1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/coresight-pmu.h> 11 #include <linux/err.h> 12 #include <linux/kernel.h> 13 #include <linux/log2.h> 14 #include <linux/types.h> 15 #include <linux/zalloc.h> 16 17 #include <stdlib.h> 18 19 #include "auxtrace.h" 20 #include "color.h" 21 #include "cs-etm.h" 22 #include "cs-etm-decoder/cs-etm-decoder.h" 23 #include "debug.h" 24 #include "dso.h" 25 #include "evlist.h" 26 #include "intlist.h" 27 #include "machine.h" 28 #include "map.h" 29 #include "perf.h" 30 #include "session.h" 31 #include "map_symbol.h" 32 #include "branch.h" 33 #include "symbol.h" 34 #include "tool.h" 35 #include "thread.h" 36 #include "thread-stack.h" 37 #include "tsc.h" 38 #include <tools/libc_compat.h> 39 #include "util/synthetic-events.h" 40 #include "util/util.h" 41 42 struct cs_etm_auxtrace { 43 struct auxtrace auxtrace; 44 struct auxtrace_queues queues; 45 struct auxtrace_heap heap; 46 struct itrace_synth_opts synth_opts; 47 struct perf_session *session; 48 struct perf_tsc_conversion tc; 49 50 /* 51 * Timeless has no timestamps in the trace so overlapping mmap lookups 52 * are less accurate but produces smaller trace data. We use context IDs 53 * in the trace instead of matching timestamps with fork records so 54 * they're not really needed in the general case. Overlapping mmaps 55 * happen in cases like between a fork and an exec. 56 */ 57 bool timeless_decoding; 58 59 /* 60 * Per-thread ignores the trace channel ID and instead assumes that 61 * everything in a buffer comes from the same process regardless of 62 * which CPU it ran on. It also implies no context IDs so the TID is 63 * taken from the auxtrace buffer. 64 */ 65 bool per_thread_decoding; 66 bool snapshot_mode; 67 bool data_queued; 68 bool has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */ 69 70 int num_cpu; 71 u64 latest_kernel_timestamp; 72 u32 auxtrace_type; 73 u64 branches_sample_type; 74 u64 branches_id; 75 u64 instructions_sample_type; 76 u64 instructions_sample_period; 77 u64 instructions_id; 78 u64 **metadata; 79 unsigned int pmu_type; 80 enum cs_etm_pid_fmt pid_fmt; 81 }; 82 83 struct cs_etm_traceid_queue { 84 u8 trace_chan_id; 85 u64 period_instructions; 86 size_t last_branch_pos; 87 union perf_event *event_buf; 88 struct thread *thread; 89 struct thread *prev_packet_thread; 90 ocsd_ex_level prev_packet_el; 91 ocsd_ex_level el; 92 struct branch_stack *last_branch; 93 struct branch_stack *last_branch_rb; 94 struct cs_etm_packet *prev_packet; 95 struct cs_etm_packet *packet; 96 struct cs_etm_packet_queue packet_queue; 97 }; 98 99 struct cs_etm_queue { 100 struct cs_etm_auxtrace *etm; 101 struct cs_etm_decoder *decoder; 102 struct auxtrace_buffer *buffer; 103 unsigned int queue_nr; 104 u8 pending_timestamp_chan_id; 105 u64 offset; 106 const unsigned char *buf; 107 size_t buf_len, buf_used; 108 /* Conversion between traceID and index in traceid_queues array */ 109 struct intlist *traceid_queues_list; 110 struct cs_etm_traceid_queue **traceid_queues; 111 }; 112 113 /* RB tree for quick conversion between traceID and metadata pointers */ 114 static struct intlist *traceid_list; 115 116 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm); 117 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 118 pid_t tid); 119 static int cs_etm__get_data_block(struct cs_etm_queue *etmq); 120 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); 121 122 /* PTMs ETMIDR [11:8] set to b0011 */ 123 #define ETMIDR_PTM_VERSION 0x00000300 124 125 /* 126 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to 127 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply 128 * encode the etm queue number as the upper 16 bit and the channel as 129 * the lower 16 bit. 130 */ 131 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \ 132 (queue_nr << 16 | trace_chan_id) 133 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) 134 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) 135 136 static u32 cs_etm__get_v7_protocol_version(u32 etmidr) 137 { 138 etmidr &= ETMIDR_PTM_VERSION; 139 140 if (etmidr == ETMIDR_PTM_VERSION) 141 return CS_ETM_PROTO_PTM; 142 143 return CS_ETM_PROTO_ETMV3; 144 } 145 146 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) 147 { 148 struct int_node *inode; 149 u64 *metadata; 150 151 inode = intlist__find(traceid_list, trace_chan_id); 152 if (!inode) 153 return -EINVAL; 154 155 metadata = inode->priv; 156 *magic = metadata[CS_ETM_MAGIC]; 157 return 0; 158 } 159 160 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) 161 { 162 struct int_node *inode; 163 u64 *metadata; 164 165 inode = intlist__find(traceid_list, trace_chan_id); 166 if (!inode) 167 return -EINVAL; 168 169 metadata = inode->priv; 170 *cpu = (int)metadata[CS_ETM_CPU]; 171 return 0; 172 } 173 174 /* 175 * The returned PID format is presented as an enum: 176 * 177 * CS_ETM_PIDFMT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced. 178 * CS_ETM_PIDFMT_CTXTID2: CONTEXTIDR_EL2 is traced. 179 * CS_ETM_PIDFMT_NONE: No context IDs 180 * 181 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2 182 * are enabled at the same time when the session runs on an EL2 kernel. 183 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be 184 * recorded in the trace data, the tool will selectively use 185 * CONTEXTIDR_EL2 as PID. 186 * 187 * The result is cached in etm->pid_fmt so this function only needs to be called 188 * when processing the aux info. 189 */ 190 static enum cs_etm_pid_fmt cs_etm__init_pid_fmt(u64 *metadata) 191 { 192 u64 val; 193 194 if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) { 195 val = metadata[CS_ETM_ETMCR]; 196 /* CONTEXTIDR is traced */ 197 if (val & BIT(ETM_OPT_CTXTID)) 198 return CS_ETM_PIDFMT_CTXTID; 199 } else { 200 val = metadata[CS_ETMV4_TRCCONFIGR]; 201 /* CONTEXTIDR_EL2 is traced */ 202 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT))) 203 return CS_ETM_PIDFMT_CTXTID2; 204 /* CONTEXTIDR_EL1 is traced */ 205 else if (val & BIT(ETM4_CFG_BIT_CTXTID)) 206 return CS_ETM_PIDFMT_CTXTID; 207 } 208 209 return CS_ETM_PIDFMT_NONE; 210 } 211 212 enum cs_etm_pid_fmt cs_etm__get_pid_fmt(struct cs_etm_queue *etmq) 213 { 214 return etmq->etm->pid_fmt; 215 } 216 217 static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata) 218 { 219 struct int_node *inode; 220 221 /* Get an RB node for this CPU */ 222 inode = intlist__findnew(traceid_list, trace_chan_id); 223 224 /* Something went wrong, no need to continue */ 225 if (!inode) 226 return -ENOMEM; 227 228 /* 229 * The node for that CPU should not be taken. 230 * Back out if that's the case. 231 */ 232 if (inode->priv) 233 return -EINVAL; 234 235 /* All good, associate the traceID with the metadata pointer */ 236 inode->priv = cpu_metadata; 237 238 return 0; 239 } 240 241 static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata) 242 { 243 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; 244 245 switch (cs_etm_magic) { 246 case __perf_cs_etmv3_magic: 247 *trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] & 248 CORESIGHT_TRACE_ID_VAL_MASK); 249 break; 250 case __perf_cs_etmv4_magic: 251 case __perf_cs_ete_magic: 252 *trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] & 253 CORESIGHT_TRACE_ID_VAL_MASK); 254 break; 255 default: 256 return -EINVAL; 257 } 258 return 0; 259 } 260 261 /* 262 * update metadata trace ID from the value found in the AUX_HW_INFO packet. 263 * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present. 264 */ 265 static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata) 266 { 267 u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; 268 269 switch (cs_etm_magic) { 270 case __perf_cs_etmv3_magic: 271 cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id; 272 break; 273 case __perf_cs_etmv4_magic: 274 case __perf_cs_ete_magic: 275 cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id; 276 break; 277 278 default: 279 return -EINVAL; 280 } 281 return 0; 282 } 283 284 /* 285 * FIELD_GET (linux/bitfield.h) not available outside kernel code, 286 * and the header contains too many dependencies to just copy over, 287 * so roll our own based on the original 288 */ 289 #define __bf_shf(x) (__builtin_ffsll(x) - 1) 290 #define FIELD_GET(_mask, _reg) \ 291 ({ \ 292 (typeof(_mask))(((_reg) & (_mask)) >> __bf_shf(_mask)); \ 293 }) 294 295 /* 296 * Get a metadata for a specific cpu from an array. 297 * 298 */ 299 static u64 *get_cpu_data(struct cs_etm_auxtrace *etm, int cpu) 300 { 301 int i; 302 u64 *metadata = NULL; 303 304 for (i = 0; i < etm->num_cpu; i++) { 305 if (etm->metadata[i][CS_ETM_CPU] == (u64)cpu) { 306 metadata = etm->metadata[i]; 307 break; 308 } 309 } 310 311 return metadata; 312 } 313 314 /* 315 * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event. 316 * 317 * The payload associates the Trace ID and the CPU. 318 * The routine is tolerant of seeing multiple packets with the same association, 319 * but a CPU / Trace ID association changing during a session is an error. 320 */ 321 static int cs_etm__process_aux_output_hw_id(struct perf_session *session, 322 union perf_event *event) 323 { 324 struct cs_etm_auxtrace *etm; 325 struct perf_sample sample; 326 struct int_node *inode; 327 struct evsel *evsel; 328 u64 *cpu_data; 329 u64 hw_id; 330 int cpu, version, err; 331 u8 trace_chan_id, curr_chan_id; 332 333 /* extract and parse the HW ID */ 334 hw_id = event->aux_output_hw_id.hw_id; 335 version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id); 336 trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id); 337 338 /* check that we can handle this version */ 339 if (version > CS_AUX_HW_ID_CURR_VERSION) 340 return -EINVAL; 341 342 /* get access to the etm metadata */ 343 etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); 344 if (!etm || !etm->metadata) 345 return -EINVAL; 346 347 /* parse the sample to get the CPU */ 348 evsel = evlist__event2evsel(session->evlist, event); 349 if (!evsel) 350 return -EINVAL; 351 err = evsel__parse_sample(evsel, event, &sample); 352 if (err) 353 return err; 354 cpu = sample.cpu; 355 if (cpu == -1) { 356 /* no CPU in the sample - possibly recorded with an old version of perf */ 357 pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record."); 358 return -EINVAL; 359 } 360 361 /* See if the ID is mapped to a CPU, and it matches the current CPU */ 362 inode = intlist__find(traceid_list, trace_chan_id); 363 if (inode) { 364 cpu_data = inode->priv; 365 if ((int)cpu_data[CS_ETM_CPU] != cpu) { 366 pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n"); 367 return -EINVAL; 368 } 369 370 /* check that the mapped ID matches */ 371 err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data); 372 if (err) 373 return err; 374 if (curr_chan_id != trace_chan_id) { 375 pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n"); 376 return -EINVAL; 377 } 378 379 /* mapped and matched - return OK */ 380 return 0; 381 } 382 383 cpu_data = get_cpu_data(etm, cpu); 384 if (cpu_data == NULL) 385 return err; 386 387 /* not one we've seen before - lets map it */ 388 err = cs_etm__map_trace_id(trace_chan_id, cpu_data); 389 if (err) 390 return err; 391 392 /* 393 * if we are picking up the association from the packet, need to plug 394 * the correct trace ID into the metadata for setting up decoders later. 395 */ 396 err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data); 397 return err; 398 } 399 400 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, 401 u8 trace_chan_id) 402 { 403 /* 404 * When a timestamp packet is encountered the backend code 405 * is stopped so that the front end has time to process packets 406 * that were accumulated in the traceID queue. Since there can 407 * be more than one channel per cs_etm_queue, we need to specify 408 * what traceID queue needs servicing. 409 */ 410 etmq->pending_timestamp_chan_id = trace_chan_id; 411 } 412 413 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, 414 u8 *trace_chan_id) 415 { 416 struct cs_etm_packet_queue *packet_queue; 417 418 if (!etmq->pending_timestamp_chan_id) 419 return 0; 420 421 if (trace_chan_id) 422 *trace_chan_id = etmq->pending_timestamp_chan_id; 423 424 packet_queue = cs_etm__etmq_get_packet_queue(etmq, 425 etmq->pending_timestamp_chan_id); 426 if (!packet_queue) 427 return 0; 428 429 /* Acknowledge pending status */ 430 etmq->pending_timestamp_chan_id = 0; 431 432 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ 433 return packet_queue->cs_timestamp; 434 } 435 436 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) 437 { 438 int i; 439 440 queue->head = 0; 441 queue->tail = 0; 442 queue->packet_count = 0; 443 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { 444 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; 445 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; 446 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; 447 queue->packet_buffer[i].instr_count = 0; 448 queue->packet_buffer[i].last_instr_taken_branch = false; 449 queue->packet_buffer[i].last_instr_size = 0; 450 queue->packet_buffer[i].last_instr_type = 0; 451 queue->packet_buffer[i].last_instr_subtype = 0; 452 queue->packet_buffer[i].last_instr_cond = 0; 453 queue->packet_buffer[i].flags = 0; 454 queue->packet_buffer[i].exception_number = UINT32_MAX; 455 queue->packet_buffer[i].trace_chan_id = UINT8_MAX; 456 queue->packet_buffer[i].cpu = INT_MIN; 457 } 458 } 459 460 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) 461 { 462 int idx; 463 struct int_node *inode; 464 struct cs_etm_traceid_queue *tidq; 465 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 466 467 intlist__for_each_entry(inode, traceid_queues_list) { 468 idx = (int)(intptr_t)inode->priv; 469 tidq = etmq->traceid_queues[idx]; 470 cs_etm__clear_packet_queue(&tidq->packet_queue); 471 } 472 } 473 474 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, 475 struct cs_etm_traceid_queue *tidq, 476 u8 trace_chan_id) 477 { 478 int rc = -ENOMEM; 479 struct auxtrace_queue *queue; 480 struct cs_etm_auxtrace *etm = etmq->etm; 481 482 cs_etm__clear_packet_queue(&tidq->packet_queue); 483 484 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 485 tidq->trace_chan_id = trace_chan_id; 486 tidq->el = tidq->prev_packet_el = ocsd_EL_unknown; 487 tidq->thread = machine__findnew_thread(&etm->session->machines.host, -1, 488 queue->tid); 489 tidq->prev_packet_thread = machine__idle_thread(&etm->session->machines.host); 490 491 tidq->packet = zalloc(sizeof(struct cs_etm_packet)); 492 if (!tidq->packet) 493 goto out; 494 495 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); 496 if (!tidq->prev_packet) 497 goto out_free; 498 499 if (etm->synth_opts.last_branch) { 500 size_t sz = sizeof(struct branch_stack); 501 502 sz += etm->synth_opts.last_branch_sz * 503 sizeof(struct branch_entry); 504 tidq->last_branch = zalloc(sz); 505 if (!tidq->last_branch) 506 goto out_free; 507 tidq->last_branch_rb = zalloc(sz); 508 if (!tidq->last_branch_rb) 509 goto out_free; 510 } 511 512 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 513 if (!tidq->event_buf) 514 goto out_free; 515 516 return 0; 517 518 out_free: 519 zfree(&tidq->last_branch_rb); 520 zfree(&tidq->last_branch); 521 zfree(&tidq->prev_packet); 522 zfree(&tidq->packet); 523 out: 524 return rc; 525 } 526 527 static struct cs_etm_traceid_queue 528 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 529 { 530 int idx; 531 struct int_node *inode; 532 struct intlist *traceid_queues_list; 533 struct cs_etm_traceid_queue *tidq, **traceid_queues; 534 struct cs_etm_auxtrace *etm = etmq->etm; 535 536 if (etm->per_thread_decoding) 537 trace_chan_id = CS_ETM_PER_THREAD_TRACEID; 538 539 traceid_queues_list = etmq->traceid_queues_list; 540 541 /* 542 * Check if the traceid_queue exist for this traceID by looking 543 * in the queue list. 544 */ 545 inode = intlist__find(traceid_queues_list, trace_chan_id); 546 if (inode) { 547 idx = (int)(intptr_t)inode->priv; 548 return etmq->traceid_queues[idx]; 549 } 550 551 /* We couldn't find a traceid_queue for this traceID, allocate one */ 552 tidq = malloc(sizeof(*tidq)); 553 if (!tidq) 554 return NULL; 555 556 memset(tidq, 0, sizeof(*tidq)); 557 558 /* Get a valid index for the new traceid_queue */ 559 idx = intlist__nr_entries(traceid_queues_list); 560 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ 561 inode = intlist__findnew(traceid_queues_list, trace_chan_id); 562 if (!inode) 563 goto out_free; 564 565 /* Associate this traceID with this index */ 566 inode->priv = (void *)(intptr_t)idx; 567 568 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) 569 goto out_free; 570 571 /* Grow the traceid_queues array by one unit */ 572 traceid_queues = etmq->traceid_queues; 573 traceid_queues = reallocarray(traceid_queues, 574 idx + 1, 575 sizeof(*traceid_queues)); 576 577 /* 578 * On failure reallocarray() returns NULL and the original block of 579 * memory is left untouched. 580 */ 581 if (!traceid_queues) 582 goto out_free; 583 584 traceid_queues[idx] = tidq; 585 etmq->traceid_queues = traceid_queues; 586 587 return etmq->traceid_queues[idx]; 588 589 out_free: 590 /* 591 * Function intlist__remove() removes the inode from the list 592 * and delete the memory associated to it. 593 */ 594 intlist__remove(traceid_queues_list, inode); 595 free(tidq); 596 597 return NULL; 598 } 599 600 struct cs_etm_packet_queue 601 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 602 { 603 struct cs_etm_traceid_queue *tidq; 604 605 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 606 if (tidq) 607 return &tidq->packet_queue; 608 609 return NULL; 610 } 611 612 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, 613 struct cs_etm_traceid_queue *tidq) 614 { 615 struct cs_etm_packet *tmp; 616 617 if (etm->synth_opts.branches || etm->synth_opts.last_branch || 618 etm->synth_opts.instructions) { 619 /* 620 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 621 * the next incoming packet. 622 * 623 * Threads and exception levels are also tracked for both the 624 * previous and current packets. This is because the previous 625 * packet is used for the 'from' IP for branch samples, so the 626 * thread at that time must also be assigned to that sample. 627 * Across discontinuity packets the thread can change, so by 628 * tracking the thread for the previous packet the branch sample 629 * will have the correct info. 630 */ 631 tmp = tidq->packet; 632 tidq->packet = tidq->prev_packet; 633 tidq->prev_packet = tmp; 634 tidq->prev_packet_el = tidq->el; 635 thread__put(tidq->prev_packet_thread); 636 tidq->prev_packet_thread = thread__get(tidq->thread); 637 } 638 } 639 640 static void cs_etm__packet_dump(const char *pkt_string) 641 { 642 const char *color = PERF_COLOR_BLUE; 643 int len = strlen(pkt_string); 644 645 if (len && (pkt_string[len-1] == '\n')) 646 color_fprintf(stdout, color, " %s", pkt_string); 647 else 648 color_fprintf(stdout, color, " %s\n", pkt_string); 649 650 fflush(stdout); 651 } 652 653 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, 654 struct cs_etm_auxtrace *etm, int idx, 655 u32 etmidr) 656 { 657 u64 **metadata = etm->metadata; 658 659 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr); 660 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR]; 661 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR]; 662 } 663 664 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, 665 struct cs_etm_auxtrace *etm, int idx) 666 { 667 u64 **metadata = etm->metadata; 668 669 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i; 670 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; 671 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; 672 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; 673 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; 674 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; 675 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; 676 } 677 678 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params, 679 struct cs_etm_auxtrace *etm, int idx) 680 { 681 u64 **metadata = etm->metadata; 682 683 t_params[idx].protocol = CS_ETM_PROTO_ETE; 684 t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETE_TRCIDR0]; 685 t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETE_TRCIDR1]; 686 t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETE_TRCIDR2]; 687 t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETE_TRCIDR8]; 688 t_params[idx].ete.reg_configr = metadata[idx][CS_ETE_TRCCONFIGR]; 689 t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETE_TRCTRACEIDR]; 690 t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH]; 691 } 692 693 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, 694 struct cs_etm_auxtrace *etm, 695 int decoders) 696 { 697 int i; 698 u32 etmidr; 699 u64 architecture; 700 701 for (i = 0; i < decoders; i++) { 702 architecture = etm->metadata[i][CS_ETM_MAGIC]; 703 704 switch (architecture) { 705 case __perf_cs_etmv3_magic: 706 etmidr = etm->metadata[i][CS_ETM_ETMIDR]; 707 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr); 708 break; 709 case __perf_cs_etmv4_magic: 710 cs_etm__set_trace_param_etmv4(t_params, etm, i); 711 break; 712 case __perf_cs_ete_magic: 713 cs_etm__set_trace_param_ete(t_params, etm, i); 714 break; 715 default: 716 return -EINVAL; 717 } 718 } 719 720 return 0; 721 } 722 723 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, 724 struct cs_etm_queue *etmq, 725 enum cs_etm_decoder_operation mode, 726 bool formatted) 727 { 728 int ret = -EINVAL; 729 730 if (!(mode < CS_ETM_OPERATION_MAX)) 731 goto out; 732 733 d_params->packet_printer = cs_etm__packet_dump; 734 d_params->operation = mode; 735 d_params->data = etmq; 736 d_params->formatted = formatted; 737 d_params->fsyncs = false; 738 d_params->hsyncs = false; 739 d_params->frame_aligned = true; 740 741 ret = 0; 742 out: 743 return ret; 744 } 745 746 static void cs_etm__dump_event(struct cs_etm_queue *etmq, 747 struct auxtrace_buffer *buffer) 748 { 749 int ret; 750 const char *color = PERF_COLOR_BLUE; 751 size_t buffer_used = 0; 752 753 fprintf(stdout, "\n"); 754 color_fprintf(stdout, color, 755 ". ... CoreSight %s Trace data: size %#zx bytes\n", 756 cs_etm_decoder__get_name(etmq->decoder), buffer->size); 757 758 do { 759 size_t consumed; 760 761 ret = cs_etm_decoder__process_data_block( 762 etmq->decoder, buffer->offset, 763 &((u8 *)buffer->data)[buffer_used], 764 buffer->size - buffer_used, &consumed); 765 if (ret) 766 break; 767 768 buffer_used += consumed; 769 } while (buffer_used < buffer->size); 770 771 cs_etm_decoder__reset(etmq->decoder); 772 } 773 774 static int cs_etm__flush_events(struct perf_session *session, 775 struct perf_tool *tool) 776 { 777 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 778 struct cs_etm_auxtrace, 779 auxtrace); 780 if (dump_trace) 781 return 0; 782 783 if (!tool->ordered_events) 784 return -EINVAL; 785 786 if (etm->timeless_decoding) { 787 /* 788 * Pass tid = -1 to process all queues. But likely they will have 789 * already been processed on PERF_RECORD_EXIT anyway. 790 */ 791 return cs_etm__process_timeless_queues(etm, -1); 792 } 793 794 return cs_etm__process_timestamped_queues(etm); 795 } 796 797 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) 798 { 799 int idx; 800 uintptr_t priv; 801 struct int_node *inode, *tmp; 802 struct cs_etm_traceid_queue *tidq; 803 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 804 805 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { 806 priv = (uintptr_t)inode->priv; 807 idx = priv; 808 809 /* Free this traceid_queue from the array */ 810 tidq = etmq->traceid_queues[idx]; 811 thread__zput(tidq->thread); 812 thread__zput(tidq->prev_packet_thread); 813 zfree(&tidq->event_buf); 814 zfree(&tidq->last_branch); 815 zfree(&tidq->last_branch_rb); 816 zfree(&tidq->prev_packet); 817 zfree(&tidq->packet); 818 zfree(&tidq); 819 820 /* 821 * Function intlist__remove() removes the inode from the list 822 * and delete the memory associated to it. 823 */ 824 intlist__remove(traceid_queues_list, inode); 825 } 826 827 /* Then the RB tree itself */ 828 intlist__delete(traceid_queues_list); 829 etmq->traceid_queues_list = NULL; 830 831 /* finally free the traceid_queues array */ 832 zfree(&etmq->traceid_queues); 833 } 834 835 static void cs_etm__free_queue(void *priv) 836 { 837 struct cs_etm_queue *etmq = priv; 838 839 if (!etmq) 840 return; 841 842 cs_etm_decoder__free(etmq->decoder); 843 cs_etm__free_traceid_queues(etmq); 844 free(etmq); 845 } 846 847 static void cs_etm__free_events(struct perf_session *session) 848 { 849 unsigned int i; 850 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 851 struct cs_etm_auxtrace, 852 auxtrace); 853 struct auxtrace_queues *queues = &aux->queues; 854 855 for (i = 0; i < queues->nr_queues; i++) { 856 cs_etm__free_queue(queues->queue_array[i].priv); 857 queues->queue_array[i].priv = NULL; 858 } 859 860 auxtrace_queues__free(queues); 861 } 862 863 static void cs_etm__free(struct perf_session *session) 864 { 865 int i; 866 struct int_node *inode, *tmp; 867 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 868 struct cs_etm_auxtrace, 869 auxtrace); 870 cs_etm__free_events(session); 871 session->auxtrace = NULL; 872 873 /* First remove all traceID/metadata nodes for the RB tree */ 874 intlist__for_each_entry_safe(inode, tmp, traceid_list) 875 intlist__remove(traceid_list, inode); 876 /* Then the RB tree itself */ 877 intlist__delete(traceid_list); 878 879 for (i = 0; i < aux->num_cpu; i++) 880 zfree(&aux->metadata[i]); 881 882 zfree(&aux->metadata); 883 zfree(&aux); 884 } 885 886 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, 887 struct evsel *evsel) 888 { 889 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 890 struct cs_etm_auxtrace, 891 auxtrace); 892 893 return evsel->core.attr.type == aux->pmu_type; 894 } 895 896 static struct machine *cs_etm__get_machine(struct cs_etm_queue *etmq, 897 ocsd_ex_level el) 898 { 899 enum cs_etm_pid_fmt pid_fmt = cs_etm__get_pid_fmt(etmq); 900 901 /* 902 * For any virtualisation based on nVHE (e.g. pKVM), or host kernels 903 * running at EL1 assume everything is the host. 904 */ 905 if (pid_fmt == CS_ETM_PIDFMT_CTXTID) 906 return &etmq->etm->session->machines.host; 907 908 /* 909 * Not perfect, but otherwise assume anything in EL1 is the default 910 * guest, and everything else is the host. Distinguishing between guest 911 * and host userspaces isn't currently supported either. Neither is 912 * multiple guest support. All this does is reduce the likeliness of 913 * decode errors where we look into the host kernel maps when it should 914 * have been the guest maps. 915 */ 916 switch (el) { 917 case ocsd_EL1: 918 return machines__find_guest(&etmq->etm->session->machines, 919 DEFAULT_GUEST_KERNEL_ID); 920 case ocsd_EL3: 921 case ocsd_EL2: 922 case ocsd_EL0: 923 case ocsd_EL_unknown: 924 default: 925 return &etmq->etm->session->machines.host; 926 } 927 } 928 929 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address, 930 ocsd_ex_level el) 931 { 932 struct machine *machine = cs_etm__get_machine(etmq, el); 933 934 if (address >= machine__kernel_start(machine)) { 935 if (machine__is_host(machine)) 936 return PERF_RECORD_MISC_KERNEL; 937 else 938 return PERF_RECORD_MISC_GUEST_KERNEL; 939 } else { 940 if (machine__is_host(machine)) 941 return PERF_RECORD_MISC_USER; 942 else { 943 /* 944 * Can't really happen at the moment because 945 * cs_etm__get_machine() will always return 946 * machines.host for any non EL1 trace. 947 */ 948 return PERF_RECORD_MISC_GUEST_USER; 949 } 950 } 951 } 952 953 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, 954 u64 address, size_t size, u8 *buffer, 955 const ocsd_mem_space_acc_t mem_space) 956 { 957 u8 cpumode; 958 u64 offset; 959 int len; 960 struct addr_location al; 961 struct dso *dso; 962 struct cs_etm_traceid_queue *tidq; 963 int ret = 0; 964 965 if (!etmq) 966 return 0; 967 968 addr_location__init(&al); 969 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 970 if (!tidq) 971 goto out; 972 973 /* 974 * We've already tracked EL along side the PID in cs_etm__set_thread() 975 * so double check that it matches what OpenCSD thinks as well. It 976 * doesn't distinguish between EL0 and EL1 for this mem access callback 977 * so we had to do the extra tracking. Skip validation if it's any of 978 * the 'any' values. 979 */ 980 if (!(mem_space == OCSD_MEM_SPACE_ANY || 981 mem_space == OCSD_MEM_SPACE_N || mem_space == OCSD_MEM_SPACE_S)) { 982 if (mem_space & OCSD_MEM_SPACE_EL1N) { 983 /* Includes both non secure EL1 and EL0 */ 984 assert(tidq->el == ocsd_EL1 || tidq->el == ocsd_EL0); 985 } else if (mem_space & OCSD_MEM_SPACE_EL2) 986 assert(tidq->el == ocsd_EL2); 987 else if (mem_space & OCSD_MEM_SPACE_EL3) 988 assert(tidq->el == ocsd_EL3); 989 } 990 991 cpumode = cs_etm__cpu_mode(etmq, address, tidq->el); 992 993 if (!thread__find_map(tidq->thread, cpumode, address, &al)) 994 goto out; 995 996 dso = map__dso(al.map); 997 if (!dso) 998 goto out; 999 1000 if (dso->data.status == DSO_DATA_STATUS_ERROR && 1001 dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) 1002 goto out; 1003 1004 offset = map__map_ip(al.map, address); 1005 1006 map__load(al.map); 1007 1008 len = dso__data_read_offset(dso, maps__machine(thread__maps(tidq->thread)), 1009 offset, buffer, size); 1010 1011 if (len <= 0) { 1012 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n" 1013 " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n"); 1014 if (!dso->auxtrace_warned) { 1015 pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n", 1016 address, 1017 dso->long_name ? dso->long_name : "Unknown"); 1018 dso->auxtrace_warned = true; 1019 } 1020 goto out; 1021 } 1022 ret = len; 1023 out: 1024 addr_location__exit(&al); 1025 return ret; 1026 } 1027 1028 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, 1029 bool formatted) 1030 { 1031 struct cs_etm_decoder_params d_params; 1032 struct cs_etm_trace_params *t_params = NULL; 1033 struct cs_etm_queue *etmq; 1034 /* 1035 * Each queue can only contain data from one CPU when unformatted, so only one decoder is 1036 * needed. 1037 */ 1038 int decoders = formatted ? etm->num_cpu : 1; 1039 1040 etmq = zalloc(sizeof(*etmq)); 1041 if (!etmq) 1042 return NULL; 1043 1044 etmq->traceid_queues_list = intlist__new(NULL); 1045 if (!etmq->traceid_queues_list) 1046 goto out_free; 1047 1048 /* Use metadata to fill in trace parameters for trace decoder */ 1049 t_params = zalloc(sizeof(*t_params) * decoders); 1050 1051 if (!t_params) 1052 goto out_free; 1053 1054 if (cs_etm__init_trace_params(t_params, etm, decoders)) 1055 goto out_free; 1056 1057 /* Set decoder parameters to decode trace packets */ 1058 if (cs_etm__init_decoder_params(&d_params, etmq, 1059 dump_trace ? CS_ETM_OPERATION_PRINT : 1060 CS_ETM_OPERATION_DECODE, 1061 formatted)) 1062 goto out_free; 1063 1064 etmq->decoder = cs_etm_decoder__new(decoders, &d_params, 1065 t_params); 1066 1067 if (!etmq->decoder) 1068 goto out_free; 1069 1070 /* 1071 * Register a function to handle all memory accesses required by 1072 * the trace decoder library. 1073 */ 1074 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 1075 0x0L, ((u64) -1L), 1076 cs_etm__mem_access)) 1077 goto out_free_decoder; 1078 1079 zfree(&t_params); 1080 return etmq; 1081 1082 out_free_decoder: 1083 cs_etm_decoder__free(etmq->decoder); 1084 out_free: 1085 intlist__delete(etmq->traceid_queues_list); 1086 free(etmq); 1087 1088 return NULL; 1089 } 1090 1091 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 1092 struct auxtrace_queue *queue, 1093 unsigned int queue_nr, 1094 bool formatted) 1095 { 1096 struct cs_etm_queue *etmq = queue->priv; 1097 1098 if (list_empty(&queue->head) || etmq) 1099 return 0; 1100 1101 etmq = cs_etm__alloc_queue(etm, formatted); 1102 1103 if (!etmq) 1104 return -ENOMEM; 1105 1106 queue->priv = etmq; 1107 etmq->etm = etm; 1108 etmq->queue_nr = queue_nr; 1109 etmq->offset = 0; 1110 1111 return 0; 1112 } 1113 1114 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm, 1115 struct cs_etm_queue *etmq, 1116 unsigned int queue_nr) 1117 { 1118 int ret = 0; 1119 unsigned int cs_queue_nr; 1120 u8 trace_chan_id; 1121 u64 cs_timestamp; 1122 1123 /* 1124 * We are under a CPU-wide trace scenario. As such we need to know 1125 * when the code that generated the traces started to execute so that 1126 * it can be correlated with execution on other CPUs. So we get a 1127 * handle on the beginning of traces and decode until we find a 1128 * timestamp. The timestamp is then added to the auxtrace min heap 1129 * in order to know what nibble (of all the etmqs) to decode first. 1130 */ 1131 while (1) { 1132 /* 1133 * Fetch an aux_buffer from this etmq. Bail if no more 1134 * blocks or an error has been encountered. 1135 */ 1136 ret = cs_etm__get_data_block(etmq); 1137 if (ret <= 0) 1138 goto out; 1139 1140 /* 1141 * Run decoder on the trace block. The decoder will stop when 1142 * encountering a CS timestamp, a full packet queue or the end of 1143 * trace for that block. 1144 */ 1145 ret = cs_etm__decode_data_block(etmq); 1146 if (ret) 1147 goto out; 1148 1149 /* 1150 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all 1151 * the timestamp calculation for us. 1152 */ 1153 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 1154 1155 /* We found a timestamp, no need to continue. */ 1156 if (cs_timestamp) 1157 break; 1158 1159 /* 1160 * We didn't find a timestamp so empty all the traceid packet 1161 * queues before looking for another timestamp packet, either 1162 * in the current data block or a new one. Packets that were 1163 * just decoded are useless since no timestamp has been 1164 * associated with them. As such simply discard them. 1165 */ 1166 cs_etm__clear_all_packet_queues(etmq); 1167 } 1168 1169 /* 1170 * We have a timestamp. Add it to the min heap to reflect when 1171 * instructions conveyed by the range packets of this traceID queue 1172 * started to execute. Once the same has been done for all the traceID 1173 * queues of each etmq, redenring and decoding can start in 1174 * chronological order. 1175 * 1176 * Note that packets decoded above are still in the traceID's packet 1177 * queue and will be processed in cs_etm__process_timestamped_queues(). 1178 */ 1179 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 1180 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 1181 out: 1182 return ret; 1183 } 1184 1185 static inline 1186 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, 1187 struct cs_etm_traceid_queue *tidq) 1188 { 1189 struct branch_stack *bs_src = tidq->last_branch_rb; 1190 struct branch_stack *bs_dst = tidq->last_branch; 1191 size_t nr = 0; 1192 1193 /* 1194 * Set the number of records before early exit: ->nr is used to 1195 * determine how many branches to copy from ->entries. 1196 */ 1197 bs_dst->nr = bs_src->nr; 1198 1199 /* 1200 * Early exit when there is nothing to copy. 1201 */ 1202 if (!bs_src->nr) 1203 return; 1204 1205 /* 1206 * As bs_src->entries is a circular buffer, we need to copy from it in 1207 * two steps. First, copy the branches from the most recently inserted 1208 * branch ->last_branch_pos until the end of bs_src->entries buffer. 1209 */ 1210 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; 1211 memcpy(&bs_dst->entries[0], 1212 &bs_src->entries[tidq->last_branch_pos], 1213 sizeof(struct branch_entry) * nr); 1214 1215 /* 1216 * If we wrapped around at least once, the branches from the beginning 1217 * of the bs_src->entries buffer and until the ->last_branch_pos element 1218 * are older valid branches: copy them over. The total number of 1219 * branches copied over will be equal to the number of branches asked by 1220 * the user in last_branch_sz. 1221 */ 1222 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 1223 memcpy(&bs_dst->entries[nr], 1224 &bs_src->entries[0], 1225 sizeof(struct branch_entry) * tidq->last_branch_pos); 1226 } 1227 } 1228 1229 static inline 1230 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) 1231 { 1232 tidq->last_branch_pos = 0; 1233 tidq->last_branch_rb->nr = 0; 1234 } 1235 1236 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, 1237 u8 trace_chan_id, u64 addr) 1238 { 1239 u8 instrBytes[2]; 1240 1241 cs_etm__mem_access(etmq, trace_chan_id, addr, ARRAY_SIZE(instrBytes), 1242 instrBytes, 0); 1243 /* 1244 * T32 instruction size is indicated by bits[15:11] of the first 1245 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 1246 * denote a 32-bit instruction. 1247 */ 1248 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; 1249 } 1250 1251 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) 1252 { 1253 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 1254 if (packet->sample_type == CS_ETM_DISCONTINUITY) 1255 return 0; 1256 1257 return packet->start_addr; 1258 } 1259 1260 static inline 1261 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) 1262 { 1263 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 1264 if (packet->sample_type == CS_ETM_DISCONTINUITY) 1265 return 0; 1266 1267 return packet->end_addr - packet->last_instr_size; 1268 } 1269 1270 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, 1271 u64 trace_chan_id, 1272 const struct cs_etm_packet *packet, 1273 u64 offset) 1274 { 1275 if (packet->isa == CS_ETM_ISA_T32) { 1276 u64 addr = packet->start_addr; 1277 1278 while (offset) { 1279 addr += cs_etm__t32_instr_size(etmq, 1280 trace_chan_id, addr); 1281 offset--; 1282 } 1283 return addr; 1284 } 1285 1286 /* Assume a 4 byte instruction size (A32/A64) */ 1287 return packet->start_addr + offset * 4; 1288 } 1289 1290 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, 1291 struct cs_etm_traceid_queue *tidq) 1292 { 1293 struct branch_stack *bs = tidq->last_branch_rb; 1294 struct branch_entry *be; 1295 1296 /* 1297 * The branches are recorded in a circular buffer in reverse 1298 * chronological order: we start recording from the last element of the 1299 * buffer down. After writing the first element of the stack, move the 1300 * insert position back to the end of the buffer. 1301 */ 1302 if (!tidq->last_branch_pos) 1303 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 1304 1305 tidq->last_branch_pos -= 1; 1306 1307 be = &bs->entries[tidq->last_branch_pos]; 1308 be->from = cs_etm__last_executed_instr(tidq->prev_packet); 1309 be->to = cs_etm__first_executed_instr(tidq->packet); 1310 /* No support for mispredict */ 1311 be->flags.mispred = 0; 1312 be->flags.predicted = 1; 1313 1314 /* 1315 * Increment bs->nr until reaching the number of last branches asked by 1316 * the user on the command line. 1317 */ 1318 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 1319 bs->nr += 1; 1320 } 1321 1322 static int cs_etm__inject_event(union perf_event *event, 1323 struct perf_sample *sample, u64 type) 1324 { 1325 event->header.size = perf_event__sample_event_size(sample, type, 0); 1326 return perf_event__synthesize_sample(event, type, 0, sample); 1327 } 1328 1329 1330 static int 1331 cs_etm__get_trace(struct cs_etm_queue *etmq) 1332 { 1333 struct auxtrace_buffer *aux_buffer = etmq->buffer; 1334 struct auxtrace_buffer *old_buffer = aux_buffer; 1335 struct auxtrace_queue *queue; 1336 1337 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 1338 1339 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 1340 1341 /* If no more data, drop the previous auxtrace_buffer and return */ 1342 if (!aux_buffer) { 1343 if (old_buffer) 1344 auxtrace_buffer__drop_data(old_buffer); 1345 etmq->buf_len = 0; 1346 return 0; 1347 } 1348 1349 etmq->buffer = aux_buffer; 1350 1351 /* If the aux_buffer doesn't have data associated, try to load it */ 1352 if (!aux_buffer->data) { 1353 /* get the file desc associated with the perf data file */ 1354 int fd = perf_data__fd(etmq->etm->session->data); 1355 1356 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 1357 if (!aux_buffer->data) 1358 return -ENOMEM; 1359 } 1360 1361 /* If valid, drop the previous buffer */ 1362 if (old_buffer) 1363 auxtrace_buffer__drop_data(old_buffer); 1364 1365 etmq->buf_used = 0; 1366 etmq->buf_len = aux_buffer->size; 1367 etmq->buf = aux_buffer->data; 1368 1369 return etmq->buf_len; 1370 } 1371 1372 static void cs_etm__set_thread(struct cs_etm_queue *etmq, 1373 struct cs_etm_traceid_queue *tidq, pid_t tid, 1374 ocsd_ex_level el) 1375 { 1376 struct machine *machine = cs_etm__get_machine(etmq, el); 1377 1378 if (tid != -1) { 1379 thread__zput(tidq->thread); 1380 tidq->thread = machine__find_thread(machine, -1, tid); 1381 } 1382 1383 /* Couldn't find a known thread */ 1384 if (!tidq->thread) 1385 tidq->thread = machine__idle_thread(machine); 1386 1387 tidq->el = el; 1388 } 1389 1390 int cs_etm__etmq_set_tid_el(struct cs_etm_queue *etmq, pid_t tid, 1391 u8 trace_chan_id, ocsd_ex_level el) 1392 { 1393 struct cs_etm_traceid_queue *tidq; 1394 1395 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 1396 if (!tidq) 1397 return -EINVAL; 1398 1399 cs_etm__set_thread(etmq, tidq, tid, el); 1400 return 0; 1401 } 1402 1403 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) 1404 { 1405 return !!etmq->etm->timeless_decoding; 1406 } 1407 1408 static void cs_etm__copy_insn(struct cs_etm_queue *etmq, 1409 u64 trace_chan_id, 1410 const struct cs_etm_packet *packet, 1411 struct perf_sample *sample) 1412 { 1413 /* 1414 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY 1415 * packet, so directly bail out with 'insn_len' = 0. 1416 */ 1417 if (packet->sample_type == CS_ETM_DISCONTINUITY) { 1418 sample->insn_len = 0; 1419 return; 1420 } 1421 1422 /* 1423 * T32 instruction size might be 32-bit or 16-bit, decide by calling 1424 * cs_etm__t32_instr_size(). 1425 */ 1426 if (packet->isa == CS_ETM_ISA_T32) 1427 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, 1428 sample->ip); 1429 /* Otherwise, A64 and A32 instruction size are always 32-bit. */ 1430 else 1431 sample->insn_len = 4; 1432 1433 cs_etm__mem_access(etmq, trace_chan_id, sample->ip, sample->insn_len, 1434 (void *)sample->insn, 0); 1435 } 1436 1437 u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp) 1438 { 1439 struct cs_etm_auxtrace *etm = etmq->etm; 1440 1441 if (etm->has_virtual_ts) 1442 return tsc_to_perf_time(cs_timestamp, &etm->tc); 1443 else 1444 return cs_timestamp; 1445 } 1446 1447 static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq, 1448 struct cs_etm_traceid_queue *tidq) 1449 { 1450 struct cs_etm_auxtrace *etm = etmq->etm; 1451 struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue; 1452 1453 if (!etm->timeless_decoding && etm->has_virtual_ts) 1454 return packet_queue->cs_timestamp; 1455 else 1456 return etm->latest_kernel_timestamp; 1457 } 1458 1459 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 1460 struct cs_etm_traceid_queue *tidq, 1461 u64 addr, u64 period) 1462 { 1463 int ret = 0; 1464 struct cs_etm_auxtrace *etm = etmq->etm; 1465 union perf_event *event = tidq->event_buf; 1466 struct perf_sample sample = {.ip = 0,}; 1467 1468 event->sample.header.type = PERF_RECORD_SAMPLE; 1469 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr, tidq->el); 1470 event->sample.header.size = sizeof(struct perf_event_header); 1471 1472 /* Set time field based on etm auxtrace config. */ 1473 sample.time = cs_etm__resolve_sample_time(etmq, tidq); 1474 1475 sample.ip = addr; 1476 sample.pid = thread__pid(tidq->thread); 1477 sample.tid = thread__tid(tidq->thread); 1478 sample.id = etmq->etm->instructions_id; 1479 sample.stream_id = etmq->etm->instructions_id; 1480 sample.period = period; 1481 sample.cpu = tidq->packet->cpu; 1482 sample.flags = tidq->prev_packet->flags; 1483 sample.cpumode = event->sample.header.misc; 1484 1485 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); 1486 1487 if (etm->synth_opts.last_branch) 1488 sample.branch_stack = tidq->last_branch; 1489 1490 if (etm->synth_opts.inject) { 1491 ret = cs_etm__inject_event(event, &sample, 1492 etm->instructions_sample_type); 1493 if (ret) 1494 return ret; 1495 } 1496 1497 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1498 1499 if (ret) 1500 pr_err( 1501 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1502 ret); 1503 1504 return ret; 1505 } 1506 1507 /* 1508 * The cs etm packet encodes an instruction range between a branch target 1509 * and the next taken branch. Generate sample accordingly. 1510 */ 1511 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, 1512 struct cs_etm_traceid_queue *tidq) 1513 { 1514 int ret = 0; 1515 struct cs_etm_auxtrace *etm = etmq->etm; 1516 struct perf_sample sample = {.ip = 0,}; 1517 union perf_event *event = tidq->event_buf; 1518 struct dummy_branch_stack { 1519 u64 nr; 1520 u64 hw_idx; 1521 struct branch_entry entries; 1522 } dummy_bs; 1523 u64 ip; 1524 1525 ip = cs_etm__last_executed_instr(tidq->prev_packet); 1526 1527 event->sample.header.type = PERF_RECORD_SAMPLE; 1528 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip, 1529 tidq->prev_packet_el); 1530 event->sample.header.size = sizeof(struct perf_event_header); 1531 1532 /* Set time field based on etm auxtrace config. */ 1533 sample.time = cs_etm__resolve_sample_time(etmq, tidq); 1534 1535 sample.ip = ip; 1536 sample.pid = thread__pid(tidq->prev_packet_thread); 1537 sample.tid = thread__tid(tidq->prev_packet_thread); 1538 sample.addr = cs_etm__first_executed_instr(tidq->packet); 1539 sample.id = etmq->etm->branches_id; 1540 sample.stream_id = etmq->etm->branches_id; 1541 sample.period = 1; 1542 sample.cpu = tidq->packet->cpu; 1543 sample.flags = tidq->prev_packet->flags; 1544 sample.cpumode = event->sample.header.misc; 1545 1546 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, 1547 &sample); 1548 1549 /* 1550 * perf report cannot handle events without a branch stack 1551 */ 1552 if (etm->synth_opts.last_branch) { 1553 dummy_bs = (struct dummy_branch_stack){ 1554 .nr = 1, 1555 .hw_idx = -1ULL, 1556 .entries = { 1557 .from = sample.ip, 1558 .to = sample.addr, 1559 }, 1560 }; 1561 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1562 } 1563 1564 if (etm->synth_opts.inject) { 1565 ret = cs_etm__inject_event(event, &sample, 1566 etm->branches_sample_type); 1567 if (ret) 1568 return ret; 1569 } 1570 1571 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1572 1573 if (ret) 1574 pr_err( 1575 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1576 ret); 1577 1578 return ret; 1579 } 1580 1581 struct cs_etm_synth { 1582 struct perf_tool dummy_tool; 1583 struct perf_session *session; 1584 }; 1585 1586 static int cs_etm__event_synth(struct perf_tool *tool, 1587 union perf_event *event, 1588 struct perf_sample *sample __maybe_unused, 1589 struct machine *machine __maybe_unused) 1590 { 1591 struct cs_etm_synth *cs_etm_synth = 1592 container_of(tool, struct cs_etm_synth, dummy_tool); 1593 1594 return perf_session__deliver_synth_event(cs_etm_synth->session, 1595 event, NULL); 1596 } 1597 1598 static int cs_etm__synth_event(struct perf_session *session, 1599 struct perf_event_attr *attr, u64 id) 1600 { 1601 struct cs_etm_synth cs_etm_synth; 1602 1603 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 1604 cs_etm_synth.session = session; 1605 1606 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 1607 &id, cs_etm__event_synth); 1608 } 1609 1610 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 1611 struct perf_session *session) 1612 { 1613 struct evlist *evlist = session->evlist; 1614 struct evsel *evsel; 1615 struct perf_event_attr attr; 1616 bool found = false; 1617 u64 id; 1618 int err; 1619 1620 evlist__for_each_entry(evlist, evsel) { 1621 if (evsel->core.attr.type == etm->pmu_type) { 1622 found = true; 1623 break; 1624 } 1625 } 1626 1627 if (!found) { 1628 pr_debug("No selected events with CoreSight Trace data\n"); 1629 return 0; 1630 } 1631 1632 memset(&attr, 0, sizeof(struct perf_event_attr)); 1633 attr.size = sizeof(struct perf_event_attr); 1634 attr.type = PERF_TYPE_HARDWARE; 1635 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 1636 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 1637 PERF_SAMPLE_PERIOD; 1638 if (etm->timeless_decoding) 1639 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 1640 else 1641 attr.sample_type |= PERF_SAMPLE_TIME; 1642 1643 attr.exclude_user = evsel->core.attr.exclude_user; 1644 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 1645 attr.exclude_hv = evsel->core.attr.exclude_hv; 1646 attr.exclude_host = evsel->core.attr.exclude_host; 1647 attr.exclude_guest = evsel->core.attr.exclude_guest; 1648 attr.sample_id_all = evsel->core.attr.sample_id_all; 1649 attr.read_format = evsel->core.attr.read_format; 1650 1651 /* create new id val to be a fixed offset from evsel id */ 1652 id = evsel->core.id[0] + 1000000000; 1653 1654 if (!id) 1655 id = 1; 1656 1657 if (etm->synth_opts.branches) { 1658 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 1659 attr.sample_period = 1; 1660 attr.sample_type |= PERF_SAMPLE_ADDR; 1661 err = cs_etm__synth_event(session, &attr, id); 1662 if (err) 1663 return err; 1664 etm->branches_sample_type = attr.sample_type; 1665 etm->branches_id = id; 1666 id += 1; 1667 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 1668 } 1669 1670 if (etm->synth_opts.last_branch) { 1671 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 1672 /* 1673 * We don't use the hardware index, but the sample generation 1674 * code uses the new format branch_stack with this field, 1675 * so the event attributes must indicate that it's present. 1676 */ 1677 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 1678 } 1679 1680 if (etm->synth_opts.instructions) { 1681 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 1682 attr.sample_period = etm->synth_opts.period; 1683 etm->instructions_sample_period = attr.sample_period; 1684 err = cs_etm__synth_event(session, &attr, id); 1685 if (err) 1686 return err; 1687 etm->instructions_sample_type = attr.sample_type; 1688 etm->instructions_id = id; 1689 id += 1; 1690 } 1691 1692 return 0; 1693 } 1694 1695 static int cs_etm__sample(struct cs_etm_queue *etmq, 1696 struct cs_etm_traceid_queue *tidq) 1697 { 1698 struct cs_etm_auxtrace *etm = etmq->etm; 1699 int ret; 1700 u8 trace_chan_id = tidq->trace_chan_id; 1701 u64 instrs_prev; 1702 1703 /* Get instructions remainder from previous packet */ 1704 instrs_prev = tidq->period_instructions; 1705 1706 tidq->period_instructions += tidq->packet->instr_count; 1707 1708 /* 1709 * Record a branch when the last instruction in 1710 * PREV_PACKET is a branch. 1711 */ 1712 if (etm->synth_opts.last_branch && 1713 tidq->prev_packet->sample_type == CS_ETM_RANGE && 1714 tidq->prev_packet->last_instr_taken_branch) 1715 cs_etm__update_last_branch_rb(etmq, tidq); 1716 1717 if (etm->synth_opts.instructions && 1718 tidq->period_instructions >= etm->instructions_sample_period) { 1719 /* 1720 * Emit instruction sample periodically 1721 * TODO: allow period to be defined in cycles and clock time 1722 */ 1723 1724 /* 1725 * Below diagram demonstrates the instruction samples 1726 * generation flows: 1727 * 1728 * Instrs Instrs Instrs Instrs 1729 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) 1730 * | | | | 1731 * V V V V 1732 * -------------------------------------------------- 1733 * ^ ^ 1734 * | | 1735 * Period Period 1736 * instructions(Pi) instructions(Pi') 1737 * 1738 * | | 1739 * \---------------- -----------------/ 1740 * V 1741 * tidq->packet->instr_count 1742 * 1743 * Instrs Sample(n...) are the synthesised samples occurring 1744 * every etm->instructions_sample_period instructions - as 1745 * defined on the perf command line. Sample(n) is being the 1746 * last sample before the current etm packet, n+1 to n+3 1747 * samples are generated from the current etm packet. 1748 * 1749 * tidq->packet->instr_count represents the number of 1750 * instructions in the current etm packet. 1751 * 1752 * Period instructions (Pi) contains the number of 1753 * instructions executed after the sample point(n) from the 1754 * previous etm packet. This will always be less than 1755 * etm->instructions_sample_period. 1756 * 1757 * When generate new samples, it combines with two parts 1758 * instructions, one is the tail of the old packet and another 1759 * is the head of the new coming packet, to generate 1760 * sample(n+1); sample(n+2) and sample(n+3) consume the 1761 * instructions with sample period. After sample(n+3), the rest 1762 * instructions will be used by later packet and it is assigned 1763 * to tidq->period_instructions for next round calculation. 1764 */ 1765 1766 /* 1767 * Get the initial offset into the current packet instructions; 1768 * entry conditions ensure that instrs_prev is less than 1769 * etm->instructions_sample_period. 1770 */ 1771 u64 offset = etm->instructions_sample_period - instrs_prev; 1772 u64 addr; 1773 1774 /* Prepare last branches for instruction sample */ 1775 if (etm->synth_opts.last_branch) 1776 cs_etm__copy_last_branch_rb(etmq, tidq); 1777 1778 while (tidq->period_instructions >= 1779 etm->instructions_sample_period) { 1780 /* 1781 * Calculate the address of the sampled instruction (-1 1782 * as sample is reported as though instruction has just 1783 * been executed, but PC has not advanced to next 1784 * instruction) 1785 */ 1786 addr = cs_etm__instr_addr(etmq, trace_chan_id, 1787 tidq->packet, offset - 1); 1788 ret = cs_etm__synth_instruction_sample( 1789 etmq, tidq, addr, 1790 etm->instructions_sample_period); 1791 if (ret) 1792 return ret; 1793 1794 offset += etm->instructions_sample_period; 1795 tidq->period_instructions -= 1796 etm->instructions_sample_period; 1797 } 1798 } 1799 1800 if (etm->synth_opts.branches) { 1801 bool generate_sample = false; 1802 1803 /* Generate sample for tracing on packet */ 1804 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1805 generate_sample = true; 1806 1807 /* Generate sample for branch taken packet */ 1808 if (tidq->prev_packet->sample_type == CS_ETM_RANGE && 1809 tidq->prev_packet->last_instr_taken_branch) 1810 generate_sample = true; 1811 1812 if (generate_sample) { 1813 ret = cs_etm__synth_branch_sample(etmq, tidq); 1814 if (ret) 1815 return ret; 1816 } 1817 } 1818 1819 cs_etm__packet_swap(etm, tidq); 1820 1821 return 0; 1822 } 1823 1824 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) 1825 { 1826 /* 1827 * When the exception packet is inserted, whether the last instruction 1828 * in previous range packet is taken branch or not, we need to force 1829 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures 1830 * to generate branch sample for the instruction range before the 1831 * exception is trapped to kernel or before the exception returning. 1832 * 1833 * The exception packet includes the dummy address values, so don't 1834 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful 1835 * for generating instruction and branch samples. 1836 */ 1837 if (tidq->prev_packet->sample_type == CS_ETM_RANGE) 1838 tidq->prev_packet->last_instr_taken_branch = true; 1839 1840 return 0; 1841 } 1842 1843 static int cs_etm__flush(struct cs_etm_queue *etmq, 1844 struct cs_etm_traceid_queue *tidq) 1845 { 1846 int err = 0; 1847 struct cs_etm_auxtrace *etm = etmq->etm; 1848 1849 /* Handle start tracing packet */ 1850 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) 1851 goto swap_packet; 1852 1853 if (etmq->etm->synth_opts.last_branch && 1854 etmq->etm->synth_opts.instructions && 1855 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1856 u64 addr; 1857 1858 /* Prepare last branches for instruction sample */ 1859 cs_etm__copy_last_branch_rb(etmq, tidq); 1860 1861 /* 1862 * Generate a last branch event for the branches left in the 1863 * circular buffer at the end of the trace. 1864 * 1865 * Use the address of the end of the last reported execution 1866 * range 1867 */ 1868 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1869 1870 err = cs_etm__synth_instruction_sample( 1871 etmq, tidq, addr, 1872 tidq->period_instructions); 1873 if (err) 1874 return err; 1875 1876 tidq->period_instructions = 0; 1877 1878 } 1879 1880 if (etm->synth_opts.branches && 1881 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1882 err = cs_etm__synth_branch_sample(etmq, tidq); 1883 if (err) 1884 return err; 1885 } 1886 1887 swap_packet: 1888 cs_etm__packet_swap(etm, tidq); 1889 1890 /* Reset last branches after flush the trace */ 1891 if (etm->synth_opts.last_branch) 1892 cs_etm__reset_last_branch_rb(tidq); 1893 1894 return err; 1895 } 1896 1897 static int cs_etm__end_block(struct cs_etm_queue *etmq, 1898 struct cs_etm_traceid_queue *tidq) 1899 { 1900 int err; 1901 1902 /* 1903 * It has no new packet coming and 'etmq->packet' contains the stale 1904 * packet which was set at the previous time with packets swapping; 1905 * so skip to generate branch sample to avoid stale packet. 1906 * 1907 * For this case only flush branch stack and generate a last branch 1908 * event for the branches left in the circular buffer at the end of 1909 * the trace. 1910 */ 1911 if (etmq->etm->synth_opts.last_branch && 1912 etmq->etm->synth_opts.instructions && 1913 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1914 u64 addr; 1915 1916 /* Prepare last branches for instruction sample */ 1917 cs_etm__copy_last_branch_rb(etmq, tidq); 1918 1919 /* 1920 * Use the address of the end of the last reported execution 1921 * range. 1922 */ 1923 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1924 1925 err = cs_etm__synth_instruction_sample( 1926 etmq, tidq, addr, 1927 tidq->period_instructions); 1928 if (err) 1929 return err; 1930 1931 tidq->period_instructions = 0; 1932 } 1933 1934 return 0; 1935 } 1936 /* 1937 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue 1938 * if need be. 1939 * Returns: < 0 if error 1940 * = 0 if no more auxtrace_buffer to read 1941 * > 0 if the current buffer isn't empty yet 1942 */ 1943 static int cs_etm__get_data_block(struct cs_etm_queue *etmq) 1944 { 1945 int ret; 1946 1947 if (!etmq->buf_len) { 1948 ret = cs_etm__get_trace(etmq); 1949 if (ret <= 0) 1950 return ret; 1951 /* 1952 * We cannot assume consecutive blocks in the data file 1953 * are contiguous, reset the decoder to force re-sync. 1954 */ 1955 ret = cs_etm_decoder__reset(etmq->decoder); 1956 if (ret) 1957 return ret; 1958 } 1959 1960 return etmq->buf_len; 1961 } 1962 1963 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, 1964 struct cs_etm_packet *packet, 1965 u64 end_addr) 1966 { 1967 /* Initialise to keep compiler happy */ 1968 u16 instr16 = 0; 1969 u32 instr32 = 0; 1970 u64 addr; 1971 1972 switch (packet->isa) { 1973 case CS_ETM_ISA_T32: 1974 /* 1975 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: 1976 * 1977 * b'15 b'8 1978 * +-----------------+--------+ 1979 * | 1 1 0 1 1 1 1 1 | imm8 | 1980 * +-----------------+--------+ 1981 * 1982 * According to the specification, it only defines SVC for T32 1983 * with 16 bits instruction and has no definition for 32bits; 1984 * so below only read 2 bytes as instruction size for T32. 1985 */ 1986 addr = end_addr - 2; 1987 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr16), 1988 (u8 *)&instr16, 0); 1989 if ((instr16 & 0xFF00) == 0xDF00) 1990 return true; 1991 1992 break; 1993 case CS_ETM_ISA_A32: 1994 /* 1995 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: 1996 * 1997 * b'31 b'28 b'27 b'24 1998 * +---------+---------+-------------------------+ 1999 * | !1111 | 1 1 1 1 | imm24 | 2000 * +---------+---------+-------------------------+ 2001 */ 2002 addr = end_addr - 4; 2003 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32), 2004 (u8 *)&instr32, 0); 2005 if ((instr32 & 0x0F000000) == 0x0F000000 && 2006 (instr32 & 0xF0000000) != 0xF0000000) 2007 return true; 2008 2009 break; 2010 case CS_ETM_ISA_A64: 2011 /* 2012 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: 2013 * 2014 * b'31 b'21 b'4 b'0 2015 * +-----------------------+---------+-----------+ 2016 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | 2017 * +-----------------------+---------+-----------+ 2018 */ 2019 addr = end_addr - 4; 2020 cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32), 2021 (u8 *)&instr32, 0); 2022 if ((instr32 & 0xFFE0001F) == 0xd4000001) 2023 return true; 2024 2025 break; 2026 case CS_ETM_ISA_UNKNOWN: 2027 default: 2028 break; 2029 } 2030 2031 return false; 2032 } 2033 2034 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, 2035 struct cs_etm_traceid_queue *tidq, u64 magic) 2036 { 2037 u8 trace_chan_id = tidq->trace_chan_id; 2038 struct cs_etm_packet *packet = tidq->packet; 2039 struct cs_etm_packet *prev_packet = tidq->prev_packet; 2040 2041 if (magic == __perf_cs_etmv3_magic) 2042 if (packet->exception_number == CS_ETMV3_EXC_SVC) 2043 return true; 2044 2045 /* 2046 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and 2047 * HVC cases; need to check if it's SVC instruction based on 2048 * packet address. 2049 */ 2050 if (magic == __perf_cs_etmv4_magic) { 2051 if (packet->exception_number == CS_ETMV4_EXC_CALL && 2052 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 2053 prev_packet->end_addr)) 2054 return true; 2055 } 2056 2057 return false; 2058 } 2059 2060 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, 2061 u64 magic) 2062 { 2063 struct cs_etm_packet *packet = tidq->packet; 2064 2065 if (magic == __perf_cs_etmv3_magic) 2066 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || 2067 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || 2068 packet->exception_number == CS_ETMV3_EXC_PE_RESET || 2069 packet->exception_number == CS_ETMV3_EXC_IRQ || 2070 packet->exception_number == CS_ETMV3_EXC_FIQ) 2071 return true; 2072 2073 if (magic == __perf_cs_etmv4_magic) 2074 if (packet->exception_number == CS_ETMV4_EXC_RESET || 2075 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || 2076 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || 2077 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || 2078 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || 2079 packet->exception_number == CS_ETMV4_EXC_IRQ || 2080 packet->exception_number == CS_ETMV4_EXC_FIQ) 2081 return true; 2082 2083 return false; 2084 } 2085 2086 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, 2087 struct cs_etm_traceid_queue *tidq, 2088 u64 magic) 2089 { 2090 u8 trace_chan_id = tidq->trace_chan_id; 2091 struct cs_etm_packet *packet = tidq->packet; 2092 struct cs_etm_packet *prev_packet = tidq->prev_packet; 2093 2094 if (magic == __perf_cs_etmv3_magic) 2095 if (packet->exception_number == CS_ETMV3_EXC_SMC || 2096 packet->exception_number == CS_ETMV3_EXC_HYP || 2097 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || 2098 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || 2099 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || 2100 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || 2101 packet->exception_number == CS_ETMV3_EXC_GENERIC) 2102 return true; 2103 2104 if (magic == __perf_cs_etmv4_magic) { 2105 if (packet->exception_number == CS_ETMV4_EXC_TRAP || 2106 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || 2107 packet->exception_number == CS_ETMV4_EXC_INST_FAULT || 2108 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) 2109 return true; 2110 2111 /* 2112 * For CS_ETMV4_EXC_CALL, except SVC other instructions 2113 * (SMC, HVC) are taken as sync exceptions. 2114 */ 2115 if (packet->exception_number == CS_ETMV4_EXC_CALL && 2116 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 2117 prev_packet->end_addr)) 2118 return true; 2119 2120 /* 2121 * ETMv4 has 5 bits for exception number; if the numbers 2122 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] 2123 * they are implementation defined exceptions. 2124 * 2125 * For this case, simply take it as sync exception. 2126 */ 2127 if (packet->exception_number > CS_ETMV4_EXC_FIQ && 2128 packet->exception_number <= CS_ETMV4_EXC_END) 2129 return true; 2130 } 2131 2132 return false; 2133 } 2134 2135 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, 2136 struct cs_etm_traceid_queue *tidq) 2137 { 2138 struct cs_etm_packet *packet = tidq->packet; 2139 struct cs_etm_packet *prev_packet = tidq->prev_packet; 2140 u8 trace_chan_id = tidq->trace_chan_id; 2141 u64 magic; 2142 int ret; 2143 2144 switch (packet->sample_type) { 2145 case CS_ETM_RANGE: 2146 /* 2147 * Immediate branch instruction without neither link nor 2148 * return flag, it's normal branch instruction within 2149 * the function. 2150 */ 2151 if (packet->last_instr_type == OCSD_INSTR_BR && 2152 packet->last_instr_subtype == OCSD_S_INSTR_NONE) { 2153 packet->flags = PERF_IP_FLAG_BRANCH; 2154 2155 if (packet->last_instr_cond) 2156 packet->flags |= PERF_IP_FLAG_CONDITIONAL; 2157 } 2158 2159 /* 2160 * Immediate branch instruction with link (e.g. BL), this is 2161 * branch instruction for function call. 2162 */ 2163 if (packet->last_instr_type == OCSD_INSTR_BR && 2164 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 2165 packet->flags = PERF_IP_FLAG_BRANCH | 2166 PERF_IP_FLAG_CALL; 2167 2168 /* 2169 * Indirect branch instruction with link (e.g. BLR), this is 2170 * branch instruction for function call. 2171 */ 2172 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2173 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 2174 packet->flags = PERF_IP_FLAG_BRANCH | 2175 PERF_IP_FLAG_CALL; 2176 2177 /* 2178 * Indirect branch instruction with subtype of 2179 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for 2180 * function return for A32/T32. 2181 */ 2182 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2183 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) 2184 packet->flags = PERF_IP_FLAG_BRANCH | 2185 PERF_IP_FLAG_RETURN; 2186 2187 /* 2188 * Indirect branch instruction without link (e.g. BR), usually 2189 * this is used for function return, especially for functions 2190 * within dynamic link lib. 2191 */ 2192 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2193 packet->last_instr_subtype == OCSD_S_INSTR_NONE) 2194 packet->flags = PERF_IP_FLAG_BRANCH | 2195 PERF_IP_FLAG_RETURN; 2196 2197 /* Return instruction for function return. */ 2198 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 2199 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) 2200 packet->flags = PERF_IP_FLAG_BRANCH | 2201 PERF_IP_FLAG_RETURN; 2202 2203 /* 2204 * Decoder might insert a discontinuity in the middle of 2205 * instruction packets, fixup prev_packet with flag 2206 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. 2207 */ 2208 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) 2209 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 2210 PERF_IP_FLAG_TRACE_BEGIN; 2211 2212 /* 2213 * If the previous packet is an exception return packet 2214 * and the return address just follows SVC instruction, 2215 * it needs to calibrate the previous packet sample flags 2216 * as PERF_IP_FLAG_SYSCALLRET. 2217 */ 2218 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | 2219 PERF_IP_FLAG_RETURN | 2220 PERF_IP_FLAG_INTERRUPT) && 2221 cs_etm__is_svc_instr(etmq, trace_chan_id, 2222 packet, packet->start_addr)) 2223 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2224 PERF_IP_FLAG_RETURN | 2225 PERF_IP_FLAG_SYSCALLRET; 2226 break; 2227 case CS_ETM_DISCONTINUITY: 2228 /* 2229 * The trace is discontinuous, if the previous packet is 2230 * instruction packet, set flag PERF_IP_FLAG_TRACE_END 2231 * for previous packet. 2232 */ 2233 if (prev_packet->sample_type == CS_ETM_RANGE) 2234 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 2235 PERF_IP_FLAG_TRACE_END; 2236 break; 2237 case CS_ETM_EXCEPTION: 2238 ret = cs_etm__get_magic(packet->trace_chan_id, &magic); 2239 if (ret) 2240 return ret; 2241 2242 /* The exception is for system call. */ 2243 if (cs_etm__is_syscall(etmq, tidq, magic)) 2244 packet->flags = PERF_IP_FLAG_BRANCH | 2245 PERF_IP_FLAG_CALL | 2246 PERF_IP_FLAG_SYSCALLRET; 2247 /* 2248 * The exceptions are triggered by external signals from bus, 2249 * interrupt controller, debug module, PE reset or halt. 2250 */ 2251 else if (cs_etm__is_async_exception(tidq, magic)) 2252 packet->flags = PERF_IP_FLAG_BRANCH | 2253 PERF_IP_FLAG_CALL | 2254 PERF_IP_FLAG_ASYNC | 2255 PERF_IP_FLAG_INTERRUPT; 2256 /* 2257 * Otherwise, exception is caused by trap, instruction & 2258 * data fault, or alignment errors. 2259 */ 2260 else if (cs_etm__is_sync_exception(etmq, tidq, magic)) 2261 packet->flags = PERF_IP_FLAG_BRANCH | 2262 PERF_IP_FLAG_CALL | 2263 PERF_IP_FLAG_INTERRUPT; 2264 2265 /* 2266 * When the exception packet is inserted, since exception 2267 * packet is not used standalone for generating samples 2268 * and it's affiliation to the previous instruction range 2269 * packet; so set previous range packet flags to tell perf 2270 * it is an exception taken branch. 2271 */ 2272 if (prev_packet->sample_type == CS_ETM_RANGE) 2273 prev_packet->flags = packet->flags; 2274 break; 2275 case CS_ETM_EXCEPTION_RET: 2276 /* 2277 * When the exception return packet is inserted, since 2278 * exception return packet is not used standalone for 2279 * generating samples and it's affiliation to the previous 2280 * instruction range packet; so set previous range packet 2281 * flags to tell perf it is an exception return branch. 2282 * 2283 * The exception return can be for either system call or 2284 * other exception types; unfortunately the packet doesn't 2285 * contain exception type related info so we cannot decide 2286 * the exception type purely based on exception return packet. 2287 * If we record the exception number from exception packet and 2288 * reuse it for exception return packet, this is not reliable 2289 * due the trace can be discontinuity or the interrupt can 2290 * be nested, thus the recorded exception number cannot be 2291 * used for exception return packet for these two cases. 2292 * 2293 * For exception return packet, we only need to distinguish the 2294 * packet is for system call or for other types. Thus the 2295 * decision can be deferred when receive the next packet which 2296 * contains the return address, based on the return address we 2297 * can read out the previous instruction and check if it's a 2298 * system call instruction and then calibrate the sample flag 2299 * as needed. 2300 */ 2301 if (prev_packet->sample_type == CS_ETM_RANGE) 2302 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2303 PERF_IP_FLAG_RETURN | 2304 PERF_IP_FLAG_INTERRUPT; 2305 break; 2306 case CS_ETM_EMPTY: 2307 default: 2308 break; 2309 } 2310 2311 return 0; 2312 } 2313 2314 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) 2315 { 2316 int ret = 0; 2317 size_t processed = 0; 2318 2319 /* 2320 * Packets are decoded and added to the decoder's packet queue 2321 * until the decoder packet processing callback has requested that 2322 * processing stops or there is nothing left in the buffer. Normal 2323 * operations that stop processing are a timestamp packet or a full 2324 * decoder buffer queue. 2325 */ 2326 ret = cs_etm_decoder__process_data_block(etmq->decoder, 2327 etmq->offset, 2328 &etmq->buf[etmq->buf_used], 2329 etmq->buf_len, 2330 &processed); 2331 if (ret) 2332 goto out; 2333 2334 etmq->offset += processed; 2335 etmq->buf_used += processed; 2336 etmq->buf_len -= processed; 2337 2338 out: 2339 return ret; 2340 } 2341 2342 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, 2343 struct cs_etm_traceid_queue *tidq) 2344 { 2345 int ret; 2346 struct cs_etm_packet_queue *packet_queue; 2347 2348 packet_queue = &tidq->packet_queue; 2349 2350 /* Process each packet in this chunk */ 2351 while (1) { 2352 ret = cs_etm_decoder__get_packet(packet_queue, 2353 tidq->packet); 2354 if (ret <= 0) 2355 /* 2356 * Stop processing this chunk on 2357 * end of data or error 2358 */ 2359 break; 2360 2361 /* 2362 * Since packet addresses are swapped in packet 2363 * handling within below switch() statements, 2364 * thus setting sample flags must be called 2365 * prior to switch() statement to use address 2366 * information before packets swapping. 2367 */ 2368 ret = cs_etm__set_sample_flags(etmq, tidq); 2369 if (ret < 0) 2370 break; 2371 2372 switch (tidq->packet->sample_type) { 2373 case CS_ETM_RANGE: 2374 /* 2375 * If the packet contains an instruction 2376 * range, generate instruction sequence 2377 * events. 2378 */ 2379 cs_etm__sample(etmq, tidq); 2380 break; 2381 case CS_ETM_EXCEPTION: 2382 case CS_ETM_EXCEPTION_RET: 2383 /* 2384 * If the exception packet is coming, 2385 * make sure the previous instruction 2386 * range packet to be handled properly. 2387 */ 2388 cs_etm__exception(tidq); 2389 break; 2390 case CS_ETM_DISCONTINUITY: 2391 /* 2392 * Discontinuity in trace, flush 2393 * previous branch stack 2394 */ 2395 cs_etm__flush(etmq, tidq); 2396 break; 2397 case CS_ETM_EMPTY: 2398 /* 2399 * Should not receive empty packet, 2400 * report error. 2401 */ 2402 pr_err("CS ETM Trace: empty packet\n"); 2403 return -EINVAL; 2404 default: 2405 break; 2406 } 2407 } 2408 2409 return ret; 2410 } 2411 2412 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) 2413 { 2414 int idx; 2415 struct int_node *inode; 2416 struct cs_etm_traceid_queue *tidq; 2417 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 2418 2419 intlist__for_each_entry(inode, traceid_queues_list) { 2420 idx = (int)(intptr_t)inode->priv; 2421 tidq = etmq->traceid_queues[idx]; 2422 2423 /* Ignore return value */ 2424 cs_etm__process_traceid_queue(etmq, tidq); 2425 2426 /* 2427 * Generate an instruction sample with the remaining 2428 * branchstack entries. 2429 */ 2430 cs_etm__flush(etmq, tidq); 2431 } 2432 } 2433 2434 static int cs_etm__run_per_thread_timeless_decoder(struct cs_etm_queue *etmq) 2435 { 2436 int err = 0; 2437 struct cs_etm_traceid_queue *tidq; 2438 2439 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); 2440 if (!tidq) 2441 return -EINVAL; 2442 2443 /* Go through each buffer in the queue and decode them one by one */ 2444 while (1) { 2445 err = cs_etm__get_data_block(etmq); 2446 if (err <= 0) 2447 return err; 2448 2449 /* Run trace decoder until buffer consumed or end of trace */ 2450 do { 2451 err = cs_etm__decode_data_block(etmq); 2452 if (err) 2453 return err; 2454 2455 /* 2456 * Process each packet in this chunk, nothing to do if 2457 * an error occurs other than hoping the next one will 2458 * be better. 2459 */ 2460 err = cs_etm__process_traceid_queue(etmq, tidq); 2461 2462 } while (etmq->buf_len); 2463 2464 if (err == 0) 2465 /* Flush any remaining branch stack entries */ 2466 err = cs_etm__end_block(etmq, tidq); 2467 } 2468 2469 return err; 2470 } 2471 2472 static int cs_etm__run_per_cpu_timeless_decoder(struct cs_etm_queue *etmq) 2473 { 2474 int idx, err = 0; 2475 struct cs_etm_traceid_queue *tidq; 2476 struct int_node *inode; 2477 2478 /* Go through each buffer in the queue and decode them one by one */ 2479 while (1) { 2480 err = cs_etm__get_data_block(etmq); 2481 if (err <= 0) 2482 return err; 2483 2484 /* Run trace decoder until buffer consumed or end of trace */ 2485 do { 2486 err = cs_etm__decode_data_block(etmq); 2487 if (err) 2488 return err; 2489 2490 /* 2491 * cs_etm__run_per_thread_timeless_decoder() runs on a 2492 * single traceID queue because each TID has a separate 2493 * buffer. But here in per-cpu mode we need to iterate 2494 * over each channel instead. 2495 */ 2496 intlist__for_each_entry(inode, 2497 etmq->traceid_queues_list) { 2498 idx = (int)(intptr_t)inode->priv; 2499 tidq = etmq->traceid_queues[idx]; 2500 cs_etm__process_traceid_queue(etmq, tidq); 2501 } 2502 } while (etmq->buf_len); 2503 2504 intlist__for_each_entry(inode, etmq->traceid_queues_list) { 2505 idx = (int)(intptr_t)inode->priv; 2506 tidq = etmq->traceid_queues[idx]; 2507 /* Flush any remaining branch stack entries */ 2508 err = cs_etm__end_block(etmq, tidq); 2509 if (err) 2510 return err; 2511 } 2512 } 2513 2514 return err; 2515 } 2516 2517 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 2518 pid_t tid) 2519 { 2520 unsigned int i; 2521 struct auxtrace_queues *queues = &etm->queues; 2522 2523 for (i = 0; i < queues->nr_queues; i++) { 2524 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 2525 struct cs_etm_queue *etmq = queue->priv; 2526 struct cs_etm_traceid_queue *tidq; 2527 2528 if (!etmq) 2529 continue; 2530 2531 if (etm->per_thread_decoding) { 2532 tidq = cs_etm__etmq_get_traceid_queue( 2533 etmq, CS_ETM_PER_THREAD_TRACEID); 2534 2535 if (!tidq) 2536 continue; 2537 2538 if (tid == -1 || thread__tid(tidq->thread) == tid) 2539 cs_etm__run_per_thread_timeless_decoder(etmq); 2540 } else 2541 cs_etm__run_per_cpu_timeless_decoder(etmq); 2542 } 2543 2544 return 0; 2545 } 2546 2547 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm) 2548 { 2549 int ret = 0; 2550 unsigned int cs_queue_nr, queue_nr, i; 2551 u8 trace_chan_id; 2552 u64 cs_timestamp; 2553 struct auxtrace_queue *queue; 2554 struct cs_etm_queue *etmq; 2555 struct cs_etm_traceid_queue *tidq; 2556 2557 /* 2558 * Pre-populate the heap with one entry from each queue so that we can 2559 * start processing in time order across all queues. 2560 */ 2561 for (i = 0; i < etm->queues.nr_queues; i++) { 2562 etmq = etm->queues.queue_array[i].priv; 2563 if (!etmq) 2564 continue; 2565 2566 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i); 2567 if (ret) 2568 return ret; 2569 } 2570 2571 while (1) { 2572 if (!etm->heap.heap_cnt) 2573 goto out; 2574 2575 /* Take the entry at the top of the min heap */ 2576 cs_queue_nr = etm->heap.heap_array[0].queue_nr; 2577 queue_nr = TO_QUEUE_NR(cs_queue_nr); 2578 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); 2579 queue = &etm->queues.queue_array[queue_nr]; 2580 etmq = queue->priv; 2581 2582 /* 2583 * Remove the top entry from the heap since we are about 2584 * to process it. 2585 */ 2586 auxtrace_heap__pop(&etm->heap); 2587 2588 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 2589 if (!tidq) { 2590 /* 2591 * No traceID queue has been allocated for this traceID, 2592 * which means something somewhere went very wrong. No 2593 * other choice than simply exit. 2594 */ 2595 ret = -EINVAL; 2596 goto out; 2597 } 2598 2599 /* 2600 * Packets associated with this timestamp are already in 2601 * the etmq's traceID queue, so process them. 2602 */ 2603 ret = cs_etm__process_traceid_queue(etmq, tidq); 2604 if (ret < 0) 2605 goto out; 2606 2607 /* 2608 * Packets for this timestamp have been processed, time to 2609 * move on to the next timestamp, fetching a new auxtrace_buffer 2610 * if need be. 2611 */ 2612 refetch: 2613 ret = cs_etm__get_data_block(etmq); 2614 if (ret < 0) 2615 goto out; 2616 2617 /* 2618 * No more auxtrace_buffers to process in this etmq, simply 2619 * move on to another entry in the auxtrace_heap. 2620 */ 2621 if (!ret) 2622 continue; 2623 2624 ret = cs_etm__decode_data_block(etmq); 2625 if (ret) 2626 goto out; 2627 2628 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 2629 2630 if (!cs_timestamp) { 2631 /* 2632 * Function cs_etm__decode_data_block() returns when 2633 * there is no more traces to decode in the current 2634 * auxtrace_buffer OR when a timestamp has been 2635 * encountered on any of the traceID queues. Since we 2636 * did not get a timestamp, there is no more traces to 2637 * process in this auxtrace_buffer. As such empty and 2638 * flush all traceID queues. 2639 */ 2640 cs_etm__clear_all_traceid_queues(etmq); 2641 2642 /* Fetch another auxtrace_buffer for this etmq */ 2643 goto refetch; 2644 } 2645 2646 /* 2647 * Add to the min heap the timestamp for packets that have 2648 * just been decoded. They will be processed and synthesized 2649 * during the next call to cs_etm__process_traceid_queue() for 2650 * this queue/traceID. 2651 */ 2652 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 2653 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 2654 } 2655 2656 out: 2657 return ret; 2658 } 2659 2660 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, 2661 union perf_event *event) 2662 { 2663 struct thread *th; 2664 2665 if (etm->timeless_decoding) 2666 return 0; 2667 2668 /* 2669 * Add the tid/pid to the log so that we can get a match when we get a 2670 * contextID from the decoder. Only track for the host: only kernel 2671 * trace is supported for guests which wouldn't need pids so this should 2672 * be fine. 2673 */ 2674 th = machine__findnew_thread(&etm->session->machines.host, 2675 event->itrace_start.pid, 2676 event->itrace_start.tid); 2677 if (!th) 2678 return -ENOMEM; 2679 2680 thread__put(th); 2681 2682 return 0; 2683 } 2684 2685 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, 2686 union perf_event *event) 2687 { 2688 struct thread *th; 2689 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2690 2691 /* 2692 * Context switch in per-thread mode are irrelevant since perf 2693 * will start/stop tracing as the process is scheduled. 2694 */ 2695 if (etm->timeless_decoding) 2696 return 0; 2697 2698 /* 2699 * SWITCH_IN events carry the next process to be switched out while 2700 * SWITCH_OUT events carry the process to be switched in. As such 2701 * we don't care about IN events. 2702 */ 2703 if (!out) 2704 return 0; 2705 2706 /* 2707 * Add the tid/pid to the log so that we can get a match when we get a 2708 * contextID from the decoder. Only track for the host: only kernel 2709 * trace is supported for guests which wouldn't need pids so this should 2710 * be fine. 2711 */ 2712 th = machine__findnew_thread(&etm->session->machines.host, 2713 event->context_switch.next_prev_pid, 2714 event->context_switch.next_prev_tid); 2715 if (!th) 2716 return -ENOMEM; 2717 2718 thread__put(th); 2719 2720 return 0; 2721 } 2722 2723 static int cs_etm__process_event(struct perf_session *session, 2724 union perf_event *event, 2725 struct perf_sample *sample, 2726 struct perf_tool *tool) 2727 { 2728 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2729 struct cs_etm_auxtrace, 2730 auxtrace); 2731 2732 if (dump_trace) 2733 return 0; 2734 2735 if (!tool->ordered_events) { 2736 pr_err("CoreSight ETM Trace requires ordered events\n"); 2737 return -EINVAL; 2738 } 2739 2740 switch (event->header.type) { 2741 case PERF_RECORD_EXIT: 2742 /* 2743 * Don't need to wait for cs_etm__flush_events() in per-thread mode to 2744 * start the decode because we know there will be no more trace from 2745 * this thread. All this does is emit samples earlier than waiting for 2746 * the flush in other modes, but with timestamps it makes sense to wait 2747 * for flush so that events from different threads are interleaved 2748 * properly. 2749 */ 2750 if (etm->per_thread_decoding && etm->timeless_decoding) 2751 return cs_etm__process_timeless_queues(etm, 2752 event->fork.tid); 2753 break; 2754 2755 case PERF_RECORD_ITRACE_START: 2756 return cs_etm__process_itrace_start(etm, event); 2757 2758 case PERF_RECORD_SWITCH_CPU_WIDE: 2759 return cs_etm__process_switch_cpu_wide(etm, event); 2760 2761 case PERF_RECORD_AUX: 2762 /* 2763 * Record the latest kernel timestamp available in the header 2764 * for samples so that synthesised samples occur from this point 2765 * onwards. 2766 */ 2767 if (sample->time && (sample->time != (u64)-1)) 2768 etm->latest_kernel_timestamp = sample->time; 2769 break; 2770 2771 default: 2772 break; 2773 } 2774 2775 return 0; 2776 } 2777 2778 static void dump_queued_data(struct cs_etm_auxtrace *etm, 2779 struct perf_record_auxtrace *event) 2780 { 2781 struct auxtrace_buffer *buf; 2782 unsigned int i; 2783 /* 2784 * Find all buffers with same reference in the queues and dump them. 2785 * This is because the queues can contain multiple entries of the same 2786 * buffer that were split on aux records. 2787 */ 2788 for (i = 0; i < etm->queues.nr_queues; ++i) 2789 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list) 2790 if (buf->reference == event->reference) 2791 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf); 2792 } 2793 2794 static int cs_etm__process_auxtrace_event(struct perf_session *session, 2795 union perf_event *event, 2796 struct perf_tool *tool __maybe_unused) 2797 { 2798 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2799 struct cs_etm_auxtrace, 2800 auxtrace); 2801 if (!etm->data_queued) { 2802 struct auxtrace_buffer *buffer; 2803 off_t data_offset; 2804 int fd = perf_data__fd(session->data); 2805 bool is_pipe = perf_data__is_pipe(session->data); 2806 int err; 2807 int idx = event->auxtrace.idx; 2808 2809 if (is_pipe) 2810 data_offset = 0; 2811 else { 2812 data_offset = lseek(fd, 0, SEEK_CUR); 2813 if (data_offset == -1) 2814 return -errno; 2815 } 2816 2817 err = auxtrace_queues__add_event(&etm->queues, session, 2818 event, data_offset, &buffer); 2819 if (err) 2820 return err; 2821 2822 /* 2823 * Knowing if the trace is formatted or not requires a lookup of 2824 * the aux record so only works in non-piped mode where data is 2825 * queued in cs_etm__queue_aux_records(). Always assume 2826 * formatted in piped mode (true). 2827 */ 2828 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2829 idx, true); 2830 if (err) 2831 return err; 2832 2833 if (dump_trace) 2834 if (auxtrace_buffer__get_data(buffer, fd)) { 2835 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer); 2836 auxtrace_buffer__put_data(buffer); 2837 } 2838 } else if (dump_trace) 2839 dump_queued_data(etm, &event->auxtrace); 2840 2841 return 0; 2842 } 2843 2844 static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm) 2845 { 2846 struct evsel *evsel; 2847 struct evlist *evlist = etm->session->evlist; 2848 2849 /* Override timeless mode with user input from --itrace=Z */ 2850 if (etm->synth_opts.timeless_decoding) { 2851 etm->timeless_decoding = true; 2852 return 0; 2853 } 2854 2855 /* 2856 * Find the cs_etm evsel and look at what its timestamp setting was 2857 */ 2858 evlist__for_each_entry(evlist, evsel) 2859 if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) { 2860 etm->timeless_decoding = 2861 !(evsel->core.attr.config & BIT(ETM_OPT_TS)); 2862 return 0; 2863 } 2864 2865 pr_err("CS ETM: Couldn't find ETM evsel\n"); 2866 return -EINVAL; 2867 } 2868 2869 /* 2870 * Read a single cpu parameter block from the auxtrace_info priv block. 2871 * 2872 * For version 1 there is a per cpu nr_params entry. If we are handling 2873 * version 1 file, then there may be less, the same, or more params 2874 * indicated by this value than the compile time number we understand. 2875 * 2876 * For a version 0 info block, there are a fixed number, and we need to 2877 * fill out the nr_param value in the metadata we create. 2878 */ 2879 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset, 2880 int out_blk_size, int nr_params_v0) 2881 { 2882 u64 *metadata = NULL; 2883 int hdr_version; 2884 int nr_in_params, nr_out_params, nr_cmn_params; 2885 int i, k; 2886 2887 metadata = zalloc(sizeof(*metadata) * out_blk_size); 2888 if (!metadata) 2889 return NULL; 2890 2891 /* read block current index & version */ 2892 i = *buff_in_offset; 2893 hdr_version = buff_in[CS_HEADER_VERSION]; 2894 2895 if (!hdr_version) { 2896 /* read version 0 info block into a version 1 metadata block */ 2897 nr_in_params = nr_params_v0; 2898 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC]; 2899 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU]; 2900 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params; 2901 /* remaining block params at offset +1 from source */ 2902 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++) 2903 metadata[k + 1] = buff_in[i + k]; 2904 /* version 0 has 2 common params */ 2905 nr_cmn_params = 2; 2906 } else { 2907 /* read version 1 info block - input and output nr_params may differ */ 2908 /* version 1 has 3 common params */ 2909 nr_cmn_params = 3; 2910 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS]; 2911 2912 /* if input has more params than output - skip excess */ 2913 nr_out_params = nr_in_params + nr_cmn_params; 2914 if (nr_out_params > out_blk_size) 2915 nr_out_params = out_blk_size; 2916 2917 for (k = CS_ETM_MAGIC; k < nr_out_params; k++) 2918 metadata[k] = buff_in[i + k]; 2919 2920 /* record the actual nr params we copied */ 2921 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params; 2922 } 2923 2924 /* adjust in offset by number of in params used */ 2925 i += nr_in_params + nr_cmn_params; 2926 *buff_in_offset = i; 2927 return metadata; 2928 } 2929 2930 /** 2931 * Puts a fragment of an auxtrace buffer into the auxtrace queues based 2932 * on the bounds of aux_event, if it matches with the buffer that's at 2933 * file_offset. 2934 * 2935 * Normally, whole auxtrace buffers would be added to the queue. But we 2936 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder 2937 * is reset across each buffer, so splitting the buffers up in advance has 2938 * the same effect. 2939 */ 2940 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz, 2941 struct perf_record_aux *aux_event, struct perf_sample *sample) 2942 { 2943 int err; 2944 char buf[PERF_SAMPLE_MAX_SIZE]; 2945 union perf_event *auxtrace_event_union; 2946 struct perf_record_auxtrace *auxtrace_event; 2947 union perf_event auxtrace_fragment; 2948 __u64 aux_offset, aux_size; 2949 __u32 idx; 2950 bool formatted; 2951 2952 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2953 struct cs_etm_auxtrace, 2954 auxtrace); 2955 2956 /* 2957 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got 2958 * from looping through the auxtrace index. 2959 */ 2960 err = perf_session__peek_event(session, file_offset, buf, 2961 PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL); 2962 if (err) 2963 return err; 2964 auxtrace_event = &auxtrace_event_union->auxtrace; 2965 if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE) 2966 return -EINVAL; 2967 2968 if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) || 2969 auxtrace_event->header.size != sz) { 2970 return -EINVAL; 2971 } 2972 2973 /* 2974 * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See 2975 * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a 2976 * CPU as we set this always for the AUX_OUTPUT_HW_ID event. 2977 * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1. 2978 * Return 'not found' if mismatch. 2979 */ 2980 if (auxtrace_event->cpu == (__u32) -1) { 2981 etm->per_thread_decoding = true; 2982 if (auxtrace_event->tid != sample->tid) 2983 return 1; 2984 } else if (auxtrace_event->cpu != sample->cpu) { 2985 if (etm->per_thread_decoding) { 2986 /* 2987 * Found a per-cpu buffer after a per-thread one was 2988 * already found 2989 */ 2990 pr_err("CS ETM: Inconsistent per-thread/per-cpu mode.\n"); 2991 return -EINVAL; 2992 } 2993 return 1; 2994 } 2995 2996 if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) { 2997 /* 2998 * Clamp size in snapshot mode. The buffer size is clamped in 2999 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect 3000 * the buffer size. 3001 */ 3002 aux_size = min(aux_event->aux_size, auxtrace_event->size); 3003 3004 /* 3005 * In this mode, the head also points to the end of the buffer so aux_offset 3006 * needs to have the size subtracted so it points to the beginning as in normal mode 3007 */ 3008 aux_offset = aux_event->aux_offset - aux_size; 3009 } else { 3010 aux_size = aux_event->aux_size; 3011 aux_offset = aux_event->aux_offset; 3012 } 3013 3014 if (aux_offset >= auxtrace_event->offset && 3015 aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) { 3016 /* 3017 * If this AUX event was inside this buffer somewhere, create a new auxtrace event 3018 * based on the sizes of the aux event, and queue that fragment. 3019 */ 3020 auxtrace_fragment.auxtrace = *auxtrace_event; 3021 auxtrace_fragment.auxtrace.size = aux_size; 3022 auxtrace_fragment.auxtrace.offset = aux_offset; 3023 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size; 3024 3025 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64 3026 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu); 3027 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment, 3028 file_offset, NULL); 3029 if (err) 3030 return err; 3031 3032 idx = auxtrace_event->idx; 3033 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW); 3034 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 3035 idx, formatted); 3036 } 3037 3038 /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */ 3039 return 1; 3040 } 3041 3042 static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event, 3043 u64 offset __maybe_unused, void *data __maybe_unused) 3044 { 3045 /* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */ 3046 if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) { 3047 (*(int *)data)++; /* increment found count */ 3048 return cs_etm__process_aux_output_hw_id(session, event); 3049 } 3050 return 0; 3051 } 3052 3053 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event, 3054 u64 offset __maybe_unused, void *data __maybe_unused) 3055 { 3056 struct perf_sample sample; 3057 int ret; 3058 struct auxtrace_index_entry *ent; 3059 struct auxtrace_index *auxtrace_index; 3060 struct evsel *evsel; 3061 size_t i; 3062 3063 /* Don't care about any other events, we're only queuing buffers for AUX events */ 3064 if (event->header.type != PERF_RECORD_AUX) 3065 return 0; 3066 3067 if (event->header.size < sizeof(struct perf_record_aux)) 3068 return -EINVAL; 3069 3070 /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */ 3071 if (!event->aux.aux_size) 3072 return 0; 3073 3074 /* 3075 * Parse the sample, we need the sample_id_all data that comes after the event so that the 3076 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID. 3077 */ 3078 evsel = evlist__event2evsel(session->evlist, event); 3079 if (!evsel) 3080 return -EINVAL; 3081 ret = evsel__parse_sample(evsel, event, &sample); 3082 if (ret) 3083 return ret; 3084 3085 /* 3086 * Loop through the auxtrace index to find the buffer that matches up with this aux event. 3087 */ 3088 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 3089 for (i = 0; i < auxtrace_index->nr; i++) { 3090 ent = &auxtrace_index->entries[i]; 3091 ret = cs_etm__queue_aux_fragment(session, ent->file_offset, 3092 ent->sz, &event->aux, &sample); 3093 /* 3094 * Stop search on error or successful values. Continue search on 3095 * 1 ('not found') 3096 */ 3097 if (ret != 1) 3098 return ret; 3099 } 3100 } 3101 3102 /* 3103 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but 3104 * don't exit with an error because it will still be possible to decode other aux records. 3105 */ 3106 pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64 3107 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu); 3108 return 0; 3109 } 3110 3111 static int cs_etm__queue_aux_records(struct perf_session *session) 3112 { 3113 struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index, 3114 struct auxtrace_index, list); 3115 if (index && index->nr > 0) 3116 return perf_session__peek_events(session, session->header.data_offset, 3117 session->header.data_size, 3118 cs_etm__queue_aux_records_cb, NULL); 3119 3120 /* 3121 * We would get here if there are no entries in the index (either no auxtrace 3122 * buffers or no index at all). Fail silently as there is the possibility of 3123 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still 3124 * false. 3125 * 3126 * In that scenario, buffers will not be split by AUX records. 3127 */ 3128 return 0; 3129 } 3130 3131 #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \ 3132 (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1)) 3133 3134 /* 3135 * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual 3136 * timestamps). 3137 */ 3138 static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu) 3139 { 3140 int j; 3141 3142 for (j = 0; j < num_cpu; j++) { 3143 switch (metadata[j][CS_ETM_MAGIC]) { 3144 case __perf_cs_etmv4_magic: 3145 if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1) 3146 return false; 3147 break; 3148 case __perf_cs_ete_magic: 3149 if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1) 3150 return false; 3151 break; 3152 default: 3153 /* Unknown / unsupported magic number. */ 3154 return false; 3155 } 3156 } 3157 return true; 3158 } 3159 3160 /* map trace ids to correct metadata block, from information in metadata */ 3161 static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata) 3162 { 3163 u64 cs_etm_magic; 3164 u8 trace_chan_id; 3165 int i, err; 3166 3167 for (i = 0; i < num_cpu; i++) { 3168 cs_etm_magic = metadata[i][CS_ETM_MAGIC]; 3169 switch (cs_etm_magic) { 3170 case __perf_cs_etmv3_magic: 3171 metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; 3172 trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]); 3173 break; 3174 case __perf_cs_etmv4_magic: 3175 case __perf_cs_ete_magic: 3176 metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; 3177 trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]); 3178 break; 3179 default: 3180 /* unknown magic number */ 3181 return -EINVAL; 3182 } 3183 err = cs_etm__map_trace_id(trace_chan_id, metadata[i]); 3184 if (err) 3185 return err; 3186 } 3187 return 0; 3188 } 3189 3190 /* 3191 * If we found AUX_HW_ID packets, then set any metadata marked as unused to the 3192 * unused value to reduce the number of unneeded decoders created. 3193 */ 3194 static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata) 3195 { 3196 u64 cs_etm_magic; 3197 int i; 3198 3199 for (i = 0; i < num_cpu; i++) { 3200 cs_etm_magic = metadata[i][CS_ETM_MAGIC]; 3201 switch (cs_etm_magic) { 3202 case __perf_cs_etmv3_magic: 3203 if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) 3204 metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; 3205 break; 3206 case __perf_cs_etmv4_magic: 3207 case __perf_cs_ete_magic: 3208 if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) 3209 metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; 3210 break; 3211 default: 3212 /* unknown magic number */ 3213 return -EINVAL; 3214 } 3215 } 3216 return 0; 3217 } 3218 3219 int cs_etm__process_auxtrace_info_full(union perf_event *event, 3220 struct perf_session *session) 3221 { 3222 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3223 struct cs_etm_auxtrace *etm = NULL; 3224 struct perf_record_time_conv *tc = &session->time_conv; 3225 int event_header_size = sizeof(struct perf_event_header); 3226 int total_size = auxtrace_info->header.size; 3227 int priv_size = 0; 3228 int num_cpu; 3229 int err = 0; 3230 int aux_hw_id_found; 3231 int i, j; 3232 u64 *ptr = NULL; 3233 u64 **metadata = NULL; 3234 3235 /* 3236 * Create an RB tree for traceID-metadata tuple. Since the conversion 3237 * has to be made for each packet that gets decoded, optimizing access 3238 * in anything other than a sequential array is worth doing. 3239 */ 3240 traceid_list = intlist__new(NULL); 3241 if (!traceid_list) 3242 return -ENOMEM; 3243 3244 /* First the global part */ 3245 ptr = (u64 *) auxtrace_info->priv; 3246 num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff; 3247 metadata = zalloc(sizeof(*metadata) * num_cpu); 3248 if (!metadata) { 3249 err = -ENOMEM; 3250 goto err_free_traceid_list; 3251 } 3252 3253 /* Start parsing after the common part of the header */ 3254 i = CS_HEADER_VERSION_MAX; 3255 3256 /* 3257 * The metadata is stored in the auxtrace_info section and encodes 3258 * the configuration of the ARM embedded trace macrocell which is 3259 * required by the trace decoder to properly decode the trace due 3260 * to its highly compressed nature. 3261 */ 3262 for (j = 0; j < num_cpu; j++) { 3263 if (ptr[i] == __perf_cs_etmv3_magic) { 3264 metadata[j] = 3265 cs_etm__create_meta_blk(ptr, &i, 3266 CS_ETM_PRIV_MAX, 3267 CS_ETM_NR_TRC_PARAMS_V0); 3268 } else if (ptr[i] == __perf_cs_etmv4_magic) { 3269 metadata[j] = 3270 cs_etm__create_meta_blk(ptr, &i, 3271 CS_ETMV4_PRIV_MAX, 3272 CS_ETMV4_NR_TRC_PARAMS_V0); 3273 } else if (ptr[i] == __perf_cs_ete_magic) { 3274 metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1); 3275 } else { 3276 ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n", 3277 ptr[i]); 3278 err = -EINVAL; 3279 goto err_free_metadata; 3280 } 3281 3282 if (!metadata[j]) { 3283 err = -ENOMEM; 3284 goto err_free_metadata; 3285 } 3286 } 3287 3288 /* 3289 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and 3290 * CS_ETMV4_PRIV_MAX mark how many double words are in the 3291 * global metadata, and each cpu's metadata respectively. 3292 * The following tests if the correct number of double words was 3293 * present in the auxtrace info section. 3294 */ 3295 priv_size = total_size - event_header_size - INFO_HEADER_SIZE; 3296 if (i * 8 != priv_size) { 3297 err = -EINVAL; 3298 goto err_free_metadata; 3299 } 3300 3301 etm = zalloc(sizeof(*etm)); 3302 3303 if (!etm) { 3304 err = -ENOMEM; 3305 goto err_free_metadata; 3306 } 3307 3308 /* 3309 * As all the ETMs run at the same exception level, the system should 3310 * have the same PID format crossing CPUs. So cache the PID format 3311 * and reuse it for sequential decoding. 3312 */ 3313 etm->pid_fmt = cs_etm__init_pid_fmt(metadata[0]); 3314 3315 err = auxtrace_queues__init(&etm->queues); 3316 if (err) 3317 goto err_free_etm; 3318 3319 if (session->itrace_synth_opts->set) { 3320 etm->synth_opts = *session->itrace_synth_opts; 3321 } else { 3322 itrace_synth_opts__set_default(&etm->synth_opts, 3323 session->itrace_synth_opts->default_no_sample); 3324 etm->synth_opts.callchain = false; 3325 } 3326 3327 etm->session = session; 3328 3329 etm->num_cpu = num_cpu; 3330 etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff); 3331 etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0); 3332 etm->metadata = metadata; 3333 etm->auxtrace_type = auxtrace_info->type; 3334 3335 /* Use virtual timestamps if all ETMs report ts_source = 1 */ 3336 etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu); 3337 3338 if (!etm->has_virtual_ts) 3339 ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n" 3340 "The time field of the samples will not be set accurately.\n\n"); 3341 3342 etm->auxtrace.process_event = cs_etm__process_event; 3343 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 3344 etm->auxtrace.flush_events = cs_etm__flush_events; 3345 etm->auxtrace.free_events = cs_etm__free_events; 3346 etm->auxtrace.free = cs_etm__free; 3347 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; 3348 session->auxtrace = &etm->auxtrace; 3349 3350 err = cs_etm__setup_timeless_decoding(etm); 3351 if (err) 3352 return err; 3353 3354 etm->tc.time_shift = tc->time_shift; 3355 etm->tc.time_mult = tc->time_mult; 3356 etm->tc.time_zero = tc->time_zero; 3357 if (event_contains(*tc, time_cycles)) { 3358 etm->tc.time_cycles = tc->time_cycles; 3359 etm->tc.time_mask = tc->time_mask; 3360 etm->tc.cap_user_time_zero = tc->cap_user_time_zero; 3361 etm->tc.cap_user_time_short = tc->cap_user_time_short; 3362 } 3363 err = cs_etm__synth_events(etm, session); 3364 if (err) 3365 goto err_free_queues; 3366 3367 /* 3368 * Map Trace ID values to CPU metadata. 3369 * 3370 * Trace metadata will always contain Trace ID values from the legacy algorithm. If the 3371 * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata 3372 * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set. 3373 * 3374 * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use 3375 * the same IDs as the old algorithm as far as is possible, unless there are clashes 3376 * in which case a different value will be used. This means an older perf may still 3377 * be able to record and read files generate on a newer system. 3378 * 3379 * For a perf able to interpret AUX_HW_ID packets we first check for the presence of 3380 * those packets. If they are there then the values will be mapped and plugged into 3381 * the metadata. We then set any remaining metadata values with the used flag to a 3382 * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required. 3383 * 3384 * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel 3385 * then we map Trace ID values to CPU directly from the metadata - clearing any unused 3386 * flags if present. 3387 */ 3388 3389 /* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */ 3390 aux_hw_id_found = 0; 3391 err = perf_session__peek_events(session, session->header.data_offset, 3392 session->header.data_size, 3393 cs_etm__process_aux_hw_id_cb, &aux_hw_id_found); 3394 if (err) 3395 goto err_free_queues; 3396 3397 /* if HW ID found then clear any unused metadata ID values */ 3398 if (aux_hw_id_found) 3399 err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata); 3400 /* otherwise, this is a file with metadata values only, map from metadata */ 3401 else 3402 err = cs_etm__map_trace_ids_metadata(num_cpu, metadata); 3403 3404 if (err) 3405 goto err_free_queues; 3406 3407 err = cs_etm__queue_aux_records(session); 3408 if (err) 3409 goto err_free_queues; 3410 3411 etm->data_queued = etm->queues.populated; 3412 return 0; 3413 3414 err_free_queues: 3415 auxtrace_queues__free(&etm->queues); 3416 session->auxtrace = NULL; 3417 err_free_etm: 3418 zfree(&etm); 3419 err_free_metadata: 3420 /* No need to check @metadata[j], free(NULL) is supported */ 3421 for (j = 0; j < num_cpu; j++) 3422 zfree(&metadata[j]); 3423 zfree(&metadata); 3424 err_free_traceid_list: 3425 intlist__delete(traceid_list); 3426 return err; 3427 } 3428