xref: /openbmc/linux/tools/perf/util/cs-etm.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19 
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40 
41 struct cs_etm_auxtrace {
42 	struct auxtrace auxtrace;
43 	struct auxtrace_queues queues;
44 	struct auxtrace_heap heap;
45 	struct itrace_synth_opts synth_opts;
46 	struct perf_session *session;
47 	struct machine *machine;
48 	struct thread *unknown_thread;
49 
50 	u8 timeless_decoding;
51 	u8 snapshot_mode;
52 	u8 data_queued;
53 
54 	int num_cpu;
55 	u64 latest_kernel_timestamp;
56 	u32 auxtrace_type;
57 	u64 branches_sample_type;
58 	u64 branches_id;
59 	u64 instructions_sample_type;
60 	u64 instructions_sample_period;
61 	u64 instructions_id;
62 	u64 **metadata;
63 	unsigned int pmu_type;
64 };
65 
66 struct cs_etm_traceid_queue {
67 	u8 trace_chan_id;
68 	pid_t pid, tid;
69 	u64 period_instructions;
70 	size_t last_branch_pos;
71 	union perf_event *event_buf;
72 	struct thread *thread;
73 	struct branch_stack *last_branch;
74 	struct branch_stack *last_branch_rb;
75 	struct cs_etm_packet *prev_packet;
76 	struct cs_etm_packet *packet;
77 	struct cs_etm_packet_queue packet_queue;
78 };
79 
80 struct cs_etm_queue {
81 	struct cs_etm_auxtrace *etm;
82 	struct cs_etm_decoder *decoder;
83 	struct auxtrace_buffer *buffer;
84 	unsigned int queue_nr;
85 	u8 pending_timestamp_chan_id;
86 	u64 offset;
87 	const unsigned char *buf;
88 	size_t buf_len, buf_used;
89 	/* Conversion between traceID and index in traceid_queues array */
90 	struct intlist *traceid_queues_list;
91 	struct cs_etm_traceid_queue **traceid_queues;
92 };
93 
94 /* RB tree for quick conversion between traceID and metadata pointers */
95 static struct intlist *traceid_list;
96 
97 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
98 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
99 					   pid_t tid);
100 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
101 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
102 
103 /* PTMs ETMIDR [11:8] set to b0011 */
104 #define ETMIDR_PTM_VERSION 0x00000300
105 
106 /*
107  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
108  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
109  * encode the etm queue number as the upper 16 bit and the channel as
110  * the lower 16 bit.
111  */
112 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
113 		      (queue_nr << 16 | trace_chan_id)
114 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
115 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
116 
117 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
118 {
119 	etmidr &= ETMIDR_PTM_VERSION;
120 
121 	if (etmidr == ETMIDR_PTM_VERSION)
122 		return CS_ETM_PROTO_PTM;
123 
124 	return CS_ETM_PROTO_ETMV3;
125 }
126 
127 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
128 {
129 	struct int_node *inode;
130 	u64 *metadata;
131 
132 	inode = intlist__find(traceid_list, trace_chan_id);
133 	if (!inode)
134 		return -EINVAL;
135 
136 	metadata = inode->priv;
137 	*magic = metadata[CS_ETM_MAGIC];
138 	return 0;
139 }
140 
141 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
142 {
143 	struct int_node *inode;
144 	u64 *metadata;
145 
146 	inode = intlist__find(traceid_list, trace_chan_id);
147 	if (!inode)
148 		return -EINVAL;
149 
150 	metadata = inode->priv;
151 	*cpu = (int)metadata[CS_ETM_CPU];
152 	return 0;
153 }
154 
155 /*
156  * The returned PID format is presented by two bits:
157  *
158  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
159  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
160  *
161  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
162  * are enabled at the same time when the session runs on an EL2 kernel.
163  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
164  * recorded in the trace data, the tool will selectively use
165  * CONTEXTIDR_EL2 as PID.
166  */
167 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
168 {
169 	struct int_node *inode;
170 	u64 *metadata, val;
171 
172 	inode = intlist__find(traceid_list, trace_chan_id);
173 	if (!inode)
174 		return -EINVAL;
175 
176 	metadata = inode->priv;
177 
178 	if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
179 		val = metadata[CS_ETM_ETMCR];
180 		/* CONTEXTIDR is traced */
181 		if (val & BIT(ETM_OPT_CTXTID))
182 			*pid_fmt = BIT(ETM_OPT_CTXTID);
183 	} else {
184 		val = metadata[CS_ETMV4_TRCCONFIGR];
185 		/* CONTEXTIDR_EL2 is traced */
186 		if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
187 			*pid_fmt = BIT(ETM_OPT_CTXTID2);
188 		/* CONTEXTIDR_EL1 is traced */
189 		else if (val & BIT(ETM4_CFG_BIT_CTXTID))
190 			*pid_fmt = BIT(ETM_OPT_CTXTID);
191 	}
192 
193 	return 0;
194 }
195 
196 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
197 					      u8 trace_chan_id)
198 {
199 	/*
200 	 * When a timestamp packet is encountered the backend code
201 	 * is stopped so that the front end has time to process packets
202 	 * that were accumulated in the traceID queue.  Since there can
203 	 * be more than one channel per cs_etm_queue, we need to specify
204 	 * what traceID queue needs servicing.
205 	 */
206 	etmq->pending_timestamp_chan_id = trace_chan_id;
207 }
208 
209 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
210 				      u8 *trace_chan_id)
211 {
212 	struct cs_etm_packet_queue *packet_queue;
213 
214 	if (!etmq->pending_timestamp_chan_id)
215 		return 0;
216 
217 	if (trace_chan_id)
218 		*trace_chan_id = etmq->pending_timestamp_chan_id;
219 
220 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
221 						     etmq->pending_timestamp_chan_id);
222 	if (!packet_queue)
223 		return 0;
224 
225 	/* Acknowledge pending status */
226 	etmq->pending_timestamp_chan_id = 0;
227 
228 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
229 	return packet_queue->cs_timestamp;
230 }
231 
232 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
233 {
234 	int i;
235 
236 	queue->head = 0;
237 	queue->tail = 0;
238 	queue->packet_count = 0;
239 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
240 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
241 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
242 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
243 		queue->packet_buffer[i].instr_count = 0;
244 		queue->packet_buffer[i].last_instr_taken_branch = false;
245 		queue->packet_buffer[i].last_instr_size = 0;
246 		queue->packet_buffer[i].last_instr_type = 0;
247 		queue->packet_buffer[i].last_instr_subtype = 0;
248 		queue->packet_buffer[i].last_instr_cond = 0;
249 		queue->packet_buffer[i].flags = 0;
250 		queue->packet_buffer[i].exception_number = UINT32_MAX;
251 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
252 		queue->packet_buffer[i].cpu = INT_MIN;
253 	}
254 }
255 
256 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
257 {
258 	int idx;
259 	struct int_node *inode;
260 	struct cs_etm_traceid_queue *tidq;
261 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
262 
263 	intlist__for_each_entry(inode, traceid_queues_list) {
264 		idx = (int)(intptr_t)inode->priv;
265 		tidq = etmq->traceid_queues[idx];
266 		cs_etm__clear_packet_queue(&tidq->packet_queue);
267 	}
268 }
269 
270 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
271 				      struct cs_etm_traceid_queue *tidq,
272 				      u8 trace_chan_id)
273 {
274 	int rc = -ENOMEM;
275 	struct auxtrace_queue *queue;
276 	struct cs_etm_auxtrace *etm = etmq->etm;
277 
278 	cs_etm__clear_packet_queue(&tidq->packet_queue);
279 
280 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
281 	tidq->tid = queue->tid;
282 	tidq->pid = -1;
283 	tidq->trace_chan_id = trace_chan_id;
284 
285 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
286 	if (!tidq->packet)
287 		goto out;
288 
289 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
290 	if (!tidq->prev_packet)
291 		goto out_free;
292 
293 	if (etm->synth_opts.last_branch) {
294 		size_t sz = sizeof(struct branch_stack);
295 
296 		sz += etm->synth_opts.last_branch_sz *
297 		      sizeof(struct branch_entry);
298 		tidq->last_branch = zalloc(sz);
299 		if (!tidq->last_branch)
300 			goto out_free;
301 		tidq->last_branch_rb = zalloc(sz);
302 		if (!tidq->last_branch_rb)
303 			goto out_free;
304 	}
305 
306 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
307 	if (!tidq->event_buf)
308 		goto out_free;
309 
310 	return 0;
311 
312 out_free:
313 	zfree(&tidq->last_branch_rb);
314 	zfree(&tidq->last_branch);
315 	zfree(&tidq->prev_packet);
316 	zfree(&tidq->packet);
317 out:
318 	return rc;
319 }
320 
321 static struct cs_etm_traceid_queue
322 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
323 {
324 	int idx;
325 	struct int_node *inode;
326 	struct intlist *traceid_queues_list;
327 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
328 	struct cs_etm_auxtrace *etm = etmq->etm;
329 
330 	if (etm->timeless_decoding)
331 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
332 
333 	traceid_queues_list = etmq->traceid_queues_list;
334 
335 	/*
336 	 * Check if the traceid_queue exist for this traceID by looking
337 	 * in the queue list.
338 	 */
339 	inode = intlist__find(traceid_queues_list, trace_chan_id);
340 	if (inode) {
341 		idx = (int)(intptr_t)inode->priv;
342 		return etmq->traceid_queues[idx];
343 	}
344 
345 	/* We couldn't find a traceid_queue for this traceID, allocate one */
346 	tidq = malloc(sizeof(*tidq));
347 	if (!tidq)
348 		return NULL;
349 
350 	memset(tidq, 0, sizeof(*tidq));
351 
352 	/* Get a valid index for the new traceid_queue */
353 	idx = intlist__nr_entries(traceid_queues_list);
354 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
355 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
356 	if (!inode)
357 		goto out_free;
358 
359 	/* Associate this traceID with this index */
360 	inode->priv = (void *)(intptr_t)idx;
361 
362 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
363 		goto out_free;
364 
365 	/* Grow the traceid_queues array by one unit */
366 	traceid_queues = etmq->traceid_queues;
367 	traceid_queues = reallocarray(traceid_queues,
368 				      idx + 1,
369 				      sizeof(*traceid_queues));
370 
371 	/*
372 	 * On failure reallocarray() returns NULL and the original block of
373 	 * memory is left untouched.
374 	 */
375 	if (!traceid_queues)
376 		goto out_free;
377 
378 	traceid_queues[idx] = tidq;
379 	etmq->traceid_queues = traceid_queues;
380 
381 	return etmq->traceid_queues[idx];
382 
383 out_free:
384 	/*
385 	 * Function intlist__remove() removes the inode from the list
386 	 * and delete the memory associated to it.
387 	 */
388 	intlist__remove(traceid_queues_list, inode);
389 	free(tidq);
390 
391 	return NULL;
392 }
393 
394 struct cs_etm_packet_queue
395 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
396 {
397 	struct cs_etm_traceid_queue *tidq;
398 
399 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
400 	if (tidq)
401 		return &tidq->packet_queue;
402 
403 	return NULL;
404 }
405 
406 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
407 				struct cs_etm_traceid_queue *tidq)
408 {
409 	struct cs_etm_packet *tmp;
410 
411 	if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
412 	    etm->synth_opts.instructions) {
413 		/*
414 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
415 		 * the next incoming packet.
416 		 */
417 		tmp = tidq->packet;
418 		tidq->packet = tidq->prev_packet;
419 		tidq->prev_packet = tmp;
420 	}
421 }
422 
423 static void cs_etm__packet_dump(const char *pkt_string)
424 {
425 	const char *color = PERF_COLOR_BLUE;
426 	int len = strlen(pkt_string);
427 
428 	if (len && (pkt_string[len-1] == '\n'))
429 		color_fprintf(stdout, color, "	%s", pkt_string);
430 	else
431 		color_fprintf(stdout, color, "	%s\n", pkt_string);
432 
433 	fflush(stdout);
434 }
435 
436 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
437 					  struct cs_etm_auxtrace *etm, int idx,
438 					  u32 etmidr)
439 {
440 	u64 **metadata = etm->metadata;
441 
442 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
443 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
444 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
445 }
446 
447 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
448 					  struct cs_etm_auxtrace *etm, int idx)
449 {
450 	u64 **metadata = etm->metadata;
451 
452 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
453 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
454 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
455 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
456 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
457 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
458 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
459 }
460 
461 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
462 					  struct cs_etm_auxtrace *etm, int idx)
463 {
464 	u64 **metadata = etm->metadata;
465 
466 	t_params[idx].protocol = CS_ETM_PROTO_ETE;
467 	t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
468 	t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
469 	t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
470 	t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
471 	t_params[idx].ete.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
472 	t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
473 	t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
474 }
475 
476 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
477 				     struct cs_etm_auxtrace *etm,
478 				     int decoders)
479 {
480 	int i;
481 	u32 etmidr;
482 	u64 architecture;
483 
484 	for (i = 0; i < decoders; i++) {
485 		architecture = etm->metadata[i][CS_ETM_MAGIC];
486 
487 		switch (architecture) {
488 		case __perf_cs_etmv3_magic:
489 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
490 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
491 			break;
492 		case __perf_cs_etmv4_magic:
493 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
494 			break;
495 		case __perf_cs_ete_magic:
496 			cs_etm__set_trace_param_ete(t_params, etm, i);
497 			break;
498 		default:
499 			return -EINVAL;
500 		}
501 	}
502 
503 	return 0;
504 }
505 
506 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
507 				       struct cs_etm_queue *etmq,
508 				       enum cs_etm_decoder_operation mode,
509 				       bool formatted)
510 {
511 	int ret = -EINVAL;
512 
513 	if (!(mode < CS_ETM_OPERATION_MAX))
514 		goto out;
515 
516 	d_params->packet_printer = cs_etm__packet_dump;
517 	d_params->operation = mode;
518 	d_params->data = etmq;
519 	d_params->formatted = formatted;
520 	d_params->fsyncs = false;
521 	d_params->hsyncs = false;
522 	d_params->frame_aligned = true;
523 
524 	ret = 0;
525 out:
526 	return ret;
527 }
528 
529 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
530 			       struct auxtrace_buffer *buffer)
531 {
532 	int ret;
533 	const char *color = PERF_COLOR_BLUE;
534 	size_t buffer_used = 0;
535 
536 	fprintf(stdout, "\n");
537 	color_fprintf(stdout, color,
538 		     ". ... CoreSight %s Trace data: size %#zx bytes\n",
539 		     cs_etm_decoder__get_name(etmq->decoder), buffer->size);
540 
541 	do {
542 		size_t consumed;
543 
544 		ret = cs_etm_decoder__process_data_block(
545 				etmq->decoder, buffer->offset,
546 				&((u8 *)buffer->data)[buffer_used],
547 				buffer->size - buffer_used, &consumed);
548 		if (ret)
549 			break;
550 
551 		buffer_used += consumed;
552 	} while (buffer_used < buffer->size);
553 
554 	cs_etm_decoder__reset(etmq->decoder);
555 }
556 
557 static int cs_etm__flush_events(struct perf_session *session,
558 				struct perf_tool *tool)
559 {
560 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
561 						   struct cs_etm_auxtrace,
562 						   auxtrace);
563 	if (dump_trace)
564 		return 0;
565 
566 	if (!tool->ordered_events)
567 		return -EINVAL;
568 
569 	if (etm->timeless_decoding)
570 		return cs_etm__process_timeless_queues(etm, -1);
571 
572 	return cs_etm__process_queues(etm);
573 }
574 
575 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
576 {
577 	int idx;
578 	uintptr_t priv;
579 	struct int_node *inode, *tmp;
580 	struct cs_etm_traceid_queue *tidq;
581 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
582 
583 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
584 		priv = (uintptr_t)inode->priv;
585 		idx = priv;
586 
587 		/* Free this traceid_queue from the array */
588 		tidq = etmq->traceid_queues[idx];
589 		thread__zput(tidq->thread);
590 		zfree(&tidq->event_buf);
591 		zfree(&tidq->last_branch);
592 		zfree(&tidq->last_branch_rb);
593 		zfree(&tidq->prev_packet);
594 		zfree(&tidq->packet);
595 		zfree(&tidq);
596 
597 		/*
598 		 * Function intlist__remove() removes the inode from the list
599 		 * and delete the memory associated to it.
600 		 */
601 		intlist__remove(traceid_queues_list, inode);
602 	}
603 
604 	/* Then the RB tree itself */
605 	intlist__delete(traceid_queues_list);
606 	etmq->traceid_queues_list = NULL;
607 
608 	/* finally free the traceid_queues array */
609 	zfree(&etmq->traceid_queues);
610 }
611 
612 static void cs_etm__free_queue(void *priv)
613 {
614 	struct cs_etm_queue *etmq = priv;
615 
616 	if (!etmq)
617 		return;
618 
619 	cs_etm_decoder__free(etmq->decoder);
620 	cs_etm__free_traceid_queues(etmq);
621 	free(etmq);
622 }
623 
624 static void cs_etm__free_events(struct perf_session *session)
625 {
626 	unsigned int i;
627 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
628 						   struct cs_etm_auxtrace,
629 						   auxtrace);
630 	struct auxtrace_queues *queues = &aux->queues;
631 
632 	for (i = 0; i < queues->nr_queues; i++) {
633 		cs_etm__free_queue(queues->queue_array[i].priv);
634 		queues->queue_array[i].priv = NULL;
635 	}
636 
637 	auxtrace_queues__free(queues);
638 }
639 
640 static void cs_etm__free(struct perf_session *session)
641 {
642 	int i;
643 	struct int_node *inode, *tmp;
644 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
645 						   struct cs_etm_auxtrace,
646 						   auxtrace);
647 	cs_etm__free_events(session);
648 	session->auxtrace = NULL;
649 
650 	/* First remove all traceID/metadata nodes for the RB tree */
651 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
652 		intlist__remove(traceid_list, inode);
653 	/* Then the RB tree itself */
654 	intlist__delete(traceid_list);
655 
656 	for (i = 0; i < aux->num_cpu; i++)
657 		zfree(&aux->metadata[i]);
658 
659 	thread__zput(aux->unknown_thread);
660 	zfree(&aux->metadata);
661 	zfree(&aux);
662 }
663 
664 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
665 				      struct evsel *evsel)
666 {
667 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
668 						   struct cs_etm_auxtrace,
669 						   auxtrace);
670 
671 	return evsel->core.attr.type == aux->pmu_type;
672 }
673 
674 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
675 {
676 	struct machine *machine;
677 
678 	machine = etmq->etm->machine;
679 
680 	if (address >= machine__kernel_start(machine)) {
681 		if (machine__is_host(machine))
682 			return PERF_RECORD_MISC_KERNEL;
683 		else
684 			return PERF_RECORD_MISC_GUEST_KERNEL;
685 	} else {
686 		if (machine__is_host(machine))
687 			return PERF_RECORD_MISC_USER;
688 		else if (perf_guest)
689 			return PERF_RECORD_MISC_GUEST_USER;
690 		else
691 			return PERF_RECORD_MISC_HYPERVISOR;
692 	}
693 }
694 
695 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
696 			      u64 address, size_t size, u8 *buffer)
697 {
698 	u8  cpumode;
699 	u64 offset;
700 	int len;
701 	struct thread *thread;
702 	struct machine *machine;
703 	struct addr_location al;
704 	struct cs_etm_traceid_queue *tidq;
705 
706 	if (!etmq)
707 		return 0;
708 
709 	machine = etmq->etm->machine;
710 	cpumode = cs_etm__cpu_mode(etmq, address);
711 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
712 	if (!tidq)
713 		return 0;
714 
715 	thread = tidq->thread;
716 	if (!thread) {
717 		if (cpumode != PERF_RECORD_MISC_KERNEL)
718 			return 0;
719 		thread = etmq->etm->unknown_thread;
720 	}
721 
722 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
723 		return 0;
724 
725 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
726 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
727 		return 0;
728 
729 	offset = al.map->map_ip(al.map, address);
730 
731 	map__load(al.map);
732 
733 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
734 
735 	if (len <= 0) {
736 		ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
737 				 "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
738 		if (!al.map->dso->auxtrace_warned) {
739 			pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
740 				    address,
741 				    al.map->dso->long_name ? al.map->dso->long_name : "Unknown");
742 			al.map->dso->auxtrace_warned = true;
743 		}
744 		return 0;
745 	}
746 
747 	return len;
748 }
749 
750 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
751 						bool formatted)
752 {
753 	struct cs_etm_decoder_params d_params;
754 	struct cs_etm_trace_params  *t_params = NULL;
755 	struct cs_etm_queue *etmq;
756 	/*
757 	 * Each queue can only contain data from one CPU when unformatted, so only one decoder is
758 	 * needed.
759 	 */
760 	int decoders = formatted ? etm->num_cpu : 1;
761 
762 	etmq = zalloc(sizeof(*etmq));
763 	if (!etmq)
764 		return NULL;
765 
766 	etmq->traceid_queues_list = intlist__new(NULL);
767 	if (!etmq->traceid_queues_list)
768 		goto out_free;
769 
770 	/* Use metadata to fill in trace parameters for trace decoder */
771 	t_params = zalloc(sizeof(*t_params) * decoders);
772 
773 	if (!t_params)
774 		goto out_free;
775 
776 	if (cs_etm__init_trace_params(t_params, etm, decoders))
777 		goto out_free;
778 
779 	/* Set decoder parameters to decode trace packets */
780 	if (cs_etm__init_decoder_params(&d_params, etmq,
781 					dump_trace ? CS_ETM_OPERATION_PRINT :
782 						     CS_ETM_OPERATION_DECODE,
783 					formatted))
784 		goto out_free;
785 
786 	etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
787 					    t_params);
788 
789 	if (!etmq->decoder)
790 		goto out_free;
791 
792 	/*
793 	 * Register a function to handle all memory accesses required by
794 	 * the trace decoder library.
795 	 */
796 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
797 					      0x0L, ((u64) -1L),
798 					      cs_etm__mem_access))
799 		goto out_free_decoder;
800 
801 	zfree(&t_params);
802 	return etmq;
803 
804 out_free_decoder:
805 	cs_etm_decoder__free(etmq->decoder);
806 out_free:
807 	intlist__delete(etmq->traceid_queues_list);
808 	free(etmq);
809 
810 	return NULL;
811 }
812 
813 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
814 			       struct auxtrace_queue *queue,
815 			       unsigned int queue_nr,
816 			       bool formatted)
817 {
818 	struct cs_etm_queue *etmq = queue->priv;
819 
820 	if (list_empty(&queue->head) || etmq)
821 		return 0;
822 
823 	etmq = cs_etm__alloc_queue(etm, formatted);
824 
825 	if (!etmq)
826 		return -ENOMEM;
827 
828 	queue->priv = etmq;
829 	etmq->etm = etm;
830 	etmq->queue_nr = queue_nr;
831 	etmq->offset = 0;
832 
833 	return 0;
834 }
835 
836 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
837 					    struct cs_etm_queue *etmq,
838 					    unsigned int queue_nr)
839 {
840 	int ret = 0;
841 	unsigned int cs_queue_nr;
842 	u8 trace_chan_id;
843 	u64 cs_timestamp;
844 
845 	/*
846 	 * We are under a CPU-wide trace scenario.  As such we need to know
847 	 * when the code that generated the traces started to execute so that
848 	 * it can be correlated with execution on other CPUs.  So we get a
849 	 * handle on the beginning of traces and decode until we find a
850 	 * timestamp.  The timestamp is then added to the auxtrace min heap
851 	 * in order to know what nibble (of all the etmqs) to decode first.
852 	 */
853 	while (1) {
854 		/*
855 		 * Fetch an aux_buffer from this etmq.  Bail if no more
856 		 * blocks or an error has been encountered.
857 		 */
858 		ret = cs_etm__get_data_block(etmq);
859 		if (ret <= 0)
860 			goto out;
861 
862 		/*
863 		 * Run decoder on the trace block.  The decoder will stop when
864 		 * encountering a CS timestamp, a full packet queue or the end of
865 		 * trace for that block.
866 		 */
867 		ret = cs_etm__decode_data_block(etmq);
868 		if (ret)
869 			goto out;
870 
871 		/*
872 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
873 		 * the timestamp calculation for us.
874 		 */
875 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
876 
877 		/* We found a timestamp, no need to continue. */
878 		if (cs_timestamp)
879 			break;
880 
881 		/*
882 		 * We didn't find a timestamp so empty all the traceid packet
883 		 * queues before looking for another timestamp packet, either
884 		 * in the current data block or a new one.  Packets that were
885 		 * just decoded are useless since no timestamp has been
886 		 * associated with them.  As such simply discard them.
887 		 */
888 		cs_etm__clear_all_packet_queues(etmq);
889 	}
890 
891 	/*
892 	 * We have a timestamp.  Add it to the min heap to reflect when
893 	 * instructions conveyed by the range packets of this traceID queue
894 	 * started to execute.  Once the same has been done for all the traceID
895 	 * queues of each etmq, redenring and decoding can start in
896 	 * chronological order.
897 	 *
898 	 * Note that packets decoded above are still in the traceID's packet
899 	 * queue and will be processed in cs_etm__process_queues().
900 	 */
901 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
902 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
903 out:
904 	return ret;
905 }
906 
907 static inline
908 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
909 				 struct cs_etm_traceid_queue *tidq)
910 {
911 	struct branch_stack *bs_src = tidq->last_branch_rb;
912 	struct branch_stack *bs_dst = tidq->last_branch;
913 	size_t nr = 0;
914 
915 	/*
916 	 * Set the number of records before early exit: ->nr is used to
917 	 * determine how many branches to copy from ->entries.
918 	 */
919 	bs_dst->nr = bs_src->nr;
920 
921 	/*
922 	 * Early exit when there is nothing to copy.
923 	 */
924 	if (!bs_src->nr)
925 		return;
926 
927 	/*
928 	 * As bs_src->entries is a circular buffer, we need to copy from it in
929 	 * two steps.  First, copy the branches from the most recently inserted
930 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
931 	 */
932 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
933 	memcpy(&bs_dst->entries[0],
934 	       &bs_src->entries[tidq->last_branch_pos],
935 	       sizeof(struct branch_entry) * nr);
936 
937 	/*
938 	 * If we wrapped around at least once, the branches from the beginning
939 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
940 	 * are older valid branches: copy them over.  The total number of
941 	 * branches copied over will be equal to the number of branches asked by
942 	 * the user in last_branch_sz.
943 	 */
944 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
945 		memcpy(&bs_dst->entries[nr],
946 		       &bs_src->entries[0],
947 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
948 	}
949 }
950 
951 static inline
952 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
953 {
954 	tidq->last_branch_pos = 0;
955 	tidq->last_branch_rb->nr = 0;
956 }
957 
958 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
959 					 u8 trace_chan_id, u64 addr)
960 {
961 	u8 instrBytes[2];
962 
963 	cs_etm__mem_access(etmq, trace_chan_id, addr,
964 			   ARRAY_SIZE(instrBytes), instrBytes);
965 	/*
966 	 * T32 instruction size is indicated by bits[15:11] of the first
967 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
968 	 * denote a 32-bit instruction.
969 	 */
970 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
971 }
972 
973 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
974 {
975 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
976 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
977 		return 0;
978 
979 	return packet->start_addr;
980 }
981 
982 static inline
983 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
984 {
985 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
986 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
987 		return 0;
988 
989 	return packet->end_addr - packet->last_instr_size;
990 }
991 
992 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
993 				     u64 trace_chan_id,
994 				     const struct cs_etm_packet *packet,
995 				     u64 offset)
996 {
997 	if (packet->isa == CS_ETM_ISA_T32) {
998 		u64 addr = packet->start_addr;
999 
1000 		while (offset) {
1001 			addr += cs_etm__t32_instr_size(etmq,
1002 						       trace_chan_id, addr);
1003 			offset--;
1004 		}
1005 		return addr;
1006 	}
1007 
1008 	/* Assume a 4 byte instruction size (A32/A64) */
1009 	return packet->start_addr + offset * 4;
1010 }
1011 
1012 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1013 					  struct cs_etm_traceid_queue *tidq)
1014 {
1015 	struct branch_stack *bs = tidq->last_branch_rb;
1016 	struct branch_entry *be;
1017 
1018 	/*
1019 	 * The branches are recorded in a circular buffer in reverse
1020 	 * chronological order: we start recording from the last element of the
1021 	 * buffer down.  After writing the first element of the stack, move the
1022 	 * insert position back to the end of the buffer.
1023 	 */
1024 	if (!tidq->last_branch_pos)
1025 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1026 
1027 	tidq->last_branch_pos -= 1;
1028 
1029 	be       = &bs->entries[tidq->last_branch_pos];
1030 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1031 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1032 	/* No support for mispredict */
1033 	be->flags.mispred = 0;
1034 	be->flags.predicted = 1;
1035 
1036 	/*
1037 	 * Increment bs->nr until reaching the number of last branches asked by
1038 	 * the user on the command line.
1039 	 */
1040 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1041 		bs->nr += 1;
1042 }
1043 
1044 static int cs_etm__inject_event(union perf_event *event,
1045 			       struct perf_sample *sample, u64 type)
1046 {
1047 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1048 	return perf_event__synthesize_sample(event, type, 0, sample);
1049 }
1050 
1051 
1052 static int
1053 cs_etm__get_trace(struct cs_etm_queue *etmq)
1054 {
1055 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1056 	struct auxtrace_buffer *old_buffer = aux_buffer;
1057 	struct auxtrace_queue *queue;
1058 
1059 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1060 
1061 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1062 
1063 	/* If no more data, drop the previous auxtrace_buffer and return */
1064 	if (!aux_buffer) {
1065 		if (old_buffer)
1066 			auxtrace_buffer__drop_data(old_buffer);
1067 		etmq->buf_len = 0;
1068 		return 0;
1069 	}
1070 
1071 	etmq->buffer = aux_buffer;
1072 
1073 	/* If the aux_buffer doesn't have data associated, try to load it */
1074 	if (!aux_buffer->data) {
1075 		/* get the file desc associated with the perf data file */
1076 		int fd = perf_data__fd(etmq->etm->session->data);
1077 
1078 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1079 		if (!aux_buffer->data)
1080 			return -ENOMEM;
1081 	}
1082 
1083 	/* If valid, drop the previous buffer */
1084 	if (old_buffer)
1085 		auxtrace_buffer__drop_data(old_buffer);
1086 
1087 	etmq->buf_used = 0;
1088 	etmq->buf_len = aux_buffer->size;
1089 	etmq->buf = aux_buffer->data;
1090 
1091 	return etmq->buf_len;
1092 }
1093 
1094 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1095 				    struct cs_etm_traceid_queue *tidq)
1096 {
1097 	if ((!tidq->thread) && (tidq->tid != -1))
1098 		tidq->thread = machine__find_thread(etm->machine, -1,
1099 						    tidq->tid);
1100 
1101 	if (tidq->thread)
1102 		tidq->pid = tidq->thread->pid_;
1103 }
1104 
1105 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1106 			 pid_t tid, u8 trace_chan_id)
1107 {
1108 	int cpu, err = -EINVAL;
1109 	struct cs_etm_auxtrace *etm = etmq->etm;
1110 	struct cs_etm_traceid_queue *tidq;
1111 
1112 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1113 	if (!tidq)
1114 		return err;
1115 
1116 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1117 		return err;
1118 
1119 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1120 	if (err)
1121 		return err;
1122 
1123 	tidq->tid = tid;
1124 	thread__zput(tidq->thread);
1125 
1126 	cs_etm__set_pid_tid_cpu(etm, tidq);
1127 	return 0;
1128 }
1129 
1130 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1131 {
1132 	return !!etmq->etm->timeless_decoding;
1133 }
1134 
1135 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1136 			      u64 trace_chan_id,
1137 			      const struct cs_etm_packet *packet,
1138 			      struct perf_sample *sample)
1139 {
1140 	/*
1141 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1142 	 * packet, so directly bail out with 'insn_len' = 0.
1143 	 */
1144 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1145 		sample->insn_len = 0;
1146 		return;
1147 	}
1148 
1149 	/*
1150 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1151 	 * cs_etm__t32_instr_size().
1152 	 */
1153 	if (packet->isa == CS_ETM_ISA_T32)
1154 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1155 							  sample->ip);
1156 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1157 	else
1158 		sample->insn_len = 4;
1159 
1160 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1161 			   sample->insn_len, (void *)sample->insn);
1162 }
1163 
1164 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1165 					    struct cs_etm_traceid_queue *tidq,
1166 					    u64 addr, u64 period)
1167 {
1168 	int ret = 0;
1169 	struct cs_etm_auxtrace *etm = etmq->etm;
1170 	union perf_event *event = tidq->event_buf;
1171 	struct perf_sample sample = {.ip = 0,};
1172 
1173 	event->sample.header.type = PERF_RECORD_SAMPLE;
1174 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1175 	event->sample.header.size = sizeof(struct perf_event_header);
1176 
1177 	if (!etm->timeless_decoding)
1178 		sample.time = etm->latest_kernel_timestamp;
1179 	sample.ip = addr;
1180 	sample.pid = tidq->pid;
1181 	sample.tid = tidq->tid;
1182 	sample.id = etmq->etm->instructions_id;
1183 	sample.stream_id = etmq->etm->instructions_id;
1184 	sample.period = period;
1185 	sample.cpu = tidq->packet->cpu;
1186 	sample.flags = tidq->prev_packet->flags;
1187 	sample.cpumode = event->sample.header.misc;
1188 
1189 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1190 
1191 	if (etm->synth_opts.last_branch)
1192 		sample.branch_stack = tidq->last_branch;
1193 
1194 	if (etm->synth_opts.inject) {
1195 		ret = cs_etm__inject_event(event, &sample,
1196 					   etm->instructions_sample_type);
1197 		if (ret)
1198 			return ret;
1199 	}
1200 
1201 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1202 
1203 	if (ret)
1204 		pr_err(
1205 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1206 			ret);
1207 
1208 	return ret;
1209 }
1210 
1211 /*
1212  * The cs etm packet encodes an instruction range between a branch target
1213  * and the next taken branch. Generate sample accordingly.
1214  */
1215 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1216 				       struct cs_etm_traceid_queue *tidq)
1217 {
1218 	int ret = 0;
1219 	struct cs_etm_auxtrace *etm = etmq->etm;
1220 	struct perf_sample sample = {.ip = 0,};
1221 	union perf_event *event = tidq->event_buf;
1222 	struct dummy_branch_stack {
1223 		u64			nr;
1224 		u64			hw_idx;
1225 		struct branch_entry	entries;
1226 	} dummy_bs;
1227 	u64 ip;
1228 
1229 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1230 
1231 	event->sample.header.type = PERF_RECORD_SAMPLE;
1232 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1233 	event->sample.header.size = sizeof(struct perf_event_header);
1234 
1235 	if (!etm->timeless_decoding)
1236 		sample.time = etm->latest_kernel_timestamp;
1237 	sample.ip = ip;
1238 	sample.pid = tidq->pid;
1239 	sample.tid = tidq->tid;
1240 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1241 	sample.id = etmq->etm->branches_id;
1242 	sample.stream_id = etmq->etm->branches_id;
1243 	sample.period = 1;
1244 	sample.cpu = tidq->packet->cpu;
1245 	sample.flags = tidq->prev_packet->flags;
1246 	sample.cpumode = event->sample.header.misc;
1247 
1248 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1249 			  &sample);
1250 
1251 	/*
1252 	 * perf report cannot handle events without a branch stack
1253 	 */
1254 	if (etm->synth_opts.last_branch) {
1255 		dummy_bs = (struct dummy_branch_stack){
1256 			.nr = 1,
1257 			.hw_idx = -1ULL,
1258 			.entries = {
1259 				.from = sample.ip,
1260 				.to = sample.addr,
1261 			},
1262 		};
1263 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1264 	}
1265 
1266 	if (etm->synth_opts.inject) {
1267 		ret = cs_etm__inject_event(event, &sample,
1268 					   etm->branches_sample_type);
1269 		if (ret)
1270 			return ret;
1271 	}
1272 
1273 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1274 
1275 	if (ret)
1276 		pr_err(
1277 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1278 		ret);
1279 
1280 	return ret;
1281 }
1282 
1283 struct cs_etm_synth {
1284 	struct perf_tool dummy_tool;
1285 	struct perf_session *session;
1286 };
1287 
1288 static int cs_etm__event_synth(struct perf_tool *tool,
1289 			       union perf_event *event,
1290 			       struct perf_sample *sample __maybe_unused,
1291 			       struct machine *machine __maybe_unused)
1292 {
1293 	struct cs_etm_synth *cs_etm_synth =
1294 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1295 
1296 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1297 						 event, NULL);
1298 }
1299 
1300 static int cs_etm__synth_event(struct perf_session *session,
1301 			       struct perf_event_attr *attr, u64 id)
1302 {
1303 	struct cs_etm_synth cs_etm_synth;
1304 
1305 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1306 	cs_etm_synth.session = session;
1307 
1308 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1309 					   &id, cs_etm__event_synth);
1310 }
1311 
1312 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1313 				struct perf_session *session)
1314 {
1315 	struct evlist *evlist = session->evlist;
1316 	struct evsel *evsel;
1317 	struct perf_event_attr attr;
1318 	bool found = false;
1319 	u64 id;
1320 	int err;
1321 
1322 	evlist__for_each_entry(evlist, evsel) {
1323 		if (evsel->core.attr.type == etm->pmu_type) {
1324 			found = true;
1325 			break;
1326 		}
1327 	}
1328 
1329 	if (!found) {
1330 		pr_debug("No selected events with CoreSight Trace data\n");
1331 		return 0;
1332 	}
1333 
1334 	memset(&attr, 0, sizeof(struct perf_event_attr));
1335 	attr.size = sizeof(struct perf_event_attr);
1336 	attr.type = PERF_TYPE_HARDWARE;
1337 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1338 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1339 			    PERF_SAMPLE_PERIOD;
1340 	if (etm->timeless_decoding)
1341 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1342 	else
1343 		attr.sample_type |= PERF_SAMPLE_TIME;
1344 
1345 	attr.exclude_user = evsel->core.attr.exclude_user;
1346 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1347 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1348 	attr.exclude_host = evsel->core.attr.exclude_host;
1349 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1350 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1351 	attr.read_format = evsel->core.attr.read_format;
1352 
1353 	/* create new id val to be a fixed offset from evsel id */
1354 	id = evsel->core.id[0] + 1000000000;
1355 
1356 	if (!id)
1357 		id = 1;
1358 
1359 	if (etm->synth_opts.branches) {
1360 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1361 		attr.sample_period = 1;
1362 		attr.sample_type |= PERF_SAMPLE_ADDR;
1363 		err = cs_etm__synth_event(session, &attr, id);
1364 		if (err)
1365 			return err;
1366 		etm->branches_sample_type = attr.sample_type;
1367 		etm->branches_id = id;
1368 		id += 1;
1369 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1370 	}
1371 
1372 	if (etm->synth_opts.last_branch) {
1373 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1374 		/*
1375 		 * We don't use the hardware index, but the sample generation
1376 		 * code uses the new format branch_stack with this field,
1377 		 * so the event attributes must indicate that it's present.
1378 		 */
1379 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1380 	}
1381 
1382 	if (etm->synth_opts.instructions) {
1383 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1384 		attr.sample_period = etm->synth_opts.period;
1385 		etm->instructions_sample_period = attr.sample_period;
1386 		err = cs_etm__synth_event(session, &attr, id);
1387 		if (err)
1388 			return err;
1389 		etm->instructions_sample_type = attr.sample_type;
1390 		etm->instructions_id = id;
1391 		id += 1;
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static int cs_etm__sample(struct cs_etm_queue *etmq,
1398 			  struct cs_etm_traceid_queue *tidq)
1399 {
1400 	struct cs_etm_auxtrace *etm = etmq->etm;
1401 	int ret;
1402 	u8 trace_chan_id = tidq->trace_chan_id;
1403 	u64 instrs_prev;
1404 
1405 	/* Get instructions remainder from previous packet */
1406 	instrs_prev = tidq->period_instructions;
1407 
1408 	tidq->period_instructions += tidq->packet->instr_count;
1409 
1410 	/*
1411 	 * Record a branch when the last instruction in
1412 	 * PREV_PACKET is a branch.
1413 	 */
1414 	if (etm->synth_opts.last_branch &&
1415 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1416 	    tidq->prev_packet->last_instr_taken_branch)
1417 		cs_etm__update_last_branch_rb(etmq, tidq);
1418 
1419 	if (etm->synth_opts.instructions &&
1420 	    tidq->period_instructions >= etm->instructions_sample_period) {
1421 		/*
1422 		 * Emit instruction sample periodically
1423 		 * TODO: allow period to be defined in cycles and clock time
1424 		 */
1425 
1426 		/*
1427 		 * Below diagram demonstrates the instruction samples
1428 		 * generation flows:
1429 		 *
1430 		 *    Instrs     Instrs       Instrs       Instrs
1431 		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1432 		 *    |            |            |            |
1433 		 *    V            V            V            V
1434 		 *   --------------------------------------------------
1435 		 *            ^                                  ^
1436 		 *            |                                  |
1437 		 *         Period                             Period
1438 		 *    instructions(Pi)                   instructions(Pi')
1439 		 *
1440 		 *            |                                  |
1441 		 *            \---------------- -----------------/
1442 		 *                             V
1443 		 *                 tidq->packet->instr_count
1444 		 *
1445 		 * Instrs Sample(n...) are the synthesised samples occurring
1446 		 * every etm->instructions_sample_period instructions - as
1447 		 * defined on the perf command line.  Sample(n) is being the
1448 		 * last sample before the current etm packet, n+1 to n+3
1449 		 * samples are generated from the current etm packet.
1450 		 *
1451 		 * tidq->packet->instr_count represents the number of
1452 		 * instructions in the current etm packet.
1453 		 *
1454 		 * Period instructions (Pi) contains the number of
1455 		 * instructions executed after the sample point(n) from the
1456 		 * previous etm packet.  This will always be less than
1457 		 * etm->instructions_sample_period.
1458 		 *
1459 		 * When generate new samples, it combines with two parts
1460 		 * instructions, one is the tail of the old packet and another
1461 		 * is the head of the new coming packet, to generate
1462 		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1463 		 * instructions with sample period.  After sample(n+3), the rest
1464 		 * instructions will be used by later packet and it is assigned
1465 		 * to tidq->period_instructions for next round calculation.
1466 		 */
1467 
1468 		/*
1469 		 * Get the initial offset into the current packet instructions;
1470 		 * entry conditions ensure that instrs_prev is less than
1471 		 * etm->instructions_sample_period.
1472 		 */
1473 		u64 offset = etm->instructions_sample_period - instrs_prev;
1474 		u64 addr;
1475 
1476 		/* Prepare last branches for instruction sample */
1477 		if (etm->synth_opts.last_branch)
1478 			cs_etm__copy_last_branch_rb(etmq, tidq);
1479 
1480 		while (tidq->period_instructions >=
1481 				etm->instructions_sample_period) {
1482 			/*
1483 			 * Calculate the address of the sampled instruction (-1
1484 			 * as sample is reported as though instruction has just
1485 			 * been executed, but PC has not advanced to next
1486 			 * instruction)
1487 			 */
1488 			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1489 						  tidq->packet, offset - 1);
1490 			ret = cs_etm__synth_instruction_sample(
1491 				etmq, tidq, addr,
1492 				etm->instructions_sample_period);
1493 			if (ret)
1494 				return ret;
1495 
1496 			offset += etm->instructions_sample_period;
1497 			tidq->period_instructions -=
1498 				etm->instructions_sample_period;
1499 		}
1500 	}
1501 
1502 	if (etm->synth_opts.branches) {
1503 		bool generate_sample = false;
1504 
1505 		/* Generate sample for tracing on packet */
1506 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1507 			generate_sample = true;
1508 
1509 		/* Generate sample for branch taken packet */
1510 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1511 		    tidq->prev_packet->last_instr_taken_branch)
1512 			generate_sample = true;
1513 
1514 		if (generate_sample) {
1515 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1516 			if (ret)
1517 				return ret;
1518 		}
1519 	}
1520 
1521 	cs_etm__packet_swap(etm, tidq);
1522 
1523 	return 0;
1524 }
1525 
1526 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1527 {
1528 	/*
1529 	 * When the exception packet is inserted, whether the last instruction
1530 	 * in previous range packet is taken branch or not, we need to force
1531 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1532 	 * to generate branch sample for the instruction range before the
1533 	 * exception is trapped to kernel or before the exception returning.
1534 	 *
1535 	 * The exception packet includes the dummy address values, so don't
1536 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1537 	 * for generating instruction and branch samples.
1538 	 */
1539 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1540 		tidq->prev_packet->last_instr_taken_branch = true;
1541 
1542 	return 0;
1543 }
1544 
1545 static int cs_etm__flush(struct cs_etm_queue *etmq,
1546 			 struct cs_etm_traceid_queue *tidq)
1547 {
1548 	int err = 0;
1549 	struct cs_etm_auxtrace *etm = etmq->etm;
1550 
1551 	/* Handle start tracing packet */
1552 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1553 		goto swap_packet;
1554 
1555 	if (etmq->etm->synth_opts.last_branch &&
1556 	    etmq->etm->synth_opts.instructions &&
1557 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1558 		u64 addr;
1559 
1560 		/* Prepare last branches for instruction sample */
1561 		cs_etm__copy_last_branch_rb(etmq, tidq);
1562 
1563 		/*
1564 		 * Generate a last branch event for the branches left in the
1565 		 * circular buffer at the end of the trace.
1566 		 *
1567 		 * Use the address of the end of the last reported execution
1568 		 * range
1569 		 */
1570 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1571 
1572 		err = cs_etm__synth_instruction_sample(
1573 			etmq, tidq, addr,
1574 			tidq->period_instructions);
1575 		if (err)
1576 			return err;
1577 
1578 		tidq->period_instructions = 0;
1579 
1580 	}
1581 
1582 	if (etm->synth_opts.branches &&
1583 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1584 		err = cs_etm__synth_branch_sample(etmq, tidq);
1585 		if (err)
1586 			return err;
1587 	}
1588 
1589 swap_packet:
1590 	cs_etm__packet_swap(etm, tidq);
1591 
1592 	/* Reset last branches after flush the trace */
1593 	if (etm->synth_opts.last_branch)
1594 		cs_etm__reset_last_branch_rb(tidq);
1595 
1596 	return err;
1597 }
1598 
1599 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1600 			     struct cs_etm_traceid_queue *tidq)
1601 {
1602 	int err;
1603 
1604 	/*
1605 	 * It has no new packet coming and 'etmq->packet' contains the stale
1606 	 * packet which was set at the previous time with packets swapping;
1607 	 * so skip to generate branch sample to avoid stale packet.
1608 	 *
1609 	 * For this case only flush branch stack and generate a last branch
1610 	 * event for the branches left in the circular buffer at the end of
1611 	 * the trace.
1612 	 */
1613 	if (etmq->etm->synth_opts.last_branch &&
1614 	    etmq->etm->synth_opts.instructions &&
1615 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1616 		u64 addr;
1617 
1618 		/* Prepare last branches for instruction sample */
1619 		cs_etm__copy_last_branch_rb(etmq, tidq);
1620 
1621 		/*
1622 		 * Use the address of the end of the last reported execution
1623 		 * range.
1624 		 */
1625 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1626 
1627 		err = cs_etm__synth_instruction_sample(
1628 			etmq, tidq, addr,
1629 			tidq->period_instructions);
1630 		if (err)
1631 			return err;
1632 
1633 		tidq->period_instructions = 0;
1634 	}
1635 
1636 	return 0;
1637 }
1638 /*
1639  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1640  *			   if need be.
1641  * Returns:	< 0	if error
1642  *		= 0	if no more auxtrace_buffer to read
1643  *		> 0	if the current buffer isn't empty yet
1644  */
1645 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1646 {
1647 	int ret;
1648 
1649 	if (!etmq->buf_len) {
1650 		ret = cs_etm__get_trace(etmq);
1651 		if (ret <= 0)
1652 			return ret;
1653 		/*
1654 		 * We cannot assume consecutive blocks in the data file
1655 		 * are contiguous, reset the decoder to force re-sync.
1656 		 */
1657 		ret = cs_etm_decoder__reset(etmq->decoder);
1658 		if (ret)
1659 			return ret;
1660 	}
1661 
1662 	return etmq->buf_len;
1663 }
1664 
1665 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1666 				 struct cs_etm_packet *packet,
1667 				 u64 end_addr)
1668 {
1669 	/* Initialise to keep compiler happy */
1670 	u16 instr16 = 0;
1671 	u32 instr32 = 0;
1672 	u64 addr;
1673 
1674 	switch (packet->isa) {
1675 	case CS_ETM_ISA_T32:
1676 		/*
1677 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1678 		 *
1679 		 *  b'15         b'8
1680 		 * +-----------------+--------+
1681 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1682 		 * +-----------------+--------+
1683 		 *
1684 		 * According to the specification, it only defines SVC for T32
1685 		 * with 16 bits instruction and has no definition for 32bits;
1686 		 * so below only read 2 bytes as instruction size for T32.
1687 		 */
1688 		addr = end_addr - 2;
1689 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1690 				   sizeof(instr16), (u8 *)&instr16);
1691 		if ((instr16 & 0xFF00) == 0xDF00)
1692 			return true;
1693 
1694 		break;
1695 	case CS_ETM_ISA_A32:
1696 		/*
1697 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1698 		 *
1699 		 *  b'31 b'28 b'27 b'24
1700 		 * +---------+---------+-------------------------+
1701 		 * |  !1111  | 1 1 1 1 |        imm24            |
1702 		 * +---------+---------+-------------------------+
1703 		 */
1704 		addr = end_addr - 4;
1705 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1706 				   sizeof(instr32), (u8 *)&instr32);
1707 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1708 		    (instr32 & 0xF0000000) != 0xF0000000)
1709 			return true;
1710 
1711 		break;
1712 	case CS_ETM_ISA_A64:
1713 		/*
1714 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1715 		 *
1716 		 *  b'31               b'21           b'4     b'0
1717 		 * +-----------------------+---------+-----------+
1718 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1719 		 * +-----------------------+---------+-----------+
1720 		 */
1721 		addr = end_addr - 4;
1722 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1723 				   sizeof(instr32), (u8 *)&instr32);
1724 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1725 			return true;
1726 
1727 		break;
1728 	case CS_ETM_ISA_UNKNOWN:
1729 	default:
1730 		break;
1731 	}
1732 
1733 	return false;
1734 }
1735 
1736 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1737 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1738 {
1739 	u8 trace_chan_id = tidq->trace_chan_id;
1740 	struct cs_etm_packet *packet = tidq->packet;
1741 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1742 
1743 	if (magic == __perf_cs_etmv3_magic)
1744 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1745 			return true;
1746 
1747 	/*
1748 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1749 	 * HVC cases; need to check if it's SVC instruction based on
1750 	 * packet address.
1751 	 */
1752 	if (magic == __perf_cs_etmv4_magic) {
1753 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1754 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1755 					 prev_packet->end_addr))
1756 			return true;
1757 	}
1758 
1759 	return false;
1760 }
1761 
1762 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1763 				       u64 magic)
1764 {
1765 	struct cs_etm_packet *packet = tidq->packet;
1766 
1767 	if (magic == __perf_cs_etmv3_magic)
1768 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1769 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1770 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1771 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1772 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1773 			return true;
1774 
1775 	if (magic == __perf_cs_etmv4_magic)
1776 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1777 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1778 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1779 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1780 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1781 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1782 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1783 			return true;
1784 
1785 	return false;
1786 }
1787 
1788 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1789 				      struct cs_etm_traceid_queue *tidq,
1790 				      u64 magic)
1791 {
1792 	u8 trace_chan_id = tidq->trace_chan_id;
1793 	struct cs_etm_packet *packet = tidq->packet;
1794 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1795 
1796 	if (magic == __perf_cs_etmv3_magic)
1797 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1798 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1799 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1800 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1801 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1802 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1803 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1804 			return true;
1805 
1806 	if (magic == __perf_cs_etmv4_magic) {
1807 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1808 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1809 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1810 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1811 			return true;
1812 
1813 		/*
1814 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1815 		 * (SMC, HVC) are taken as sync exceptions.
1816 		 */
1817 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1818 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1819 					  prev_packet->end_addr))
1820 			return true;
1821 
1822 		/*
1823 		 * ETMv4 has 5 bits for exception number; if the numbers
1824 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1825 		 * they are implementation defined exceptions.
1826 		 *
1827 		 * For this case, simply take it as sync exception.
1828 		 */
1829 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1830 		    packet->exception_number <= CS_ETMV4_EXC_END)
1831 			return true;
1832 	}
1833 
1834 	return false;
1835 }
1836 
1837 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1838 				    struct cs_etm_traceid_queue *tidq)
1839 {
1840 	struct cs_etm_packet *packet = tidq->packet;
1841 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1842 	u8 trace_chan_id = tidq->trace_chan_id;
1843 	u64 magic;
1844 	int ret;
1845 
1846 	switch (packet->sample_type) {
1847 	case CS_ETM_RANGE:
1848 		/*
1849 		 * Immediate branch instruction without neither link nor
1850 		 * return flag, it's normal branch instruction within
1851 		 * the function.
1852 		 */
1853 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1854 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1855 			packet->flags = PERF_IP_FLAG_BRANCH;
1856 
1857 			if (packet->last_instr_cond)
1858 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1859 		}
1860 
1861 		/*
1862 		 * Immediate branch instruction with link (e.g. BL), this is
1863 		 * branch instruction for function call.
1864 		 */
1865 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1866 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1867 			packet->flags = PERF_IP_FLAG_BRANCH |
1868 					PERF_IP_FLAG_CALL;
1869 
1870 		/*
1871 		 * Indirect branch instruction with link (e.g. BLR), this is
1872 		 * branch instruction for function call.
1873 		 */
1874 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1875 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1876 			packet->flags = PERF_IP_FLAG_BRANCH |
1877 					PERF_IP_FLAG_CALL;
1878 
1879 		/*
1880 		 * Indirect branch instruction with subtype of
1881 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1882 		 * function return for A32/T32.
1883 		 */
1884 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1885 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1886 			packet->flags = PERF_IP_FLAG_BRANCH |
1887 					PERF_IP_FLAG_RETURN;
1888 
1889 		/*
1890 		 * Indirect branch instruction without link (e.g. BR), usually
1891 		 * this is used for function return, especially for functions
1892 		 * within dynamic link lib.
1893 		 */
1894 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1895 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1896 			packet->flags = PERF_IP_FLAG_BRANCH |
1897 					PERF_IP_FLAG_RETURN;
1898 
1899 		/* Return instruction for function return. */
1900 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1901 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1902 			packet->flags = PERF_IP_FLAG_BRANCH |
1903 					PERF_IP_FLAG_RETURN;
1904 
1905 		/*
1906 		 * Decoder might insert a discontinuity in the middle of
1907 		 * instruction packets, fixup prev_packet with flag
1908 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1909 		 */
1910 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1911 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1912 					      PERF_IP_FLAG_TRACE_BEGIN;
1913 
1914 		/*
1915 		 * If the previous packet is an exception return packet
1916 		 * and the return address just follows SVC instruction,
1917 		 * it needs to calibrate the previous packet sample flags
1918 		 * as PERF_IP_FLAG_SYSCALLRET.
1919 		 */
1920 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1921 					   PERF_IP_FLAG_RETURN |
1922 					   PERF_IP_FLAG_INTERRUPT) &&
1923 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1924 					 packet, packet->start_addr))
1925 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1926 					     PERF_IP_FLAG_RETURN |
1927 					     PERF_IP_FLAG_SYSCALLRET;
1928 		break;
1929 	case CS_ETM_DISCONTINUITY:
1930 		/*
1931 		 * The trace is discontinuous, if the previous packet is
1932 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1933 		 * for previous packet.
1934 		 */
1935 		if (prev_packet->sample_type == CS_ETM_RANGE)
1936 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1937 					      PERF_IP_FLAG_TRACE_END;
1938 		break;
1939 	case CS_ETM_EXCEPTION:
1940 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1941 		if (ret)
1942 			return ret;
1943 
1944 		/* The exception is for system call. */
1945 		if (cs_etm__is_syscall(etmq, tidq, magic))
1946 			packet->flags = PERF_IP_FLAG_BRANCH |
1947 					PERF_IP_FLAG_CALL |
1948 					PERF_IP_FLAG_SYSCALLRET;
1949 		/*
1950 		 * The exceptions are triggered by external signals from bus,
1951 		 * interrupt controller, debug module, PE reset or halt.
1952 		 */
1953 		else if (cs_etm__is_async_exception(tidq, magic))
1954 			packet->flags = PERF_IP_FLAG_BRANCH |
1955 					PERF_IP_FLAG_CALL |
1956 					PERF_IP_FLAG_ASYNC |
1957 					PERF_IP_FLAG_INTERRUPT;
1958 		/*
1959 		 * Otherwise, exception is caused by trap, instruction &
1960 		 * data fault, or alignment errors.
1961 		 */
1962 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1963 			packet->flags = PERF_IP_FLAG_BRANCH |
1964 					PERF_IP_FLAG_CALL |
1965 					PERF_IP_FLAG_INTERRUPT;
1966 
1967 		/*
1968 		 * When the exception packet is inserted, since exception
1969 		 * packet is not used standalone for generating samples
1970 		 * and it's affiliation to the previous instruction range
1971 		 * packet; so set previous range packet flags to tell perf
1972 		 * it is an exception taken branch.
1973 		 */
1974 		if (prev_packet->sample_type == CS_ETM_RANGE)
1975 			prev_packet->flags = packet->flags;
1976 		break;
1977 	case CS_ETM_EXCEPTION_RET:
1978 		/*
1979 		 * When the exception return packet is inserted, since
1980 		 * exception return packet is not used standalone for
1981 		 * generating samples and it's affiliation to the previous
1982 		 * instruction range packet; so set previous range packet
1983 		 * flags to tell perf it is an exception return branch.
1984 		 *
1985 		 * The exception return can be for either system call or
1986 		 * other exception types; unfortunately the packet doesn't
1987 		 * contain exception type related info so we cannot decide
1988 		 * the exception type purely based on exception return packet.
1989 		 * If we record the exception number from exception packet and
1990 		 * reuse it for exception return packet, this is not reliable
1991 		 * due the trace can be discontinuity or the interrupt can
1992 		 * be nested, thus the recorded exception number cannot be
1993 		 * used for exception return packet for these two cases.
1994 		 *
1995 		 * For exception return packet, we only need to distinguish the
1996 		 * packet is for system call or for other types.  Thus the
1997 		 * decision can be deferred when receive the next packet which
1998 		 * contains the return address, based on the return address we
1999 		 * can read out the previous instruction and check if it's a
2000 		 * system call instruction and then calibrate the sample flag
2001 		 * as needed.
2002 		 */
2003 		if (prev_packet->sample_type == CS_ETM_RANGE)
2004 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
2005 					     PERF_IP_FLAG_RETURN |
2006 					     PERF_IP_FLAG_INTERRUPT;
2007 		break;
2008 	case CS_ETM_EMPTY:
2009 	default:
2010 		break;
2011 	}
2012 
2013 	return 0;
2014 }
2015 
2016 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2017 {
2018 	int ret = 0;
2019 	size_t processed = 0;
2020 
2021 	/*
2022 	 * Packets are decoded and added to the decoder's packet queue
2023 	 * until the decoder packet processing callback has requested that
2024 	 * processing stops or there is nothing left in the buffer.  Normal
2025 	 * operations that stop processing are a timestamp packet or a full
2026 	 * decoder buffer queue.
2027 	 */
2028 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2029 						 etmq->offset,
2030 						 &etmq->buf[etmq->buf_used],
2031 						 etmq->buf_len,
2032 						 &processed);
2033 	if (ret)
2034 		goto out;
2035 
2036 	etmq->offset += processed;
2037 	etmq->buf_used += processed;
2038 	etmq->buf_len -= processed;
2039 
2040 out:
2041 	return ret;
2042 }
2043 
2044 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2045 					 struct cs_etm_traceid_queue *tidq)
2046 {
2047 	int ret;
2048 	struct cs_etm_packet_queue *packet_queue;
2049 
2050 	packet_queue = &tidq->packet_queue;
2051 
2052 	/* Process each packet in this chunk */
2053 	while (1) {
2054 		ret = cs_etm_decoder__get_packet(packet_queue,
2055 						 tidq->packet);
2056 		if (ret <= 0)
2057 			/*
2058 			 * Stop processing this chunk on
2059 			 * end of data or error
2060 			 */
2061 			break;
2062 
2063 		/*
2064 		 * Since packet addresses are swapped in packet
2065 		 * handling within below switch() statements,
2066 		 * thus setting sample flags must be called
2067 		 * prior to switch() statement to use address
2068 		 * information before packets swapping.
2069 		 */
2070 		ret = cs_etm__set_sample_flags(etmq, tidq);
2071 		if (ret < 0)
2072 			break;
2073 
2074 		switch (tidq->packet->sample_type) {
2075 		case CS_ETM_RANGE:
2076 			/*
2077 			 * If the packet contains an instruction
2078 			 * range, generate instruction sequence
2079 			 * events.
2080 			 */
2081 			cs_etm__sample(etmq, tidq);
2082 			break;
2083 		case CS_ETM_EXCEPTION:
2084 		case CS_ETM_EXCEPTION_RET:
2085 			/*
2086 			 * If the exception packet is coming,
2087 			 * make sure the previous instruction
2088 			 * range packet to be handled properly.
2089 			 */
2090 			cs_etm__exception(tidq);
2091 			break;
2092 		case CS_ETM_DISCONTINUITY:
2093 			/*
2094 			 * Discontinuity in trace, flush
2095 			 * previous branch stack
2096 			 */
2097 			cs_etm__flush(etmq, tidq);
2098 			break;
2099 		case CS_ETM_EMPTY:
2100 			/*
2101 			 * Should not receive empty packet,
2102 			 * report error.
2103 			 */
2104 			pr_err("CS ETM Trace: empty packet\n");
2105 			return -EINVAL;
2106 		default:
2107 			break;
2108 		}
2109 	}
2110 
2111 	return ret;
2112 }
2113 
2114 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2115 {
2116 	int idx;
2117 	struct int_node *inode;
2118 	struct cs_etm_traceid_queue *tidq;
2119 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2120 
2121 	intlist__for_each_entry(inode, traceid_queues_list) {
2122 		idx = (int)(intptr_t)inode->priv;
2123 		tidq = etmq->traceid_queues[idx];
2124 
2125 		/* Ignore return value */
2126 		cs_etm__process_traceid_queue(etmq, tidq);
2127 
2128 		/*
2129 		 * Generate an instruction sample with the remaining
2130 		 * branchstack entries.
2131 		 */
2132 		cs_etm__flush(etmq, tidq);
2133 	}
2134 }
2135 
2136 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2137 {
2138 	int err = 0;
2139 	struct cs_etm_traceid_queue *tidq;
2140 
2141 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2142 	if (!tidq)
2143 		return -EINVAL;
2144 
2145 	/* Go through each buffer in the queue and decode them one by one */
2146 	while (1) {
2147 		err = cs_etm__get_data_block(etmq);
2148 		if (err <= 0)
2149 			return err;
2150 
2151 		/* Run trace decoder until buffer consumed or end of trace */
2152 		do {
2153 			err = cs_etm__decode_data_block(etmq);
2154 			if (err)
2155 				return err;
2156 
2157 			/*
2158 			 * Process each packet in this chunk, nothing to do if
2159 			 * an error occurs other than hoping the next one will
2160 			 * be better.
2161 			 */
2162 			err = cs_etm__process_traceid_queue(etmq, tidq);
2163 
2164 		} while (etmq->buf_len);
2165 
2166 		if (err == 0)
2167 			/* Flush any remaining branch stack entries */
2168 			err = cs_etm__end_block(etmq, tidq);
2169 	}
2170 
2171 	return err;
2172 }
2173 
2174 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2175 					   pid_t tid)
2176 {
2177 	unsigned int i;
2178 	struct auxtrace_queues *queues = &etm->queues;
2179 
2180 	for (i = 0; i < queues->nr_queues; i++) {
2181 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2182 		struct cs_etm_queue *etmq = queue->priv;
2183 		struct cs_etm_traceid_queue *tidq;
2184 
2185 		if (!etmq)
2186 			continue;
2187 
2188 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2189 						CS_ETM_PER_THREAD_TRACEID);
2190 
2191 		if (!tidq)
2192 			continue;
2193 
2194 		if ((tid == -1) || (tidq->tid == tid)) {
2195 			cs_etm__set_pid_tid_cpu(etm, tidq);
2196 			cs_etm__run_decoder(etmq);
2197 		}
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2204 {
2205 	int ret = 0;
2206 	unsigned int cs_queue_nr, queue_nr, i;
2207 	u8 trace_chan_id;
2208 	u64 cs_timestamp;
2209 	struct auxtrace_queue *queue;
2210 	struct cs_etm_queue *etmq;
2211 	struct cs_etm_traceid_queue *tidq;
2212 
2213 	/*
2214 	 * Pre-populate the heap with one entry from each queue so that we can
2215 	 * start processing in time order across all queues.
2216 	 */
2217 	for (i = 0; i < etm->queues.nr_queues; i++) {
2218 		etmq = etm->queues.queue_array[i].priv;
2219 		if (!etmq)
2220 			continue;
2221 
2222 		ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2223 		if (ret)
2224 			return ret;
2225 	}
2226 
2227 	while (1) {
2228 		if (!etm->heap.heap_cnt)
2229 			goto out;
2230 
2231 		/* Take the entry at the top of the min heap */
2232 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2233 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2234 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2235 		queue = &etm->queues.queue_array[queue_nr];
2236 		etmq = queue->priv;
2237 
2238 		/*
2239 		 * Remove the top entry from the heap since we are about
2240 		 * to process it.
2241 		 */
2242 		auxtrace_heap__pop(&etm->heap);
2243 
2244 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2245 		if (!tidq) {
2246 			/*
2247 			 * No traceID queue has been allocated for this traceID,
2248 			 * which means something somewhere went very wrong.  No
2249 			 * other choice than simply exit.
2250 			 */
2251 			ret = -EINVAL;
2252 			goto out;
2253 		}
2254 
2255 		/*
2256 		 * Packets associated with this timestamp are already in
2257 		 * the etmq's traceID queue, so process them.
2258 		 */
2259 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2260 		if (ret < 0)
2261 			goto out;
2262 
2263 		/*
2264 		 * Packets for this timestamp have been processed, time to
2265 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2266 		 * if need be.
2267 		 */
2268 refetch:
2269 		ret = cs_etm__get_data_block(etmq);
2270 		if (ret < 0)
2271 			goto out;
2272 
2273 		/*
2274 		 * No more auxtrace_buffers to process in this etmq, simply
2275 		 * move on to another entry in the auxtrace_heap.
2276 		 */
2277 		if (!ret)
2278 			continue;
2279 
2280 		ret = cs_etm__decode_data_block(etmq);
2281 		if (ret)
2282 			goto out;
2283 
2284 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2285 
2286 		if (!cs_timestamp) {
2287 			/*
2288 			 * Function cs_etm__decode_data_block() returns when
2289 			 * there is no more traces to decode in the current
2290 			 * auxtrace_buffer OR when a timestamp has been
2291 			 * encountered on any of the traceID queues.  Since we
2292 			 * did not get a timestamp, there is no more traces to
2293 			 * process in this auxtrace_buffer.  As such empty and
2294 			 * flush all traceID queues.
2295 			 */
2296 			cs_etm__clear_all_traceid_queues(etmq);
2297 
2298 			/* Fetch another auxtrace_buffer for this etmq */
2299 			goto refetch;
2300 		}
2301 
2302 		/*
2303 		 * Add to the min heap the timestamp for packets that have
2304 		 * just been decoded.  They will be processed and synthesized
2305 		 * during the next call to cs_etm__process_traceid_queue() for
2306 		 * this queue/traceID.
2307 		 */
2308 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2309 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2310 	}
2311 
2312 out:
2313 	return ret;
2314 }
2315 
2316 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2317 					union perf_event *event)
2318 {
2319 	struct thread *th;
2320 
2321 	if (etm->timeless_decoding)
2322 		return 0;
2323 
2324 	/*
2325 	 * Add the tid/pid to the log so that we can get a match when
2326 	 * we get a contextID from the decoder.
2327 	 */
2328 	th = machine__findnew_thread(etm->machine,
2329 				     event->itrace_start.pid,
2330 				     event->itrace_start.tid);
2331 	if (!th)
2332 		return -ENOMEM;
2333 
2334 	thread__put(th);
2335 
2336 	return 0;
2337 }
2338 
2339 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2340 					   union perf_event *event)
2341 {
2342 	struct thread *th;
2343 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2344 
2345 	/*
2346 	 * Context switch in per-thread mode are irrelevant since perf
2347 	 * will start/stop tracing as the process is scheduled.
2348 	 */
2349 	if (etm->timeless_decoding)
2350 		return 0;
2351 
2352 	/*
2353 	 * SWITCH_IN events carry the next process to be switched out while
2354 	 * SWITCH_OUT events carry the process to be switched in.  As such
2355 	 * we don't care about IN events.
2356 	 */
2357 	if (!out)
2358 		return 0;
2359 
2360 	/*
2361 	 * Add the tid/pid to the log so that we can get a match when
2362 	 * we get a contextID from the decoder.
2363 	 */
2364 	th = machine__findnew_thread(etm->machine,
2365 				     event->context_switch.next_prev_pid,
2366 				     event->context_switch.next_prev_tid);
2367 	if (!th)
2368 		return -ENOMEM;
2369 
2370 	thread__put(th);
2371 
2372 	return 0;
2373 }
2374 
2375 static int cs_etm__process_event(struct perf_session *session,
2376 				 union perf_event *event,
2377 				 struct perf_sample *sample,
2378 				 struct perf_tool *tool)
2379 {
2380 	u64 sample_kernel_timestamp;
2381 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2382 						   struct cs_etm_auxtrace,
2383 						   auxtrace);
2384 
2385 	if (dump_trace)
2386 		return 0;
2387 
2388 	if (!tool->ordered_events) {
2389 		pr_err("CoreSight ETM Trace requires ordered events\n");
2390 		return -EINVAL;
2391 	}
2392 
2393 	if (sample->time && (sample->time != (u64) -1))
2394 		sample_kernel_timestamp = sample->time;
2395 	else
2396 		sample_kernel_timestamp = 0;
2397 
2398 	/*
2399 	 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2400 	 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2401 	 * ETM_OPT_CTXTID is not enabled.
2402 	 */
2403 	if (etm->timeless_decoding &&
2404 	    event->header.type == PERF_RECORD_EXIT)
2405 		return cs_etm__process_timeless_queues(etm,
2406 						       event->fork.tid);
2407 
2408 	if (event->header.type == PERF_RECORD_ITRACE_START)
2409 		return cs_etm__process_itrace_start(etm, event);
2410 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2411 		return cs_etm__process_switch_cpu_wide(etm, event);
2412 
2413 	if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2414 		/*
2415 		 * Record the latest kernel timestamp available in the header
2416 		 * for samples so that synthesised samples occur from this point
2417 		 * onwards.
2418 		 */
2419 		etm->latest_kernel_timestamp = sample_kernel_timestamp;
2420 	}
2421 
2422 	return 0;
2423 }
2424 
2425 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2426 			     struct perf_record_auxtrace *event)
2427 {
2428 	struct auxtrace_buffer *buf;
2429 	unsigned int i;
2430 	/*
2431 	 * Find all buffers with same reference in the queues and dump them.
2432 	 * This is because the queues can contain multiple entries of the same
2433 	 * buffer that were split on aux records.
2434 	 */
2435 	for (i = 0; i < etm->queues.nr_queues; ++i)
2436 		list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2437 			if (buf->reference == event->reference)
2438 				cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2439 }
2440 
2441 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2442 					  union perf_event *event,
2443 					  struct perf_tool *tool __maybe_unused)
2444 {
2445 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2446 						   struct cs_etm_auxtrace,
2447 						   auxtrace);
2448 	if (!etm->data_queued) {
2449 		struct auxtrace_buffer *buffer;
2450 		off_t  data_offset;
2451 		int fd = perf_data__fd(session->data);
2452 		bool is_pipe = perf_data__is_pipe(session->data);
2453 		int err;
2454 		int idx = event->auxtrace.idx;
2455 
2456 		if (is_pipe)
2457 			data_offset = 0;
2458 		else {
2459 			data_offset = lseek(fd, 0, SEEK_CUR);
2460 			if (data_offset == -1)
2461 				return -errno;
2462 		}
2463 
2464 		err = auxtrace_queues__add_event(&etm->queues, session,
2465 						 event, data_offset, &buffer);
2466 		if (err)
2467 			return err;
2468 
2469 		/*
2470 		 * Knowing if the trace is formatted or not requires a lookup of
2471 		 * the aux record so only works in non-piped mode where data is
2472 		 * queued in cs_etm__queue_aux_records(). Always assume
2473 		 * formatted in piped mode (true).
2474 		 */
2475 		err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2476 					  idx, true);
2477 		if (err)
2478 			return err;
2479 
2480 		if (dump_trace)
2481 			if (auxtrace_buffer__get_data(buffer, fd)) {
2482 				cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2483 				auxtrace_buffer__put_data(buffer);
2484 			}
2485 	} else if (dump_trace)
2486 		dump_queued_data(etm, &event->auxtrace);
2487 
2488 	return 0;
2489 }
2490 
2491 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2492 {
2493 	struct evsel *evsel;
2494 	struct evlist *evlist = etm->session->evlist;
2495 	bool timeless_decoding = true;
2496 
2497 	/* Override timeless mode with user input from --itrace=Z */
2498 	if (etm->synth_opts.timeless_decoding)
2499 		return true;
2500 
2501 	/*
2502 	 * Circle through the list of event and complain if we find one
2503 	 * with the time bit set.
2504 	 */
2505 	evlist__for_each_entry(evlist, evsel) {
2506 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2507 			timeless_decoding = false;
2508 	}
2509 
2510 	return timeless_decoding;
2511 }
2512 
2513 /*
2514  * Read a single cpu parameter block from the auxtrace_info priv block.
2515  *
2516  * For version 1 there is a per cpu nr_params entry. If we are handling
2517  * version 1 file, then there may be less, the same, or more params
2518  * indicated by this value than the compile time number we understand.
2519  *
2520  * For a version 0 info block, there are a fixed number, and we need to
2521  * fill out the nr_param value in the metadata we create.
2522  */
2523 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2524 				    int out_blk_size, int nr_params_v0)
2525 {
2526 	u64 *metadata = NULL;
2527 	int hdr_version;
2528 	int nr_in_params, nr_out_params, nr_cmn_params;
2529 	int i, k;
2530 
2531 	metadata = zalloc(sizeof(*metadata) * out_blk_size);
2532 	if (!metadata)
2533 		return NULL;
2534 
2535 	/* read block current index & version */
2536 	i = *buff_in_offset;
2537 	hdr_version = buff_in[CS_HEADER_VERSION];
2538 
2539 	if (!hdr_version) {
2540 	/* read version 0 info block into a version 1 metadata block  */
2541 		nr_in_params = nr_params_v0;
2542 		metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2543 		metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2544 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2545 		/* remaining block params at offset +1 from source */
2546 		for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2547 			metadata[k + 1] = buff_in[i + k];
2548 		/* version 0 has 2 common params */
2549 		nr_cmn_params = 2;
2550 	} else {
2551 	/* read version 1 info block - input and output nr_params may differ */
2552 		/* version 1 has 3 common params */
2553 		nr_cmn_params = 3;
2554 		nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2555 
2556 		/* if input has more params than output - skip excess */
2557 		nr_out_params = nr_in_params + nr_cmn_params;
2558 		if (nr_out_params > out_blk_size)
2559 			nr_out_params = out_blk_size;
2560 
2561 		for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2562 			metadata[k] = buff_in[i + k];
2563 
2564 		/* record the actual nr params we copied */
2565 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2566 	}
2567 
2568 	/* adjust in offset by number of in params used */
2569 	i += nr_in_params + nr_cmn_params;
2570 	*buff_in_offset = i;
2571 	return metadata;
2572 }
2573 
2574 /**
2575  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2576  * on the bounds of aux_event, if it matches with the buffer that's at
2577  * file_offset.
2578  *
2579  * Normally, whole auxtrace buffers would be added to the queue. But we
2580  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2581  * is reset across each buffer, so splitting the buffers up in advance has
2582  * the same effect.
2583  */
2584 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2585 				      struct perf_record_aux *aux_event, struct perf_sample *sample)
2586 {
2587 	int err;
2588 	char buf[PERF_SAMPLE_MAX_SIZE];
2589 	union perf_event *auxtrace_event_union;
2590 	struct perf_record_auxtrace *auxtrace_event;
2591 	union perf_event auxtrace_fragment;
2592 	__u64 aux_offset, aux_size;
2593 	__u32 idx;
2594 	bool formatted;
2595 
2596 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2597 						   struct cs_etm_auxtrace,
2598 						   auxtrace);
2599 
2600 	/*
2601 	 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2602 	 * from looping through the auxtrace index.
2603 	 */
2604 	err = perf_session__peek_event(session, file_offset, buf,
2605 				       PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2606 	if (err)
2607 		return err;
2608 	auxtrace_event = &auxtrace_event_union->auxtrace;
2609 	if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2610 		return -EINVAL;
2611 
2612 	if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2613 		auxtrace_event->header.size != sz) {
2614 		return -EINVAL;
2615 	}
2616 
2617 	/*
2618 	 * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2619 	 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2620 	 */
2621 	if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2622 			auxtrace_event->cpu != sample->cpu)
2623 		return 1;
2624 
2625 	if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2626 		/*
2627 		 * Clamp size in snapshot mode. The buffer size is clamped in
2628 		 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2629 		 * the buffer size.
2630 		 */
2631 		aux_size = min(aux_event->aux_size, auxtrace_event->size);
2632 
2633 		/*
2634 		 * In this mode, the head also points to the end of the buffer so aux_offset
2635 		 * needs to have the size subtracted so it points to the beginning as in normal mode
2636 		 */
2637 		aux_offset = aux_event->aux_offset - aux_size;
2638 	} else {
2639 		aux_size = aux_event->aux_size;
2640 		aux_offset = aux_event->aux_offset;
2641 	}
2642 
2643 	if (aux_offset >= auxtrace_event->offset &&
2644 	    aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2645 		/*
2646 		 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2647 		 * based on the sizes of the aux event, and queue that fragment.
2648 		 */
2649 		auxtrace_fragment.auxtrace = *auxtrace_event;
2650 		auxtrace_fragment.auxtrace.size = aux_size;
2651 		auxtrace_fragment.auxtrace.offset = aux_offset;
2652 		file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2653 
2654 		pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2655 			  " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2656 		err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2657 						 file_offset, NULL);
2658 		if (err)
2659 			return err;
2660 
2661 		idx = auxtrace_event->idx;
2662 		formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
2663 		return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2664 					   idx, formatted);
2665 	}
2666 
2667 	/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2668 	return 1;
2669 }
2670 
2671 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2672 					u64 offset __maybe_unused, void *data __maybe_unused)
2673 {
2674 	struct perf_sample sample;
2675 	int ret;
2676 	struct auxtrace_index_entry *ent;
2677 	struct auxtrace_index *auxtrace_index;
2678 	struct evsel *evsel;
2679 	size_t i;
2680 
2681 	/* Don't care about any other events, we're only queuing buffers for AUX events */
2682 	if (event->header.type != PERF_RECORD_AUX)
2683 		return 0;
2684 
2685 	if (event->header.size < sizeof(struct perf_record_aux))
2686 		return -EINVAL;
2687 
2688 	/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2689 	if (!event->aux.aux_size)
2690 		return 0;
2691 
2692 	/*
2693 	 * Parse the sample, we need the sample_id_all data that comes after the event so that the
2694 	 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2695 	 */
2696 	evsel = evlist__event2evsel(session->evlist, event);
2697 	if (!evsel)
2698 		return -EINVAL;
2699 	ret = evsel__parse_sample(evsel, event, &sample);
2700 	if (ret)
2701 		return ret;
2702 
2703 	/*
2704 	 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2705 	 */
2706 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2707 		for (i = 0; i < auxtrace_index->nr; i++) {
2708 			ent = &auxtrace_index->entries[i];
2709 			ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2710 							 ent->sz, &event->aux, &sample);
2711 			/*
2712 			 * Stop search on error or successful values. Continue search on
2713 			 * 1 ('not found')
2714 			 */
2715 			if (ret != 1)
2716 				return ret;
2717 		}
2718 	}
2719 
2720 	/*
2721 	 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2722 	 * don't exit with an error because it will still be possible to decode other aux records.
2723 	 */
2724 	pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2725 	       " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2726 	return 0;
2727 }
2728 
2729 static int cs_etm__queue_aux_records(struct perf_session *session)
2730 {
2731 	struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2732 								struct auxtrace_index, list);
2733 	if (index && index->nr > 0)
2734 		return perf_session__peek_events(session, session->header.data_offset,
2735 						 session->header.data_size,
2736 						 cs_etm__queue_aux_records_cb, NULL);
2737 
2738 	/*
2739 	 * We would get here if there are no entries in the index (either no auxtrace
2740 	 * buffers or no index at all). Fail silently as there is the possibility of
2741 	 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2742 	 * false.
2743 	 *
2744 	 * In that scenario, buffers will not be split by AUX records.
2745 	 */
2746 	return 0;
2747 }
2748 
2749 int cs_etm__process_auxtrace_info_full(union perf_event *event,
2750 				       struct perf_session *session)
2751 {
2752 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2753 	struct cs_etm_auxtrace *etm = NULL;
2754 	struct int_node *inode;
2755 	int event_header_size = sizeof(struct perf_event_header);
2756 	int total_size = auxtrace_info->header.size;
2757 	int priv_size = 0;
2758 	int num_cpu, trcidr_idx;
2759 	int err = 0;
2760 	int i, j;
2761 	u64 *ptr = NULL;
2762 	u64 **metadata = NULL;
2763 
2764 	/*
2765 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2766 	 * has to be made for each packet that gets decoded, optimizing access
2767 	 * in anything other than a sequential array is worth doing.
2768 	 */
2769 	traceid_list = intlist__new(NULL);
2770 	if (!traceid_list)
2771 		return -ENOMEM;
2772 
2773 	/* First the global part */
2774 	ptr = (u64 *) auxtrace_info->priv;
2775 	num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2776 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2777 	if (!metadata) {
2778 		err = -ENOMEM;
2779 		goto err_free_traceid_list;
2780 	}
2781 
2782 	/* Start parsing after the common part of the header */
2783 	i = CS_HEADER_VERSION_MAX;
2784 
2785 	/*
2786 	 * The metadata is stored in the auxtrace_info section and encodes
2787 	 * the configuration of the ARM embedded trace macrocell which is
2788 	 * required by the trace decoder to properly decode the trace due
2789 	 * to its highly compressed nature.
2790 	 */
2791 	for (j = 0; j < num_cpu; j++) {
2792 		if (ptr[i] == __perf_cs_etmv3_magic) {
2793 			metadata[j] =
2794 				cs_etm__create_meta_blk(ptr, &i,
2795 							CS_ETM_PRIV_MAX,
2796 							CS_ETM_NR_TRC_PARAMS_V0);
2797 
2798 			/* The traceID is our handle */
2799 			trcidr_idx = CS_ETM_ETMTRACEIDR;
2800 
2801 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2802 			metadata[j] =
2803 				cs_etm__create_meta_blk(ptr, &i,
2804 							CS_ETMV4_PRIV_MAX,
2805 							CS_ETMV4_NR_TRC_PARAMS_V0);
2806 
2807 			/* The traceID is our handle */
2808 			trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2809 		} else if (ptr[i] == __perf_cs_ete_magic) {
2810 			metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
2811 
2812 			/* ETE shares first part of metadata with ETMv4 */
2813 			trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2814 		} else {
2815 			ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
2816 				  ptr[i]);
2817 			err = -EINVAL;
2818 			goto err_free_metadata;
2819 		}
2820 
2821 		if (!metadata[j]) {
2822 			err = -ENOMEM;
2823 			goto err_free_metadata;
2824 		}
2825 
2826 		/* Get an RB node for this CPU */
2827 		inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2828 
2829 		/* Something went wrong, no need to continue */
2830 		if (!inode) {
2831 			err = -ENOMEM;
2832 			goto err_free_metadata;
2833 		}
2834 
2835 		/*
2836 		 * The node for that CPU should not be taken.
2837 		 * Back out if that's the case.
2838 		 */
2839 		if (inode->priv) {
2840 			err = -EINVAL;
2841 			goto err_free_metadata;
2842 		}
2843 		/* All good, associate the traceID with the metadata pointer */
2844 		inode->priv = metadata[j];
2845 	}
2846 
2847 	/*
2848 	 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2849 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2850 	 * global metadata, and each cpu's metadata respectively.
2851 	 * The following tests if the correct number of double words was
2852 	 * present in the auxtrace info section.
2853 	 */
2854 	priv_size = total_size - event_header_size - INFO_HEADER_SIZE;
2855 	if (i * 8 != priv_size) {
2856 		err = -EINVAL;
2857 		goto err_free_metadata;
2858 	}
2859 
2860 	etm = zalloc(sizeof(*etm));
2861 
2862 	if (!etm) {
2863 		err = -ENOMEM;
2864 		goto err_free_metadata;
2865 	}
2866 
2867 	err = auxtrace_queues__init(&etm->queues);
2868 	if (err)
2869 		goto err_free_etm;
2870 
2871 	if (session->itrace_synth_opts->set) {
2872 		etm->synth_opts = *session->itrace_synth_opts;
2873 	} else {
2874 		itrace_synth_opts__set_default(&etm->synth_opts,
2875 				session->itrace_synth_opts->default_no_sample);
2876 		etm->synth_opts.callchain = false;
2877 	}
2878 
2879 	etm->session = session;
2880 	etm->machine = &session->machines.host;
2881 
2882 	etm->num_cpu = num_cpu;
2883 	etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff);
2884 	etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0);
2885 	etm->metadata = metadata;
2886 	etm->auxtrace_type = auxtrace_info->type;
2887 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2888 
2889 	etm->auxtrace.process_event = cs_etm__process_event;
2890 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2891 	etm->auxtrace.flush_events = cs_etm__flush_events;
2892 	etm->auxtrace.free_events = cs_etm__free_events;
2893 	etm->auxtrace.free = cs_etm__free;
2894 	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
2895 	session->auxtrace = &etm->auxtrace;
2896 
2897 	etm->unknown_thread = thread__new(999999999, 999999999);
2898 	if (!etm->unknown_thread) {
2899 		err = -ENOMEM;
2900 		goto err_free_queues;
2901 	}
2902 
2903 	/*
2904 	 * Initialize list node so that at thread__zput() we can avoid
2905 	 * segmentation fault at list_del_init().
2906 	 */
2907 	INIT_LIST_HEAD(&etm->unknown_thread->node);
2908 
2909 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2910 	if (err)
2911 		goto err_delete_thread;
2912 
2913 	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2914 		err = -ENOMEM;
2915 		goto err_delete_thread;
2916 	}
2917 
2918 	err = cs_etm__synth_events(etm, session);
2919 	if (err)
2920 		goto err_delete_thread;
2921 
2922 	err = cs_etm__queue_aux_records(session);
2923 	if (err)
2924 		goto err_delete_thread;
2925 
2926 	etm->data_queued = etm->queues.populated;
2927 	/*
2928 	 * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
2929 	 * cs_etm__queue_aux_fragment() for details relating to limitations.
2930 	 */
2931 	if (!etm->data_queued)
2932 		pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
2933 			   "Continuing with best effort decoding in piped mode.\n\n");
2934 
2935 	return 0;
2936 
2937 err_delete_thread:
2938 	thread__zput(etm->unknown_thread);
2939 err_free_queues:
2940 	auxtrace_queues__free(&etm->queues);
2941 	session->auxtrace = NULL;
2942 err_free_etm:
2943 	zfree(&etm);
2944 err_free_metadata:
2945 	/* No need to check @metadata[j], free(NULL) is supported */
2946 	for (j = 0; j < num_cpu; j++)
2947 		zfree(&metadata[j]);
2948 	zfree(&metadata);
2949 err_free_traceid_list:
2950 	intlist__delete(traceid_list);
2951 	return err;
2952 }
2953