq->last_branch_pos],
574 	       sizeof(struct branch_entry) * nr);
575 
576 	/*
577 	 * If we wrapped around at least once, the branches from the beginning
578 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
579 	 * are older valid branches: copy them over.  The total number of
580 	 * branches copied over will be equal to the number of branches asked by
581 	 * the user in last_branch_sz.
582 	 */
583 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
584 		memcpy(&bs_dst->entries[nr],
585 		       &bs_src->entries[0],
586 		       sizeof(struct branch_entry) * etmq->last_branch_pos);
587 	}
588 }
589 
590 static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq)
591 {
592 	etmq->last_branch_pos = 0;
593 	etmq->last_branch_rb->nr = 0;
594 }
595 
596 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
597 					 u64 addr) {
598 	u8 instrBytes[2];
599 
600 	cs_etm__mem_access(etmq, addr, ARRAY_SIZE(instrBytes), instrBytes);
601 	/*
602 	 * T32 instruction size is indicated by bits[15:11] of the first
603 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
604 	 * denote a 32-bit instruction.
605 	 */
606 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
607 }
608 
609 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
610 {
611 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
612 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
613 		return 0;
614 
615 	return packet->start_addr;
616 }
617 
618 static inline
619 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
620 {
621 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
622 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
623 		return 0;
624 
625 	return packet->end_addr - packet->last_instr_size;
626 }
627 
628 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
629 				     const struct cs_etm_packet *packet,
630 				     u64 offset)
631 {
632 	if (packet->isa == CS_ETM_ISA_T32) {
633 		u64 addr = packet->start_addr;
634 
635 		while (offset > 0) {
636 			addr += cs_etm__t32_instr_size(etmq, addr);
637 			offset--;
638 		}
639 		return addr;
640 	}
641 
642 	/* Assume a 4 byte instruction size (A32/A64) */
643 	return packet->start_addr + offset * 4;
644 }
645 
646 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq)
647 {
648 	struct branch_stack *bs = etmq->last_branch_rb;
649 	struct branch_entry *be;
650 
651 	/*
652 	 * The branches are recorded in a circular buffer in reverse
653 	 * chronological order: we start recording from the last element of the
654 	 * buffer down.  After writing the first element of the stack, move the
655 	 * insert position back to the end of the buffer.
656 	 */
657 	if (!etmq->last_branch_pos)
658 		etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
659 
660 	etmq->last_branch_pos -= 1;
661 
662 	be       = &bs->entries[etmq->last_branch_pos];
663 	be->from = cs_etm__last_executed_instr(etmq->prev_packet);
664 	be->to	 = cs_etm__first_executed_instr(etmq->packet);
665 	/* No support for mispredict */
666 	be->flags.mispred = 0;
667 	be->flags.predicted = 1;
668 
669 	/*
670 	 * Increment bs->nr until reaching the number of last branches asked by
671 	 * the user on the command line.
672 	 */
673 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
674 		bs->nr += 1;
675 }
676 
677 static int cs_etm__inject_event(union perf_event *event,
678 			       struct perf_sample *sample, u64 type)
679 {
680 	event->header.size = perf_event__sample_event_size(sample, type, 0);
681 	return perf_event__synthesize_sample(event, type, 0, sample);
682 }
683 
684 
685 static int
686 cs_etm__get_trace(struct cs_etm_queue *etmq)
687 {
688 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
689 	struct auxtrace_buffer *old_buffer = aux_buffer;
690 	struct auxtrace_queue *queue;
691 
692 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
693 
694 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
695 
696 	/* If no more data, drop the previous auxtrace_buffer and return */
697 	if (!aux_buffer) {
698 		if (old_buffer)
699 			auxtrace_buffer__drop_data(old_buffer);
700 		etmq->buf_len = 0;
701 		return 0;
702 	}
703 
704 	etmq->buffer = aux_buffer;
705 
706 	/* If the aux_buffer doesn't have data associated, try to load it */
707 	if (!aux_buffer->data) {
708 		/* get the file desc associated with the perf data file */
709 		int fd = perf_data__fd(etmq->etm->session->data);
710 
711 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
712 		if (!aux_buffer->data)
713 			return -ENOMEM;
714 	}
715 
716 	/* If valid, drop the previous buffer */
717 	if (old_buffer)
718 		auxtrace_buffer__drop_data(old_buffer);
719 
720 	etmq->buf_used = 0;
721 	etmq->buf_len = aux_buffer->size;
722 	etmq->buf = aux_buffer->data;
723 
724 	return etmq->buf_len;
725 }
726 
727 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
728 				    struct auxtrace_queue *queue)
729 {
730 	struct cs_etm_queue *etmq = queue->priv;
731 
732 	/* CPU-wide tracing isn't supported yet */
733 	if (queue->tid == -1)
734 		return;
735 
736 	if ((!etmq->thread) && (etmq->tid != -1))
737 		etmq->thread = machine__find_thread(etm->machine, -1,
738 						    etmq->tid);
739 
740 	if (etmq->thread) {
741 		etmq->pid = etmq->thread->pid_;
742 		if (queue->cpu == -1)
743 			etmq->cpu = etmq->thread->cpu;
744 	}
745 }
746 
747 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
748 					    u64 addr, u64 period)
749 {
750 	int ret = 0;
751 	struct cs_etm_auxtrace *etm = etmq->etm;
752 	union perf_event *event = etmq->event_buf;
753 	struct perf_sample sample = {.ip = 0,};
754 
755 	event->sample.header.type = PERF_RECORD_SAMPLE;
756 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
757 	event->sample.header.size = sizeof(struct perf_event_header);
758 
759 	sample.ip = addr;
760 	sample.pid = etmq->pid;
761 	sample.tid = etmq->tid;
762 	sample.id = etmq->etm->instructions_id;
763 	sample.stream_id = etmq->etm->instructions_id;
764 	sample.period = period;
765 	sample.cpu = etmq->packet->cpu;
766 	sample.flags = etmq->prev_packet->flags;
767 	sample.insn_len = 1;
768 	sample.cpumode = event->sample.header.misc;
769 
770 	if (etm->synth_opts.last_branch) {
771 		cs_etm__copy_last_branch_rb(etmq);
772 		sample.branch_stack = etmq->last_branch;
773 	}
774 
775 	if (etm->synth_opts.inject) {
776 		ret = cs_etm__inject_event(event, &sample,
777 					   etm->instructions_sample_type);
778 		if (ret)
779 			return ret;
780 	}
781 
782 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
783 
784 	if (ret)
785 		pr_err(
786 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
787 			ret);
788 
789 	if (etm->synth_opts.last_branch)
790 		cs_etm__reset_last_branch_rb(etmq);
791 
792 	return ret;
793 }
794 
795 /*
796  * The cs etm packet encodes an instruction range between a branch target
797  * and the next taken branch. Generate sample accordingly.
798  */
799 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq)
800 {
801 	int ret = 0;
802 	struct cs_etm_auxtrace *etm = etmq->etm;
803 	struct perf_sample sample = {.ip = 0,};
804 	union perf_event *event = etmq->event_buf;
805 	struct dummy_branch_stack {
806 		u64			nr;
807 		struct branch_entry	entries;
808 	} dummy_bs;
809 	u64 ip;
810 
811 	ip = cs_etm__last_executed_instr(etmq->prev_packet);
812 
813 	event->sample.header.type = PERF_RECORD_SAMPLE;
814 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
815 	event->sample.header.size = sizeof(struct perf_event_header);
816 
817 	sample.ip = ip;
818 	sample.pid = etmq->pid;
819 	sample.tid = etmq->tid;
820 	sample.addr = cs_etm__first_executed_instr(etmq->packet);
821 	sample.id = etmq->etm->branches_id;
822 	sample.stream_id = etmq->etm->branches_id;
823 	sample.period = 1;
824 	sample.cpu = etmq->packet->cpu;
825 	sample.flags = etmq->prev_packet->flags;
826 	sample.cpumode = event->sample.header.misc;
827 
828 	/*
829 	 * perf report cannot handle events without a branch stack
830 	 */
831 	if (etm->synth_opts.last_branch) {
832 		dummy_bs = (struct dummy_branch_stack){
833 			.nr = 1,
834 			.entries = {
835 				.from = sample.ip,
836 				.to = sample.addr,
837 			},
838 		};
839 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
840 	}
841 
842 	if (etm->synth_opts.inject) {
843 		ret = cs_etm__inject_event(event, &sample,
844 					   etm->branches_sample_type);
845 		if (ret)
846 			return ret;
847 	}
848 
849 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
850 
851 	if (ret)
852 		pr_err(
853 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
854 		ret);
855 
856 	return ret;
857 }
858 
859 struct cs_etm_synth {
860 	struct perf_tool dummy_tool;
861 	struct perf_session *session;
862 };
863 
864 static int cs_etm__event_synth(struct perf_tool *tool,
865 			       union perf_event *event,
866 			       struct perf_sample *sample __maybe_unused,
867 			       struct machine *machine __maybe_unused)
868 {
869 	struct cs_etm_synth *cs_etm_synth =
870 		      container_of(tool, struct cs_etm_synth, dummy_tool);
871 
872 	return perf_session__deliver_synth_event(cs_etm_synth->session,
873 						 event, NULL);
874 }
875 
876 static int cs_etm__synth_event(struct perf_session *session,
877 			       struct perf_event_attr *attr, u64 id)
878 {
879 	struct cs_etm_synth cs_etm_synth;
880 
881 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
882 	cs_etm_synth.session = session;
883 
884 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
885 					   &id, cs_etm__event_synth);
886 }
887 
888 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
889 				struct perf_session *session)
890 {
891 	struct perf_evlist *evlist = session->evlist;
892 	struct perf_evsel *evsel;
893 	struct perf_event_attr attr;
894 	bool found = false;
895 	u64 id;
896 	int err;
897 
898 	evlist__for_each_entry(evlist, evsel) {
899 		if (evsel->attr.type == etm->pmu_type) {
900 			found = true;
901 			break;
902 		}
903 	}
904 
905 	if (!found) {
906 		pr_debug("No selected events with CoreSight Trace data\n");
907 		return 0;
908 	}
909 
910 	memset(&attr, 0, sizeof(struct perf_event_attr));
911 	attr.size = sizeof(struct perf_event_attr);
912 	attr.type = PERF_TYPE_HARDWARE;
913 	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
914 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
915 			    PERF_SAMPLE_PERIOD;
916 	if (etm->timeless_decoding)
917 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
918 	else
919 		attr.sample_type |= PERF_SAMPLE_TIME;
920 
921 	attr.exclude_user = evsel->attr.exclude_user;
922 	attr.exclude_kernel = evsel->attr.exclude_kernel;
923 	attr.exclude_hv = evsel->attr.exclude_hv;
924 	attr.exclude_host = evsel->attr.exclude_host;
925 	attr.exclude_guest = evsel->attr.exclude_guest;
926 	attr.sample_id_all = evsel->attr.sample_id_all;
927 	attr.read_format = evsel->attr.read_format;
928 
929 	/* create new id val to be a fixed offset from evsel id */
930 	id = evsel->id[0] + 1000000000;
931 
932 	if (!id)
933 		id = 1;
934 
935 	if (etm->synth_opts.branches) {
936 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
937 		attr.sample_period = 1;
938 		attr.sample_type |= PERF_SAMPLE_ADDR;
939 		err = cs_etm__synth_event(session, &attr, id);
940 		if (err)
941 			return err;
942 		etm->sample_branches = true;
943 		etm->branches_sample_type = attr.sample_type;
944 		etm->branches_id = id;
945 		id += 1;
946 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
947 	}
948 
949 	if (etm->synth_opts.last_branch)
950 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
951 
952 	if (etm->synth_opts.instructions) {
953 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
954 		attr.sample_period = etm->synth_opts.period;
955 		etm->instructions_sample_period = attr.sample_period;
956 		err = cs_etm__synth_event(session, &attr, id);
957 		if (err)
958 			return err;
959 		etm->sample_instructions = true;
960 		etm->instructions_sample_type = attr.sample_type;
961 		etm->instructions_id = id;
962 		id += 1;
963 	}
964 
965 	return 0;
966 }
967 
968 static int cs_etm__sample(struct cs_etm_queue *etmq)
969 {
970 	struct cs_etm_auxtrace *etm = etmq->etm;
971 	struct cs_etm_packet *tmp;
972 	int ret;
973 	u64 instrs_executed = etmq->packet->instr_count;
974 
975 	etmq->period_instructions += instrs_executed;
976 
977 	/*
978 	 * Record a branch when the last instruction in
979 	 * PREV_PACKET is a branch.
980 	 */
981 	if (etm->synth_opts.last_branch &&
982 	    etmq->prev_packet->sample_type == CS_ETM_RANGE &&
983 	    etmq->prev_packet->last_instr_taken_branch)
984 		cs_etm__update_last_branch_rb(etmq);
985 
986 	if (etm->sample_instructions &&
987 	    etmq->period_instructions >= etm->instructions_sample_period) {
988 		/*
989 		 * Emit instruction sample periodically
990 		 * TODO: allow period to be defined in cycles and clock time
991 		 */
992 
993 		/* Get number of instructions executed after the sample point */
994 		u64 instrs_over = etmq->period_instructions -
995 			etm->instructions_sample_period;
996 
997 		/*
998 		 * Calculate the address of the sampled instruction (-1 as
999 		 * sample is reported as though instruction has just been
1000 		 * executed, but PC has not advanced to next instruction)
1001 		 */
1002 		u64 offset = (instrs_executed - instrs_over - 1);
1003 		u64 addr = cs_etm__instr_addr(etmq, etmq->packet, offset);
1004 
1005 		ret = cs_etm__synth_instruction_sample(
1006 			etmq, addr, etm->instructions_sample_period);
1007 		if (ret)
1008 			return ret;
1009 
1010 		/* Carry remaining instructions into next sample period */
1011 		etmq->period_instructions = instrs_over;
1012 	}
1013 
1014 	if (etm->sample_branches) {
1015 		bool generate_sample = false;
1016 
1017 		/* Generate sample for tracing on packet */
1018 		if (etmq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1019 			generate_sample = true;
1020 
1021 		/* Generate sample for branch taken packet */
1022 		if (etmq->prev_packet->sample_type == CS_ETM_RANGE &&
1023 		    etmq->prev_packet->last_instr_taken_branch)
1024 			generate_sample = true;
1025 
1026 		if (generate_sample) {
1027 			ret = cs_etm__synth_branch_sample(etmq);
1028 			if (ret)
1029 				return ret;
1030 		}
1031 	}
1032 
1033 	if (etm->sample_branches || etm->synth_opts.last_branch) {
1034 		/*
1035 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1036 		 * the next incoming packet.
1037 		 */
1038 		tmp = etmq->packet;
1039 		etmq->packet = etmq->prev_packet;
1040 		etmq->prev_packet = tmp;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static int cs_etm__exception(struct cs_etm_queue *etmq)
1047 {
1048 	/*
1049 	 * When the exception packet is inserted, whether the last instruction
1050 	 * in previous range packet is taken branch or not, we need to force
1051 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1052 	 * to generate branch sample for the instruction range before the
1053 	 * exception is trapped to kernel or before the exception returning.
1054 	 *
1055 	 * The exception packet includes the dummy address values, so don't
1056 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1057 	 * for generating instruction and branch samples.
1058 	 */
1059 	if (etmq->prev_packet->sample_type == CS_ETM_RANGE)
1060 		etmq->prev_packet->last_instr_taken_branch = true;
1061 
1062 	return 0;
1063 }
1064 
1065 static int cs_etm__flush(struct cs_etm_queue *etmq)
1066 {
1067 	int err = 0;
1068 	struct cs_etm_auxtrace *etm = etmq->etm;
1069 	struct cs_etm_packet *tmp;
1070 
1071 	/* Handle start tracing packet */
1072 	if (etmq->prev_packet->sample_type == CS_ETM_EMPTY)
1073 		goto swap_packet;
1074 
1075 	if (etmq->etm->synth_opts.last_branch &&
1076 	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
1077 		/*
1078 		 * Generate a last branch event for the branches left in the
1079 		 * circular buffer at the end of the trace.
1080 		 *
1081 		 * Use the address of the end of the last reported execution
1082 		 * range
1083 		 */
1084 		u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);
1085 
1086 		err = cs_etm__synth_instruction_sample(
1087 			etmq, addr,
1088 			etmq->period_instructions);
1089 		if (err)
1090 			return err;
1091 
1092 		etmq->period_instructions = 0;
1093 
1094 	}
1095 
1096 	if (etm->sample_branches &&
1097 	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
1098 		err = cs_etm__synth_branch_sample(etmq);
1099 		if (err)
1100 			return err;
1101 	}
1102 
1103 swap_packet:
1104 	if (etm->sample_branches || etm->synth_opts.last_branch) {
1105 		/*
1106 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1107 		 * the next incoming packet.
1108 		 */
1109 		tmp = etmq->packet;
1110 		etmq->packet = etmq->prev_packet;
1111 		etmq->prev_packet = tmp;
1112 	}
1113 
1114 	return err;
1115 }
1116 
1117 static int cs_etm__end_block(struct cs_etm_queue *etmq)
1118 {
1119 	int err;
1120 
1121 	/*
1122 	 * It has no new packet coming and 'etmq->packet' contains the stale
1123 	 * packet which was set at the previous time with packets swapping;
1124 	 * so skip to generate branch sample to avoid stale packet.
1125 	 *
1126 	 * For this case only flush branch stack and generate a last branch
1127 	 * event for the branches left in the circular buffer at the end of
1128 	 * the trace.
1129 	 */
1130 	if (etmq->etm->synth_opts.last_branch &&
1131 	    etmq->prev_packet->sample_type == CS_ETM_RANGE) {
1132 		/*
1133 		 * Use the address of the end of the last reported execution
1134 		 * range.
1135 		 */
1136 		u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);
1137 
1138 		err = cs_etm__synth_instruction_sample(
1139 			etmq, addr,
1140 			etmq->period_instructions);
1141 		if (err)
1142 			return err;
1143 
1144 		etmq->period_instructions = 0;
1145 	}
1146 
1147 	return 0;
1148 }
1149 /*
1150  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1151  *			   if need be.
1152  * Returns:	< 0	if error
1153  *		= 0	if no more auxtrace_buffer to read
1154  *		> 0	if the current buffer isn't empty yet
1155  */
1156 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1157 {
1158 	int ret;
1159 
1160 	if (!etmq->buf_len) {
1161 		ret = cs_etm__get_trace(etmq);
1162 		if (ret <= 0)
1163 			return ret;
1164 		/*
1165 		 * We cannot assume consecutive blocks in the data file
1166 		 * are contiguous, reset the decoder to force re-sync.
1167 		 */
1168 		ret = cs_etm_decoder__reset(etmq->decoder);
1169 		if (ret)
1170 			return ret;
1171 	}
1172 
1173 	return etmq->buf_len;
1174 }
1175 
1176 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq,
1177 				 struct cs_etm_packet *packet,
1178 				 u64 end_addr)
1179 {
1180 	u16 instr16;
1181 	u32 instr32;
1182 	u64 addr;
1183 
1184 	switch (packet->isa) {
1185 	case CS_ETM_ISA_T32:
1186 		/*
1187 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1188 		 *
1189 		 *  b'15         b'8
1190 		 * +-----------------+--------+
1191 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1192 		 * +-----------------+--------+
1193 		 *
1194 		 * According to the specifiction, it only defines SVC for T32
1195 		 * with 16 bits instruction and has no definition for 32bits;
1196 		 * so below only read 2 bytes as instruction size for T32.
1197 		 */
1198 		addr = end_addr - 2;
1199 		cs_etm__mem_access(etmq, addr, sizeof(instr16), (u8 *)&instr16);
1200 		if ((instr16 & 0xFF00) == 0xDF00)
1201 			return true;
1202 
1203 		break;
1204 	case CS_ETM_ISA_A32:
1205 		/*
1206 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1207 		 *
1208 		 *  b'31 b'28 b'27 b'24
1209 		 * +---------+---------+-------------------------+
1210 		 * |  !1111  | 1 1 1 1 |        imm24            |
1211 		 * +---------+---------+-------------------------+
1212 		 */
1213 		addr = end_addr - 4;
1214 		cs_etm__mem_access(etmq, addr, sizeof(instr32), (u8 *)&instr32);
1215 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1216 		    (instr32 & 0xF0000000) != 0xF0000000)
1217 			return true;
1218 
1219 		break;
1220 	case CS_ETM_ISA_A64:
1221 		/*
1222 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1223 		 *
1224 		 *  b'31               b'21           b'4     b'0
1225 		 * +-----------------------+---------+-----------+
1226 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1227 		 * +-----------------------+---------+-----------+
1228 		 */
1229 		addr = end_addr - 4;
1230 		cs_etm__mem_access(etmq, addr, sizeof(instr32), (u8 *)&instr32);
1231 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1232 			return true;
1233 
1234 		break;
1235 	case CS_ETM_ISA_UNKNOWN:
1236 	default:
1237 		break;
1238 	}
1239 
1240 	return false;
1241 }
1242 
1243 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, u64 magic)
1244 {
1245 	struct cs_etm_packet *packet = etmq->packet;
1246 	struct cs_etm_packet *prev_packet = etmq->prev_packet;
1247 
1248 	if (magic == __perf_cs_etmv3_magic)
1249 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1250 			return true;
1251 
1252 	/*
1253 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1254 	 * HVC cases; need to check if it's SVC instruction based on
1255 	 * packet address.
1256 	 */
1257 	if (magic == __perf_cs_etmv4_magic) {
1258 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1259 		    cs_etm__is_svc_instr(etmq, prev_packet,
1260 					 prev_packet->end_addr))
1261 			return true;
1262 	}
1263 
1264 	return false;
1265 }
1266 
1267 static bool cs_etm__is_async_exception(struct cs_etm_queue *etmq, u64 magic)
1268 {
1269 	struct cs_etm_packet *packet = etmq->packet;
1270 
1271 	if (magic == __perf_cs_etmv3_magic)
1272 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1273 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1274 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1275 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1276 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1277 			return true;
1278 
1279 	if (magic == __perf_cs_etmv4_magic)
1280 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1281 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1282 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1283 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1284 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1285 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1286 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1287 			return true;
1288 
1289 	return false;
1290 }
1291 
1292 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, u64 magic)
1293 {
1294 	struct cs_etm_packet *packet = etmq->packet;
1295 	struct cs_etm_packet *prev_packet = etmq->prev_packet;
1296 
1297 	if (magic == __perf_cs_etmv3_magic)
1298 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1299 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1300 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1301 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1302 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1303 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1304 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1305 			return true;
1306 
1307 	if (magic == __perf_cs_etmv4_magic) {
1308 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1309 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1310 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1311 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1312 			return true;
1313 
1314 		/*
1315 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1316 		 * (SMC, HVC) are taken as sync exceptions.
1317 		 */
1318 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1319 		    !cs_etm__is_svc_instr(etmq, prev_packet,
1320 					  prev_packet->end_addr))
1321 			return true;
1322 
1323 		/*
1324 		 * ETMv4 has 5 bits for exception number; if the numbers
1325 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1326 		 * they are implementation defined exceptions.
1327 		 *
1328 		 * For this case, simply take it as sync exception.
1329 		 */
1330 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1331 		    packet->exception_number <= CS_ETMV4_EXC_END)
1332 			return true;
1333 	}
1334 
1335 	return false;
1336 }
1337 
1338 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq)
1339 {
1340 	struct cs_etm_packet *packet = etmq->packet;
1341 	struct cs_etm_packet *prev_packet = etmq->prev_packet;
1342 	u64 magic;
1343 	int ret;
1344 
1345 	switch (packet->sample_type) {
1346 	case CS_ETM_RANGE:
1347 		/*
1348 		 * Immediate branch instruction without neither link nor
1349 		 * return flag, it's normal branch instruction within
1350 		 * the function.
1351 		 */
1352 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1353 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1354 			packet->flags = PERF_IP_FLAG_BRANCH;
1355 
1356 			if (packet->last_instr_cond)
1357 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1358 		}
1359 
1360 		/*
1361 		 * Immediate branch instruction with link (e.g. BL), this is
1362 		 * branch instruction for function call.
1363 		 */
1364 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1365 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1366 			packet->flags = PERF_IP_FLAG_BRANCH |
1367 					PERF_IP_FLAG_CALL;
1368 
1369 		/*
1370 		 * Indirect branch instruction with link (e.g. BLR), this is
1371 		 * branch instruction for function call.
1372 		 */
1373 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1374 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1375 			packet->flags = PERF_IP_FLAG_BRANCH |
1376 					PERF_IP_FLAG_CALL;
1377 
1378 		/*
1379 		 * Indirect branch instruction with subtype of
1380 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1381 		 * function return for A32/T32.
1382 		 */
1383 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1384 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1385 			packet->flags = PERF_IP_FLAG_BRANCH |
1386 					PERF_IP_FLAG_RETURN;
1387 
1388 		/*
1389 		 * Indirect branch instruction without link (e.g. BR), usually
1390 		 * this is used for function return, especially for functions
1391 		 * within dynamic link lib.
1392 		 */
1393 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1394 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1395 			packet->flags = PERF_IP_FLAG_BRANCH |
1396 					PERF_IP_FLAG_RETURN;
1397 
1398 		/* Return instruction for function return. */
1399 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1400 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1401 			packet->flags = PERF_IP_FLAG_BRANCH |
1402 					PERF_IP_FLAG_RETURN;
1403 
1404 		/*
1405 		 * Decoder might insert a discontinuity in the middle of
1406 		 * instruction packets, fixup prev_packet with flag
1407 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1408 		 */
1409 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1410 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1411 					      PERF_IP_FLAG_TRACE_BEGIN;
1412 
1413 		/*
1414 		 * If the previous packet is an exception return packet
1415 		 * and the return address just follows SVC instuction,
1416 		 * it needs to calibrate the previous packet sample flags
1417 		 * as PERF_IP_FLAG_SYSCALLRET.
1418 		 */
1419 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1420 					   PERF_IP_FLAG_RETURN |
1421 					   PERF_IP_FLAG_INTERRUPT) &&
1422 		    cs_etm__is_svc_instr(etmq, packet, packet->start_addr))
1423 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1424 					     PERF_IP_FLAG_RETURN |
1425 					     PERF_IP_FLAG_SYSCALLRET;
1426 		break;
1427 	case CS_ETM_DISCONTINUITY:
1428 		/*
1429 		 * The trace is discontinuous, if the previous packet is
1430 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1431 		 * for previous packet.
1432 		 */
1433 		if (prev_packet->sample_type == CS_ETM_RANGE)
1434 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1435 					      PERF_IP_FLAG_TRACE_END;
1436 		break;
1437 	case CS_ETM_EXCEPTION:
1438 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1439 		if (ret)
1440 			return ret;
1441 
1442 		/* The exception is for system call. */
1443 		if (cs_etm__is_syscall(etmq, magic))
1444 			packet->flags = PERF_IP_FLAG_BRANCH |
1445 					PERF_IP_FLAG_CALL |
1446 					PERF_IP_FLAG_SYSCALLRET;
1447 		/*
1448 		 * The exceptions are triggered by external signals from bus,
1449 		 * interrupt controller, debug module, PE reset or halt.
1450 		 */
1451 		else if (cs_etm__is_async_exception(etmq, magic))
1452 			packet->flags = PERF_IP_FLAG_BRANCH |
1453 					PERF_IP_FLAG_CALL |
1454 					PERF_IP_FLAG_ASYNC |
1455 					PERF_IP_FLAG_INTERRUPT;
1456 		/*
1457 		 * Otherwise, exception is caused by trap, instruction &
1458 		 * data fault, or alignment errors.
1459 		 */
1460 		else if (cs_etm__is_sync_exception(etmq, magic))
1461 			packet->flags = PERF_IP_FLAG_BRANCH |
1462 					PERF_IP_FLAG_CALL |
1463 					PERF_IP_FLAG_INTERRUPT;
1464 
1465 		/*
1466 		 * When the exception packet is inserted, since exception
1467 		 * packet is not used standalone for generating samples
1468 		 * and it's affiliation to the previous instruction range
1469 		 * packet; so set previous range packet flags to tell perf
1470 		 * it is an exception taken branch.
1471 		 */
1472 		if (prev_packet->sample_type == CS_ETM_RANGE)
1473 			prev_packet->flags = packet->flags;
1474 		break;
1475 	case CS_ETM_EXCEPTION_RET:
1476 		/*
1477 		 * When the exception return packet is inserted, since
1478 		 * exception return packet is not used standalone for
1479 		 * generating samples and it's affiliation to the previous
1480 		 * instruction range packet; so set previous range packet
1481 		 * flags to tell perf it is an exception return branch.
1482 		 *
1483 		 * The exception return can be for either system call or
1484 		 * other exception types; unfortunately the packet doesn't
1485 		 * contain exception type related info so we cannot decide
1486 		 * the exception type purely based on exception return packet.
1487 		 * If we record the exception number from exception packet and
1488 		 * reuse it for excpetion return packet, this is not reliable
1489 		 * due the trace can be discontinuity or the interrupt can
1490 		 * be nested, thus the recorded exception number cannot be
1491 		 * used for exception return packet for these two cases.
1492 		 *
1493 		 * For exception return packet, we only need to distinguish the
1494 		 * packet is for system call or for other types.  Thus the
1495 		 * decision can be deferred when receive the next packet which
1496 		 * contains the return address, based on the return address we
1497 		 * can read out the previous instruction and check if it's a
1498 		 * system call instruction and then calibrate the sample flag
1499 		 * as needed.
1500 		 */
1501 		if (prev_packet->sample_type == CS_ETM_RANGE)
1502 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1503 					     PERF_IP_FLAG_RETURN |
1504 					     PERF_IP_FLAG_INTERRUPT;
1505 		break;
1506 	case CS_ETM_EMPTY:
1507 	default:
1508 		break;
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1515 {
1516 	int ret = 0;
1517 	size_t processed = 0;
1518 
1519 	/*
1520 	 * Packets are decoded and added to the decoder's packet queue
1521 	 * until the decoder packet processing callback has requested that
1522 	 * processing stops or there is nothing left in the buffer.  Normal
1523 	 * operations that stop processing are a timestamp packet or a full
1524 	 * decoder buffer queue.
1525 	 */
1526 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
1527 						 etmq->offset,
1528 						 &etmq->buf[etmq->buf_used],
1529 						 etmq->buf_len,
1530 						 &processed);
1531 	if (ret)
1532 		goto out;
1533 
1534 	etmq->offset += processed;
1535 	etmq->buf_used += processed;
1536 	etmq->buf_len -= processed;
1537 
1538 out:
1539 	return ret;
1540 }
1541 
1542 static int cs_etm__process_decoder_queue(struct cs_etm_queue *etmq)
1543 {
1544 	int ret;
1545 
1546 		/* Process each packet in this chunk */
1547 		while (1) {
1548 			ret = cs_etm_decoder__get_packet(etmq->decoder,
1549 							 etmq->packet);
1550 			if (ret <= 0)
1551 				/*
1552 				 * Stop processing this chunk on
1553 				 * end of data or error
1554 				 */
1555 				break;
1556 
1557 			/*
1558 			 * Since packet addresses are swapped in packet
1559 			 * handling within below switch() statements,
1560 			 * thus setting sample flags must be called
1561 			 * prior to switch() statement to use address
1562 			 * information before packets swapping.
1563 			 */
1564 			ret = cs_etm__set_sample_flags(etmq);
1565 			if (ret < 0)
1566 				break;
1567 
1568 			switch (etmq->packet->sample_type) {
1569 			case CS_ETM_RANGE:
1570 				/*
1571 				 * If the packet contains an instruction
1572 				 * range, generate instruction sequence
1573 				 * events.
1574 				 */
1575 				cs_etm__sample(etmq);
1576 				break;
1577 			case CS_ETM_EXCEPTION:
1578 			case CS_ETM_EXCEPTION_RET:
1579 				/*
1580 				 * If the exception packet is coming,
1581 				 * make sure the previous instruction
1582 				 * range packet to be handled properly.
1583 				 */
1584 				cs_etm__exception(etmq);
1585 				break;
1586 			case CS_ETM_DISCONTINUITY:
1587 				/*
1588 				 * Discontinuity in trace, flush
1589 				 * previous branch stack
1590 				 */
1591 				cs_etm__flush(etmq);
1592 				break;
1593 			case CS_ETM_EMPTY:
1594 				/*
1595 				 * Should not receive empty packet,
1596 				 * report error.
1597 				 */
1598 				pr_err("CS ETM Trace: empty packet\n");
1599 				return -EINVAL;
1600 			default:
1601 				break;
1602 			}
1603 		}
1604 
1605 	return ret;
1606 }
1607 
1608 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
1609 {
1610 	int err = 0;
1611 
1612 	/* Go through each buffer in the queue and decode them one by one */
1613 	while (1) {
1614 		err = cs_etm__get_data_block(etmq);
1615 		if (err <= 0)
1616 			return err;
1617 
1618 		/* Run trace decoder until buffer consumed or end of trace */
1619 		do {
1620 			err = cs_etm__decode_data_block(etmq);
1621 			if (err)
1622 				return err;
1623 
1624 			/*
1625 			 * Process each packet in this chunk, nothing to do if
1626 			 * an error occurs other than hoping the next one will
1627 			 * be better.
1628 			 */
1629 			err = cs_etm__process_decoder_queue(etmq);
1630 
1631 		} while (etmq->buf_len);
1632 
1633 		if (err == 0)
1634 			/* Flush any remaining branch stack entries */
1635 			err = cs_etm__end_block(etmq);
1636 	}
1637 
1638 	return err;
1639 }
1640 
1641 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
1642 					   pid_t tid)
1643 {
1644 	unsigned int i;
1645 	struct auxtrace_queues *queues = &etm->queues;
1646 
1647 	for (i = 0; i < queues->nr_queues; i++) {
1648 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
1649 		struct cs_etm_queue *etmq = queue->priv;
1650 
1651 		if (etmq && ((tid == -1) || (etmq->tid == tid))) {
1652 			cs_etm__set_pid_tid_cpu(etm, queue);
1653 			cs_etm__run_decoder(etmq);
1654 		}
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 static int cs_etm__process_event(struct perf_session *session,
1661 				 union perf_event *event,
1662 				 struct perf_sample *sample,
1663 				 struct perf_tool *tool)
1664 {
1665 	int err = 0;
1666 	u64 timestamp;
1667 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
1668 						   struct cs_etm_auxtrace,
1669 						   auxtrace);
1670 
1671 	if (dump_trace)
1672 		return 0;
1673 
1674 	if (!tool->ordered_events) {
1675 		pr_err("CoreSight ETM Trace requires ordered events\n");
1676 		return -EINVAL;
1677 	}
1678 
1679 	if (!etm->timeless_decoding)
1680 		return -EINVAL;
1681 
1682 	if (sample->time && (sample->time != (u64) -1))
1683 		timestamp = sample->time;
1684 	else
1685 		timestamp = 0;
1686 
1687 	if (timestamp || etm->timeless_decoding) {
1688 		err = cs_etm__update_queues(etm);
1689 		if (err)
1690 			return err;
1691 	}
1692 
1693 	if (event->header.type == PERF_RECORD_EXIT)
1694 		return cs_etm__process_timeless_queues(etm,
1695 						       event->fork.tid);
1696 
1697 	return 0;
1698 }
1699 
1700 static int cs_etm__process_auxtrace_event(struct perf_session *session,
1701 					  union perf_event *event,
1702 					  struct perf_tool *tool __maybe_unused)
1703 {
1704 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
1705 						   struct cs_etm_auxtrace,
1706 						   auxtrace);
1707 	if (!etm->data_queued) {
1708 		struct auxtrace_buffer *buffer;
1709 		off_t  data_offset;
1710 		int fd = perf_data__fd(session->data);
1711 		bool is_pipe = perf_data__is_pipe(session->data);
1712 		int err;
1713 
1714 		if (is_pipe)
1715 			data_offset = 0;
1716 		else {
1717 			data_offset = lseek(fd, 0, SEEK_CUR);
1718 			if (data_offset == -1)
1719 				return -errno;
1720 		}
1721 
1722 		err = auxtrace_queues__add_event(&etm->queues, session,
1723 						 event, data_offset, &buffer);
1724 		if (err)
1725 			return err;
1726 
1727 		if (dump_trace)
1728 			if (auxtrace_buffer__get_data(buffer, fd)) {
1729 				cs_etm__dump_event(etm, buffer);
1730 				auxtrace_buffer__put_data(buffer);
1731 			}
1732 	}
1733 
1734 	return 0;
1735 }
1736 
1737 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
1738 {
1739 	struct perf_evsel *evsel;
1740 	struct perf_evlist *evlist = etm->session->evlist;
1741 	bool timeless_decoding = true;
1742 
1743 	/*
1744 	 * Circle through the list of event and complain if we find one
1745 	 * with the time bit set.
1746 	 */
1747 	evlist__for_each_entry(evlist, evsel) {
1748 		if ((evsel->attr.sample_type & PERF_SAMPLE_TIME))
1749 			timeless_decoding = false;
1750 	}
1751 
1752 	return timeless_decoding;
1753 }
1754 
1755 static const char * const cs_etm_global_header_fmts[] = {
1756 	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
1757 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
1758 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
1759 };
1760 
1761 static const char * const cs_etm_priv_fmts[] = {
1762 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
1763 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
1764 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
1765 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
1766 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
1767 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
1768 };
1769 
1770 static const char * const cs_etmv4_priv_fmts[] = {
1771 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
1772 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
1773 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
1774 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
1775 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
1776 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
1777 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
1778 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
1779 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
1780 };
1781 
1782 static void cs_etm__print_auxtrace_info(u64 *val, int num)
1783 {
1784 	int i, j, cpu = 0;
1785 
1786 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
1787 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
1788 
1789 	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
1790 		if (val[i] == __perf_cs_etmv3_magic)
1791 			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
1792 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
1793 		else if (val[i] == __perf_cs_etmv4_magic)
1794 			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
1795 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
1796 		else
1797 			/* failure.. return */
1798 			return;
1799 	}
1800 }
1801 
1802 int cs_etm__process_auxtrace_info(union perf_event *event,
1803 				  struct perf_session *session)
1804 {
1805 	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
1806 	struct cs_etm_auxtrace *etm = NULL;
1807 	struct int_node *inode;
1808 	unsigned int pmu_type;
1809 	int event_header_size = sizeof(struct perf_event_header);
1810 	int info_header_size;
1811 	int total_size = auxtrace_info->header.size;
1812 	int priv_size = 0;
1813 	int num_cpu;
1814 	int err = 0, idx = -1;
1815 	int i, j, k;
1816 	u64 *ptr, *hdr = NULL;
1817 	u64 **metadata = NULL;
1818 
1819 	/*
1820 	 * sizeof(auxtrace_info_event::type) +
1821 	 * sizeof(auxtrace_info_event::reserved) == 8
1822 	 */
1823 	info_header_size = 8;
1824 
1825 	if (total_size < (event_header_size + info_header_size))
1826 		return -EINVAL;
1827 
1828 	priv_size = total_size - event_header_size - info_header_size;
1829 
1830 	/* First the global part */
1831 	ptr = (u64 *) auxtrace_info->priv;
1832 
1833 	/* Look for version '0' of the header */
1834 	if (ptr[0] != 0)
1835 		return -EINVAL;
1836 
1837 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
1838 	if (!hdr)
1839 		return -ENOMEM;
1840 
1841 	/* Extract header information - see cs-etm.h for format */
1842 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
1843 		hdr[i] = ptr[i];
1844 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
1845 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
1846 				    0xffffffff);
1847 
1848 	/*
1849 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
1850 	 * has to be made for each packet that gets decoded, optimizing access
1851 	 * in anything other than a sequential array is worth doing.
1852 	 */
1853 	traceid_list = intlist__new(NULL);
1854 	if (!traceid_list) {
1855 		err = -ENOMEM;
1856 		goto err_free_hdr;
1857 	}
1858 
1859 	metadata = zalloc(sizeof(*metadata) * num_cpu);
1860 	if (!metadata) {
1861 		err = -ENOMEM;
1862 		goto err_free_traceid_list;
1863 	}
1864 
1865 	/*
1866 	 * The metadata is stored in the auxtrace_info section and encodes
1867 	 * the configuration of the ARM embedded trace macrocell which is
1868 	 * required by the trace decoder to properly decode the trace due
1869 	 * to its highly compressed nature.
1870 	 */
1871 	for (j = 0; j < num_cpu; j++) {
1872 		if (ptr[i] == __perf_cs_etmv3_magic) {
1873 			metadata[j] = zalloc(sizeof(*metadata[j]) *
1874 					     CS_ETM_PRIV_MAX);
1875 			if (!metadata[j]) {
1876 				err = -ENOMEM;
1877 				goto err_free_metadata;
1878 			}
1879 			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
1880 				metadata[j][k] = ptr[i + k];
1881 
1882 			/* The traceID is our handle */
1883 			idx = metadata[j][CS_ETM_ETMTRACEIDR];
1884 			i += CS_ETM_PRIV_MAX;
1885 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
1886 			metadata[j] = zalloc(sizeof(*metadata[j]) *
1887 					     CS_ETMV4_PRIV_MAX);
1888 			if (!metadata[j]) {
1889 				err = -ENOMEM;
1890 				goto err_free_metadata;
1891 			}
1892 			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
1893 				metadata[j][k] = ptr[i + k];
1894 
1895 			/* The traceID is our handle */
1896 			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
1897 			i += CS_ETMV4_PRIV_MAX;
1898 		}
1899 
1900 		/* Get an RB node for this CPU */
1901 		inode = intlist__findnew(traceid_list, idx);
1902 
1903 		/* Something went wrong, no need to continue */
1904 		if (!inode) {
1905 			err = PTR_ERR(inode);
1906 			goto err_free_metadata;
1907 		}
1908 
1909 		/*
1910 		 * The node for that CPU should not be taken.
1911 		 * Back out if that's the case.
1912 		 */
1913 		if (inode->priv) {
1914 			err = -EINVAL;
1915 			goto err_free_metadata;
1916 		}
1917 		/* All good, associate the traceID with the metadata pointer */
1918 		inode->priv = metadata[j];
1919 	}
1920 
1921 	/*
1922 	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
1923 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
1924 	 * global metadata, and each cpu's metadata respectively.
1925 	 * The following tests if the correct number of double words was
1926 	 * present in the auxtrace info section.
1927 	 */
1928 	if (i * 8 != priv_size) {
1929 		err = -EINVAL;
1930 		goto err_free_metadata;
1931 	}
1932 
1933 	etm = zalloc(sizeof(*etm));
1934 
1935 	if (!etm) {
1936 		err = -ENOMEM;
1937 		goto err_free_metadata;
1938 	}
1939 
1940 	err = auxtrace_queues__init(&etm->queues);
1941 	if (err)
1942 		goto err_free_etm;
1943 
1944 	etm->session = session;
1945 	etm->machine = &session->machines.host;
1946 
1947 	etm->num_cpu = num_cpu;
1948 	etm->pmu_type = pmu_type;
1949 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
1950 	etm->metadata = metadata;
1951 	etm->auxtrace_type = auxtrace_info->type;
1952 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
1953 
1954 	etm->auxtrace.process_event = cs_etm__process_event;
1955 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
1956 	etm->auxtrace.flush_events = cs_etm__flush_events;
1957 	etm->auxtrace.free_events = cs_etm__free_events;
1958 	etm->auxtrace.free = cs_etm__free;
1959 	session->auxtrace = &etm->auxtrace;
1960 
1961 	etm->unknown_thread = thread__new(999999999, 999999999);
1962 	if (!etm->unknown_thread)
1963 		goto err_free_queues;
1964 
1965 	/*
1966 	 * Initialize list node so that at thread__zput() we can avoid
1967 	 * segmentation fault at list_del_init().
1968 	 */
1969 	INIT_LIST_HEAD(&etm->unknown_thread->node);
1970 
1971 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
1972 	if (err)
1973 		goto err_delete_thread;
1974 
1975 	if (thread__init_map_groups(etm->unknown_thread, etm->machine))
1976 		goto err_delete_thread;
1977 
1978 	if (dump_trace) {
1979 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
1980 		return 0;
1981 	}
1982 
1983 	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
1984 		etm->synth_opts = *session->itrace_synth_opts;
1985 	} else {
1986 		itrace_synth_opts__set_default(&etm->synth_opts,
1987 				session->itrace_synth_opts->default_no_sample);
1988 		etm->synth_opts.callchain = false;
1989 	}
1990 
1991 	err = cs_etm__synth_events(etm, session);
1992 	if (err)
1993 		goto err_delete_thread;
1994 
1995 	err = auxtrace_queues__process_index(&etm->queues, session);
1996 	if (err)
1997 		goto err_delete_thread;
1998 
1999 	etm->data_queued = etm->queues.populated;
2000 
2001 	return 0;
2002 
2003 err_delete_thread:
2004 	thread__zput(etm->unknown_thread);
2005 err_free_queues:
2006 	auxtrace_queues__free(&etm->queues);
2007 	session->auxtrace = NULL;
2008 err_free_etm:
2009 	zfree(&etm);
2010 err_free_metadata:
2011 	/* No need to check @metadata[j], free(NULL) is supported */
2012 	for (j = 0; j < num_cpu; j++)
2013 		free(metadata[j]);
2014 	zfree(&metadata);
2015 err_free_traceid_list:
2016 	intlist__delete(traceid_list);
2017 err_free_hdr:
2018 	zfree(&hdr);
2019 
2020 	return -EINVAL;
2021 }
2022