1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/err.h> 11 #include <linux/kernel.h> 12 #include <linux/log2.h> 13 #include <linux/types.h> 14 15 #include <stdlib.h> 16 17 #include "auxtrace.h" 18 #include "color.h" 19 #include "cs-etm.h" 20 #include "cs-etm-decoder/cs-etm-decoder.h" 21 #include "debug.h" 22 #include "evlist.h" 23 #include "intlist.h" 24 #include "machine.h" 25 #include "map.h" 26 #include "perf.h" 27 #include "thread.h" 28 #include "thread_map.h" 29 #include "thread-stack.h" 30 #include "util.h" 31 32 #define MAX_TIMESTAMP (~0ULL) 33 34 /* 35 * A64 instructions are always 4 bytes 36 * 37 * Only A64 is supported, so can use this constant for converting between 38 * addresses and instruction counts, calculting offsets etc 39 */ 40 #define A64_INSTR_SIZE 4 41 42 struct cs_etm_auxtrace { 43 struct auxtrace auxtrace; 44 struct auxtrace_queues queues; 45 struct auxtrace_heap heap; 46 struct itrace_synth_opts synth_opts; 47 struct perf_session *session; 48 struct machine *machine; 49 struct thread *unknown_thread; 50 51 u8 timeless_decoding; 52 u8 snapshot_mode; 53 u8 data_queued; 54 u8 sample_branches; 55 u8 sample_instructions; 56 57 int num_cpu; 58 u32 auxtrace_type; 59 u64 branches_sample_type; 60 u64 branches_id; 61 u64 instructions_sample_type; 62 u64 instructions_sample_period; 63 u64 instructions_id; 64 u64 **metadata; 65 u64 kernel_start; 66 unsigned int pmu_type; 67 }; 68 69 struct cs_etm_queue { 70 struct cs_etm_auxtrace *etm; 71 struct thread *thread; 72 struct cs_etm_decoder *decoder; 73 struct auxtrace_buffer *buffer; 74 const struct cs_etm_state *state; 75 union perf_event *event_buf; 76 unsigned int queue_nr; 77 pid_t pid, tid; 78 int cpu; 79 u64 time; 80 u64 timestamp; 81 u64 offset; 82 u64 period_instructions; 83 struct branch_stack *last_branch; 84 struct branch_stack *last_branch_rb; 85 size_t last_branch_pos; 86 struct cs_etm_packet *prev_packet; 87 struct cs_etm_packet *packet; 88 }; 89 90 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm); 91 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 92 pid_t tid, u64 time_); 93 94 static void cs_etm__packet_dump(const char *pkt_string) 95 { 96 const char *color = PERF_COLOR_BLUE; 97 int len = strlen(pkt_string); 98 99 if (len && (pkt_string[len-1] == '\n')) 100 color_fprintf(stdout, color, " %s", pkt_string); 101 else 102 color_fprintf(stdout, color, " %s\n", pkt_string); 103 104 fflush(stdout); 105 } 106 107 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm, 108 struct auxtrace_buffer *buffer) 109 { 110 int i, ret; 111 const char *color = PERF_COLOR_BLUE; 112 struct cs_etm_decoder_params d_params; 113 struct cs_etm_trace_params *t_params; 114 struct cs_etm_decoder *decoder; 115 size_t buffer_used = 0; 116 117 fprintf(stdout, "\n"); 118 color_fprintf(stdout, color, 119 ". ... CoreSight ETM Trace data: size %zu bytes\n", 120 buffer->size); 121 122 /* Use metadata to fill in trace parameters for trace decoder */ 123 t_params = zalloc(sizeof(*t_params) * etm->num_cpu); 124 for (i = 0; i < etm->num_cpu; i++) { 125 t_params[i].protocol = CS_ETM_PROTO_ETMV4i; 126 t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0]; 127 t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1]; 128 t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2]; 129 t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8]; 130 t_params[i].etmv4.reg_configr = 131 etm->metadata[i][CS_ETMV4_TRCCONFIGR]; 132 t_params[i].etmv4.reg_traceidr = 133 etm->metadata[i][CS_ETMV4_TRCTRACEIDR]; 134 } 135 136 /* Set decoder parameters to simply print the trace packets */ 137 d_params.packet_printer = cs_etm__packet_dump; 138 d_params.operation = CS_ETM_OPERATION_PRINT; 139 d_params.formatted = true; 140 d_params.fsyncs = false; 141 d_params.hsyncs = false; 142 d_params.frame_aligned = true; 143 144 decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); 145 146 zfree(&t_params); 147 148 if (!decoder) 149 return; 150 do { 151 size_t consumed; 152 153 ret = cs_etm_decoder__process_data_block( 154 decoder, buffer->offset, 155 &((u8 *)buffer->data)[buffer_used], 156 buffer->size - buffer_used, &consumed); 157 if (ret) 158 break; 159 160 buffer_used += consumed; 161 } while (buffer_used < buffer->size); 162 163 cs_etm_decoder__free(decoder); 164 } 165 166 static int cs_etm__flush_events(struct perf_session *session, 167 struct perf_tool *tool) 168 { 169 int ret; 170 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 171 struct cs_etm_auxtrace, 172 auxtrace); 173 if (dump_trace) 174 return 0; 175 176 if (!tool->ordered_events) 177 return -EINVAL; 178 179 if (!etm->timeless_decoding) 180 return -EINVAL; 181 182 ret = cs_etm__update_queues(etm); 183 184 if (ret < 0) 185 return ret; 186 187 return cs_etm__process_timeless_queues(etm, -1, MAX_TIMESTAMP - 1); 188 } 189 190 static void cs_etm__free_queue(void *priv) 191 { 192 struct cs_etm_queue *etmq = priv; 193 194 if (!etmq) 195 return; 196 197 thread__zput(etmq->thread); 198 cs_etm_decoder__free(etmq->decoder); 199 zfree(&etmq->event_buf); 200 zfree(&etmq->last_branch); 201 zfree(&etmq->last_branch_rb); 202 zfree(&etmq->prev_packet); 203 zfree(&etmq->packet); 204 free(etmq); 205 } 206 207 static void cs_etm__free_events(struct perf_session *session) 208 { 209 unsigned int i; 210 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 211 struct cs_etm_auxtrace, 212 auxtrace); 213 struct auxtrace_queues *queues = &aux->queues; 214 215 for (i = 0; i < queues->nr_queues; i++) { 216 cs_etm__free_queue(queues->queue_array[i].priv); 217 queues->queue_array[i].priv = NULL; 218 } 219 220 auxtrace_queues__free(queues); 221 } 222 223 static void cs_etm__free(struct perf_session *session) 224 { 225 int i; 226 struct int_node *inode, *tmp; 227 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 228 struct cs_etm_auxtrace, 229 auxtrace); 230 cs_etm__free_events(session); 231 session->auxtrace = NULL; 232 233 /* First remove all traceID/CPU# nodes for the RB tree */ 234 intlist__for_each_entry_safe(inode, tmp, traceid_list) 235 intlist__remove(traceid_list, inode); 236 /* Then the RB tree itself */ 237 intlist__delete(traceid_list); 238 239 for (i = 0; i < aux->num_cpu; i++) 240 zfree(&aux->metadata[i]); 241 242 thread__zput(aux->unknown_thread); 243 zfree(&aux->metadata); 244 zfree(&aux); 245 } 246 247 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address, 248 size_t size, u8 *buffer) 249 { 250 u8 cpumode; 251 u64 offset; 252 int len; 253 struct thread *thread; 254 struct machine *machine; 255 struct addr_location al; 256 257 if (!etmq) 258 return -1; 259 260 machine = etmq->etm->machine; 261 if (address >= etmq->etm->kernel_start) 262 cpumode = PERF_RECORD_MISC_KERNEL; 263 else 264 cpumode = PERF_RECORD_MISC_USER; 265 266 thread = etmq->thread; 267 if (!thread) { 268 if (cpumode != PERF_RECORD_MISC_KERNEL) 269 return -EINVAL; 270 thread = etmq->etm->unknown_thread; 271 } 272 273 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso) 274 return 0; 275 276 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 277 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) 278 return 0; 279 280 offset = al.map->map_ip(al.map, address); 281 282 map__load(al.map); 283 284 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size); 285 286 if (len <= 0) 287 return 0; 288 289 return len; 290 } 291 292 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, 293 unsigned int queue_nr) 294 { 295 int i; 296 struct cs_etm_decoder_params d_params; 297 struct cs_etm_trace_params *t_params; 298 struct cs_etm_queue *etmq; 299 size_t szp = sizeof(struct cs_etm_packet); 300 301 etmq = zalloc(sizeof(*etmq)); 302 if (!etmq) 303 return NULL; 304 305 etmq->packet = zalloc(szp); 306 if (!etmq->packet) 307 goto out_free; 308 309 if (etm->synth_opts.last_branch || etm->sample_branches) { 310 etmq->prev_packet = zalloc(szp); 311 if (!etmq->prev_packet) 312 goto out_free; 313 } 314 315 if (etm->synth_opts.last_branch) { 316 size_t sz = sizeof(struct branch_stack); 317 318 sz += etm->synth_opts.last_branch_sz * 319 sizeof(struct branch_entry); 320 etmq->last_branch = zalloc(sz); 321 if (!etmq->last_branch) 322 goto out_free; 323 etmq->last_branch_rb = zalloc(sz); 324 if (!etmq->last_branch_rb) 325 goto out_free; 326 } 327 328 etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 329 if (!etmq->event_buf) 330 goto out_free; 331 332 etmq->etm = etm; 333 etmq->queue_nr = queue_nr; 334 etmq->pid = -1; 335 etmq->tid = -1; 336 etmq->cpu = -1; 337 338 /* Use metadata to fill in trace parameters for trace decoder */ 339 t_params = zalloc(sizeof(*t_params) * etm->num_cpu); 340 341 if (!t_params) 342 goto out_free; 343 344 for (i = 0; i < etm->num_cpu; i++) { 345 t_params[i].protocol = CS_ETM_PROTO_ETMV4i; 346 t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0]; 347 t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1]; 348 t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2]; 349 t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8]; 350 t_params[i].etmv4.reg_configr = 351 etm->metadata[i][CS_ETMV4_TRCCONFIGR]; 352 t_params[i].etmv4.reg_traceidr = 353 etm->metadata[i][CS_ETMV4_TRCTRACEIDR]; 354 } 355 356 /* Set decoder parameters to simply print the trace packets */ 357 d_params.packet_printer = cs_etm__packet_dump; 358 d_params.operation = CS_ETM_OPERATION_DECODE; 359 d_params.formatted = true; 360 d_params.fsyncs = false; 361 d_params.hsyncs = false; 362 d_params.frame_aligned = true; 363 d_params.data = etmq; 364 365 etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params); 366 367 zfree(&t_params); 368 369 if (!etmq->decoder) 370 goto out_free; 371 372 /* 373 * Register a function to handle all memory accesses required by 374 * the trace decoder library. 375 */ 376 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 377 0x0L, ((u64) -1L), 378 cs_etm__mem_access)) 379 goto out_free_decoder; 380 381 etmq->offset = 0; 382 etmq->period_instructions = 0; 383 384 return etmq; 385 386 out_free_decoder: 387 cs_etm_decoder__free(etmq->decoder); 388 out_free: 389 zfree(&etmq->event_buf); 390 zfree(&etmq->last_branch); 391 zfree(&etmq->last_branch_rb); 392 zfree(&etmq->prev_packet); 393 zfree(&etmq->packet); 394 free(etmq); 395 396 return NULL; 397 } 398 399 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 400 struct auxtrace_queue *queue, 401 unsigned int queue_nr) 402 { 403 struct cs_etm_queue *etmq = queue->priv; 404 405 if (list_empty(&queue->head) || etmq) 406 return 0; 407 408 etmq = cs_etm__alloc_queue(etm, queue_nr); 409 410 if (!etmq) 411 return -ENOMEM; 412 413 queue->priv = etmq; 414 415 if (queue->cpu != -1) 416 etmq->cpu = queue->cpu; 417 418 etmq->tid = queue->tid; 419 420 return 0; 421 } 422 423 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm) 424 { 425 unsigned int i; 426 int ret; 427 428 for (i = 0; i < etm->queues.nr_queues; i++) { 429 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i); 430 if (ret) 431 return ret; 432 } 433 434 return 0; 435 } 436 437 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm) 438 { 439 if (etm->queues.new_data) { 440 etm->queues.new_data = false; 441 return cs_etm__setup_queues(etm); 442 } 443 444 return 0; 445 } 446 447 static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq) 448 { 449 struct branch_stack *bs_src = etmq->last_branch_rb; 450 struct branch_stack *bs_dst = etmq->last_branch; 451 size_t nr = 0; 452 453 /* 454 * Set the number of records before early exit: ->nr is used to 455 * determine how many branches to copy from ->entries. 456 */ 457 bs_dst->nr = bs_src->nr; 458 459 /* 460 * Early exit when there is nothing to copy. 461 */ 462 if (!bs_src->nr) 463 return; 464 465 /* 466 * As bs_src->entries is a circular buffer, we need to copy from it in 467 * two steps. First, copy the branches from the most recently inserted 468 * branch ->last_branch_pos until the end of bs_src->entries buffer. 469 */ 470 nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos; 471 memcpy(&bs_dst->entries[0], 472 &bs_src->entries[etmq->last_branch_pos], 473 sizeof(struct branch_entry) * nr); 474 475 /* 476 * If we wrapped around at least once, the branches from the beginning 477 * of the bs_src->entries buffer and until the ->last_branch_pos element 478 * are older valid branches: copy them over. The total number of 479 * branches copied over will be equal to the number of branches asked by 480 * the user in last_branch_sz. 481 */ 482 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 483 memcpy(&bs_dst->entries[nr], 484 &bs_src->entries[0], 485 sizeof(struct branch_entry) * etmq->last_branch_pos); 486 } 487 } 488 489 static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq) 490 { 491 etmq->last_branch_pos = 0; 492 etmq->last_branch_rb->nr = 0; 493 } 494 495 static inline u64 cs_etm__last_executed_instr(struct cs_etm_packet *packet) 496 { 497 /* 498 * The packet records the execution range with an exclusive end address 499 * 500 * A64 instructions are constant size, so the last executed 501 * instruction is A64_INSTR_SIZE before the end address 502 * Will need to do instruction level decode for T32 instructions as 503 * they can be variable size (not yet supported). 504 */ 505 return packet->end_addr - A64_INSTR_SIZE; 506 } 507 508 static inline u64 cs_etm__instr_count(const struct cs_etm_packet *packet) 509 { 510 /* 511 * Only A64 instructions are currently supported, so can get 512 * instruction count by dividing. 513 * Will need to do instruction level decode for T32 instructions as 514 * they can be variable size (not yet supported). 515 */ 516 return (packet->end_addr - packet->start_addr) / A64_INSTR_SIZE; 517 } 518 519 static inline u64 cs_etm__instr_addr(const struct cs_etm_packet *packet, 520 u64 offset) 521 { 522 /* 523 * Only A64 instructions are currently supported, so can get 524 * instruction address by muliplying. 525 * Will need to do instruction level decode for T32 instructions as 526 * they can be variable size (not yet supported). 527 */ 528 return packet->start_addr + offset * A64_INSTR_SIZE; 529 } 530 531 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq) 532 { 533 struct branch_stack *bs = etmq->last_branch_rb; 534 struct branch_entry *be; 535 536 /* 537 * The branches are recorded in a circular buffer in reverse 538 * chronological order: we start recording from the last element of the 539 * buffer down. After writing the first element of the stack, move the 540 * insert position back to the end of the buffer. 541 */ 542 if (!etmq->last_branch_pos) 543 etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 544 545 etmq->last_branch_pos -= 1; 546 547 be = &bs->entries[etmq->last_branch_pos]; 548 be->from = cs_etm__last_executed_instr(etmq->prev_packet); 549 be->to = etmq->packet->start_addr; 550 /* No support for mispredict */ 551 be->flags.mispred = 0; 552 be->flags.predicted = 1; 553 554 /* 555 * Increment bs->nr until reaching the number of last branches asked by 556 * the user on the command line. 557 */ 558 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 559 bs->nr += 1; 560 } 561 562 static int cs_etm__inject_event(union perf_event *event, 563 struct perf_sample *sample, u64 type) 564 { 565 event->header.size = perf_event__sample_event_size(sample, type, 0); 566 return perf_event__synthesize_sample(event, type, 0, sample); 567 } 568 569 570 static int 571 cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq) 572 { 573 struct auxtrace_buffer *aux_buffer = etmq->buffer; 574 struct auxtrace_buffer *old_buffer = aux_buffer; 575 struct auxtrace_queue *queue; 576 577 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 578 579 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 580 581 /* If no more data, drop the previous auxtrace_buffer and return */ 582 if (!aux_buffer) { 583 if (old_buffer) 584 auxtrace_buffer__drop_data(old_buffer); 585 buff->len = 0; 586 return 0; 587 } 588 589 etmq->buffer = aux_buffer; 590 591 /* If the aux_buffer doesn't have data associated, try to load it */ 592 if (!aux_buffer->data) { 593 /* get the file desc associated with the perf data file */ 594 int fd = perf_data__fd(etmq->etm->session->data); 595 596 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 597 if (!aux_buffer->data) 598 return -ENOMEM; 599 } 600 601 /* If valid, drop the previous buffer */ 602 if (old_buffer) 603 auxtrace_buffer__drop_data(old_buffer); 604 605 buff->offset = aux_buffer->offset; 606 buff->len = aux_buffer->size; 607 buff->buf = aux_buffer->data; 608 609 buff->ref_timestamp = aux_buffer->reference; 610 611 return buff->len; 612 } 613 614 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, 615 struct auxtrace_queue *queue) 616 { 617 struct cs_etm_queue *etmq = queue->priv; 618 619 /* CPU-wide tracing isn't supported yet */ 620 if (queue->tid == -1) 621 return; 622 623 if ((!etmq->thread) && (etmq->tid != -1)) 624 etmq->thread = machine__find_thread(etm->machine, -1, 625 etmq->tid); 626 627 if (etmq->thread) { 628 etmq->pid = etmq->thread->pid_; 629 if (queue->cpu == -1) 630 etmq->cpu = etmq->thread->cpu; 631 } 632 } 633 634 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 635 u64 addr, u64 period) 636 { 637 int ret = 0; 638 struct cs_etm_auxtrace *etm = etmq->etm; 639 union perf_event *event = etmq->event_buf; 640 struct perf_sample sample = {.ip = 0,}; 641 642 event->sample.header.type = PERF_RECORD_SAMPLE; 643 event->sample.header.misc = PERF_RECORD_MISC_USER; 644 event->sample.header.size = sizeof(struct perf_event_header); 645 646 sample.ip = addr; 647 sample.pid = etmq->pid; 648 sample.tid = etmq->tid; 649 sample.id = etmq->etm->instructions_id; 650 sample.stream_id = etmq->etm->instructions_id; 651 sample.period = period; 652 sample.cpu = etmq->packet->cpu; 653 sample.flags = 0; 654 sample.insn_len = 1; 655 sample.cpumode = event->header.misc; 656 657 if (etm->synth_opts.last_branch) { 658 cs_etm__copy_last_branch_rb(etmq); 659 sample.branch_stack = etmq->last_branch; 660 } 661 662 if (etm->synth_opts.inject) { 663 ret = cs_etm__inject_event(event, &sample, 664 etm->instructions_sample_type); 665 if (ret) 666 return ret; 667 } 668 669 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 670 671 if (ret) 672 pr_err( 673 "CS ETM Trace: failed to deliver instruction event, error %d\n", 674 ret); 675 676 if (etm->synth_opts.last_branch) 677 cs_etm__reset_last_branch_rb(etmq); 678 679 return ret; 680 } 681 682 /* 683 * The cs etm packet encodes an instruction range between a branch target 684 * and the next taken branch. Generate sample accordingly. 685 */ 686 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq) 687 { 688 int ret = 0; 689 struct cs_etm_auxtrace *etm = etmq->etm; 690 struct perf_sample sample = {.ip = 0,}; 691 union perf_event *event = etmq->event_buf; 692 struct dummy_branch_stack { 693 u64 nr; 694 struct branch_entry entries; 695 } dummy_bs; 696 697 event->sample.header.type = PERF_RECORD_SAMPLE; 698 event->sample.header.misc = PERF_RECORD_MISC_USER; 699 event->sample.header.size = sizeof(struct perf_event_header); 700 701 sample.ip = cs_etm__last_executed_instr(etmq->prev_packet); 702 sample.pid = etmq->pid; 703 sample.tid = etmq->tid; 704 sample.addr = etmq->packet->start_addr; 705 sample.id = etmq->etm->branches_id; 706 sample.stream_id = etmq->etm->branches_id; 707 sample.period = 1; 708 sample.cpu = etmq->packet->cpu; 709 sample.flags = 0; 710 sample.cpumode = PERF_RECORD_MISC_USER; 711 712 /* 713 * perf report cannot handle events without a branch stack 714 */ 715 if (etm->synth_opts.last_branch) { 716 dummy_bs = (struct dummy_branch_stack){ 717 .nr = 1, 718 .entries = { 719 .from = sample.ip, 720 .to = sample.addr, 721 }, 722 }; 723 sample.branch_stack = (struct branch_stack *)&dummy_bs; 724 } 725 726 if (etm->synth_opts.inject) { 727 ret = cs_etm__inject_event(event, &sample, 728 etm->branches_sample_type); 729 if (ret) 730 return ret; 731 } 732 733 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 734 735 if (ret) 736 pr_err( 737 "CS ETM Trace: failed to deliver instruction event, error %d\n", 738 ret); 739 740 return ret; 741 } 742 743 struct cs_etm_synth { 744 struct perf_tool dummy_tool; 745 struct perf_session *session; 746 }; 747 748 static int cs_etm__event_synth(struct perf_tool *tool, 749 union perf_event *event, 750 struct perf_sample *sample __maybe_unused, 751 struct machine *machine __maybe_unused) 752 { 753 struct cs_etm_synth *cs_etm_synth = 754 container_of(tool, struct cs_etm_synth, dummy_tool); 755 756 return perf_session__deliver_synth_event(cs_etm_synth->session, 757 event, NULL); 758 } 759 760 static int cs_etm__synth_event(struct perf_session *session, 761 struct perf_event_attr *attr, u64 id) 762 { 763 struct cs_etm_synth cs_etm_synth; 764 765 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 766 cs_etm_synth.session = session; 767 768 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 769 &id, cs_etm__event_synth); 770 } 771 772 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 773 struct perf_session *session) 774 { 775 struct perf_evlist *evlist = session->evlist; 776 struct perf_evsel *evsel; 777 struct perf_event_attr attr; 778 bool found = false; 779 u64 id; 780 int err; 781 782 evlist__for_each_entry(evlist, evsel) { 783 if (evsel->attr.type == etm->pmu_type) { 784 found = true; 785 break; 786 } 787 } 788 789 if (!found) { 790 pr_debug("No selected events with CoreSight Trace data\n"); 791 return 0; 792 } 793 794 memset(&attr, 0, sizeof(struct perf_event_attr)); 795 attr.size = sizeof(struct perf_event_attr); 796 attr.type = PERF_TYPE_HARDWARE; 797 attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK; 798 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 799 PERF_SAMPLE_PERIOD; 800 if (etm->timeless_decoding) 801 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 802 else 803 attr.sample_type |= PERF_SAMPLE_TIME; 804 805 attr.exclude_user = evsel->attr.exclude_user; 806 attr.exclude_kernel = evsel->attr.exclude_kernel; 807 attr.exclude_hv = evsel->attr.exclude_hv; 808 attr.exclude_host = evsel->attr.exclude_host; 809 attr.exclude_guest = evsel->attr.exclude_guest; 810 attr.sample_id_all = evsel->attr.sample_id_all; 811 attr.read_format = evsel->attr.read_format; 812 813 /* create new id val to be a fixed offset from evsel id */ 814 id = evsel->id[0] + 1000000000; 815 816 if (!id) 817 id = 1; 818 819 if (etm->synth_opts.branches) { 820 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 821 attr.sample_period = 1; 822 attr.sample_type |= PERF_SAMPLE_ADDR; 823 err = cs_etm__synth_event(session, &attr, id); 824 if (err) 825 return err; 826 etm->sample_branches = true; 827 etm->branches_sample_type = attr.sample_type; 828 etm->branches_id = id; 829 id += 1; 830 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 831 } 832 833 if (etm->synth_opts.last_branch) 834 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 835 836 if (etm->synth_opts.instructions) { 837 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 838 attr.sample_period = etm->synth_opts.period; 839 etm->instructions_sample_period = attr.sample_period; 840 err = cs_etm__synth_event(session, &attr, id); 841 if (err) 842 return err; 843 etm->sample_instructions = true; 844 etm->instructions_sample_type = attr.sample_type; 845 etm->instructions_id = id; 846 id += 1; 847 } 848 849 return 0; 850 } 851 852 static int cs_etm__sample(struct cs_etm_queue *etmq) 853 { 854 struct cs_etm_auxtrace *etm = etmq->etm; 855 struct cs_etm_packet *tmp; 856 int ret; 857 u64 instrs_executed; 858 859 instrs_executed = cs_etm__instr_count(etmq->packet); 860 etmq->period_instructions += instrs_executed; 861 862 /* 863 * Record a branch when the last instruction in 864 * PREV_PACKET is a branch. 865 */ 866 if (etm->synth_opts.last_branch && 867 etmq->prev_packet && 868 etmq->prev_packet->sample_type == CS_ETM_RANGE && 869 etmq->prev_packet->last_instr_taken_branch) 870 cs_etm__update_last_branch_rb(etmq); 871 872 if (etm->sample_instructions && 873 etmq->period_instructions >= etm->instructions_sample_period) { 874 /* 875 * Emit instruction sample periodically 876 * TODO: allow period to be defined in cycles and clock time 877 */ 878 879 /* Get number of instructions executed after the sample point */ 880 u64 instrs_over = etmq->period_instructions - 881 etm->instructions_sample_period; 882 883 /* 884 * Calculate the address of the sampled instruction (-1 as 885 * sample is reported as though instruction has just been 886 * executed, but PC has not advanced to next instruction) 887 */ 888 u64 offset = (instrs_executed - instrs_over - 1); 889 u64 addr = cs_etm__instr_addr(etmq->packet, offset); 890 891 ret = cs_etm__synth_instruction_sample( 892 etmq, addr, etm->instructions_sample_period); 893 if (ret) 894 return ret; 895 896 /* Carry remaining instructions into next sample period */ 897 etmq->period_instructions = instrs_over; 898 } 899 900 if (etm->sample_branches && 901 etmq->prev_packet && 902 etmq->prev_packet->sample_type == CS_ETM_RANGE && 903 etmq->prev_packet->last_instr_taken_branch) { 904 ret = cs_etm__synth_branch_sample(etmq); 905 if (ret) 906 return ret; 907 } 908 909 if (etm->sample_branches || etm->synth_opts.last_branch) { 910 /* 911 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 912 * the next incoming packet. 913 */ 914 tmp = etmq->packet; 915 etmq->packet = etmq->prev_packet; 916 etmq->prev_packet = tmp; 917 } 918 919 return 0; 920 } 921 922 static int cs_etm__flush(struct cs_etm_queue *etmq) 923 { 924 int err = 0; 925 struct cs_etm_packet *tmp; 926 927 if (etmq->etm->synth_opts.last_branch && 928 etmq->prev_packet && 929 etmq->prev_packet->sample_type == CS_ETM_RANGE) { 930 /* 931 * Generate a last branch event for the branches left in the 932 * circular buffer at the end of the trace. 933 * 934 * Use the address of the end of the last reported execution 935 * range 936 */ 937 u64 addr = cs_etm__last_executed_instr(etmq->prev_packet); 938 939 err = cs_etm__synth_instruction_sample( 940 etmq, addr, 941 etmq->period_instructions); 942 etmq->period_instructions = 0; 943 944 /* 945 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 946 * the next incoming packet. 947 */ 948 tmp = etmq->packet; 949 etmq->packet = etmq->prev_packet; 950 etmq->prev_packet = tmp; 951 } 952 953 return err; 954 } 955 956 static int cs_etm__run_decoder(struct cs_etm_queue *etmq) 957 { 958 struct cs_etm_auxtrace *etm = etmq->etm; 959 struct cs_etm_buffer buffer; 960 size_t buffer_used, processed; 961 int err = 0; 962 963 if (!etm->kernel_start) 964 etm->kernel_start = machine__kernel_start(etm->machine); 965 966 /* Go through each buffer in the queue and decode them one by one */ 967 while (1) { 968 buffer_used = 0; 969 memset(&buffer, 0, sizeof(buffer)); 970 err = cs_etm__get_trace(&buffer, etmq); 971 if (err <= 0) 972 return err; 973 /* 974 * We cannot assume consecutive blocks in the data file are 975 * contiguous, reset the decoder to force re-sync. 976 */ 977 err = cs_etm_decoder__reset(etmq->decoder); 978 if (err != 0) 979 return err; 980 981 /* Run trace decoder until buffer consumed or end of trace */ 982 do { 983 processed = 0; 984 err = cs_etm_decoder__process_data_block( 985 etmq->decoder, 986 etmq->offset, 987 &buffer.buf[buffer_used], 988 buffer.len - buffer_used, 989 &processed); 990 if (err) 991 return err; 992 993 etmq->offset += processed; 994 buffer_used += processed; 995 996 /* Process each packet in this chunk */ 997 while (1) { 998 err = cs_etm_decoder__get_packet(etmq->decoder, 999 etmq->packet); 1000 if (err <= 0) 1001 /* 1002 * Stop processing this chunk on 1003 * end of data or error 1004 */ 1005 break; 1006 1007 switch (etmq->packet->sample_type) { 1008 case CS_ETM_RANGE: 1009 /* 1010 * If the packet contains an instruction 1011 * range, generate instruction sequence 1012 * events. 1013 */ 1014 cs_etm__sample(etmq); 1015 break; 1016 case CS_ETM_TRACE_ON: 1017 /* 1018 * Discontinuity in trace, flush 1019 * previous branch stack 1020 */ 1021 cs_etm__flush(etmq); 1022 break; 1023 default: 1024 break; 1025 } 1026 } 1027 } while (buffer.len > buffer_used); 1028 1029 if (err == 0) 1030 /* Flush any remaining branch stack entries */ 1031 err = cs_etm__flush(etmq); 1032 } 1033 1034 return err; 1035 } 1036 1037 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 1038 pid_t tid, u64 time_) 1039 { 1040 unsigned int i; 1041 struct auxtrace_queues *queues = &etm->queues; 1042 1043 for (i = 0; i < queues->nr_queues; i++) { 1044 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 1045 struct cs_etm_queue *etmq = queue->priv; 1046 1047 if (etmq && ((tid == -1) || (etmq->tid == tid))) { 1048 etmq->time = time_; 1049 cs_etm__set_pid_tid_cpu(etm, queue); 1050 cs_etm__run_decoder(etmq); 1051 } 1052 } 1053 1054 return 0; 1055 } 1056 1057 static int cs_etm__process_event(struct perf_session *session, 1058 union perf_event *event, 1059 struct perf_sample *sample, 1060 struct perf_tool *tool) 1061 { 1062 int err = 0; 1063 u64 timestamp; 1064 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 1065 struct cs_etm_auxtrace, 1066 auxtrace); 1067 1068 if (dump_trace) 1069 return 0; 1070 1071 if (!tool->ordered_events) { 1072 pr_err("CoreSight ETM Trace requires ordered events\n"); 1073 return -EINVAL; 1074 } 1075 1076 if (!etm->timeless_decoding) 1077 return -EINVAL; 1078 1079 if (sample->time && (sample->time != (u64) -1)) 1080 timestamp = sample->time; 1081 else 1082 timestamp = 0; 1083 1084 if (timestamp || etm->timeless_decoding) { 1085 err = cs_etm__update_queues(etm); 1086 if (err) 1087 return err; 1088 } 1089 1090 if (event->header.type == PERF_RECORD_EXIT) 1091 return cs_etm__process_timeless_queues(etm, 1092 event->fork.tid, 1093 sample->time); 1094 1095 return 0; 1096 } 1097 1098 static int cs_etm__process_auxtrace_event(struct perf_session *session, 1099 union perf_event *event, 1100 struct perf_tool *tool __maybe_unused) 1101 { 1102 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 1103 struct cs_etm_auxtrace, 1104 auxtrace); 1105 if (!etm->data_queued) { 1106 struct auxtrace_buffer *buffer; 1107 off_t data_offset; 1108 int fd = perf_data__fd(session->data); 1109 bool is_pipe = perf_data__is_pipe(session->data); 1110 int err; 1111 1112 if (is_pipe) 1113 data_offset = 0; 1114 else { 1115 data_offset = lseek(fd, 0, SEEK_CUR); 1116 if (data_offset == -1) 1117 return -errno; 1118 } 1119 1120 err = auxtrace_queues__add_event(&etm->queues, session, 1121 event, data_offset, &buffer); 1122 if (err) 1123 return err; 1124 1125 if (dump_trace) 1126 if (auxtrace_buffer__get_data(buffer, fd)) { 1127 cs_etm__dump_event(etm, buffer); 1128 auxtrace_buffer__put_data(buffer); 1129 } 1130 } 1131 1132 return 0; 1133 } 1134 1135 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) 1136 { 1137 struct perf_evsel *evsel; 1138 struct perf_evlist *evlist = etm->session->evlist; 1139 bool timeless_decoding = true; 1140 1141 /* 1142 * Circle through the list of event and complain if we find one 1143 * with the time bit set. 1144 */ 1145 evlist__for_each_entry(evlist, evsel) { 1146 if ((evsel->attr.sample_type & PERF_SAMPLE_TIME)) 1147 timeless_decoding = false; 1148 } 1149 1150 return timeless_decoding; 1151 } 1152 1153 static const char * const cs_etm_global_header_fmts[] = { 1154 [CS_HEADER_VERSION_0] = " Header version %llx\n", 1155 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n", 1156 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n", 1157 }; 1158 1159 static const char * const cs_etm_priv_fmts[] = { 1160 [CS_ETM_MAGIC] = " Magic number %llx\n", 1161 [CS_ETM_CPU] = " CPU %lld\n", 1162 [CS_ETM_ETMCR] = " ETMCR %llx\n", 1163 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n", 1164 [CS_ETM_ETMCCER] = " ETMCCER %llx\n", 1165 [CS_ETM_ETMIDR] = " ETMIDR %llx\n", 1166 }; 1167 1168 static const char * const cs_etmv4_priv_fmts[] = { 1169 [CS_ETM_MAGIC] = " Magic number %llx\n", 1170 [CS_ETM_CPU] = " CPU %lld\n", 1171 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n", 1172 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n", 1173 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n", 1174 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n", 1175 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n", 1176 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n", 1177 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n", 1178 }; 1179 1180 static void cs_etm__print_auxtrace_info(u64 *val, int num) 1181 { 1182 int i, j, cpu = 0; 1183 1184 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) 1185 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]); 1186 1187 for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) { 1188 if (val[i] == __perf_cs_etmv3_magic) 1189 for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++) 1190 fprintf(stdout, cs_etm_priv_fmts[j], val[i]); 1191 else if (val[i] == __perf_cs_etmv4_magic) 1192 for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++) 1193 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); 1194 else 1195 /* failure.. return */ 1196 return; 1197 } 1198 } 1199 1200 int cs_etm__process_auxtrace_info(union perf_event *event, 1201 struct perf_session *session) 1202 { 1203 struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info; 1204 struct cs_etm_auxtrace *etm = NULL; 1205 struct int_node *inode; 1206 unsigned int pmu_type; 1207 int event_header_size = sizeof(struct perf_event_header); 1208 int info_header_size; 1209 int total_size = auxtrace_info->header.size; 1210 int priv_size = 0; 1211 int num_cpu; 1212 int err = 0, idx = -1; 1213 int i, j, k; 1214 u64 *ptr, *hdr = NULL; 1215 u64 **metadata = NULL; 1216 1217 /* 1218 * sizeof(auxtrace_info_event::type) + 1219 * sizeof(auxtrace_info_event::reserved) == 8 1220 */ 1221 info_header_size = 8; 1222 1223 if (total_size < (event_header_size + info_header_size)) 1224 return -EINVAL; 1225 1226 priv_size = total_size - event_header_size - info_header_size; 1227 1228 /* First the global part */ 1229 ptr = (u64 *) auxtrace_info->priv; 1230 1231 /* Look for version '0' of the header */ 1232 if (ptr[0] != 0) 1233 return -EINVAL; 1234 1235 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX); 1236 if (!hdr) 1237 return -ENOMEM; 1238 1239 /* Extract header information - see cs-etm.h for format */ 1240 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) 1241 hdr[i] = ptr[i]; 1242 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff; 1243 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) & 1244 0xffffffff); 1245 1246 /* 1247 * Create an RB tree for traceID-CPU# tuple. Since the conversion has 1248 * to be made for each packet that gets decoded, optimizing access in 1249 * anything other than a sequential array is worth doing. 1250 */ 1251 traceid_list = intlist__new(NULL); 1252 if (!traceid_list) { 1253 err = -ENOMEM; 1254 goto err_free_hdr; 1255 } 1256 1257 metadata = zalloc(sizeof(*metadata) * num_cpu); 1258 if (!metadata) { 1259 err = -ENOMEM; 1260 goto err_free_traceid_list; 1261 } 1262 1263 /* 1264 * The metadata is stored in the auxtrace_info section and encodes 1265 * the configuration of the ARM embedded trace macrocell which is 1266 * required by the trace decoder to properly decode the trace due 1267 * to its highly compressed nature. 1268 */ 1269 for (j = 0; j < num_cpu; j++) { 1270 if (ptr[i] == __perf_cs_etmv3_magic) { 1271 metadata[j] = zalloc(sizeof(*metadata[j]) * 1272 CS_ETM_PRIV_MAX); 1273 if (!metadata[j]) { 1274 err = -ENOMEM; 1275 goto err_free_metadata; 1276 } 1277 for (k = 0; k < CS_ETM_PRIV_MAX; k++) 1278 metadata[j][k] = ptr[i + k]; 1279 1280 /* The traceID is our handle */ 1281 idx = metadata[j][CS_ETM_ETMTRACEIDR]; 1282 i += CS_ETM_PRIV_MAX; 1283 } else if (ptr[i] == __perf_cs_etmv4_magic) { 1284 metadata[j] = zalloc(sizeof(*metadata[j]) * 1285 CS_ETMV4_PRIV_MAX); 1286 if (!metadata[j]) { 1287 err = -ENOMEM; 1288 goto err_free_metadata; 1289 } 1290 for (k = 0; k < CS_ETMV4_PRIV_MAX; k++) 1291 metadata[j][k] = ptr[i + k]; 1292 1293 /* The traceID is our handle */ 1294 idx = metadata[j][CS_ETMV4_TRCTRACEIDR]; 1295 i += CS_ETMV4_PRIV_MAX; 1296 } 1297 1298 /* Get an RB node for this CPU */ 1299 inode = intlist__findnew(traceid_list, idx); 1300 1301 /* Something went wrong, no need to continue */ 1302 if (!inode) { 1303 err = PTR_ERR(inode); 1304 goto err_free_metadata; 1305 } 1306 1307 /* 1308 * The node for that CPU should not be taken. 1309 * Back out if that's the case. 1310 */ 1311 if (inode->priv) { 1312 err = -EINVAL; 1313 goto err_free_metadata; 1314 } 1315 /* All good, associate the traceID with the CPU# */ 1316 inode->priv = &metadata[j][CS_ETM_CPU]; 1317 } 1318 1319 /* 1320 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and 1321 * CS_ETMV4_PRIV_MAX mark how many double words are in the 1322 * global metadata, and each cpu's metadata respectively. 1323 * The following tests if the correct number of double words was 1324 * present in the auxtrace info section. 1325 */ 1326 if (i * 8 != priv_size) { 1327 err = -EINVAL; 1328 goto err_free_metadata; 1329 } 1330 1331 etm = zalloc(sizeof(*etm)); 1332 1333 if (!etm) { 1334 err = -ENOMEM; 1335 goto err_free_metadata; 1336 } 1337 1338 err = auxtrace_queues__init(&etm->queues); 1339 if (err) 1340 goto err_free_etm; 1341 1342 etm->session = session; 1343 etm->machine = &session->machines.host; 1344 1345 etm->num_cpu = num_cpu; 1346 etm->pmu_type = pmu_type; 1347 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0); 1348 etm->metadata = metadata; 1349 etm->auxtrace_type = auxtrace_info->type; 1350 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); 1351 1352 etm->auxtrace.process_event = cs_etm__process_event; 1353 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 1354 etm->auxtrace.flush_events = cs_etm__flush_events; 1355 etm->auxtrace.free_events = cs_etm__free_events; 1356 etm->auxtrace.free = cs_etm__free; 1357 session->auxtrace = &etm->auxtrace; 1358 1359 etm->unknown_thread = thread__new(999999999, 999999999); 1360 if (!etm->unknown_thread) 1361 goto err_free_queues; 1362 1363 /* 1364 * Initialize list node so that at thread__zput() we can avoid 1365 * segmentation fault at list_del_init(). 1366 */ 1367 INIT_LIST_HEAD(&etm->unknown_thread->node); 1368 1369 err = thread__set_comm(etm->unknown_thread, "unknown", 0); 1370 if (err) 1371 goto err_delete_thread; 1372 1373 if (thread__init_map_groups(etm->unknown_thread, etm->machine)) 1374 goto err_delete_thread; 1375 1376 if (dump_trace) { 1377 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); 1378 return 0; 1379 } 1380 1381 if (session->itrace_synth_opts && session->itrace_synth_opts->set) { 1382 etm->synth_opts = *session->itrace_synth_opts; 1383 } else { 1384 itrace_synth_opts__set_default(&etm->synth_opts); 1385 etm->synth_opts.callchain = false; 1386 } 1387 1388 err = cs_etm__synth_events(etm, session); 1389 if (err) 1390 goto err_delete_thread; 1391 1392 err = auxtrace_queues__process_index(&etm->queues, session); 1393 if (err) 1394 goto err_delete_thread; 1395 1396 etm->data_queued = etm->queues.populated; 1397 1398 return 0; 1399 1400 err_delete_thread: 1401 thread__zput(etm->unknown_thread); 1402 err_free_queues: 1403 auxtrace_queues__free(&etm->queues); 1404 session->auxtrace = NULL; 1405 err_free_etm: 1406 zfree(&etm); 1407 err_free_metadata: 1408 /* No need to check @metadata[j], free(NULL) is supported */ 1409 for (j = 0; j < num_cpu; j++) 1410 free(metadata[j]); 1411 zfree(&metadata); 1412 err_free_traceid_list: 1413 intlist__delete(traceid_list); 1414 err_free_hdr: 1415 zfree(&hdr); 1416 1417 return -EINVAL; 1418 } 1419