1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/coresight-pmu.h> 11 #include <linux/err.h> 12 #include <linux/kernel.h> 13 #include <linux/log2.h> 14 #include <linux/types.h> 15 #include <linux/zalloc.h> 16 17 #include <opencsd/ocsd_if_types.h> 18 #include <stdlib.h> 19 20 #include "auxtrace.h" 21 #include "color.h" 22 #include "cs-etm.h" 23 #include "cs-etm-decoder/cs-etm-decoder.h" 24 #include "debug.h" 25 #include "dso.h" 26 #include "evlist.h" 27 #include "intlist.h" 28 #include "machine.h" 29 #include "map.h" 30 #include "perf.h" 31 #include "session.h" 32 #include "map_symbol.h" 33 #include "branch.h" 34 #include "symbol.h" 35 #include "tool.h" 36 #include "thread.h" 37 #include "thread-stack.h" 38 #include <tools/libc_compat.h> 39 #include "util/synthetic-events.h" 40 41 struct cs_etm_auxtrace { 42 struct auxtrace auxtrace; 43 struct auxtrace_queues queues; 44 struct auxtrace_heap heap; 45 struct itrace_synth_opts synth_opts; 46 struct perf_session *session; 47 struct machine *machine; 48 struct thread *unknown_thread; 49 50 u8 timeless_decoding; 51 u8 snapshot_mode; 52 u8 data_queued; 53 u8 sample_branches; 54 u8 sample_instructions; 55 56 int num_cpu; 57 u64 latest_kernel_timestamp; 58 u32 auxtrace_type; 59 u64 branches_sample_type; 60 u64 branches_id; 61 u64 instructions_sample_type; 62 u64 instructions_sample_period; 63 u64 instructions_id; 64 u64 **metadata; 65 unsigned int pmu_type; 66 }; 67 68 struct cs_etm_traceid_queue { 69 u8 trace_chan_id; 70 pid_t pid, tid; 71 u64 period_instructions; 72 size_t last_branch_pos; 73 union perf_event *event_buf; 74 struct thread *thread; 75 struct branch_stack *last_branch; 76 struct branch_stack *last_branch_rb; 77 struct cs_etm_packet *prev_packet; 78 struct cs_etm_packet *packet; 79 struct cs_etm_packet_queue packet_queue; 80 }; 81 82 struct cs_etm_queue { 83 struct cs_etm_auxtrace *etm; 84 struct cs_etm_decoder *decoder; 85 struct auxtrace_buffer *buffer; 86 unsigned int queue_nr; 87 u8 pending_timestamp_chan_id; 88 u64 offset; 89 const unsigned char *buf; 90 size_t buf_len, buf_used; 91 /* Conversion between traceID and index in traceid_queues array */ 92 struct intlist *traceid_queues_list; 93 struct cs_etm_traceid_queue **traceid_queues; 94 }; 95 96 /* RB tree for quick conversion between traceID and metadata pointers */ 97 static struct intlist *traceid_list; 98 99 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm); 100 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 101 pid_t tid); 102 static int cs_etm__get_data_block(struct cs_etm_queue *etmq); 103 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); 104 105 /* PTMs ETMIDR [11:8] set to b0011 */ 106 #define ETMIDR_PTM_VERSION 0x00000300 107 108 /* 109 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to 110 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply 111 * encode the etm queue number as the upper 16 bit and the channel as 112 * the lower 16 bit. 113 */ 114 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \ 115 (queue_nr << 16 | trace_chan_id) 116 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) 117 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) 118 119 static u32 cs_etm__get_v7_protocol_version(u32 etmidr) 120 { 121 etmidr &= ETMIDR_PTM_VERSION; 122 123 if (etmidr == ETMIDR_PTM_VERSION) 124 return CS_ETM_PROTO_PTM; 125 126 return CS_ETM_PROTO_ETMV3; 127 } 128 129 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) 130 { 131 struct int_node *inode; 132 u64 *metadata; 133 134 inode = intlist__find(traceid_list, trace_chan_id); 135 if (!inode) 136 return -EINVAL; 137 138 metadata = inode->priv; 139 *magic = metadata[CS_ETM_MAGIC]; 140 return 0; 141 } 142 143 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) 144 { 145 struct int_node *inode; 146 u64 *metadata; 147 148 inode = intlist__find(traceid_list, trace_chan_id); 149 if (!inode) 150 return -EINVAL; 151 152 metadata = inode->priv; 153 *cpu = (int)metadata[CS_ETM_CPU]; 154 return 0; 155 } 156 157 /* 158 * The returned PID format is presented by two bits: 159 * 160 * Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced; 161 * Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced. 162 * 163 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2 164 * are enabled at the same time when the session runs on an EL2 kernel. 165 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be 166 * recorded in the trace data, the tool will selectively use 167 * CONTEXTIDR_EL2 as PID. 168 */ 169 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt) 170 { 171 struct int_node *inode; 172 u64 *metadata, val; 173 174 inode = intlist__find(traceid_list, trace_chan_id); 175 if (!inode) 176 return -EINVAL; 177 178 metadata = inode->priv; 179 180 if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) { 181 val = metadata[CS_ETM_ETMCR]; 182 /* CONTEXTIDR is traced */ 183 if (val & BIT(ETM_OPT_CTXTID)) 184 *pid_fmt = BIT(ETM_OPT_CTXTID); 185 } else { 186 val = metadata[CS_ETMV4_TRCCONFIGR]; 187 /* CONTEXTIDR_EL2 is traced */ 188 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT))) 189 *pid_fmt = BIT(ETM_OPT_CTXTID2); 190 /* CONTEXTIDR_EL1 is traced */ 191 else if (val & BIT(ETM4_CFG_BIT_CTXTID)) 192 *pid_fmt = BIT(ETM_OPT_CTXTID); 193 } 194 195 return 0; 196 } 197 198 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, 199 u8 trace_chan_id) 200 { 201 /* 202 * When a timestamp packet is encountered the backend code 203 * is stopped so that the front end has time to process packets 204 * that were accumulated in the traceID queue. Since there can 205 * be more than one channel per cs_etm_queue, we need to specify 206 * what traceID queue needs servicing. 207 */ 208 etmq->pending_timestamp_chan_id = trace_chan_id; 209 } 210 211 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, 212 u8 *trace_chan_id) 213 { 214 struct cs_etm_packet_queue *packet_queue; 215 216 if (!etmq->pending_timestamp_chan_id) 217 return 0; 218 219 if (trace_chan_id) 220 *trace_chan_id = etmq->pending_timestamp_chan_id; 221 222 packet_queue = cs_etm__etmq_get_packet_queue(etmq, 223 etmq->pending_timestamp_chan_id); 224 if (!packet_queue) 225 return 0; 226 227 /* Acknowledge pending status */ 228 etmq->pending_timestamp_chan_id = 0; 229 230 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ 231 return packet_queue->cs_timestamp; 232 } 233 234 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) 235 { 236 int i; 237 238 queue->head = 0; 239 queue->tail = 0; 240 queue->packet_count = 0; 241 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { 242 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; 243 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; 244 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; 245 queue->packet_buffer[i].instr_count = 0; 246 queue->packet_buffer[i].last_instr_taken_branch = false; 247 queue->packet_buffer[i].last_instr_size = 0; 248 queue->packet_buffer[i].last_instr_type = 0; 249 queue->packet_buffer[i].last_instr_subtype = 0; 250 queue->packet_buffer[i].last_instr_cond = 0; 251 queue->packet_buffer[i].flags = 0; 252 queue->packet_buffer[i].exception_number = UINT32_MAX; 253 queue->packet_buffer[i].trace_chan_id = UINT8_MAX; 254 queue->packet_buffer[i].cpu = INT_MIN; 255 } 256 } 257 258 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) 259 { 260 int idx; 261 struct int_node *inode; 262 struct cs_etm_traceid_queue *tidq; 263 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 264 265 intlist__for_each_entry(inode, traceid_queues_list) { 266 idx = (int)(intptr_t)inode->priv; 267 tidq = etmq->traceid_queues[idx]; 268 cs_etm__clear_packet_queue(&tidq->packet_queue); 269 } 270 } 271 272 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, 273 struct cs_etm_traceid_queue *tidq, 274 u8 trace_chan_id) 275 { 276 int rc = -ENOMEM; 277 struct auxtrace_queue *queue; 278 struct cs_etm_auxtrace *etm = etmq->etm; 279 280 cs_etm__clear_packet_queue(&tidq->packet_queue); 281 282 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 283 tidq->tid = queue->tid; 284 tidq->pid = -1; 285 tidq->trace_chan_id = trace_chan_id; 286 287 tidq->packet = zalloc(sizeof(struct cs_etm_packet)); 288 if (!tidq->packet) 289 goto out; 290 291 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); 292 if (!tidq->prev_packet) 293 goto out_free; 294 295 if (etm->synth_opts.last_branch) { 296 size_t sz = sizeof(struct branch_stack); 297 298 sz += etm->synth_opts.last_branch_sz * 299 sizeof(struct branch_entry); 300 tidq->last_branch = zalloc(sz); 301 if (!tidq->last_branch) 302 goto out_free; 303 tidq->last_branch_rb = zalloc(sz); 304 if (!tidq->last_branch_rb) 305 goto out_free; 306 } 307 308 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 309 if (!tidq->event_buf) 310 goto out_free; 311 312 return 0; 313 314 out_free: 315 zfree(&tidq->last_branch_rb); 316 zfree(&tidq->last_branch); 317 zfree(&tidq->prev_packet); 318 zfree(&tidq->packet); 319 out: 320 return rc; 321 } 322 323 static struct cs_etm_traceid_queue 324 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 325 { 326 int idx; 327 struct int_node *inode; 328 struct intlist *traceid_queues_list; 329 struct cs_etm_traceid_queue *tidq, **traceid_queues; 330 struct cs_etm_auxtrace *etm = etmq->etm; 331 332 if (etm->timeless_decoding) 333 trace_chan_id = CS_ETM_PER_THREAD_TRACEID; 334 335 traceid_queues_list = etmq->traceid_queues_list; 336 337 /* 338 * Check if the traceid_queue exist for this traceID by looking 339 * in the queue list. 340 */ 341 inode = intlist__find(traceid_queues_list, trace_chan_id); 342 if (inode) { 343 idx = (int)(intptr_t)inode->priv; 344 return etmq->traceid_queues[idx]; 345 } 346 347 /* We couldn't find a traceid_queue for this traceID, allocate one */ 348 tidq = malloc(sizeof(*tidq)); 349 if (!tidq) 350 return NULL; 351 352 memset(tidq, 0, sizeof(*tidq)); 353 354 /* Get a valid index for the new traceid_queue */ 355 idx = intlist__nr_entries(traceid_queues_list); 356 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ 357 inode = intlist__findnew(traceid_queues_list, trace_chan_id); 358 if (!inode) 359 goto out_free; 360 361 /* Associate this traceID with this index */ 362 inode->priv = (void *)(intptr_t)idx; 363 364 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) 365 goto out_free; 366 367 /* Grow the traceid_queues array by one unit */ 368 traceid_queues = etmq->traceid_queues; 369 traceid_queues = reallocarray(traceid_queues, 370 idx + 1, 371 sizeof(*traceid_queues)); 372 373 /* 374 * On failure reallocarray() returns NULL and the original block of 375 * memory is left untouched. 376 */ 377 if (!traceid_queues) 378 goto out_free; 379 380 traceid_queues[idx] = tidq; 381 etmq->traceid_queues = traceid_queues; 382 383 return etmq->traceid_queues[idx]; 384 385 out_free: 386 /* 387 * Function intlist__remove() removes the inode from the list 388 * and delete the memory associated to it. 389 */ 390 intlist__remove(traceid_queues_list, inode); 391 free(tidq); 392 393 return NULL; 394 } 395 396 struct cs_etm_packet_queue 397 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 398 { 399 struct cs_etm_traceid_queue *tidq; 400 401 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 402 if (tidq) 403 return &tidq->packet_queue; 404 405 return NULL; 406 } 407 408 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, 409 struct cs_etm_traceid_queue *tidq) 410 { 411 struct cs_etm_packet *tmp; 412 413 if (etm->sample_branches || etm->synth_opts.last_branch || 414 etm->sample_instructions) { 415 /* 416 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 417 * the next incoming packet. 418 */ 419 tmp = tidq->packet; 420 tidq->packet = tidq->prev_packet; 421 tidq->prev_packet = tmp; 422 } 423 } 424 425 static void cs_etm__packet_dump(const char *pkt_string) 426 { 427 const char *color = PERF_COLOR_BLUE; 428 int len = strlen(pkt_string); 429 430 if (len && (pkt_string[len-1] == '\n')) 431 color_fprintf(stdout, color, " %s", pkt_string); 432 else 433 color_fprintf(stdout, color, " %s\n", pkt_string); 434 435 fflush(stdout); 436 } 437 438 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, 439 struct cs_etm_auxtrace *etm, int idx, 440 u32 etmidr) 441 { 442 u64 **metadata = etm->metadata; 443 444 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr); 445 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR]; 446 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR]; 447 } 448 449 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, 450 struct cs_etm_auxtrace *etm, int idx) 451 { 452 u64 **metadata = etm->metadata; 453 454 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i; 455 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; 456 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; 457 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; 458 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; 459 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; 460 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; 461 } 462 463 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params, 464 struct cs_etm_auxtrace *etm, int idx) 465 { 466 u64 **metadata = etm->metadata; 467 468 t_params[idx].protocol = CS_ETM_PROTO_ETE; 469 t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; 470 t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; 471 t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; 472 t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; 473 t_params[idx].ete.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; 474 t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; 475 t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH]; 476 } 477 478 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, 479 struct cs_etm_auxtrace *etm, 480 int decoders) 481 { 482 int i; 483 u32 etmidr; 484 u64 architecture; 485 486 for (i = 0; i < decoders; i++) { 487 architecture = etm->metadata[i][CS_ETM_MAGIC]; 488 489 switch (architecture) { 490 case __perf_cs_etmv3_magic: 491 etmidr = etm->metadata[i][CS_ETM_ETMIDR]; 492 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr); 493 break; 494 case __perf_cs_etmv4_magic: 495 cs_etm__set_trace_param_etmv4(t_params, etm, i); 496 break; 497 case __perf_cs_ete_magic: 498 cs_etm__set_trace_param_ete(t_params, etm, i); 499 break; 500 default: 501 return -EINVAL; 502 } 503 } 504 505 return 0; 506 } 507 508 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, 509 struct cs_etm_queue *etmq, 510 enum cs_etm_decoder_operation mode, 511 bool formatted) 512 { 513 int ret = -EINVAL; 514 515 if (!(mode < CS_ETM_OPERATION_MAX)) 516 goto out; 517 518 d_params->packet_printer = cs_etm__packet_dump; 519 d_params->operation = mode; 520 d_params->data = etmq; 521 d_params->formatted = formatted; 522 d_params->fsyncs = false; 523 d_params->hsyncs = false; 524 d_params->frame_aligned = true; 525 526 ret = 0; 527 out: 528 return ret; 529 } 530 531 static void cs_etm__dump_event(struct cs_etm_queue *etmq, 532 struct auxtrace_buffer *buffer) 533 { 534 int ret; 535 const char *color = PERF_COLOR_BLUE; 536 size_t buffer_used = 0; 537 538 fprintf(stdout, "\n"); 539 color_fprintf(stdout, color, 540 ". ... CoreSight %s Trace data: size %zu bytes\n", 541 cs_etm_decoder__get_name(etmq->decoder), buffer->size); 542 543 do { 544 size_t consumed; 545 546 ret = cs_etm_decoder__process_data_block( 547 etmq->decoder, buffer->offset, 548 &((u8 *)buffer->data)[buffer_used], 549 buffer->size - buffer_used, &consumed); 550 if (ret) 551 break; 552 553 buffer_used += consumed; 554 } while (buffer_used < buffer->size); 555 556 cs_etm_decoder__reset(etmq->decoder); 557 } 558 559 static int cs_etm__flush_events(struct perf_session *session, 560 struct perf_tool *tool) 561 { 562 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 563 struct cs_etm_auxtrace, 564 auxtrace); 565 if (dump_trace) 566 return 0; 567 568 if (!tool->ordered_events) 569 return -EINVAL; 570 571 if (etm->timeless_decoding) 572 return cs_etm__process_timeless_queues(etm, -1); 573 574 return cs_etm__process_queues(etm); 575 } 576 577 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) 578 { 579 int idx; 580 uintptr_t priv; 581 struct int_node *inode, *tmp; 582 struct cs_etm_traceid_queue *tidq; 583 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 584 585 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { 586 priv = (uintptr_t)inode->priv; 587 idx = priv; 588 589 /* Free this traceid_queue from the array */ 590 tidq = etmq->traceid_queues[idx]; 591 thread__zput(tidq->thread); 592 zfree(&tidq->event_buf); 593 zfree(&tidq->last_branch); 594 zfree(&tidq->last_branch_rb); 595 zfree(&tidq->prev_packet); 596 zfree(&tidq->packet); 597 zfree(&tidq); 598 599 /* 600 * Function intlist__remove() removes the inode from the list 601 * and delete the memory associated to it. 602 */ 603 intlist__remove(traceid_queues_list, inode); 604 } 605 606 /* Then the RB tree itself */ 607 intlist__delete(traceid_queues_list); 608 etmq->traceid_queues_list = NULL; 609 610 /* finally free the traceid_queues array */ 611 zfree(&etmq->traceid_queues); 612 } 613 614 static void cs_etm__free_queue(void *priv) 615 { 616 struct cs_etm_queue *etmq = priv; 617 618 if (!etmq) 619 return; 620 621 cs_etm_decoder__free(etmq->decoder); 622 cs_etm__free_traceid_queues(etmq); 623 free(etmq); 624 } 625 626 static void cs_etm__free_events(struct perf_session *session) 627 { 628 unsigned int i; 629 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 630 struct cs_etm_auxtrace, 631 auxtrace); 632 struct auxtrace_queues *queues = &aux->queues; 633 634 for (i = 0; i < queues->nr_queues; i++) { 635 cs_etm__free_queue(queues->queue_array[i].priv); 636 queues->queue_array[i].priv = NULL; 637 } 638 639 auxtrace_queues__free(queues); 640 } 641 642 static void cs_etm__free(struct perf_session *session) 643 { 644 int i; 645 struct int_node *inode, *tmp; 646 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 647 struct cs_etm_auxtrace, 648 auxtrace); 649 cs_etm__free_events(session); 650 session->auxtrace = NULL; 651 652 /* First remove all traceID/metadata nodes for the RB tree */ 653 intlist__for_each_entry_safe(inode, tmp, traceid_list) 654 intlist__remove(traceid_list, inode); 655 /* Then the RB tree itself */ 656 intlist__delete(traceid_list); 657 658 for (i = 0; i < aux->num_cpu; i++) 659 zfree(&aux->metadata[i]); 660 661 thread__zput(aux->unknown_thread); 662 zfree(&aux->metadata); 663 zfree(&aux); 664 } 665 666 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, 667 struct evsel *evsel) 668 { 669 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 670 struct cs_etm_auxtrace, 671 auxtrace); 672 673 return evsel->core.attr.type == aux->pmu_type; 674 } 675 676 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address) 677 { 678 struct machine *machine; 679 680 machine = etmq->etm->machine; 681 682 if (address >= machine__kernel_start(machine)) { 683 if (machine__is_host(machine)) 684 return PERF_RECORD_MISC_KERNEL; 685 else 686 return PERF_RECORD_MISC_GUEST_KERNEL; 687 } else { 688 if (machine__is_host(machine)) 689 return PERF_RECORD_MISC_USER; 690 else if (perf_guest) 691 return PERF_RECORD_MISC_GUEST_USER; 692 else 693 return PERF_RECORD_MISC_HYPERVISOR; 694 } 695 } 696 697 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, 698 u64 address, size_t size, u8 *buffer) 699 { 700 u8 cpumode; 701 u64 offset; 702 int len; 703 struct thread *thread; 704 struct machine *machine; 705 struct addr_location al; 706 struct cs_etm_traceid_queue *tidq; 707 708 if (!etmq) 709 return 0; 710 711 machine = etmq->etm->machine; 712 cpumode = cs_etm__cpu_mode(etmq, address); 713 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 714 if (!tidq) 715 return 0; 716 717 thread = tidq->thread; 718 if (!thread) { 719 if (cpumode != PERF_RECORD_MISC_KERNEL) 720 return 0; 721 thread = etmq->etm->unknown_thread; 722 } 723 724 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso) 725 return 0; 726 727 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 728 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) 729 return 0; 730 731 offset = al.map->map_ip(al.map, address); 732 733 map__load(al.map); 734 735 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size); 736 737 if (len <= 0) { 738 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n" 739 " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n"); 740 if (!al.map->dso->auxtrace_warned) { 741 pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n", 742 address, 743 al.map->dso->long_name ? al.map->dso->long_name : "Unknown"); 744 al.map->dso->auxtrace_warned = true; 745 } 746 return 0; 747 } 748 749 return len; 750 } 751 752 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, 753 bool formatted) 754 { 755 struct cs_etm_decoder_params d_params; 756 struct cs_etm_trace_params *t_params = NULL; 757 struct cs_etm_queue *etmq; 758 /* 759 * Each queue can only contain data from one CPU when unformatted, so only one decoder is 760 * needed. 761 */ 762 int decoders = formatted ? etm->num_cpu : 1; 763 764 etmq = zalloc(sizeof(*etmq)); 765 if (!etmq) 766 return NULL; 767 768 etmq->traceid_queues_list = intlist__new(NULL); 769 if (!etmq->traceid_queues_list) 770 goto out_free; 771 772 /* Use metadata to fill in trace parameters for trace decoder */ 773 t_params = zalloc(sizeof(*t_params) * decoders); 774 775 if (!t_params) 776 goto out_free; 777 778 if (cs_etm__init_trace_params(t_params, etm, decoders)) 779 goto out_free; 780 781 /* Set decoder parameters to decode trace packets */ 782 if (cs_etm__init_decoder_params(&d_params, etmq, 783 dump_trace ? CS_ETM_OPERATION_PRINT : 784 CS_ETM_OPERATION_DECODE, 785 formatted)) 786 goto out_free; 787 788 etmq->decoder = cs_etm_decoder__new(decoders, &d_params, 789 t_params); 790 791 if (!etmq->decoder) 792 goto out_free; 793 794 /* 795 * Register a function to handle all memory accesses required by 796 * the trace decoder library. 797 */ 798 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 799 0x0L, ((u64) -1L), 800 cs_etm__mem_access)) 801 goto out_free_decoder; 802 803 zfree(&t_params); 804 return etmq; 805 806 out_free_decoder: 807 cs_etm_decoder__free(etmq->decoder); 808 out_free: 809 intlist__delete(etmq->traceid_queues_list); 810 free(etmq); 811 812 return NULL; 813 } 814 815 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 816 struct auxtrace_queue *queue, 817 unsigned int queue_nr, 818 bool formatted) 819 { 820 struct cs_etm_queue *etmq = queue->priv; 821 822 if (list_empty(&queue->head) || etmq) 823 return 0; 824 825 etmq = cs_etm__alloc_queue(etm, formatted); 826 827 if (!etmq) 828 return -ENOMEM; 829 830 queue->priv = etmq; 831 etmq->etm = etm; 832 etmq->queue_nr = queue_nr; 833 etmq->offset = 0; 834 835 return 0; 836 } 837 838 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm, 839 struct cs_etm_queue *etmq, 840 unsigned int queue_nr) 841 { 842 int ret = 0; 843 unsigned int cs_queue_nr; 844 u8 trace_chan_id; 845 u64 cs_timestamp; 846 847 /* 848 * We are under a CPU-wide trace scenario. As such we need to know 849 * when the code that generated the traces started to execute so that 850 * it can be correlated with execution on other CPUs. So we get a 851 * handle on the beginning of traces and decode until we find a 852 * timestamp. The timestamp is then added to the auxtrace min heap 853 * in order to know what nibble (of all the etmqs) to decode first. 854 */ 855 while (1) { 856 /* 857 * Fetch an aux_buffer from this etmq. Bail if no more 858 * blocks or an error has been encountered. 859 */ 860 ret = cs_etm__get_data_block(etmq); 861 if (ret <= 0) 862 goto out; 863 864 /* 865 * Run decoder on the trace block. The decoder will stop when 866 * encountering a CS timestamp, a full packet queue or the end of 867 * trace for that block. 868 */ 869 ret = cs_etm__decode_data_block(etmq); 870 if (ret) 871 goto out; 872 873 /* 874 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all 875 * the timestamp calculation for us. 876 */ 877 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 878 879 /* We found a timestamp, no need to continue. */ 880 if (cs_timestamp) 881 break; 882 883 /* 884 * We didn't find a timestamp so empty all the traceid packet 885 * queues before looking for another timestamp packet, either 886 * in the current data block or a new one. Packets that were 887 * just decoded are useless since no timestamp has been 888 * associated with them. As such simply discard them. 889 */ 890 cs_etm__clear_all_packet_queues(etmq); 891 } 892 893 /* 894 * We have a timestamp. Add it to the min heap to reflect when 895 * instructions conveyed by the range packets of this traceID queue 896 * started to execute. Once the same has been done for all the traceID 897 * queues of each etmq, redenring and decoding can start in 898 * chronological order. 899 * 900 * Note that packets decoded above are still in the traceID's packet 901 * queue and will be processed in cs_etm__process_queues(). 902 */ 903 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 904 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 905 out: 906 return ret; 907 } 908 909 static inline 910 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, 911 struct cs_etm_traceid_queue *tidq) 912 { 913 struct branch_stack *bs_src = tidq->last_branch_rb; 914 struct branch_stack *bs_dst = tidq->last_branch; 915 size_t nr = 0; 916 917 /* 918 * Set the number of records before early exit: ->nr is used to 919 * determine how many branches to copy from ->entries. 920 */ 921 bs_dst->nr = bs_src->nr; 922 923 /* 924 * Early exit when there is nothing to copy. 925 */ 926 if (!bs_src->nr) 927 return; 928 929 /* 930 * As bs_src->entries is a circular buffer, we need to copy from it in 931 * two steps. First, copy the branches from the most recently inserted 932 * branch ->last_branch_pos until the end of bs_src->entries buffer. 933 */ 934 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; 935 memcpy(&bs_dst->entries[0], 936 &bs_src->entries[tidq->last_branch_pos], 937 sizeof(struct branch_entry) * nr); 938 939 /* 940 * If we wrapped around at least once, the branches from the beginning 941 * of the bs_src->entries buffer and until the ->last_branch_pos element 942 * are older valid branches: copy them over. The total number of 943 * branches copied over will be equal to the number of branches asked by 944 * the user in last_branch_sz. 945 */ 946 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 947 memcpy(&bs_dst->entries[nr], 948 &bs_src->entries[0], 949 sizeof(struct branch_entry) * tidq->last_branch_pos); 950 } 951 } 952 953 static inline 954 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) 955 { 956 tidq->last_branch_pos = 0; 957 tidq->last_branch_rb->nr = 0; 958 } 959 960 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, 961 u8 trace_chan_id, u64 addr) 962 { 963 u8 instrBytes[2]; 964 965 cs_etm__mem_access(etmq, trace_chan_id, addr, 966 ARRAY_SIZE(instrBytes), instrBytes); 967 /* 968 * T32 instruction size is indicated by bits[15:11] of the first 969 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 970 * denote a 32-bit instruction. 971 */ 972 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; 973 } 974 975 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) 976 { 977 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 978 if (packet->sample_type == CS_ETM_DISCONTINUITY) 979 return 0; 980 981 return packet->start_addr; 982 } 983 984 static inline 985 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) 986 { 987 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 988 if (packet->sample_type == CS_ETM_DISCONTINUITY) 989 return 0; 990 991 return packet->end_addr - packet->last_instr_size; 992 } 993 994 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, 995 u64 trace_chan_id, 996 const struct cs_etm_packet *packet, 997 u64 offset) 998 { 999 if (packet->isa == CS_ETM_ISA_T32) { 1000 u64 addr = packet->start_addr; 1001 1002 while (offset) { 1003 addr += cs_etm__t32_instr_size(etmq, 1004 trace_chan_id, addr); 1005 offset--; 1006 } 1007 return addr; 1008 } 1009 1010 /* Assume a 4 byte instruction size (A32/A64) */ 1011 return packet->start_addr + offset * 4; 1012 } 1013 1014 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, 1015 struct cs_etm_traceid_queue *tidq) 1016 { 1017 struct branch_stack *bs = tidq->last_branch_rb; 1018 struct branch_entry *be; 1019 1020 /* 1021 * The branches are recorded in a circular buffer in reverse 1022 * chronological order: we start recording from the last element of the 1023 * buffer down. After writing the first element of the stack, move the 1024 * insert position back to the end of the buffer. 1025 */ 1026 if (!tidq->last_branch_pos) 1027 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 1028 1029 tidq->last_branch_pos -= 1; 1030 1031 be = &bs->entries[tidq->last_branch_pos]; 1032 be->from = cs_etm__last_executed_instr(tidq->prev_packet); 1033 be->to = cs_etm__first_executed_instr(tidq->packet); 1034 /* No support for mispredict */ 1035 be->flags.mispred = 0; 1036 be->flags.predicted = 1; 1037 1038 /* 1039 * Increment bs->nr until reaching the number of last branches asked by 1040 * the user on the command line. 1041 */ 1042 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 1043 bs->nr += 1; 1044 } 1045 1046 static int cs_etm__inject_event(union perf_event *event, 1047 struct perf_sample *sample, u64 type) 1048 { 1049 event->header.size = perf_event__sample_event_size(sample, type, 0); 1050 return perf_event__synthesize_sample(event, type, 0, sample); 1051 } 1052 1053 1054 static int 1055 cs_etm__get_trace(struct cs_etm_queue *etmq) 1056 { 1057 struct auxtrace_buffer *aux_buffer = etmq->buffer; 1058 struct auxtrace_buffer *old_buffer = aux_buffer; 1059 struct auxtrace_queue *queue; 1060 1061 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 1062 1063 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 1064 1065 /* If no more data, drop the previous auxtrace_buffer and return */ 1066 if (!aux_buffer) { 1067 if (old_buffer) 1068 auxtrace_buffer__drop_data(old_buffer); 1069 etmq->buf_len = 0; 1070 return 0; 1071 } 1072 1073 etmq->buffer = aux_buffer; 1074 1075 /* If the aux_buffer doesn't have data associated, try to load it */ 1076 if (!aux_buffer->data) { 1077 /* get the file desc associated with the perf data file */ 1078 int fd = perf_data__fd(etmq->etm->session->data); 1079 1080 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 1081 if (!aux_buffer->data) 1082 return -ENOMEM; 1083 } 1084 1085 /* If valid, drop the previous buffer */ 1086 if (old_buffer) 1087 auxtrace_buffer__drop_data(old_buffer); 1088 1089 etmq->buf_used = 0; 1090 etmq->buf_len = aux_buffer->size; 1091 etmq->buf = aux_buffer->data; 1092 1093 return etmq->buf_len; 1094 } 1095 1096 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, 1097 struct cs_etm_traceid_queue *tidq) 1098 { 1099 if ((!tidq->thread) && (tidq->tid != -1)) 1100 tidq->thread = machine__find_thread(etm->machine, -1, 1101 tidq->tid); 1102 1103 if (tidq->thread) 1104 tidq->pid = tidq->thread->pid_; 1105 } 1106 1107 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq, 1108 pid_t tid, u8 trace_chan_id) 1109 { 1110 int cpu, err = -EINVAL; 1111 struct cs_etm_auxtrace *etm = etmq->etm; 1112 struct cs_etm_traceid_queue *tidq; 1113 1114 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 1115 if (!tidq) 1116 return err; 1117 1118 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) 1119 return err; 1120 1121 err = machine__set_current_tid(etm->machine, cpu, tid, tid); 1122 if (err) 1123 return err; 1124 1125 tidq->tid = tid; 1126 thread__zput(tidq->thread); 1127 1128 cs_etm__set_pid_tid_cpu(etm, tidq); 1129 return 0; 1130 } 1131 1132 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) 1133 { 1134 return !!etmq->etm->timeless_decoding; 1135 } 1136 1137 static void cs_etm__copy_insn(struct cs_etm_queue *etmq, 1138 u64 trace_chan_id, 1139 const struct cs_etm_packet *packet, 1140 struct perf_sample *sample) 1141 { 1142 /* 1143 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY 1144 * packet, so directly bail out with 'insn_len' = 0. 1145 */ 1146 if (packet->sample_type == CS_ETM_DISCONTINUITY) { 1147 sample->insn_len = 0; 1148 return; 1149 } 1150 1151 /* 1152 * T32 instruction size might be 32-bit or 16-bit, decide by calling 1153 * cs_etm__t32_instr_size(). 1154 */ 1155 if (packet->isa == CS_ETM_ISA_T32) 1156 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, 1157 sample->ip); 1158 /* Otherwise, A64 and A32 instruction size are always 32-bit. */ 1159 else 1160 sample->insn_len = 4; 1161 1162 cs_etm__mem_access(etmq, trace_chan_id, sample->ip, 1163 sample->insn_len, (void *)sample->insn); 1164 } 1165 1166 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 1167 struct cs_etm_traceid_queue *tidq, 1168 u64 addr, u64 period) 1169 { 1170 int ret = 0; 1171 struct cs_etm_auxtrace *etm = etmq->etm; 1172 union perf_event *event = tidq->event_buf; 1173 struct perf_sample sample = {.ip = 0,}; 1174 1175 event->sample.header.type = PERF_RECORD_SAMPLE; 1176 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr); 1177 event->sample.header.size = sizeof(struct perf_event_header); 1178 1179 if (!etm->timeless_decoding) 1180 sample.time = etm->latest_kernel_timestamp; 1181 sample.ip = addr; 1182 sample.pid = tidq->pid; 1183 sample.tid = tidq->tid; 1184 sample.id = etmq->etm->instructions_id; 1185 sample.stream_id = etmq->etm->instructions_id; 1186 sample.period = period; 1187 sample.cpu = tidq->packet->cpu; 1188 sample.flags = tidq->prev_packet->flags; 1189 sample.cpumode = event->sample.header.misc; 1190 1191 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); 1192 1193 if (etm->synth_opts.last_branch) 1194 sample.branch_stack = tidq->last_branch; 1195 1196 if (etm->synth_opts.inject) { 1197 ret = cs_etm__inject_event(event, &sample, 1198 etm->instructions_sample_type); 1199 if (ret) 1200 return ret; 1201 } 1202 1203 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1204 1205 if (ret) 1206 pr_err( 1207 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1208 ret); 1209 1210 return ret; 1211 } 1212 1213 /* 1214 * The cs etm packet encodes an instruction range between a branch target 1215 * and the next taken branch. Generate sample accordingly. 1216 */ 1217 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, 1218 struct cs_etm_traceid_queue *tidq) 1219 { 1220 int ret = 0; 1221 struct cs_etm_auxtrace *etm = etmq->etm; 1222 struct perf_sample sample = {.ip = 0,}; 1223 union perf_event *event = tidq->event_buf; 1224 struct dummy_branch_stack { 1225 u64 nr; 1226 u64 hw_idx; 1227 struct branch_entry entries; 1228 } dummy_bs; 1229 u64 ip; 1230 1231 ip = cs_etm__last_executed_instr(tidq->prev_packet); 1232 1233 event->sample.header.type = PERF_RECORD_SAMPLE; 1234 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip); 1235 event->sample.header.size = sizeof(struct perf_event_header); 1236 1237 if (!etm->timeless_decoding) 1238 sample.time = etm->latest_kernel_timestamp; 1239 sample.ip = ip; 1240 sample.pid = tidq->pid; 1241 sample.tid = tidq->tid; 1242 sample.addr = cs_etm__first_executed_instr(tidq->packet); 1243 sample.id = etmq->etm->branches_id; 1244 sample.stream_id = etmq->etm->branches_id; 1245 sample.period = 1; 1246 sample.cpu = tidq->packet->cpu; 1247 sample.flags = tidq->prev_packet->flags; 1248 sample.cpumode = event->sample.header.misc; 1249 1250 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, 1251 &sample); 1252 1253 /* 1254 * perf report cannot handle events without a branch stack 1255 */ 1256 if (etm->synth_opts.last_branch) { 1257 dummy_bs = (struct dummy_branch_stack){ 1258 .nr = 1, 1259 .hw_idx = -1ULL, 1260 .entries = { 1261 .from = sample.ip, 1262 .to = sample.addr, 1263 }, 1264 }; 1265 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1266 } 1267 1268 if (etm->synth_opts.inject) { 1269 ret = cs_etm__inject_event(event, &sample, 1270 etm->branches_sample_type); 1271 if (ret) 1272 return ret; 1273 } 1274 1275 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1276 1277 if (ret) 1278 pr_err( 1279 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1280 ret); 1281 1282 return ret; 1283 } 1284 1285 struct cs_etm_synth { 1286 struct perf_tool dummy_tool; 1287 struct perf_session *session; 1288 }; 1289 1290 static int cs_etm__event_synth(struct perf_tool *tool, 1291 union perf_event *event, 1292 struct perf_sample *sample __maybe_unused, 1293 struct machine *machine __maybe_unused) 1294 { 1295 struct cs_etm_synth *cs_etm_synth = 1296 container_of(tool, struct cs_etm_synth, dummy_tool); 1297 1298 return perf_session__deliver_synth_event(cs_etm_synth->session, 1299 event, NULL); 1300 } 1301 1302 static int cs_etm__synth_event(struct perf_session *session, 1303 struct perf_event_attr *attr, u64 id) 1304 { 1305 struct cs_etm_synth cs_etm_synth; 1306 1307 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 1308 cs_etm_synth.session = session; 1309 1310 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 1311 &id, cs_etm__event_synth); 1312 } 1313 1314 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 1315 struct perf_session *session) 1316 { 1317 struct evlist *evlist = session->evlist; 1318 struct evsel *evsel; 1319 struct perf_event_attr attr; 1320 bool found = false; 1321 u64 id; 1322 int err; 1323 1324 evlist__for_each_entry(evlist, evsel) { 1325 if (evsel->core.attr.type == etm->pmu_type) { 1326 found = true; 1327 break; 1328 } 1329 } 1330 1331 if (!found) { 1332 pr_debug("No selected events with CoreSight Trace data\n"); 1333 return 0; 1334 } 1335 1336 memset(&attr, 0, sizeof(struct perf_event_attr)); 1337 attr.size = sizeof(struct perf_event_attr); 1338 attr.type = PERF_TYPE_HARDWARE; 1339 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 1340 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 1341 PERF_SAMPLE_PERIOD; 1342 if (etm->timeless_decoding) 1343 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 1344 else 1345 attr.sample_type |= PERF_SAMPLE_TIME; 1346 1347 attr.exclude_user = evsel->core.attr.exclude_user; 1348 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 1349 attr.exclude_hv = evsel->core.attr.exclude_hv; 1350 attr.exclude_host = evsel->core.attr.exclude_host; 1351 attr.exclude_guest = evsel->core.attr.exclude_guest; 1352 attr.sample_id_all = evsel->core.attr.sample_id_all; 1353 attr.read_format = evsel->core.attr.read_format; 1354 1355 /* create new id val to be a fixed offset from evsel id */ 1356 id = evsel->core.id[0] + 1000000000; 1357 1358 if (!id) 1359 id = 1; 1360 1361 if (etm->synth_opts.branches) { 1362 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 1363 attr.sample_period = 1; 1364 attr.sample_type |= PERF_SAMPLE_ADDR; 1365 err = cs_etm__synth_event(session, &attr, id); 1366 if (err) 1367 return err; 1368 etm->sample_branches = true; 1369 etm->branches_sample_type = attr.sample_type; 1370 etm->branches_id = id; 1371 id += 1; 1372 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 1373 } 1374 1375 if (etm->synth_opts.last_branch) { 1376 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 1377 /* 1378 * We don't use the hardware index, but the sample generation 1379 * code uses the new format branch_stack with this field, 1380 * so the event attributes must indicate that it's present. 1381 */ 1382 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 1383 } 1384 1385 if (etm->synth_opts.instructions) { 1386 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 1387 attr.sample_period = etm->synth_opts.period; 1388 etm->instructions_sample_period = attr.sample_period; 1389 err = cs_etm__synth_event(session, &attr, id); 1390 if (err) 1391 return err; 1392 etm->sample_instructions = true; 1393 etm->instructions_sample_type = attr.sample_type; 1394 etm->instructions_id = id; 1395 id += 1; 1396 } 1397 1398 return 0; 1399 } 1400 1401 static int cs_etm__sample(struct cs_etm_queue *etmq, 1402 struct cs_etm_traceid_queue *tidq) 1403 { 1404 struct cs_etm_auxtrace *etm = etmq->etm; 1405 int ret; 1406 u8 trace_chan_id = tidq->trace_chan_id; 1407 u64 instrs_prev; 1408 1409 /* Get instructions remainder from previous packet */ 1410 instrs_prev = tidq->period_instructions; 1411 1412 tidq->period_instructions += tidq->packet->instr_count; 1413 1414 /* 1415 * Record a branch when the last instruction in 1416 * PREV_PACKET is a branch. 1417 */ 1418 if (etm->synth_opts.last_branch && 1419 tidq->prev_packet->sample_type == CS_ETM_RANGE && 1420 tidq->prev_packet->last_instr_taken_branch) 1421 cs_etm__update_last_branch_rb(etmq, tidq); 1422 1423 if (etm->sample_instructions && 1424 tidq->period_instructions >= etm->instructions_sample_period) { 1425 /* 1426 * Emit instruction sample periodically 1427 * TODO: allow period to be defined in cycles and clock time 1428 */ 1429 1430 /* 1431 * Below diagram demonstrates the instruction samples 1432 * generation flows: 1433 * 1434 * Instrs Instrs Instrs Instrs 1435 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) 1436 * | | | | 1437 * V V V V 1438 * -------------------------------------------------- 1439 * ^ ^ 1440 * | | 1441 * Period Period 1442 * instructions(Pi) instructions(Pi') 1443 * 1444 * | | 1445 * \---------------- -----------------/ 1446 * V 1447 * tidq->packet->instr_count 1448 * 1449 * Instrs Sample(n...) are the synthesised samples occurring 1450 * every etm->instructions_sample_period instructions - as 1451 * defined on the perf command line. Sample(n) is being the 1452 * last sample before the current etm packet, n+1 to n+3 1453 * samples are generated from the current etm packet. 1454 * 1455 * tidq->packet->instr_count represents the number of 1456 * instructions in the current etm packet. 1457 * 1458 * Period instructions (Pi) contains the the number of 1459 * instructions executed after the sample point(n) from the 1460 * previous etm packet. This will always be less than 1461 * etm->instructions_sample_period. 1462 * 1463 * When generate new samples, it combines with two parts 1464 * instructions, one is the tail of the old packet and another 1465 * is the head of the new coming packet, to generate 1466 * sample(n+1); sample(n+2) and sample(n+3) consume the 1467 * instructions with sample period. After sample(n+3), the rest 1468 * instructions will be used by later packet and it is assigned 1469 * to tidq->period_instructions for next round calculation. 1470 */ 1471 1472 /* 1473 * Get the initial offset into the current packet instructions; 1474 * entry conditions ensure that instrs_prev is less than 1475 * etm->instructions_sample_period. 1476 */ 1477 u64 offset = etm->instructions_sample_period - instrs_prev; 1478 u64 addr; 1479 1480 /* Prepare last branches for instruction sample */ 1481 if (etm->synth_opts.last_branch) 1482 cs_etm__copy_last_branch_rb(etmq, tidq); 1483 1484 while (tidq->period_instructions >= 1485 etm->instructions_sample_period) { 1486 /* 1487 * Calculate the address of the sampled instruction (-1 1488 * as sample is reported as though instruction has just 1489 * been executed, but PC has not advanced to next 1490 * instruction) 1491 */ 1492 addr = cs_etm__instr_addr(etmq, trace_chan_id, 1493 tidq->packet, offset - 1); 1494 ret = cs_etm__synth_instruction_sample( 1495 etmq, tidq, addr, 1496 etm->instructions_sample_period); 1497 if (ret) 1498 return ret; 1499 1500 offset += etm->instructions_sample_period; 1501 tidq->period_instructions -= 1502 etm->instructions_sample_period; 1503 } 1504 } 1505 1506 if (etm->sample_branches) { 1507 bool generate_sample = false; 1508 1509 /* Generate sample for tracing on packet */ 1510 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1511 generate_sample = true; 1512 1513 /* Generate sample for branch taken packet */ 1514 if (tidq->prev_packet->sample_type == CS_ETM_RANGE && 1515 tidq->prev_packet->last_instr_taken_branch) 1516 generate_sample = true; 1517 1518 if (generate_sample) { 1519 ret = cs_etm__synth_branch_sample(etmq, tidq); 1520 if (ret) 1521 return ret; 1522 } 1523 } 1524 1525 cs_etm__packet_swap(etm, tidq); 1526 1527 return 0; 1528 } 1529 1530 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) 1531 { 1532 /* 1533 * When the exception packet is inserted, whether the last instruction 1534 * in previous range packet is taken branch or not, we need to force 1535 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures 1536 * to generate branch sample for the instruction range before the 1537 * exception is trapped to kernel or before the exception returning. 1538 * 1539 * The exception packet includes the dummy address values, so don't 1540 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful 1541 * for generating instruction and branch samples. 1542 */ 1543 if (tidq->prev_packet->sample_type == CS_ETM_RANGE) 1544 tidq->prev_packet->last_instr_taken_branch = true; 1545 1546 return 0; 1547 } 1548 1549 static int cs_etm__flush(struct cs_etm_queue *etmq, 1550 struct cs_etm_traceid_queue *tidq) 1551 { 1552 int err = 0; 1553 struct cs_etm_auxtrace *etm = etmq->etm; 1554 1555 /* Handle start tracing packet */ 1556 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) 1557 goto swap_packet; 1558 1559 if (etmq->etm->synth_opts.last_branch && 1560 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1561 u64 addr; 1562 1563 /* Prepare last branches for instruction sample */ 1564 cs_etm__copy_last_branch_rb(etmq, tidq); 1565 1566 /* 1567 * Generate a last branch event for the branches left in the 1568 * circular buffer at the end of the trace. 1569 * 1570 * Use the address of the end of the last reported execution 1571 * range 1572 */ 1573 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1574 1575 err = cs_etm__synth_instruction_sample( 1576 etmq, tidq, addr, 1577 tidq->period_instructions); 1578 if (err) 1579 return err; 1580 1581 tidq->period_instructions = 0; 1582 1583 } 1584 1585 if (etm->sample_branches && 1586 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1587 err = cs_etm__synth_branch_sample(etmq, tidq); 1588 if (err) 1589 return err; 1590 } 1591 1592 swap_packet: 1593 cs_etm__packet_swap(etm, tidq); 1594 1595 /* Reset last branches after flush the trace */ 1596 if (etm->synth_opts.last_branch) 1597 cs_etm__reset_last_branch_rb(tidq); 1598 1599 return err; 1600 } 1601 1602 static int cs_etm__end_block(struct cs_etm_queue *etmq, 1603 struct cs_etm_traceid_queue *tidq) 1604 { 1605 int err; 1606 1607 /* 1608 * It has no new packet coming and 'etmq->packet' contains the stale 1609 * packet which was set at the previous time with packets swapping; 1610 * so skip to generate branch sample to avoid stale packet. 1611 * 1612 * For this case only flush branch stack and generate a last branch 1613 * event for the branches left in the circular buffer at the end of 1614 * the trace. 1615 */ 1616 if (etmq->etm->synth_opts.last_branch && 1617 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1618 u64 addr; 1619 1620 /* Prepare last branches for instruction sample */ 1621 cs_etm__copy_last_branch_rb(etmq, tidq); 1622 1623 /* 1624 * Use the address of the end of the last reported execution 1625 * range. 1626 */ 1627 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1628 1629 err = cs_etm__synth_instruction_sample( 1630 etmq, tidq, addr, 1631 tidq->period_instructions); 1632 if (err) 1633 return err; 1634 1635 tidq->period_instructions = 0; 1636 } 1637 1638 return 0; 1639 } 1640 /* 1641 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue 1642 * if need be. 1643 * Returns: < 0 if error 1644 * = 0 if no more auxtrace_buffer to read 1645 * > 0 if the current buffer isn't empty yet 1646 */ 1647 static int cs_etm__get_data_block(struct cs_etm_queue *etmq) 1648 { 1649 int ret; 1650 1651 if (!etmq->buf_len) { 1652 ret = cs_etm__get_trace(etmq); 1653 if (ret <= 0) 1654 return ret; 1655 /* 1656 * We cannot assume consecutive blocks in the data file 1657 * are contiguous, reset the decoder to force re-sync. 1658 */ 1659 ret = cs_etm_decoder__reset(etmq->decoder); 1660 if (ret) 1661 return ret; 1662 } 1663 1664 return etmq->buf_len; 1665 } 1666 1667 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, 1668 struct cs_etm_packet *packet, 1669 u64 end_addr) 1670 { 1671 /* Initialise to keep compiler happy */ 1672 u16 instr16 = 0; 1673 u32 instr32 = 0; 1674 u64 addr; 1675 1676 switch (packet->isa) { 1677 case CS_ETM_ISA_T32: 1678 /* 1679 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: 1680 * 1681 * b'15 b'8 1682 * +-----------------+--------+ 1683 * | 1 1 0 1 1 1 1 1 | imm8 | 1684 * +-----------------+--------+ 1685 * 1686 * According to the specification, it only defines SVC for T32 1687 * with 16 bits instruction and has no definition for 32bits; 1688 * so below only read 2 bytes as instruction size for T32. 1689 */ 1690 addr = end_addr - 2; 1691 cs_etm__mem_access(etmq, trace_chan_id, addr, 1692 sizeof(instr16), (u8 *)&instr16); 1693 if ((instr16 & 0xFF00) == 0xDF00) 1694 return true; 1695 1696 break; 1697 case CS_ETM_ISA_A32: 1698 /* 1699 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: 1700 * 1701 * b'31 b'28 b'27 b'24 1702 * +---------+---------+-------------------------+ 1703 * | !1111 | 1 1 1 1 | imm24 | 1704 * +---------+---------+-------------------------+ 1705 */ 1706 addr = end_addr - 4; 1707 cs_etm__mem_access(etmq, trace_chan_id, addr, 1708 sizeof(instr32), (u8 *)&instr32); 1709 if ((instr32 & 0x0F000000) == 0x0F000000 && 1710 (instr32 & 0xF0000000) != 0xF0000000) 1711 return true; 1712 1713 break; 1714 case CS_ETM_ISA_A64: 1715 /* 1716 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: 1717 * 1718 * b'31 b'21 b'4 b'0 1719 * +-----------------------+---------+-----------+ 1720 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | 1721 * +-----------------------+---------+-----------+ 1722 */ 1723 addr = end_addr - 4; 1724 cs_etm__mem_access(etmq, trace_chan_id, addr, 1725 sizeof(instr32), (u8 *)&instr32); 1726 if ((instr32 & 0xFFE0001F) == 0xd4000001) 1727 return true; 1728 1729 break; 1730 case CS_ETM_ISA_UNKNOWN: 1731 default: 1732 break; 1733 } 1734 1735 return false; 1736 } 1737 1738 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, 1739 struct cs_etm_traceid_queue *tidq, u64 magic) 1740 { 1741 u8 trace_chan_id = tidq->trace_chan_id; 1742 struct cs_etm_packet *packet = tidq->packet; 1743 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1744 1745 if (magic == __perf_cs_etmv3_magic) 1746 if (packet->exception_number == CS_ETMV3_EXC_SVC) 1747 return true; 1748 1749 /* 1750 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and 1751 * HVC cases; need to check if it's SVC instruction based on 1752 * packet address. 1753 */ 1754 if (magic == __perf_cs_etmv4_magic) { 1755 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1756 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1757 prev_packet->end_addr)) 1758 return true; 1759 } 1760 1761 return false; 1762 } 1763 1764 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, 1765 u64 magic) 1766 { 1767 struct cs_etm_packet *packet = tidq->packet; 1768 1769 if (magic == __perf_cs_etmv3_magic) 1770 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || 1771 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || 1772 packet->exception_number == CS_ETMV3_EXC_PE_RESET || 1773 packet->exception_number == CS_ETMV3_EXC_IRQ || 1774 packet->exception_number == CS_ETMV3_EXC_FIQ) 1775 return true; 1776 1777 if (magic == __perf_cs_etmv4_magic) 1778 if (packet->exception_number == CS_ETMV4_EXC_RESET || 1779 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || 1780 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || 1781 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || 1782 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || 1783 packet->exception_number == CS_ETMV4_EXC_IRQ || 1784 packet->exception_number == CS_ETMV4_EXC_FIQ) 1785 return true; 1786 1787 return false; 1788 } 1789 1790 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, 1791 struct cs_etm_traceid_queue *tidq, 1792 u64 magic) 1793 { 1794 u8 trace_chan_id = tidq->trace_chan_id; 1795 struct cs_etm_packet *packet = tidq->packet; 1796 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1797 1798 if (magic == __perf_cs_etmv3_magic) 1799 if (packet->exception_number == CS_ETMV3_EXC_SMC || 1800 packet->exception_number == CS_ETMV3_EXC_HYP || 1801 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || 1802 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || 1803 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || 1804 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || 1805 packet->exception_number == CS_ETMV3_EXC_GENERIC) 1806 return true; 1807 1808 if (magic == __perf_cs_etmv4_magic) { 1809 if (packet->exception_number == CS_ETMV4_EXC_TRAP || 1810 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || 1811 packet->exception_number == CS_ETMV4_EXC_INST_FAULT || 1812 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) 1813 return true; 1814 1815 /* 1816 * For CS_ETMV4_EXC_CALL, except SVC other instructions 1817 * (SMC, HVC) are taken as sync exceptions. 1818 */ 1819 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1820 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1821 prev_packet->end_addr)) 1822 return true; 1823 1824 /* 1825 * ETMv4 has 5 bits for exception number; if the numbers 1826 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] 1827 * they are implementation defined exceptions. 1828 * 1829 * For this case, simply take it as sync exception. 1830 */ 1831 if (packet->exception_number > CS_ETMV4_EXC_FIQ && 1832 packet->exception_number <= CS_ETMV4_EXC_END) 1833 return true; 1834 } 1835 1836 return false; 1837 } 1838 1839 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, 1840 struct cs_etm_traceid_queue *tidq) 1841 { 1842 struct cs_etm_packet *packet = tidq->packet; 1843 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1844 u8 trace_chan_id = tidq->trace_chan_id; 1845 u64 magic; 1846 int ret; 1847 1848 switch (packet->sample_type) { 1849 case CS_ETM_RANGE: 1850 /* 1851 * Immediate branch instruction without neither link nor 1852 * return flag, it's normal branch instruction within 1853 * the function. 1854 */ 1855 if (packet->last_instr_type == OCSD_INSTR_BR && 1856 packet->last_instr_subtype == OCSD_S_INSTR_NONE) { 1857 packet->flags = PERF_IP_FLAG_BRANCH; 1858 1859 if (packet->last_instr_cond) 1860 packet->flags |= PERF_IP_FLAG_CONDITIONAL; 1861 } 1862 1863 /* 1864 * Immediate branch instruction with link (e.g. BL), this is 1865 * branch instruction for function call. 1866 */ 1867 if (packet->last_instr_type == OCSD_INSTR_BR && 1868 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 1869 packet->flags = PERF_IP_FLAG_BRANCH | 1870 PERF_IP_FLAG_CALL; 1871 1872 /* 1873 * Indirect branch instruction with link (e.g. BLR), this is 1874 * branch instruction for function call. 1875 */ 1876 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1877 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 1878 packet->flags = PERF_IP_FLAG_BRANCH | 1879 PERF_IP_FLAG_CALL; 1880 1881 /* 1882 * Indirect branch instruction with subtype of 1883 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for 1884 * function return for A32/T32. 1885 */ 1886 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1887 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) 1888 packet->flags = PERF_IP_FLAG_BRANCH | 1889 PERF_IP_FLAG_RETURN; 1890 1891 /* 1892 * Indirect branch instruction without link (e.g. BR), usually 1893 * this is used for function return, especially for functions 1894 * within dynamic link lib. 1895 */ 1896 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1897 packet->last_instr_subtype == OCSD_S_INSTR_NONE) 1898 packet->flags = PERF_IP_FLAG_BRANCH | 1899 PERF_IP_FLAG_RETURN; 1900 1901 /* Return instruction for function return. */ 1902 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1903 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) 1904 packet->flags = PERF_IP_FLAG_BRANCH | 1905 PERF_IP_FLAG_RETURN; 1906 1907 /* 1908 * Decoder might insert a discontinuity in the middle of 1909 * instruction packets, fixup prev_packet with flag 1910 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. 1911 */ 1912 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1913 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 1914 PERF_IP_FLAG_TRACE_BEGIN; 1915 1916 /* 1917 * If the previous packet is an exception return packet 1918 * and the return address just follows SVC instruction, 1919 * it needs to calibrate the previous packet sample flags 1920 * as PERF_IP_FLAG_SYSCALLRET. 1921 */ 1922 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | 1923 PERF_IP_FLAG_RETURN | 1924 PERF_IP_FLAG_INTERRUPT) && 1925 cs_etm__is_svc_instr(etmq, trace_chan_id, 1926 packet, packet->start_addr)) 1927 prev_packet->flags = PERF_IP_FLAG_BRANCH | 1928 PERF_IP_FLAG_RETURN | 1929 PERF_IP_FLAG_SYSCALLRET; 1930 break; 1931 case CS_ETM_DISCONTINUITY: 1932 /* 1933 * The trace is discontinuous, if the previous packet is 1934 * instruction packet, set flag PERF_IP_FLAG_TRACE_END 1935 * for previous packet. 1936 */ 1937 if (prev_packet->sample_type == CS_ETM_RANGE) 1938 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 1939 PERF_IP_FLAG_TRACE_END; 1940 break; 1941 case CS_ETM_EXCEPTION: 1942 ret = cs_etm__get_magic(packet->trace_chan_id, &magic); 1943 if (ret) 1944 return ret; 1945 1946 /* The exception is for system call. */ 1947 if (cs_etm__is_syscall(etmq, tidq, magic)) 1948 packet->flags = PERF_IP_FLAG_BRANCH | 1949 PERF_IP_FLAG_CALL | 1950 PERF_IP_FLAG_SYSCALLRET; 1951 /* 1952 * The exceptions are triggered by external signals from bus, 1953 * interrupt controller, debug module, PE reset or halt. 1954 */ 1955 else if (cs_etm__is_async_exception(tidq, magic)) 1956 packet->flags = PERF_IP_FLAG_BRANCH | 1957 PERF_IP_FLAG_CALL | 1958 PERF_IP_FLAG_ASYNC | 1959 PERF_IP_FLAG_INTERRUPT; 1960 /* 1961 * Otherwise, exception is caused by trap, instruction & 1962 * data fault, or alignment errors. 1963 */ 1964 else if (cs_etm__is_sync_exception(etmq, tidq, magic)) 1965 packet->flags = PERF_IP_FLAG_BRANCH | 1966 PERF_IP_FLAG_CALL | 1967 PERF_IP_FLAG_INTERRUPT; 1968 1969 /* 1970 * When the exception packet is inserted, since exception 1971 * packet is not used standalone for generating samples 1972 * and it's affiliation to the previous instruction range 1973 * packet; so set previous range packet flags to tell perf 1974 * it is an exception taken branch. 1975 */ 1976 if (prev_packet->sample_type == CS_ETM_RANGE) 1977 prev_packet->flags = packet->flags; 1978 break; 1979 case CS_ETM_EXCEPTION_RET: 1980 /* 1981 * When the exception return packet is inserted, since 1982 * exception return packet is not used standalone for 1983 * generating samples and it's affiliation to the previous 1984 * instruction range packet; so set previous range packet 1985 * flags to tell perf it is an exception return branch. 1986 * 1987 * The exception return can be for either system call or 1988 * other exception types; unfortunately the packet doesn't 1989 * contain exception type related info so we cannot decide 1990 * the exception type purely based on exception return packet. 1991 * If we record the exception number from exception packet and 1992 * reuse it for exception return packet, this is not reliable 1993 * due the trace can be discontinuity or the interrupt can 1994 * be nested, thus the recorded exception number cannot be 1995 * used for exception return packet for these two cases. 1996 * 1997 * For exception return packet, we only need to distinguish the 1998 * packet is for system call or for other types. Thus the 1999 * decision can be deferred when receive the next packet which 2000 * contains the return address, based on the return address we 2001 * can read out the previous instruction and check if it's a 2002 * system call instruction and then calibrate the sample flag 2003 * as needed. 2004 */ 2005 if (prev_packet->sample_type == CS_ETM_RANGE) 2006 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2007 PERF_IP_FLAG_RETURN | 2008 PERF_IP_FLAG_INTERRUPT; 2009 break; 2010 case CS_ETM_EMPTY: 2011 default: 2012 break; 2013 } 2014 2015 return 0; 2016 } 2017 2018 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) 2019 { 2020 int ret = 0; 2021 size_t processed = 0; 2022 2023 /* 2024 * Packets are decoded and added to the decoder's packet queue 2025 * until the decoder packet processing callback has requested that 2026 * processing stops or there is nothing left in the buffer. Normal 2027 * operations that stop processing are a timestamp packet or a full 2028 * decoder buffer queue. 2029 */ 2030 ret = cs_etm_decoder__process_data_block(etmq->decoder, 2031 etmq->offset, 2032 &etmq->buf[etmq->buf_used], 2033 etmq->buf_len, 2034 &processed); 2035 if (ret) 2036 goto out; 2037 2038 etmq->offset += processed; 2039 etmq->buf_used += processed; 2040 etmq->buf_len -= processed; 2041 2042 out: 2043 return ret; 2044 } 2045 2046 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, 2047 struct cs_etm_traceid_queue *tidq) 2048 { 2049 int ret; 2050 struct cs_etm_packet_queue *packet_queue; 2051 2052 packet_queue = &tidq->packet_queue; 2053 2054 /* Process each packet in this chunk */ 2055 while (1) { 2056 ret = cs_etm_decoder__get_packet(packet_queue, 2057 tidq->packet); 2058 if (ret <= 0) 2059 /* 2060 * Stop processing this chunk on 2061 * end of data or error 2062 */ 2063 break; 2064 2065 /* 2066 * Since packet addresses are swapped in packet 2067 * handling within below switch() statements, 2068 * thus setting sample flags must be called 2069 * prior to switch() statement to use address 2070 * information before packets swapping. 2071 */ 2072 ret = cs_etm__set_sample_flags(etmq, tidq); 2073 if (ret < 0) 2074 break; 2075 2076 switch (tidq->packet->sample_type) { 2077 case CS_ETM_RANGE: 2078 /* 2079 * If the packet contains an instruction 2080 * range, generate instruction sequence 2081 * events. 2082 */ 2083 cs_etm__sample(etmq, tidq); 2084 break; 2085 case CS_ETM_EXCEPTION: 2086 case CS_ETM_EXCEPTION_RET: 2087 /* 2088 * If the exception packet is coming, 2089 * make sure the previous instruction 2090 * range packet to be handled properly. 2091 */ 2092 cs_etm__exception(tidq); 2093 break; 2094 case CS_ETM_DISCONTINUITY: 2095 /* 2096 * Discontinuity in trace, flush 2097 * previous branch stack 2098 */ 2099 cs_etm__flush(etmq, tidq); 2100 break; 2101 case CS_ETM_EMPTY: 2102 /* 2103 * Should not receive empty packet, 2104 * report error. 2105 */ 2106 pr_err("CS ETM Trace: empty packet\n"); 2107 return -EINVAL; 2108 default: 2109 break; 2110 } 2111 } 2112 2113 return ret; 2114 } 2115 2116 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) 2117 { 2118 int idx; 2119 struct int_node *inode; 2120 struct cs_etm_traceid_queue *tidq; 2121 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 2122 2123 intlist__for_each_entry(inode, traceid_queues_list) { 2124 idx = (int)(intptr_t)inode->priv; 2125 tidq = etmq->traceid_queues[idx]; 2126 2127 /* Ignore return value */ 2128 cs_etm__process_traceid_queue(etmq, tidq); 2129 2130 /* 2131 * Generate an instruction sample with the remaining 2132 * branchstack entries. 2133 */ 2134 cs_etm__flush(etmq, tidq); 2135 } 2136 } 2137 2138 static int cs_etm__run_decoder(struct cs_etm_queue *etmq) 2139 { 2140 int err = 0; 2141 struct cs_etm_traceid_queue *tidq; 2142 2143 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); 2144 if (!tidq) 2145 return -EINVAL; 2146 2147 /* Go through each buffer in the queue and decode them one by one */ 2148 while (1) { 2149 err = cs_etm__get_data_block(etmq); 2150 if (err <= 0) 2151 return err; 2152 2153 /* Run trace decoder until buffer consumed or end of trace */ 2154 do { 2155 err = cs_etm__decode_data_block(etmq); 2156 if (err) 2157 return err; 2158 2159 /* 2160 * Process each packet in this chunk, nothing to do if 2161 * an error occurs other than hoping the next one will 2162 * be better. 2163 */ 2164 err = cs_etm__process_traceid_queue(etmq, tidq); 2165 2166 } while (etmq->buf_len); 2167 2168 if (err == 0) 2169 /* Flush any remaining branch stack entries */ 2170 err = cs_etm__end_block(etmq, tidq); 2171 } 2172 2173 return err; 2174 } 2175 2176 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 2177 pid_t tid) 2178 { 2179 unsigned int i; 2180 struct auxtrace_queues *queues = &etm->queues; 2181 2182 for (i = 0; i < queues->nr_queues; i++) { 2183 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 2184 struct cs_etm_queue *etmq = queue->priv; 2185 struct cs_etm_traceid_queue *tidq; 2186 2187 if (!etmq) 2188 continue; 2189 2190 tidq = cs_etm__etmq_get_traceid_queue(etmq, 2191 CS_ETM_PER_THREAD_TRACEID); 2192 2193 if (!tidq) 2194 continue; 2195 2196 if ((tid == -1) || (tidq->tid == tid)) { 2197 cs_etm__set_pid_tid_cpu(etm, tidq); 2198 cs_etm__run_decoder(etmq); 2199 } 2200 } 2201 2202 return 0; 2203 } 2204 2205 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm) 2206 { 2207 int ret = 0; 2208 unsigned int cs_queue_nr, queue_nr, i; 2209 u8 trace_chan_id; 2210 u64 cs_timestamp; 2211 struct auxtrace_queue *queue; 2212 struct cs_etm_queue *etmq; 2213 struct cs_etm_traceid_queue *tidq; 2214 2215 /* 2216 * Pre-populate the heap with one entry from each queue so that we can 2217 * start processing in time order across all queues. 2218 */ 2219 for (i = 0; i < etm->queues.nr_queues; i++) { 2220 etmq = etm->queues.queue_array[i].priv; 2221 if (!etmq) 2222 continue; 2223 2224 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i); 2225 if (ret) 2226 return ret; 2227 } 2228 2229 while (1) { 2230 if (!etm->heap.heap_cnt) 2231 goto out; 2232 2233 /* Take the entry at the top of the min heap */ 2234 cs_queue_nr = etm->heap.heap_array[0].queue_nr; 2235 queue_nr = TO_QUEUE_NR(cs_queue_nr); 2236 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); 2237 queue = &etm->queues.queue_array[queue_nr]; 2238 etmq = queue->priv; 2239 2240 /* 2241 * Remove the top entry from the heap since we are about 2242 * to process it. 2243 */ 2244 auxtrace_heap__pop(&etm->heap); 2245 2246 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 2247 if (!tidq) { 2248 /* 2249 * No traceID queue has been allocated for this traceID, 2250 * which means something somewhere went very wrong. No 2251 * other choice than simply exit. 2252 */ 2253 ret = -EINVAL; 2254 goto out; 2255 } 2256 2257 /* 2258 * Packets associated with this timestamp are already in 2259 * the etmq's traceID queue, so process them. 2260 */ 2261 ret = cs_etm__process_traceid_queue(etmq, tidq); 2262 if (ret < 0) 2263 goto out; 2264 2265 /* 2266 * Packets for this timestamp have been processed, time to 2267 * move on to the next timestamp, fetching a new auxtrace_buffer 2268 * if need be. 2269 */ 2270 refetch: 2271 ret = cs_etm__get_data_block(etmq); 2272 if (ret < 0) 2273 goto out; 2274 2275 /* 2276 * No more auxtrace_buffers to process in this etmq, simply 2277 * move on to another entry in the auxtrace_heap. 2278 */ 2279 if (!ret) 2280 continue; 2281 2282 ret = cs_etm__decode_data_block(etmq); 2283 if (ret) 2284 goto out; 2285 2286 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 2287 2288 if (!cs_timestamp) { 2289 /* 2290 * Function cs_etm__decode_data_block() returns when 2291 * there is no more traces to decode in the current 2292 * auxtrace_buffer OR when a timestamp has been 2293 * encountered on any of the traceID queues. Since we 2294 * did not get a timestamp, there is no more traces to 2295 * process in this auxtrace_buffer. As such empty and 2296 * flush all traceID queues. 2297 */ 2298 cs_etm__clear_all_traceid_queues(etmq); 2299 2300 /* Fetch another auxtrace_buffer for this etmq */ 2301 goto refetch; 2302 } 2303 2304 /* 2305 * Add to the min heap the timestamp for packets that have 2306 * just been decoded. They will be processed and synthesized 2307 * during the next call to cs_etm__process_traceid_queue() for 2308 * this queue/traceID. 2309 */ 2310 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 2311 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 2312 } 2313 2314 out: 2315 return ret; 2316 } 2317 2318 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, 2319 union perf_event *event) 2320 { 2321 struct thread *th; 2322 2323 if (etm->timeless_decoding) 2324 return 0; 2325 2326 /* 2327 * Add the tid/pid to the log so that we can get a match when 2328 * we get a contextID from the decoder. 2329 */ 2330 th = machine__findnew_thread(etm->machine, 2331 event->itrace_start.pid, 2332 event->itrace_start.tid); 2333 if (!th) 2334 return -ENOMEM; 2335 2336 thread__put(th); 2337 2338 return 0; 2339 } 2340 2341 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, 2342 union perf_event *event) 2343 { 2344 struct thread *th; 2345 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2346 2347 /* 2348 * Context switch in per-thread mode are irrelevant since perf 2349 * will start/stop tracing as the process is scheduled. 2350 */ 2351 if (etm->timeless_decoding) 2352 return 0; 2353 2354 /* 2355 * SWITCH_IN events carry the next process to be switched out while 2356 * SWITCH_OUT events carry the process to be switched in. As such 2357 * we don't care about IN events. 2358 */ 2359 if (!out) 2360 return 0; 2361 2362 /* 2363 * Add the tid/pid to the log so that we can get a match when 2364 * we get a contextID from the decoder. 2365 */ 2366 th = machine__findnew_thread(etm->machine, 2367 event->context_switch.next_prev_pid, 2368 event->context_switch.next_prev_tid); 2369 if (!th) 2370 return -ENOMEM; 2371 2372 thread__put(th); 2373 2374 return 0; 2375 } 2376 2377 static int cs_etm__process_event(struct perf_session *session, 2378 union perf_event *event, 2379 struct perf_sample *sample, 2380 struct perf_tool *tool) 2381 { 2382 u64 sample_kernel_timestamp; 2383 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2384 struct cs_etm_auxtrace, 2385 auxtrace); 2386 2387 if (dump_trace) 2388 return 0; 2389 2390 if (!tool->ordered_events) { 2391 pr_err("CoreSight ETM Trace requires ordered events\n"); 2392 return -EINVAL; 2393 } 2394 2395 if (sample->time && (sample->time != (u64) -1)) 2396 sample_kernel_timestamp = sample->time; 2397 else 2398 sample_kernel_timestamp = 0; 2399 2400 /* 2401 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We 2402 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because 2403 * ETM_OPT_CTXTID is not enabled. 2404 */ 2405 if (etm->timeless_decoding && 2406 event->header.type == PERF_RECORD_EXIT) 2407 return cs_etm__process_timeless_queues(etm, 2408 event->fork.tid); 2409 2410 if (event->header.type == PERF_RECORD_ITRACE_START) 2411 return cs_etm__process_itrace_start(etm, event); 2412 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2413 return cs_etm__process_switch_cpu_wide(etm, event); 2414 2415 if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) { 2416 /* 2417 * Record the latest kernel timestamp available in the header 2418 * for samples so that synthesised samples occur from this point 2419 * onwards. 2420 */ 2421 etm->latest_kernel_timestamp = sample_kernel_timestamp; 2422 } 2423 2424 return 0; 2425 } 2426 2427 static void dump_queued_data(struct cs_etm_auxtrace *etm, 2428 struct perf_record_auxtrace *event) 2429 { 2430 struct auxtrace_buffer *buf; 2431 unsigned int i; 2432 /* 2433 * Find all buffers with same reference in the queues and dump them. 2434 * This is because the queues can contain multiple entries of the same 2435 * buffer that were split on aux records. 2436 */ 2437 for (i = 0; i < etm->queues.nr_queues; ++i) 2438 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list) 2439 if (buf->reference == event->reference) 2440 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf); 2441 } 2442 2443 static int cs_etm__process_auxtrace_event(struct perf_session *session, 2444 union perf_event *event, 2445 struct perf_tool *tool __maybe_unused) 2446 { 2447 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2448 struct cs_etm_auxtrace, 2449 auxtrace); 2450 if (!etm->data_queued) { 2451 struct auxtrace_buffer *buffer; 2452 off_t data_offset; 2453 int fd = perf_data__fd(session->data); 2454 bool is_pipe = perf_data__is_pipe(session->data); 2455 int err; 2456 int idx = event->auxtrace.idx; 2457 2458 if (is_pipe) 2459 data_offset = 0; 2460 else { 2461 data_offset = lseek(fd, 0, SEEK_CUR); 2462 if (data_offset == -1) 2463 return -errno; 2464 } 2465 2466 err = auxtrace_queues__add_event(&etm->queues, session, 2467 event, data_offset, &buffer); 2468 if (err) 2469 return err; 2470 2471 /* 2472 * Knowing if the trace is formatted or not requires a lookup of 2473 * the aux record so only works in non-piped mode where data is 2474 * queued in cs_etm__queue_aux_records(). Always assume 2475 * formatted in piped mode (true). 2476 */ 2477 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2478 idx, true); 2479 if (err) 2480 return err; 2481 2482 if (dump_trace) 2483 if (auxtrace_buffer__get_data(buffer, fd)) { 2484 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer); 2485 auxtrace_buffer__put_data(buffer); 2486 } 2487 } else if (dump_trace) 2488 dump_queued_data(etm, &event->auxtrace); 2489 2490 return 0; 2491 } 2492 2493 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) 2494 { 2495 struct evsel *evsel; 2496 struct evlist *evlist = etm->session->evlist; 2497 bool timeless_decoding = true; 2498 2499 /* Override timeless mode with user input from --itrace=Z */ 2500 if (etm->synth_opts.timeless_decoding) 2501 return true; 2502 2503 /* 2504 * Circle through the list of event and complain if we find one 2505 * with the time bit set. 2506 */ 2507 evlist__for_each_entry(evlist, evsel) { 2508 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 2509 timeless_decoding = false; 2510 } 2511 2512 return timeless_decoding; 2513 } 2514 2515 static const char * const cs_etm_global_header_fmts[] = { 2516 [CS_HEADER_VERSION] = " Header version %llx\n", 2517 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n", 2518 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n", 2519 }; 2520 2521 static const char * const cs_etm_priv_fmts[] = { 2522 [CS_ETM_MAGIC] = " Magic number %llx\n", 2523 [CS_ETM_CPU] = " CPU %lld\n", 2524 [CS_ETM_NR_TRC_PARAMS] = " NR_TRC_PARAMS %llx\n", 2525 [CS_ETM_ETMCR] = " ETMCR %llx\n", 2526 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n", 2527 [CS_ETM_ETMCCER] = " ETMCCER %llx\n", 2528 [CS_ETM_ETMIDR] = " ETMIDR %llx\n", 2529 }; 2530 2531 static const char * const cs_etmv4_priv_fmts[] = { 2532 [CS_ETM_MAGIC] = " Magic number %llx\n", 2533 [CS_ETM_CPU] = " CPU %lld\n", 2534 [CS_ETM_NR_TRC_PARAMS] = " NR_TRC_PARAMS %llx\n", 2535 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n", 2536 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n", 2537 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n", 2538 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n", 2539 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n", 2540 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n", 2541 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n", 2542 [CS_ETE_TRCDEVARCH] = " TRCDEVARCH %llx\n" 2543 }; 2544 2545 static const char * const param_unk_fmt = 2546 " Unknown parameter [%d] %llx\n"; 2547 static const char * const magic_unk_fmt = 2548 " Magic number Unknown %llx\n"; 2549 2550 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset) 2551 { 2552 int i = *offset, j, nr_params = 0, fmt_offset; 2553 __u64 magic; 2554 2555 /* check magic value */ 2556 magic = val[i + CS_ETM_MAGIC]; 2557 if ((magic != __perf_cs_etmv3_magic) && 2558 (magic != __perf_cs_etmv4_magic)) { 2559 /* failure - note bad magic value */ 2560 fprintf(stdout, magic_unk_fmt, magic); 2561 return -EINVAL; 2562 } 2563 2564 /* print common header block */ 2565 fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]); 2566 fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]); 2567 2568 if (magic == __perf_cs_etmv3_magic) { 2569 nr_params = CS_ETM_NR_TRC_PARAMS_V0; 2570 fmt_offset = CS_ETM_ETMCR; 2571 /* after common block, offset format index past NR_PARAMS */ 2572 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++) 2573 fprintf(stdout, cs_etm_priv_fmts[j], val[i]); 2574 } else if (magic == __perf_cs_etmv4_magic) { 2575 nr_params = CS_ETMV4_NR_TRC_PARAMS_V0; 2576 fmt_offset = CS_ETMV4_TRCCONFIGR; 2577 /* after common block, offset format index past NR_PARAMS */ 2578 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++) 2579 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); 2580 } 2581 *offset = i; 2582 return 0; 2583 } 2584 2585 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset) 2586 { 2587 int i = *offset, j, total_params = 0; 2588 __u64 magic; 2589 2590 magic = val[i + CS_ETM_MAGIC]; 2591 /* total params to print is NR_PARAMS + common block size for v1 */ 2592 total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1; 2593 2594 if (magic == __perf_cs_etmv3_magic) { 2595 for (j = 0; j < total_params; j++, i++) { 2596 /* if newer record - could be excess params */ 2597 if (j >= CS_ETM_PRIV_MAX) 2598 fprintf(stdout, param_unk_fmt, j, val[i]); 2599 else 2600 fprintf(stdout, cs_etm_priv_fmts[j], val[i]); 2601 } 2602 } else if (magic == __perf_cs_etmv4_magic || magic == __perf_cs_ete_magic) { 2603 /* 2604 * ETE and ETMv4 can be printed in the same block because the number of parameters 2605 * is saved and they share the list of parameter names. ETE is also only supported 2606 * in V1 files. 2607 */ 2608 for (j = 0; j < total_params; j++, i++) { 2609 /* if newer record - could be excess params */ 2610 if (j >= CS_ETE_PRIV_MAX) 2611 fprintf(stdout, param_unk_fmt, j, val[i]); 2612 else 2613 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); 2614 } 2615 } else { 2616 /* failure - note bad magic value and error out */ 2617 fprintf(stdout, magic_unk_fmt, magic); 2618 return -EINVAL; 2619 } 2620 *offset = i; 2621 return 0; 2622 } 2623 2624 static void cs_etm__print_auxtrace_info(__u64 *val, int num) 2625 { 2626 int i, cpu = 0, version, err; 2627 2628 /* bail out early on bad header version */ 2629 version = val[0]; 2630 if (version > CS_HEADER_CURRENT_VERSION) { 2631 /* failure.. return */ 2632 fprintf(stdout, " Unknown Header Version = %x, ", version); 2633 fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION); 2634 return; 2635 } 2636 2637 for (i = 0; i < CS_HEADER_VERSION_MAX; i++) 2638 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]); 2639 2640 for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) { 2641 if (version == 0) 2642 err = cs_etm__print_cpu_metadata_v0(val, &i); 2643 else if (version == 1) 2644 err = cs_etm__print_cpu_metadata_v1(val, &i); 2645 if (err) 2646 return; 2647 } 2648 } 2649 2650 /* 2651 * Read a single cpu parameter block from the auxtrace_info priv block. 2652 * 2653 * For version 1 there is a per cpu nr_params entry. If we are handling 2654 * version 1 file, then there may be less, the same, or more params 2655 * indicated by this value than the compile time number we understand. 2656 * 2657 * For a version 0 info block, there are a fixed number, and we need to 2658 * fill out the nr_param value in the metadata we create. 2659 */ 2660 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset, 2661 int out_blk_size, int nr_params_v0) 2662 { 2663 u64 *metadata = NULL; 2664 int hdr_version; 2665 int nr_in_params, nr_out_params, nr_cmn_params; 2666 int i, k; 2667 2668 metadata = zalloc(sizeof(*metadata) * out_blk_size); 2669 if (!metadata) 2670 return NULL; 2671 2672 /* read block current index & version */ 2673 i = *buff_in_offset; 2674 hdr_version = buff_in[CS_HEADER_VERSION]; 2675 2676 if (!hdr_version) { 2677 /* read version 0 info block into a version 1 metadata block */ 2678 nr_in_params = nr_params_v0; 2679 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC]; 2680 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU]; 2681 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params; 2682 /* remaining block params at offset +1 from source */ 2683 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++) 2684 metadata[k + 1] = buff_in[i + k]; 2685 /* version 0 has 2 common params */ 2686 nr_cmn_params = 2; 2687 } else { 2688 /* read version 1 info block - input and output nr_params may differ */ 2689 /* version 1 has 3 common params */ 2690 nr_cmn_params = 3; 2691 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS]; 2692 2693 /* if input has more params than output - skip excess */ 2694 nr_out_params = nr_in_params + nr_cmn_params; 2695 if (nr_out_params > out_blk_size) 2696 nr_out_params = out_blk_size; 2697 2698 for (k = CS_ETM_MAGIC; k < nr_out_params; k++) 2699 metadata[k] = buff_in[i + k]; 2700 2701 /* record the actual nr params we copied */ 2702 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params; 2703 } 2704 2705 /* adjust in offset by number of in params used */ 2706 i += nr_in_params + nr_cmn_params; 2707 *buff_in_offset = i; 2708 return metadata; 2709 } 2710 2711 /** 2712 * Puts a fragment of an auxtrace buffer into the auxtrace queues based 2713 * on the bounds of aux_event, if it matches with the buffer that's at 2714 * file_offset. 2715 * 2716 * Normally, whole auxtrace buffers would be added to the queue. But we 2717 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder 2718 * is reset across each buffer, so splitting the buffers up in advance has 2719 * the same effect. 2720 */ 2721 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz, 2722 struct perf_record_aux *aux_event, struct perf_sample *sample) 2723 { 2724 int err; 2725 char buf[PERF_SAMPLE_MAX_SIZE]; 2726 union perf_event *auxtrace_event_union; 2727 struct perf_record_auxtrace *auxtrace_event; 2728 union perf_event auxtrace_fragment; 2729 __u64 aux_offset, aux_size; 2730 __u32 idx; 2731 bool formatted; 2732 2733 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2734 struct cs_etm_auxtrace, 2735 auxtrace); 2736 2737 /* 2738 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got 2739 * from looping through the auxtrace index. 2740 */ 2741 err = perf_session__peek_event(session, file_offset, buf, 2742 PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL); 2743 if (err) 2744 return err; 2745 auxtrace_event = &auxtrace_event_union->auxtrace; 2746 if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE) 2747 return -EINVAL; 2748 2749 if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) || 2750 auxtrace_event->header.size != sz) { 2751 return -EINVAL; 2752 } 2753 2754 /* 2755 * In per-thread mode, CPU is set to -1, but TID will be set instead. See 2756 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match. 2757 */ 2758 if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) || 2759 auxtrace_event->cpu != sample->cpu) 2760 return 1; 2761 2762 if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) { 2763 /* 2764 * Clamp size in snapshot mode. The buffer size is clamped in 2765 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect 2766 * the buffer size. 2767 */ 2768 aux_size = min(aux_event->aux_size, auxtrace_event->size); 2769 2770 /* 2771 * In this mode, the head also points to the end of the buffer so aux_offset 2772 * needs to have the size subtracted so it points to the beginning as in normal mode 2773 */ 2774 aux_offset = aux_event->aux_offset - aux_size; 2775 } else { 2776 aux_size = aux_event->aux_size; 2777 aux_offset = aux_event->aux_offset; 2778 } 2779 2780 if (aux_offset >= auxtrace_event->offset && 2781 aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) { 2782 /* 2783 * If this AUX event was inside this buffer somewhere, create a new auxtrace event 2784 * based on the sizes of the aux event, and queue that fragment. 2785 */ 2786 auxtrace_fragment.auxtrace = *auxtrace_event; 2787 auxtrace_fragment.auxtrace.size = aux_size; 2788 auxtrace_fragment.auxtrace.offset = aux_offset; 2789 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size; 2790 2791 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64 2792 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu); 2793 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment, 2794 file_offset, NULL); 2795 if (err) 2796 return err; 2797 2798 idx = auxtrace_event->idx; 2799 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW); 2800 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2801 idx, formatted); 2802 } 2803 2804 /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */ 2805 return 1; 2806 } 2807 2808 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event, 2809 u64 offset __maybe_unused, void *data __maybe_unused) 2810 { 2811 struct perf_sample sample; 2812 int ret; 2813 struct auxtrace_index_entry *ent; 2814 struct auxtrace_index *auxtrace_index; 2815 struct evsel *evsel; 2816 size_t i; 2817 2818 /* Don't care about any other events, we're only queuing buffers for AUX events */ 2819 if (event->header.type != PERF_RECORD_AUX) 2820 return 0; 2821 2822 if (event->header.size < sizeof(struct perf_record_aux)) 2823 return -EINVAL; 2824 2825 /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */ 2826 if (!event->aux.aux_size) 2827 return 0; 2828 2829 /* 2830 * Parse the sample, we need the sample_id_all data that comes after the event so that the 2831 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID. 2832 */ 2833 evsel = evlist__event2evsel(session->evlist, event); 2834 if (!evsel) 2835 return -EINVAL; 2836 ret = evsel__parse_sample(evsel, event, &sample); 2837 if (ret) 2838 return ret; 2839 2840 /* 2841 * Loop through the auxtrace index to find the buffer that matches up with this aux event. 2842 */ 2843 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 2844 for (i = 0; i < auxtrace_index->nr; i++) { 2845 ent = &auxtrace_index->entries[i]; 2846 ret = cs_etm__queue_aux_fragment(session, ent->file_offset, 2847 ent->sz, &event->aux, &sample); 2848 /* 2849 * Stop search on error or successful values. Continue search on 2850 * 1 ('not found') 2851 */ 2852 if (ret != 1) 2853 return ret; 2854 } 2855 } 2856 2857 /* 2858 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but 2859 * don't exit with an error because it will still be possible to decode other aux records. 2860 */ 2861 pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64 2862 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu); 2863 return 0; 2864 } 2865 2866 static int cs_etm__queue_aux_records(struct perf_session *session) 2867 { 2868 struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index, 2869 struct auxtrace_index, list); 2870 if (index && index->nr > 0) 2871 return perf_session__peek_events(session, session->header.data_offset, 2872 session->header.data_size, 2873 cs_etm__queue_aux_records_cb, NULL); 2874 2875 /* 2876 * We would get here if there are no entries in the index (either no auxtrace 2877 * buffers or no index at all). Fail silently as there is the possibility of 2878 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still 2879 * false. 2880 * 2881 * In that scenario, buffers will not be split by AUX records. 2882 */ 2883 return 0; 2884 } 2885 2886 int cs_etm__process_auxtrace_info(union perf_event *event, 2887 struct perf_session *session) 2888 { 2889 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 2890 struct cs_etm_auxtrace *etm = NULL; 2891 struct int_node *inode; 2892 unsigned int pmu_type; 2893 int event_header_size = sizeof(struct perf_event_header); 2894 int info_header_size; 2895 int total_size = auxtrace_info->header.size; 2896 int priv_size = 0; 2897 int num_cpu, trcidr_idx; 2898 int err = 0; 2899 int i, j; 2900 u64 *ptr, *hdr = NULL; 2901 u64 **metadata = NULL; 2902 u64 hdr_version; 2903 2904 /* 2905 * sizeof(auxtrace_info_event::type) + 2906 * sizeof(auxtrace_info_event::reserved) == 8 2907 */ 2908 info_header_size = 8; 2909 2910 if (total_size < (event_header_size + info_header_size)) 2911 return -EINVAL; 2912 2913 priv_size = total_size - event_header_size - info_header_size; 2914 2915 /* First the global part */ 2916 ptr = (u64 *) auxtrace_info->priv; 2917 2918 /* Look for version of the header */ 2919 hdr_version = ptr[0]; 2920 if (hdr_version > CS_HEADER_CURRENT_VERSION) { 2921 /* print routine will print an error on bad version */ 2922 if (dump_trace) 2923 cs_etm__print_auxtrace_info(auxtrace_info->priv, 0); 2924 return -EINVAL; 2925 } 2926 2927 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX); 2928 if (!hdr) 2929 return -ENOMEM; 2930 2931 /* Extract header information - see cs-etm.h for format */ 2932 for (i = 0; i < CS_HEADER_VERSION_MAX; i++) 2933 hdr[i] = ptr[i]; 2934 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff; 2935 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) & 2936 0xffffffff); 2937 2938 /* 2939 * Create an RB tree for traceID-metadata tuple. Since the conversion 2940 * has to be made for each packet that gets decoded, optimizing access 2941 * in anything other than a sequential array is worth doing. 2942 */ 2943 traceid_list = intlist__new(NULL); 2944 if (!traceid_list) { 2945 err = -ENOMEM; 2946 goto err_free_hdr; 2947 } 2948 2949 metadata = zalloc(sizeof(*metadata) * num_cpu); 2950 if (!metadata) { 2951 err = -ENOMEM; 2952 goto err_free_traceid_list; 2953 } 2954 2955 /* 2956 * The metadata is stored in the auxtrace_info section and encodes 2957 * the configuration of the ARM embedded trace macrocell which is 2958 * required by the trace decoder to properly decode the trace due 2959 * to its highly compressed nature. 2960 */ 2961 for (j = 0; j < num_cpu; j++) { 2962 if (ptr[i] == __perf_cs_etmv3_magic) { 2963 metadata[j] = 2964 cs_etm__create_meta_blk(ptr, &i, 2965 CS_ETM_PRIV_MAX, 2966 CS_ETM_NR_TRC_PARAMS_V0); 2967 2968 /* The traceID is our handle */ 2969 trcidr_idx = CS_ETM_ETMTRACEIDR; 2970 2971 } else if (ptr[i] == __perf_cs_etmv4_magic) { 2972 metadata[j] = 2973 cs_etm__create_meta_blk(ptr, &i, 2974 CS_ETMV4_PRIV_MAX, 2975 CS_ETMV4_NR_TRC_PARAMS_V0); 2976 2977 /* The traceID is our handle */ 2978 trcidr_idx = CS_ETMV4_TRCTRACEIDR; 2979 } else if (ptr[i] == __perf_cs_ete_magic) { 2980 metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1); 2981 2982 /* ETE shares first part of metadata with ETMv4 */ 2983 trcidr_idx = CS_ETMV4_TRCTRACEIDR; 2984 } else { 2985 ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n", 2986 ptr[i]); 2987 err = -EINVAL; 2988 goto err_free_metadata; 2989 } 2990 2991 if (!metadata[j]) { 2992 err = -ENOMEM; 2993 goto err_free_metadata; 2994 } 2995 2996 /* Get an RB node for this CPU */ 2997 inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]); 2998 2999 /* Something went wrong, no need to continue */ 3000 if (!inode) { 3001 err = -ENOMEM; 3002 goto err_free_metadata; 3003 } 3004 3005 /* 3006 * The node for that CPU should not be taken. 3007 * Back out if that's the case. 3008 */ 3009 if (inode->priv) { 3010 err = -EINVAL; 3011 goto err_free_metadata; 3012 } 3013 /* All good, associate the traceID with the metadata pointer */ 3014 inode->priv = metadata[j]; 3015 } 3016 3017 /* 3018 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and 3019 * CS_ETMV4_PRIV_MAX mark how many double words are in the 3020 * global metadata, and each cpu's metadata respectively. 3021 * The following tests if the correct number of double words was 3022 * present in the auxtrace info section. 3023 */ 3024 if (i * 8 != priv_size) { 3025 err = -EINVAL; 3026 goto err_free_metadata; 3027 } 3028 3029 etm = zalloc(sizeof(*etm)); 3030 3031 if (!etm) { 3032 err = -ENOMEM; 3033 goto err_free_metadata; 3034 } 3035 3036 err = auxtrace_queues__init(&etm->queues); 3037 if (err) 3038 goto err_free_etm; 3039 3040 if (session->itrace_synth_opts->set) { 3041 etm->synth_opts = *session->itrace_synth_opts; 3042 } else { 3043 itrace_synth_opts__set_default(&etm->synth_opts, 3044 session->itrace_synth_opts->default_no_sample); 3045 etm->synth_opts.callchain = false; 3046 } 3047 3048 etm->session = session; 3049 etm->machine = &session->machines.host; 3050 3051 etm->num_cpu = num_cpu; 3052 etm->pmu_type = pmu_type; 3053 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0); 3054 etm->metadata = metadata; 3055 etm->auxtrace_type = auxtrace_info->type; 3056 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); 3057 3058 etm->auxtrace.process_event = cs_etm__process_event; 3059 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 3060 etm->auxtrace.flush_events = cs_etm__flush_events; 3061 etm->auxtrace.free_events = cs_etm__free_events; 3062 etm->auxtrace.free = cs_etm__free; 3063 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; 3064 session->auxtrace = &etm->auxtrace; 3065 3066 etm->unknown_thread = thread__new(999999999, 999999999); 3067 if (!etm->unknown_thread) { 3068 err = -ENOMEM; 3069 goto err_free_queues; 3070 } 3071 3072 /* 3073 * Initialize list node so that at thread__zput() we can avoid 3074 * segmentation fault at list_del_init(). 3075 */ 3076 INIT_LIST_HEAD(&etm->unknown_thread->node); 3077 3078 err = thread__set_comm(etm->unknown_thread, "unknown", 0); 3079 if (err) 3080 goto err_delete_thread; 3081 3082 if (thread__init_maps(etm->unknown_thread, etm->machine)) { 3083 err = -ENOMEM; 3084 goto err_delete_thread; 3085 } 3086 3087 if (dump_trace) { 3088 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); 3089 } 3090 3091 err = cs_etm__synth_events(etm, session); 3092 if (err) 3093 goto err_delete_thread; 3094 3095 err = cs_etm__queue_aux_records(session); 3096 if (err) 3097 goto err_delete_thread; 3098 3099 etm->data_queued = etm->queues.populated; 3100 /* 3101 * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and 3102 * cs_etm__queue_aux_fragment() for details relating to limitations. 3103 */ 3104 if (!etm->data_queued) 3105 pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n" 3106 "Continuing with best effort decoding in piped mode.\n\n"); 3107 3108 return 0; 3109 3110 err_delete_thread: 3111 thread__zput(etm->unknown_thread); 3112 err_free_queues: 3113 auxtrace_queues__free(&etm->queues); 3114 session->auxtrace = NULL; 3115 err_free_etm: 3116 zfree(&etm); 3117 err_free_metadata: 3118 /* No need to check @metadata[j], free(NULL) is supported */ 3119 for (j = 0; j < num_cpu; j++) 3120 zfree(&metadata[j]); 3121 zfree(&metadata); 3122 err_free_traceid_list: 3123 intlist__delete(traceid_list); 3124 err_free_hdr: 3125 zfree(&hdr); 3126 /* 3127 * At this point, as a minimum we have valid header. Dump the rest of 3128 * the info section - the print routines will error out on structural 3129 * issues. 3130 */ 3131 if (dump_trace) 3132 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); 3133 return err; 3134 } 3135