1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/err.h> 11 #include <linux/kernel.h> 12 #include <linux/log2.h> 13 #include <linux/types.h> 14 15 #include <stdlib.h> 16 17 #include "auxtrace.h" 18 #include "color.h" 19 #include "cs-etm.h" 20 #include "cs-etm-decoder/cs-etm-decoder.h" 21 #include "debug.h" 22 #include "evlist.h" 23 #include "intlist.h" 24 #include "machine.h" 25 #include "map.h" 26 #include "perf.h" 27 #include "thread.h" 28 #include "thread_map.h" 29 #include "thread-stack.h" 30 #include "util.h" 31 32 #define MAX_TIMESTAMP (~0ULL) 33 34 /* 35 * A64 instructions are always 4 bytes 36 * 37 * Only A64 is supported, so can use this constant for converting between 38 * addresses and instruction counts, calculting offsets etc 39 */ 40 #define A64_INSTR_SIZE 4 41 42 struct cs_etm_auxtrace { 43 struct auxtrace auxtrace; 44 struct auxtrace_queues queues; 45 struct auxtrace_heap heap; 46 struct itrace_synth_opts synth_opts; 47 struct perf_session *session; 48 struct machine *machine; 49 struct thread *unknown_thread; 50 51 u8 timeless_decoding; 52 u8 snapshot_mode; 53 u8 data_queued; 54 u8 sample_branches; 55 u8 sample_instructions; 56 57 int num_cpu; 58 u32 auxtrace_type; 59 u64 branches_sample_type; 60 u64 branches_id; 61 u64 instructions_sample_type; 62 u64 instructions_sample_period; 63 u64 instructions_id; 64 u64 **metadata; 65 u64 kernel_start; 66 unsigned int pmu_type; 67 }; 68 69 struct cs_etm_queue { 70 struct cs_etm_auxtrace *etm; 71 struct thread *thread; 72 struct cs_etm_decoder *decoder; 73 struct auxtrace_buffer *buffer; 74 const struct cs_etm_state *state; 75 union perf_event *event_buf; 76 unsigned int queue_nr; 77 pid_t pid, tid; 78 int cpu; 79 u64 time; 80 u64 timestamp; 81 u64 offset; 82 u64 period_instructions; 83 struct branch_stack *last_branch; 84 struct branch_stack *last_branch_rb; 85 size_t last_branch_pos; 86 struct cs_etm_packet *prev_packet; 87 struct cs_etm_packet *packet; 88 }; 89 90 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm); 91 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 92 pid_t tid, u64 time_); 93 94 static void cs_etm__packet_dump(const char *pkt_string) 95 { 96 const char *color = PERF_COLOR_BLUE; 97 int len = strlen(pkt_string); 98 99 if (len && (pkt_string[len-1] == '\n')) 100 color_fprintf(stdout, color, " %s", pkt_string); 101 else 102 color_fprintf(stdout, color, " %s\n", pkt_string); 103 104 fflush(stdout); 105 } 106 107 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm, 108 struct auxtrace_buffer *buffer) 109 { 110 int i, ret; 111 const char *color = PERF_COLOR_BLUE; 112 struct cs_etm_decoder_params d_params; 113 struct cs_etm_trace_params *t_params; 114 struct cs_etm_decoder *decoder; 115 size_t buffer_used = 0; 116 117 fprintf(stdout, "\n"); 118 color_fprintf(stdout, color, 119 ". ... CoreSight ETM Trace data: size %zu bytes\n", 120 buffer->size); 121 122 /* Use metadata to fill in trace parameters for trace decoder */ 123 t_params = zalloc(sizeof(*t_params) * etm->num_cpu); 124 for (i = 0; i < etm->num_cpu; i++) { 125 t_params[i].protocol = CS_ETM_PROTO_ETMV4i; 126 t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0]; 127 t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1]; 128 t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2]; 129 t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8]; 130 t_params[i].etmv4.reg_configr = 131 etm->metadata[i][CS_ETMV4_TRCCONFIGR]; 132 t_params[i].etmv4.reg_traceidr = 133 etm->metadata[i][CS_ETMV4_TRCTRACEIDR]; 134 } 135 136 /* Set decoder parameters to simply print the trace packets */ 137 d_params.packet_printer = cs_etm__packet_dump; 138 d_params.operation = CS_ETM_OPERATION_PRINT; 139 d_params.formatted = true; 140 d_params.fsyncs = false; 141 d_params.hsyncs = false; 142 d_params.frame_aligned = true; 143 144 decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); 145 146 zfree(&t_params); 147 148 if (!decoder) 149 return; 150 do { 151 size_t consumed; 152 153 ret = cs_etm_decoder__process_data_block( 154 decoder, buffer->offset, 155 &((u8 *)buffer->data)[buffer_used], 156 buffer->size - buffer_used, &consumed); 157 if (ret) 158 break; 159 160 buffer_used += consumed; 161 } while (buffer_used < buffer->size); 162 163 cs_etm_decoder__free(decoder); 164 } 165 166 static int cs_etm__flush_events(struct perf_session *session, 167 struct perf_tool *tool) 168 { 169 int ret; 170 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 171 struct cs_etm_auxtrace, 172 auxtrace); 173 if (dump_trace) 174 return 0; 175 176 if (!tool->ordered_events) 177 return -EINVAL; 178 179 if (!etm->timeless_decoding) 180 return -EINVAL; 181 182 ret = cs_etm__update_queues(etm); 183 184 if (ret < 0) 185 return ret; 186 187 return cs_etm__process_timeless_queues(etm, -1, MAX_TIMESTAMP - 1); 188 } 189 190 static void cs_etm__free_queue(void *priv) 191 { 192 struct cs_etm_queue *etmq = priv; 193 194 if (!etmq) 195 return; 196 197 thread__zput(etmq->thread); 198 cs_etm_decoder__free(etmq->decoder); 199 zfree(&etmq->event_buf); 200 zfree(&etmq->last_branch); 201 zfree(&etmq->last_branch_rb); 202 zfree(&etmq->prev_packet); 203 zfree(&etmq->packet); 204 free(etmq); 205 } 206 207 static void cs_etm__free_events(struct perf_session *session) 208 { 209 unsigned int i; 210 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 211 struct cs_etm_auxtrace, 212 auxtrace); 213 struct auxtrace_queues *queues = &aux->queues; 214 215 for (i = 0; i < queues->nr_queues; i++) { 216 cs_etm__free_queue(queues->queue_array[i].priv); 217 queues->queue_array[i].priv = NULL; 218 } 219 220 auxtrace_queues__free(queues); 221 } 222 223 static void cs_etm__free(struct perf_session *session) 224 { 225 int i; 226 struct int_node *inode, *tmp; 227 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 228 struct cs_etm_auxtrace, 229 auxtrace); 230 cs_etm__free_events(session); 231 session->auxtrace = NULL; 232 233 /* First remove all traceID/CPU# nodes for the RB tree */ 234 intlist__for_each_entry_safe(inode, tmp, traceid_list) 235 intlist__remove(traceid_list, inode); 236 /* Then the RB tree itself */ 237 intlist__delete(traceid_list); 238 239 for (i = 0; i < aux->num_cpu; i++) 240 zfree(&aux->metadata[i]); 241 242 thread__zput(aux->unknown_thread); 243 zfree(&aux->metadata); 244 zfree(&aux); 245 } 246 247 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address, 248 size_t size, u8 *buffer) 249 { 250 u8 cpumode; 251 u64 offset; 252 int len; 253 struct thread *thread; 254 struct machine *machine; 255 struct addr_location al; 256 257 if (!etmq) 258 return -1; 259 260 machine = etmq->etm->machine; 261 if (address >= etmq->etm->kernel_start) 262 cpumode = PERF_RECORD_MISC_KERNEL; 263 else 264 cpumode = PERF_RECORD_MISC_USER; 265 266 thread = etmq->thread; 267 if (!thread) { 268 if (cpumode != PERF_RECORD_MISC_KERNEL) 269 return -EINVAL; 270 thread = etmq->etm->unknown_thread; 271 } 272 273 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso) 274 return 0; 275 276 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 277 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) 278 return 0; 279 280 offset = al.map->map_ip(al.map, address); 281 282 map__load(al.map); 283 284 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size); 285 286 if (len <= 0) 287 return 0; 288 289 return len; 290 } 291 292 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, 293 unsigned int queue_nr) 294 { 295 int i; 296 struct cs_etm_decoder_params d_params; 297 struct cs_etm_trace_params *t_params; 298 struct cs_etm_queue *etmq; 299 size_t szp = sizeof(struct cs_etm_packet); 300 301 etmq = zalloc(sizeof(*etmq)); 302 if (!etmq) 303 return NULL; 304 305 etmq->packet = zalloc(szp); 306 if (!etmq->packet) 307 goto out_free; 308 309 if (etm->synth_opts.last_branch || etm->sample_branches) { 310 etmq->prev_packet = zalloc(szp); 311 if (!etmq->prev_packet) 312 goto out_free; 313 } 314 315 if (etm->synth_opts.last_branch) { 316 size_t sz = sizeof(struct branch_stack); 317 318 sz += etm->synth_opts.last_branch_sz * 319 sizeof(struct branch_entry); 320 etmq->last_branch = zalloc(sz); 321 if (!etmq->last_branch) 322 goto out_free; 323 etmq->last_branch_rb = zalloc(sz); 324 if (!etmq->last_branch_rb) 325 goto out_free; 326 } 327 328 etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 329 if (!etmq->event_buf) 330 goto out_free; 331 332 etmq->etm = etm; 333 etmq->queue_nr = queue_nr; 334 etmq->pid = -1; 335 etmq->tid = -1; 336 etmq->cpu = -1; 337 338 /* Use metadata to fill in trace parameters for trace decoder */ 339 t_params = zalloc(sizeof(*t_params) * etm->num_cpu); 340 341 if (!t_params) 342 goto out_free; 343 344 for (i = 0; i < etm->num_cpu; i++) { 345 t_params[i].protocol = CS_ETM_PROTO_ETMV4i; 346 t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0]; 347 t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1]; 348 t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2]; 349 t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8]; 350 t_params[i].etmv4.reg_configr = 351 etm->metadata[i][CS_ETMV4_TRCCONFIGR]; 352 t_params[i].etmv4.reg_traceidr = 353 etm->metadata[i][CS_ETMV4_TRCTRACEIDR]; 354 } 355 356 /* Set decoder parameters to simply print the trace packets */ 357 d_params.packet_printer = cs_etm__packet_dump; 358 d_params.operation = CS_ETM_OPERATION_DECODE; 359 d_params.formatted = true; 360 d_params.fsyncs = false; 361 d_params.hsyncs = false; 362 d_params.frame_aligned = true; 363 d_params.data = etmq; 364 365 etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); 366 367 zfree(&t_params); 368 369 if (!etmq->decoder) 370 goto out_free; 371 372 /* 373 * Register a function to handle all memory accesses required by 374 * the trace decoder library. 375 */ 376 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 377 0x0L, ((u64) -1L), 378 cs_etm__mem_access)) 379 goto out_free_decoder; 380 381 etmq->offset = 0; 382 etmq->period_instructions = 0; 383 384 return etmq; 385 386 out_free_decoder: 387 cs_etm_decoder__free(etmq->decoder); 388 out_free: 389 zfree(&etmq->event_buf); 390 zfree(&etmq->last_branch); 391 zfree(&etmq->last_branch_rb); 392 zfree(&etmq->prev_packet); 393 zfree(&etmq->packet); 394 free(etmq); 395 396 return NULL; 397 } 398 399 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 400 struct auxtrace_queue *queue, 401 unsigned int queue_nr) 402 { 403 struct cs_etm_queue *etmq = queue->priv; 404 405 if (list_empty(&queue->head) || etmq) 406 return 0; 407 408 etmq = cs_etm__alloc_queue(etm, queue_nr); 409 410 if (!etmq) 411 return -ENOMEM; 412 413 queue->priv = etmq; 414 415 if (queue->cpu != -1) 416 etmq->cpu = queue->cpu; 417 418 etmq->tid = queue->tid; 419 420 return 0; 421 } 422 423 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm) 424 { 425 unsigned int i; 426 int ret; 427 428 for (i = 0; i < etm->queues.nr_queues; i++) { 429 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i); 430 if (ret) 431 return ret; 432 } 433 434 return 0; 435 } 436 437 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm) 438 { 439 if (etm->queues.new_data) { 440 etm->queues.new_data = false; 441 return cs_etm__setup_queues(etm); 442 } 443 444 return 0; 445 } 446 447 static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq) 448 { 449 struct branch_stack *bs_src = etmq->last_branch_rb; 450 struct branch_stack *bs_dst = etmq->last_branch; 451 size_t nr = 0; 452 453 /* 454 * Set the number of records before early exit: ->nr is used to 455 * determine how many branches to copy from ->entries. 456 */ 457 bs_dst->nr = bs_src->nr; 458 459 /* 460 * Early exit when there is nothing to copy. 461 */ 462 if (!bs_src->nr) 463 return; 464 465 /* 466 * As bs_src->entries is a circular buffer, we need to copy from it in 467 * two steps. First, copy the branches from the most recently inserted 468 * branch ->last_branch_pos until the end of bs_src->entries buffer. 469 */ 470 nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos; 471 memcpy(&bs_dst->entries[0], 472 &bs_src->entries[etmq->last_branch_pos], 473 sizeof(struct branch_entry) * nr); 474 475 /* 476 * If we wrapped around at least once, the branches from the beginning 477 * of the bs_src->entries buffer and until the ->last_branch_pos element 478 * are older valid branches: copy them over. The total number of 479 * branches copied over will be equal to the number of branches asked by 480 * the user in last_branch_sz. 481 */ 482 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 483 memcpy(&bs_dst->entries[nr], 484 &bs_src->entries[0], 485 sizeof(struct branch_entry) * etmq->last_branch_pos); 486 } 487 } 488 489 static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq) 490 { 491 etmq->last_branch_pos = 0; 492 etmq->last_branch_rb->nr = 0; 493 } 494 495 static inline u64 cs_etm__last_executed_instr(struct cs_etm_packet *packet) 496 { 497 /* Returns 0 for the CS_ETM_TRACE_ON packet */ 498 if (packet->sample_type == CS_ETM_TRACE_ON) 499 return 0; 500 501 /* 502 * The packet records the execution range with an exclusive end address 503 * 504 * A64 instructions are constant size, so the last executed 505 * instruction is A64_INSTR_SIZE before the end address 506 * Will need to do instruction level decode for T32 instructions as 507 * they can be variable size (not yet supported). 508 */ 509 return packet->end_addr - A64_INSTR_SIZE; 510 } 511 512 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) 513 { 514 /* Returns 0 for the CS_ETM_TRACE_ON packet */ 515 if (packet->sample_type == CS_ETM_TRACE_ON) 516 return 0; 517 518 return packet->start_addr; 519 } 520 521 static inline u64 cs_etm__instr_count(const struct cs_etm_packet *packet) 522 { 523 /* 524 * Only A64 instructions are currently supported, so can get 525 * instruction count by dividing. 526 * Will need to do instruction level decode for T32 instructions as 527 * they can be variable size (not yet supported). 528 */ 529 return (packet->end_addr - packet->start_addr) / A64_INSTR_SIZE; 530 } 531 532 static inline u64 cs_etm__instr_addr(const struct cs_etm_packet *packet, 533 u64 offset) 534 { 535 /* 536 * Only A64 instructions are currently supported, so can get 537 * instruction address by muliplying. 538 * Will need to do instruction level decode for T32 instructions as 539 * they can be variable size (not yet supported). 540 */ 541 return packet->start_addr + offset * A64_INSTR_SIZE; 542 } 543 544 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq) 545 { 546 struct branch_stack *bs = etmq->last_branch_rb; 547 struct branch_entry *be; 548 549 /* 550 * The branches are recorded in a circular buffer in reverse 551 * chronological order: we start recording from the last element of the 552 * buffer down. After writing the first element of the stack, move the 553 * insert position back to the end of the buffer. 554 */ 555 if (!etmq->last_branch_pos) 556 etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 557 558 etmq->last_branch_pos -= 1; 559 560 be = &bs->entries[etmq->last_branch_pos]; 561 be->from = cs_etm__last_executed_instr(etmq->prev_packet); 562 be->to = cs_etm__first_executed_instr(etmq->packet); 563 /* No support for mispredict */ 564 be->flags.mispred = 0; 565 be->flags.predicted = 1; 566 567 /* 568 * Increment bs->nr until reaching the number of last branches asked by 569 * the user on the command line. 570 */ 571 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 572 bs->nr += 1; 573 } 574 575 static int cs_etm__inject_event(union perf_event *event, 576 struct perf_sample *sample, u64 type) 577 { 578 event->header.size = perf_event__sample_event_size(sample, type, 0); 579 return perf_event__synthesize_sample(event, type, 0, sample); 580 } 581 582 583 static int 584 cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq) 585 { 586 struct auxtrace_buffer *aux_buffer = etmq->buffer; 587 struct auxtrace_buffer *old_buffer = aux_buffer; 588 struct auxtrace_queue *queue; 589 590 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 591 592 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 593 594 /* If no more data, drop the previous auxtrace_buffer and return */ 595 if (!aux_buffer) { 596 if (old_buffer) 597 auxtrace_buffer__drop_data(old_buffer); 598 buff->len = 0; 599 return 0; 600 } 601 602 etmq->buffer = aux_buffer; 603 604 /* If the aux_buffer doesn't have data associated, try to load it */ 605 if (!aux_buffer->data) { 606 /* get the file desc associated with the perf data file */ 607 int fd = perf_data__fd(etmq->etm->session->data); 608 609 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 610 if (!aux_buffer->data) 611 return -ENOMEM; 612 } 613 614 /* If valid, drop the previous buffer */ 615 if (old_buffer) 616 auxtrace_buffer__drop_data(old_buffer); 617 618 buff->offset = aux_buffer->offset; 619 buff->len = aux_buffer->size; 620 buff->buf = aux_buffer->data; 621 622 buff->ref_timestamp = aux_buffer->reference; 623 624 return buff->len; 625 } 626 627 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, 628 struct auxtrace_queue *queue) 629 { 630 struct cs_etm_queue *etmq = queue->priv; 631 632 /* CPU-wide tracing isn't supported yet */ 633 if (queue->tid == -1) 634 return; 635 636 if ((!etmq->thread) && (etmq->tid != -1)) 637 etmq->thread = machine__find_thread(etm->machine, -1, 638 etmq->tid); 639 640 if (etmq->thread) { 641 etmq->pid = etmq->thread->pid_; 642 if (queue->cpu == -1) 643 etmq->cpu = etmq->thread->cpu; 644 } 645 } 646 647 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 648 u64 addr, u64 period) 649 { 650 int ret = 0; 651 struct cs_etm_auxtrace *etm = etmq->etm; 652 union perf_event *event = etmq->event_buf; 653 struct perf_sample sample = {.ip = 0,}; 654 655 event->sample.header.type = PERF_RECORD_SAMPLE; 656 event->sample.header.misc = PERF_RECORD_MISC_USER; 657 event->sample.header.size = sizeof(struct perf_event_header); 658 659 sample.ip = addr; 660 sample.pid = etmq->pid; 661 sample.tid = etmq->tid; 662 sample.id = etmq->etm->instructions_id; 663 sample.stream_id = etmq->etm->instructions_id; 664 sample.period = period; 665 sample.cpu = etmq->packet->cpu; 666 sample.flags = 0; 667 sample.insn_len = 1; 668 sample.cpumode = event->header.misc; 669 670 if (etm->synth_opts.last_branch) { 671 cs_etm__copy_last_branch_rb(etmq); 672 sample.branch_stack = etmq->last_branch; 673 } 674 675 if (etm->synth_opts.inject) { 676 ret = cs_etm__inject_event(event, &sample, 677 etm->instructions_sample_type); 678 if (ret) 679 return ret; 680 } 681 682 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 683 684 if (ret) 685 pr_err( 686 "CS ETM Trace: failed to deliver instruction event, error %d\n", 687 ret); 688 689 if (etm->synth_opts.last_branch) 690 cs_etm__reset_last_branch_rb(etmq); 691 692 return ret; 693 } 694 695 /* 696 * The cs etm packet encodes an instruction range between a branch target 697 * and the next taken branch. Generate sample accordingly. 698 */ 699 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq) 700 { 701 int ret = 0; 702 struct cs_etm_auxtrace *etm = etmq->etm; 703 struct perf_sample sample = {.ip = 0,}; 704 union perf_event *event = etmq->event_buf; 705 struct dummy_branch_stack { 706 u64 nr; 707 struct branch_entry entries; 708 } dummy_bs; 709 710 event->sample.header.type = PERF_RECORD_SAMPLE; 711 event->sample.header.misc = PERF_RECORD_MISC_USER; 712 event->sample.header.size = sizeof(struct perf_event_header); 713 714 sample.ip = cs_etm__last_executed_instr(etmq->prev_packet); 715 sample.pid = etmq->pid; 716 sample.tid = etmq->tid; 717 sample.addr = cs_etm__first_executed_instr(etmq->packet); 718 sample.id = etmq->etm->branches_id; 719 sample.stream_id = etmq->etm->branches_id; 720 sample.period = 1; 721 sample.cpu = etmq->packet->cpu; 722 sample.flags = 0; 723 sample.cpumode = PERF_RECORD_MISC_USER; 724 725 /* 726 * perf report cannot handle events without a branch stack 727 */ 728 if (etm->synth_opts.last_branch) { 729 dummy_bs = (struct dummy_branch_stack){ 730 .nr = 1, 731 .entries = { 732 .from = sample.ip, 733 .to = sample.addr, 734 }, 735 }; 736 sample.branch_stack = (struct branch_stack *)&dummy_bs; 737 } 738 739 if (etm->synth_opts.inject) { 740 ret = cs_etm__inject_event(event, &sample, 741 etm->branches_sample_type); 742 if (ret) 743 return ret; 744 } 745 746 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 747 748 if (ret) 749 pr_err( 750 "CS ETM Trace: failed to deliver instruction event, error %d\n", 751 ret); 752 753 return ret; 754 } 755 756 struct cs_etm_synth { 757 struct perf_tool dummy_tool; 758 struct perf_session *session; 759 }; 760 761 static int cs_etm__event_synth(struct perf_tool *tool, 762 union perf_event *event, 763 struct perf_sample *sample __maybe_unused, 764 struct machine *machine __maybe_unused) 765 { 766 struct cs_etm_synth *cs_etm_synth = 767 container_of(tool, struct cs_etm_synth, dummy_tool); 768 769 return perf_session__deliver_synth_event(cs_etm_synth->session, 770 event, NULL); 771 } 772 773 static int cs_etm__synth_event(struct perf_session *session, 774 struct perf_event_attr *attr, u64 id) 775 { 776 struct cs_etm_synth cs_etm_synth; 777 778 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 779 cs_etm_synth.session = session; 780 781 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 782 &id, cs_etm__event_synth); 783 } 784 785 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 786 struct perf_session *session) 787 { 788 struct perf_evlist *evlist = session->evlist; 789 struct perf_evsel *evsel; 790 struct perf_event_attr attr; 791 bool found = false; 792 u64 id; 793 int err; 794 795 evlist__for_each_entry(evlist, evsel) { 796 if (evsel->attr.type == etm->pmu_type) { 797 found = true; 798 break; 799 } 800 } 801 802 if (!found) { 803 pr_debug("No selected events with CoreSight Trace data\n"); 804 return 0; 805 } 806 807 memset(&attr, 0, sizeof(struct perf_event_attr)); 808 attr.size = sizeof(struct perf_event_attr); 809 attr.type = PERF_TYPE_HARDWARE; 810 attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK; 811 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 812 PERF_SAMPLE_PERIOD; 813 if (etm->timeless_decoding) 814 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 815 else 816 attr.sample_type |= PERF_SAMPLE_TIME; 817 818 attr.exclude_user = evsel->attr.exclude_user; 819 attr.exclude_kernel = evsel->attr.exclude_kernel; 820 attr.exclude_hv = evsel->attr.exclude_hv; 821 attr.exclude_host = evsel->attr.exclude_host; 822 attr.exclude_guest = evsel->attr.exclude_guest; 823 attr.sample_id_all = evsel->attr.sample_id_all; 824 attr.read_format = evsel->attr.read_format; 825 826 /* create new id val to be a fixed offset from evsel id */ 827 id = evsel->id[0] + 1000000000; 828 829 if (!id) 830 id = 1; 831 832 if (etm->synth_opts.branches) { 833 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 834 attr.sample_period = 1; 835 attr.sample_type |= PERF_SAMPLE_ADDR; 836 err = cs_etm__synth_event(session, &attr, id); 837 if (err) 838 return err; 839 etm->sample_branches = true; 840 etm->branches_sample_type = attr.sample_type; 841 etm->branches_id = id; 842 id += 1; 843 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 844 } 845 846 if (etm->synth_opts.last_branch) 847 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 848 849 if (etm->synth_opts.instructions) { 850 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 851 attr.sample_period = etm->synth_opts.period; 852 etm->instructions_sample_period = attr.sample_period; 853 err = cs_etm__synth_event(session, &attr, id); 854 if (err) 855 return err; 856 etm->sample_instructions = true; 857 etm->instructions_sample_type = attr.sample_type; 858 etm->instructions_id = id; 859 id += 1; 860 } 861 862 return 0; 863 } 864 865 static int cs_etm__sample(struct cs_etm_queue *etmq) 866 { 867 struct cs_etm_auxtrace *etm = etmq->etm; 868 struct cs_etm_packet *tmp; 869 int ret; 870 u64 instrs_executed; 871 872 instrs_executed = cs_etm__instr_count(etmq->packet); 873 etmq->period_instructions += instrs_executed; 874 875 /* 876 * Record a branch when the last instruction in 877 * PREV_PACKET is a branch. 878 */ 879 if (etm->synth_opts.last_branch && 880 etmq->prev_packet && 881 etmq->prev_packet->sample_type == CS_ETM_RANGE && 882 etmq->prev_packet->last_instr_taken_branch) 883 cs_etm__update_last_branch_rb(etmq); 884 885 if (etm->sample_instructions && 886 etmq->period_instructions >= etm->instructions_sample_period) { 887 /* 888 * Emit instruction sample periodically 889 * TODO: allow period to be defined in cycles and clock time 890 */ 891 892 /* Get number of instructions executed after the sample point */ 893 u64 instrs_over = etmq->period_instructions - 894 etm->instructions_sample_period; 895 896 /* 897 * Calculate the address of the sampled instruction (-1 as 898 * sample is reported as though instruction has just been 899 * executed, but PC has not advanced to next instruction) 900 */ 901 u64 offset = (instrs_executed - instrs_over - 1); 902 u64 addr = cs_etm__instr_addr(etmq->packet, offset); 903 904 ret = cs_etm__synth_instruction_sample( 905 etmq, addr, etm->instructions_sample_period); 906 if (ret) 907 return ret; 908 909 /* Carry remaining instructions into next sample period */ 910 etmq->period_instructions = instrs_over; 911 } 912 913 if (etm->sample_branches && etmq->prev_packet) { 914 bool generate_sample = false; 915 916 /* Generate sample for tracing on packet */ 917 if (etmq->prev_packet->sample_type == CS_ETM_TRACE_ON) 918 generate_sample = true; 919 920 /* Generate sample for branch taken packet */ 921 if (etmq->prev_packet->sample_type == CS_ETM_RANGE && 922 etmq->prev_packet->last_instr_taken_branch) 923 generate_sample = true; 924 925 if (generate_sample) { 926 ret = cs_etm__synth_branch_sample(etmq); 927 if (ret) 928 return ret; 929 } 930 } 931 932 if (etm->sample_branches || etm->synth_opts.last_branch) { 933 /* 934 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 935 * the next incoming packet. 936 */ 937 tmp = etmq->packet; 938 etmq->packet = etmq->prev_packet; 939 etmq->prev_packet = tmp; 940 } 941 942 return 0; 943 } 944 945 static int cs_etm__flush(struct cs_etm_queue *etmq) 946 { 947 int err = 0; 948 struct cs_etm_auxtrace *etm = etmq->etm; 949 struct cs_etm_packet *tmp; 950 951 if (!etmq->prev_packet) 952 return 0; 953 954 /* Handle start tracing packet */ 955 if (etmq->prev_packet->sample_type == CS_ETM_EMPTY) 956 goto swap_packet; 957 958 if (etmq->etm->synth_opts.last_branch && 959 etmq->prev_packet->sample_type == CS_ETM_RANGE) { 960 /* 961 * Generate a last branch event for the branches left in the 962 * circular buffer at the end of the trace. 963 * 964 * Use the address of the end of the last reported execution 965 * range 966 */ 967 u64 addr = cs_etm__last_executed_instr(etmq->prev_packet); 968 969 err = cs_etm__synth_instruction_sample( 970 etmq, addr, 971 etmq->period_instructions); 972 if (err) 973 return err; 974 975 etmq->period_instructions = 0; 976 977 } 978 979 if (etm->sample_branches && 980 etmq->prev_packet->sample_type == CS_ETM_RANGE) { 981 err = cs_etm__synth_branch_sample(etmq); 982 if (err) 983 return err; 984 } 985 986 swap_packet: 987 if (etmq->etm->synth_opts.last_branch) { 988 /* 989 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 990 * the next incoming packet. 991 */ 992 tmp = etmq->packet; 993 etmq->packet = etmq->prev_packet; 994 etmq->prev_packet = tmp; 995 } 996 997 return err; 998 } 999 1000 static int cs_etm__run_decoder(struct cs_etm_queue *etmq) 1001 { 1002 struct cs_etm_auxtrace *etm = etmq->etm; 1003 struct cs_etm_buffer buffer; 1004 size_t buffer_used, processed; 1005 int err = 0; 1006 1007 if (!etm->kernel_start) 1008 etm->kernel_start = machine__kernel_start(etm->machine); 1009 1010 /* Go through each buffer in the queue and decode them one by one */ 1011 while (1) { 1012 buffer_used = 0; 1013 memset(&buffer, 0, sizeof(buffer)); 1014 err = cs_etm__get_trace(&buffer, etmq); 1015 if (err <= 0) 1016 return err; 1017 /* 1018 * We cannot assume consecutive blocks in the data file are 1019 * contiguous, reset the decoder to force re-sync. 1020 */ 1021 err = cs_etm_decoder__reset(etmq->decoder); 1022 if (err != 0) 1023 return err; 1024 1025 /* Run trace decoder until buffer consumed or end of trace */ 1026 do { 1027 processed = 0; 1028 err = cs_etm_decoder__process_data_block( 1029 etmq->decoder, 1030 etmq->offset, 1031 &buffer.buf[buffer_used], 1032 buffer.len - buffer_used, 1033 &processed); 1034 if (err) 1035 return err; 1036 1037 etmq->offset += processed; 1038 buffer_used += processed; 1039 1040 /* Process each packet in this chunk */ 1041 while (1) { 1042 err = cs_etm_decoder__get_packet(etmq->decoder, 1043 etmq->packet); 1044 if (err <= 0) 1045 /* 1046 * Stop processing this chunk on 1047 * end of data or error 1048 */ 1049 break; 1050 1051 switch (etmq->packet->sample_type) { 1052 case CS_ETM_RANGE: 1053 /* 1054 * If the packet contains an instruction 1055 * range, generate instruction sequence 1056 * events. 1057 */ 1058 cs_etm__sample(etmq); 1059 break; 1060 case CS_ETM_TRACE_ON: 1061 /* 1062 * Discontinuity in trace, flush 1063 * previous branch stack 1064 */ 1065 cs_etm__flush(etmq); 1066 break; 1067 case CS_ETM_EMPTY: 1068 /* 1069 * Should not receive empty packet, 1070 * report error. 1071 */ 1072 pr_err("CS ETM Trace: empty packet\n"); 1073 return -EINVAL; 1074 default: 1075 break; 1076 } 1077 } 1078 } while (buffer.len > buffer_used); 1079 1080 if (err == 0) 1081 /* Flush any remaining branch stack entries */ 1082 err = cs_etm__flush(etmq); 1083 } 1084 1085 return err; 1086 } 1087 1088 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 1089 pid_t tid, u64 time_) 1090 { 1091 unsigned int i; 1092 struct auxtrace_queues *queues = &etm->queues; 1093 1094 for (i = 0; i < queues->nr_queues; i++) { 1095 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 1096 struct cs_etm_queue *etmq = queue->priv; 1097 1098 if (etmq && ((tid == -1) || (etmq->tid == tid))) { 1099 etmq->time = time_; 1100 cs_etm__set_pid_tid_cpu(etm, queue); 1101 cs_etm__run_decoder(etmq); 1102 } 1103 } 1104 1105 return 0; 1106 } 1107 1108 static int cs_etm__process_event(struct perf_session *session, 1109 union perf_event *event, 1110 struct perf_sample *sample, 1111 struct perf_tool *tool) 1112 { 1113 int err = 0; 1114 u64 timestamp; 1115 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 1116 struct cs_etm_auxtrace, 1117 auxtrace); 1118 1119 if (dump_trace) 1120 return 0; 1121 1122 if (!tool->ordered_events) { 1123 pr_err("CoreSight ETM Trace requires ordered events\n"); 1124 return -EINVAL; 1125 } 1126 1127 if (!etm->timeless_decoding) 1128 return -EINVAL; 1129 1130 if (sample->time && (sample->time != (u64) -1)) 1131 timestamp = sample->time; 1132 else 1133 timestamp = 0; 1134 1135 if (timestamp || etm->timeless_decoding) { 1136 err = cs_etm__update_queues(etm); 1137 if (err) 1138 return err; 1139 } 1140 1141 if (event->header.type == PERF_RECORD_EXIT) 1142 return cs_etm__process_timeless_queues(etm, 1143 event->fork.tid, 1144 sample->time); 1145 1146 return 0; 1147 } 1148 1149 static int cs_etm__process_auxtrace_event(struct perf_session *session, 1150 union perf_event *event, 1151 struct perf_tool *tool __maybe_unused) 1152 { 1153 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 1154 struct cs_etm_auxtrace, 1155 auxtrace); 1156 if (!etm->data_queued) { 1157 struct auxtrace_buffer *buffer; 1158 off_t data_offset; 1159 int fd = perf_data__fd(session->data); 1160 bool is_pipe = perf_data__is_pipe(session->data); 1161 int err; 1162 1163 if (is_pipe) 1164 data_offset = 0; 1165 else { 1166 data_offset = lseek(fd, 0, SEEK_CUR); 1167 if (data_offset == -1) 1168 return -errno; 1169 } 1170 1171 err = auxtrace_queues__add_event(&etm->queues, session, 1172 event, data_offset, &buffer); 1173 if (err) 1174 return err; 1175 1176 if (dump_trace) 1177 if (auxtrace_buffer__get_data(buffer, fd)) { 1178 cs_etm__dump_event(etm, buffer); 1179 auxtrace_buffer__put_data(buffer); 1180 } 1181 } 1182 1183 return 0; 1184 } 1185 1186 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) 1187 { 1188 struct perf_evsel *evsel; 1189 struct perf_evlist *evlist = etm->session->evlist; 1190 bool timeless_decoding = true; 1191 1192 /* 1193 * Circle through the list of event and complain if we find one 1194 * with the time bit set. 1195 */ 1196 evlist__for_each_entry(evlist, evsel) { 1197 if ((evsel->attr.sample_type & PERF_SAMPLE_TIME)) 1198 timeless_decoding = false; 1199 } 1200 1201 return timeless_decoding; 1202 } 1203 1204 static const char * const cs_etm_global_header_fmts[] = { 1205 [CS_HEADER_VERSION_0] = " Header version %llx\n", 1206 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n", 1207 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n", 1208 }; 1209 1210 static const char * const cs_etm_priv_fmts[] = { 1211 [CS_ETM_MAGIC] = " Magic number %llx\n", 1212 [CS_ETM_CPU] = " CPU %lld\n", 1213 [CS_ETM_ETMCR] = " ETMCR %llx\n", 1214 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n", 1215 [CS_ETM_ETMCCER] = " ETMCCER %llx\n", 1216 [CS_ETM_ETMIDR] = " ETMIDR %llx\n", 1217 }; 1218 1219 static const char * const cs_etmv4_priv_fmts[] = { 1220 [CS_ETM_MAGIC] = " Magic number %llx\n", 1221 [CS_ETM_CPU] = " CPU %lld\n", 1222 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n", 1223 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n", 1224 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n", 1225 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n", 1226 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n", 1227 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n", 1228 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n", 1229 }; 1230 1231 static void cs_etm__print_auxtrace_info(u64 *val, int num) 1232 { 1233 int i, j, cpu = 0; 1234 1235 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) 1236 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]); 1237 1238 for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) { 1239 if (val[i] == __perf_cs_etmv3_magic) 1240 for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++) 1241 fprintf(stdout, cs_etm_priv_fmts[j], val[i]); 1242 else if (val[i] == __perf_cs_etmv4_magic) 1243 for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++) 1244 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); 1245 else 1246 /* failure.. return */ 1247 return; 1248 } 1249 } 1250 1251 int cs_etm__process_auxtrace_info(union perf_event *event, 1252 struct perf_session *session) 1253 { 1254 struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info; 1255 struct cs_etm_auxtrace *etm = NULL; 1256 struct int_node *inode; 1257 unsigned int pmu_type; 1258 int event_header_size = sizeof(struct perf_event_header); 1259 int info_header_size; 1260 int total_size = auxtrace_info->header.size; 1261 int priv_size = 0; 1262 int num_cpu; 1263 int err = 0, idx = -1; 1264 int i, j, k; 1265 u64 *ptr, *hdr = NULL; 1266 u64 **metadata = NULL; 1267 1268 /* 1269 * sizeof(auxtrace_info_event::type) + 1270 * sizeof(auxtrace_info_event::reserved) == 8 1271 */ 1272 info_header_size = 8; 1273 1274 if (total_size < (event_header_size + info_header_size)) 1275 return -EINVAL; 1276 1277 priv_size = total_size - event_header_size - info_header_size; 1278 1279 /* First the global part */ 1280 ptr = (u64 *) auxtrace_info->priv; 1281 1282 /* Look for version '0' of the header */ 1283 if (ptr[0] != 0) 1284 return -EINVAL; 1285 1286 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX); 1287 if (!hdr) 1288 return -ENOMEM; 1289 1290 /* Extract header information - see cs-etm.h for format */ 1291 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) 1292 hdr[i] = ptr[i]; 1293 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff; 1294 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) & 1295 0xffffffff); 1296 1297 /* 1298 * Create an RB tree for traceID-CPU# tuple. Since the conversion has 1299 * to be made for each packet that gets decoded, optimizing access in 1300 * anything other than a sequential array is worth doing. 1301 */ 1302 traceid_list = intlist__new(NULL); 1303 if (!traceid_list) { 1304 err = -ENOMEM; 1305 goto err_free_hdr; 1306 } 1307 1308 metadata = zalloc(sizeof(*metadata) * num_cpu); 1309 if (!metadata) { 1310 err = -ENOMEM; 1311 goto err_free_traceid_list; 1312 } 1313 1314 /* 1315 * The metadata is stored in the auxtrace_info section and encodes 1316 * the configuration of the ARM embedded trace macrocell which is 1317 * required by the trace decoder to properly decode the trace due 1318 * to its highly compressed nature. 1319 */ 1320 for (j = 0; j < num_cpu; j++) { 1321 if (ptr[i] == __perf_cs_etmv3_magic) { 1322 metadata[j] = zalloc(sizeof(*metadata[j]) * 1323 CS_ETM_PRIV_MAX); 1324 if (!metadata[j]) { 1325 err = -ENOMEM; 1326 goto err_free_metadata; 1327 } 1328 for (k = 0; k < CS_ETM_PRIV_MAX; k++) 1329 metadata[j][k] = ptr[i + k]; 1330 1331 /* The traceID is our handle */ 1332 idx = metadata[j][CS_ETM_ETMTRACEIDR]; 1333 i += CS_ETM_PRIV_MAX; 1334 } else if (ptr[i] == __perf_cs_etmv4_magic) { 1335 metadata[j] = zalloc(sizeof(*metadata[j]) * 1336 CS_ETMV4_PRIV_MAX); 1337 if (!metadata[j]) { 1338 err = -ENOMEM; 1339 goto err_free_metadata; 1340 } 1341 for (k = 0; k < CS_ETMV4_PRIV_MAX; k++) 1342 metadata[j][k] = ptr[i + k]; 1343 1344 /* The traceID is our handle */ 1345 idx = metadata[j][CS_ETMV4_TRCTRACEIDR]; 1346 i += CS_ETMV4_PRIV_MAX; 1347 } 1348 1349 /* Get an RB node for this CPU */ 1350 inode = intlist__findnew(traceid_list, idx); 1351 1352 /* Something went wrong, no need to continue */ 1353 if (!inode) { 1354 err = PTR_ERR(inode); 1355 goto err_free_metadata; 1356 } 1357 1358 /* 1359 * The node for that CPU should not be taken. 1360 * Back out if that's the case. 1361 */ 1362 if (inode->priv) { 1363 err = -EINVAL; 1364 goto err_free_metadata; 1365 } 1366 /* All good, associate the traceID with the CPU# */ 1367 inode->priv = &metadata[j][CS_ETM_CPU]; 1368 } 1369 1370 /* 1371 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and 1372 * CS_ETMV4_PRIV_MAX mark how many double words are in the 1373 * global metadata, and each cpu's metadata respectively. 1374 * The following tests if the correct number of double words was 1375 * present in the auxtrace info section. 1376 */ 1377 if (i * 8 != priv_size) { 1378 err = -EINVAL; 1379 goto err_free_metadata; 1380 } 1381 1382 etm = zalloc(sizeof(*etm)); 1383 1384 if (!etm) { 1385 err = -ENOMEM; 1386 goto err_free_metadata; 1387 } 1388 1389 err = auxtrace_queues__init(&etm->queues); 1390 if (err) 1391 goto err_free_etm; 1392 1393 etm->session = session; 1394 etm->machine = &session->machines.host; 1395 1396 etm->num_cpu = num_cpu; 1397 etm->pmu_type = pmu_type; 1398 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0); 1399 etm->metadata = metadata; 1400 etm->auxtrace_type = auxtrace_info->type; 1401 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); 1402 1403 etm->auxtrace.process_event = cs_etm__process_event; 1404 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 1405 etm->auxtrace.flush_events = cs_etm__flush_events; 1406 etm->auxtrace.free_events = cs_etm__free_events; 1407 etm->auxtrace.free = cs_etm__free; 1408 session->auxtrace = &etm->auxtrace; 1409 1410 etm->unknown_thread = thread__new(999999999, 999999999); 1411 if (!etm->unknown_thread) 1412 goto err_free_queues; 1413 1414 /* 1415 * Initialize list node so that at thread__zput() we can avoid 1416 * segmentation fault at list_del_init(). 1417 */ 1418 INIT_LIST_HEAD(&etm->unknown_thread->node); 1419 1420 err = thread__set_comm(etm->unknown_thread, "unknown", 0); 1421 if (err) 1422 goto err_delete_thread; 1423 1424 if (thread__init_map_groups(etm->unknown_thread, etm->machine)) 1425 goto err_delete_thread; 1426 1427 if (dump_trace) { 1428 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); 1429 return 0; 1430 } 1431 1432 if (session->itrace_synth_opts && session->itrace_synth_opts->set) { 1433 etm->synth_opts = *session->itrace_synth_opts; 1434 } else { 1435 itrace_synth_opts__set_default(&etm->synth_opts); 1436 etm->synth_opts.callchain = false; 1437 } 1438 1439 err = cs_etm__synth_events(etm, session); 1440 if (err) 1441 goto err_delete_thread; 1442 1443 err = auxtrace_queues__process_index(&etm->queues, session); 1444 if (err) 1445 goto err_delete_thread; 1446 1447 etm->data_queued = etm->queues.populated; 1448 1449 return 0; 1450 1451 err_delete_thread: 1452 thread__zput(etm->unknown_thread); 1453 err_free_queues: 1454 auxtrace_queues__free(&etm->queues); 1455 session->auxtrace = NULL; 1456 err_free_etm: 1457 zfree(&etm); 1458 err_free_metadata: 1459 /* No need to check @metadata[j], free(NULL) is supported */ 1460 for (j = 0; j < num_cpu; j++) 1461 free(metadata[j]); 1462 zfree(&metadata); 1463 err_free_traceid_list: 1464 intlist__delete(traceid_list); 1465 err_free_hdr: 1466 zfree(&hdr); 1467 1468 return -EINVAL; 1469 } 1470