xref: /openbmc/linux/tools/perf/util/cs-etm.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include <stdlib.h>
18 
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "cs-etm.h"
22 #include "cs-etm-decoder/cs-etm-decoder.h"
23 #include "debug.h"
24 #include "dso.h"
25 #include "evlist.h"
26 #include "intlist.h"
27 #include "machine.h"
28 #include "map.h"
29 #include "perf.h"
30 #include "session.h"
31 #include "map_symbol.h"
32 #include "branch.h"
33 #include "symbol.h"
34 #include "tool.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include "tsc.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40 #include "util/util.h"
41 
42 struct cs_etm_auxtrace {
43 	struct auxtrace auxtrace;
44 	struct auxtrace_queues queues;
45 	struct auxtrace_heap heap;
46 	struct itrace_synth_opts synth_opts;
47 	struct perf_session *session;
48 	struct perf_tsc_conversion tc;
49 
50 	/*
51 	 * Timeless has no timestamps in the trace so overlapping mmap lookups
52 	 * are less accurate but produces smaller trace data. We use context IDs
53 	 * in the trace instead of matching timestamps with fork records so
54 	 * they're not really needed in the general case. Overlapping mmaps
55 	 * happen in cases like between a fork and an exec.
56 	 */
57 	bool timeless_decoding;
58 
59 	/*
60 	 * Per-thread ignores the trace channel ID and instead assumes that
61 	 * everything in a buffer comes from the same process regardless of
62 	 * which CPU it ran on. It also implies no context IDs so the TID is
63 	 * taken from the auxtrace buffer.
64 	 */
65 	bool per_thread_decoding;
66 	bool snapshot_mode;
67 	bool data_queued;
68 	bool has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */
69 
70 	int num_cpu;
71 	u64 latest_kernel_timestamp;
72 	u32 auxtrace_type;
73 	u64 branches_sample_type;
74 	u64 branches_id;
75 	u64 instructions_sample_type;
76 	u64 instructions_sample_period;
77 	u64 instructions_id;
78 	u64 **metadata;
79 	unsigned int pmu_type;
80 	enum cs_etm_pid_fmt pid_fmt;
81 };
82 
83 struct cs_etm_traceid_queue {
84 	u8 trace_chan_id;
85 	u64 period_instructions;
86 	size_t last_branch_pos;
87 	union perf_event *event_buf;
88 	struct thread *thread;
89 	struct thread *prev_packet_thread;
90 	ocsd_ex_level prev_packet_el;
91 	ocsd_ex_level el;
92 	struct branch_stack *last_branch;
93 	struct branch_stack *last_branch_rb;
94 	struct cs_etm_packet *prev_packet;
95 	struct cs_etm_packet *packet;
96 	struct cs_etm_packet_queue packet_queue;
97 };
98 
99 struct cs_etm_queue {
100 	struct cs_etm_auxtrace *etm;
101 	struct cs_etm_decoder *decoder;
102 	struct auxtrace_buffer *buffer;
103 	unsigned int queue_nr;
104 	u8 pending_timestamp_chan_id;
105 	u64 offset;
106 	const unsigned char *buf;
107 	size_t buf_len, buf_used;
108 	/* Conversion between traceID and index in traceid_queues array */
109 	struct intlist *traceid_queues_list;
110 	struct cs_etm_traceid_queue **traceid_queues;
111 };
112 
113 /* RB tree for quick conversion between traceID and metadata pointers */
114 static struct intlist *traceid_list;
115 
116 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm);
117 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
118 					   pid_t tid);
119 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
120 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
121 
122 /* PTMs ETMIDR [11:8] set to b0011 */
123 #define ETMIDR_PTM_VERSION 0x00000300
124 
125 /*
126  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
127  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
128  * encode the etm queue number as the upper 16 bit and the channel as
129  * the lower 16 bit.
130  */
131 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
132 		      (queue_nr << 16 | trace_chan_id)
133 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
134 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
135 
136 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
137 {
138 	etmidr &= ETMIDR_PTM_VERSION;
139 
140 	if (etmidr == ETMIDR_PTM_VERSION)
141 		return CS_ETM_PROTO_PTM;
142 
143 	return CS_ETM_PROTO_ETMV3;
144 }
145 
146 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
147 {
148 	struct int_node *inode;
149 	u64 *metadata;
150 
151 	inode = intlist__find(traceid_list, trace_chan_id);
152 	if (!inode)
153 		return -EINVAL;
154 
155 	metadata = inode->priv;
156 	*magic = metadata[CS_ETM_MAGIC];
157 	return 0;
158 }
159 
160 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
161 {
162 	struct int_node *inode;
163 	u64 *metadata;
164 
165 	inode = intlist__find(traceid_list, trace_chan_id);
166 	if (!inode)
167 		return -EINVAL;
168 
169 	metadata = inode->priv;
170 	*cpu = (int)metadata[CS_ETM_CPU];
171 	return 0;
172 }
173 
174 /*
175  * The returned PID format is presented as an enum:
176  *
177  *   CS_ETM_PIDFMT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced.
178  *   CS_ETM_PIDFMT_CTXTID2: CONTEXTIDR_EL2 is traced.
179  *   CS_ETM_PIDFMT_NONE: No context IDs
180  *
181  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
182  * are enabled at the same time when the session runs on an EL2 kernel.
183  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
184  * recorded in the trace data, the tool will selectively use
185  * CONTEXTIDR_EL2 as PID.
186  *
187  * The result is cached in etm->pid_fmt so this function only needs to be called
188  * when processing the aux info.
189  */
190 static enum cs_etm_pid_fmt cs_etm__init_pid_fmt(u64 *metadata)
191 {
192 	u64 val;
193 
194 	if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
195 		val = metadata[CS_ETM_ETMCR];
196 		/* CONTEXTIDR is traced */
197 		if (val & BIT(ETM_OPT_CTXTID))
198 			return CS_ETM_PIDFMT_CTXTID;
199 	} else {
200 		val = metadata[CS_ETMV4_TRCCONFIGR];
201 		/* CONTEXTIDR_EL2 is traced */
202 		if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
203 			return CS_ETM_PIDFMT_CTXTID2;
204 		/* CONTEXTIDR_EL1 is traced */
205 		else if (val & BIT(ETM4_CFG_BIT_CTXTID))
206 			return CS_ETM_PIDFMT_CTXTID;
207 	}
208 
209 	return CS_ETM_PIDFMT_NONE;
210 }
211 
212 enum cs_etm_pid_fmt cs_etm__get_pid_fmt(struct cs_etm_queue *etmq)
213 {
214 	return etmq->etm->pid_fmt;
215 }
216 
217 static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata)
218 {
219 	struct int_node *inode;
220 
221 	/* Get an RB node for this CPU */
222 	inode = intlist__findnew(traceid_list, trace_chan_id);
223 
224 	/* Something went wrong, no need to continue */
225 	if (!inode)
226 		return -ENOMEM;
227 
228 	/*
229 	 * The node for that CPU should not be taken.
230 	 * Back out if that's the case.
231 	 */
232 	if (inode->priv)
233 		return -EINVAL;
234 
235 	/* All good, associate the traceID with the metadata pointer */
236 	inode->priv = cpu_metadata;
237 
238 	return 0;
239 }
240 
241 static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata)
242 {
243 	u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC];
244 
245 	switch (cs_etm_magic) {
246 	case __perf_cs_etmv3_magic:
247 		*trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] &
248 				      CORESIGHT_TRACE_ID_VAL_MASK);
249 		break;
250 	case __perf_cs_etmv4_magic:
251 	case __perf_cs_ete_magic:
252 		*trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] &
253 				      CORESIGHT_TRACE_ID_VAL_MASK);
254 		break;
255 	default:
256 		return -EINVAL;
257 	}
258 	return 0;
259 }
260 
261 /*
262  * update metadata trace ID from the value found in the AUX_HW_INFO packet.
263  * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present.
264  */
265 static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata)
266 {
267 	u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC];
268 
269 	switch (cs_etm_magic) {
270 	case __perf_cs_etmv3_magic:
271 		 cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id;
272 		break;
273 	case __perf_cs_etmv4_magic:
274 	case __perf_cs_ete_magic:
275 		cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id;
276 		break;
277 
278 	default:
279 		return -EINVAL;
280 	}
281 	return 0;
282 }
283 
284 /*
285  * FIELD_GET (linux/bitfield.h) not available outside kernel code,
286  * and the header contains too many dependencies to just copy over,
287  * so roll our own based on the original
288  */
289 #define __bf_shf(x) (__builtin_ffsll(x) - 1)
290 #define FIELD_GET(_mask, _reg)						\
291 	({								\
292 		(typeof(_mask))(((_reg) & (_mask)) >> __bf_shf(_mask)); \
293 	})
294 
295 /*
296  * Get a metadata for a specific cpu from an array.
297  *
298  */
299 static u64 *get_cpu_data(struct cs_etm_auxtrace *etm, int cpu)
300 {
301 	int i;
302 	u64 *metadata = NULL;
303 
304 	for (i = 0; i < etm->num_cpu; i++) {
305 		if (etm->metadata[i][CS_ETM_CPU] == (u64)cpu) {
306 			metadata = etm->metadata[i];
307 			break;
308 		}
309 	}
310 
311 	return metadata;
312 }
313 
314 /*
315  * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event.
316  *
317  * The payload associates the Trace ID and the CPU.
318  * The routine is tolerant of seeing multiple packets with the same association,
319  * but a CPU / Trace ID association changing during a session is an error.
320  */
321 static int cs_etm__process_aux_output_hw_id(struct perf_session *session,
322 					    union perf_event *event)
323 {
324 	struct cs_etm_auxtrace *etm;
325 	struct perf_sample sample;
326 	struct int_node *inode;
327 	struct evsel *evsel;
328 	u64 *cpu_data;
329 	u64 hw_id;
330 	int cpu, version, err;
331 	u8 trace_chan_id, curr_chan_id;
332 
333 	/* extract and parse the HW ID */
334 	hw_id = event->aux_output_hw_id.hw_id;
335 	version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id);
336 	trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id);
337 
338 	/* check that we can handle this version */
339 	if (version > CS_AUX_HW_ID_CURR_VERSION)
340 		return -EINVAL;
341 
342 	/* get access to the etm metadata */
343 	etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace);
344 	if (!etm || !etm->metadata)
345 		return -EINVAL;
346 
347 	/* parse the sample to get the CPU */
348 	evsel = evlist__event2evsel(session->evlist, event);
349 	if (!evsel)
350 		return -EINVAL;
351 	err = evsel__parse_sample(evsel, event, &sample);
352 	if (err)
353 		return err;
354 	cpu = sample.cpu;
355 	if (cpu == -1) {
356 		/* no CPU in the sample - possibly recorded with an old version of perf */
357 		pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record.");
358 		return -EINVAL;
359 	}
360 
361 	/* See if the ID is mapped to a CPU, and it matches the current CPU */
362 	inode = intlist__find(traceid_list, trace_chan_id);
363 	if (inode) {
364 		cpu_data = inode->priv;
365 		if ((int)cpu_data[CS_ETM_CPU] != cpu) {
366 			pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n");
367 			return -EINVAL;
368 		}
369 
370 		/* check that the mapped ID matches */
371 		err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data);
372 		if (err)
373 			return err;
374 		if (curr_chan_id != trace_chan_id) {
375 			pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n");
376 			return -EINVAL;
377 		}
378 
379 		/* mapped and matched - return OK */
380 		return 0;
381 	}
382 
383 	cpu_data = get_cpu_data(etm, cpu);
384 	if (cpu_data == NULL)
385 		return err;
386 
387 	/* not one we've seen before - lets map it */
388 	err = cs_etm__map_trace_id(trace_chan_id, cpu_data);
389 	if (err)
390 		return err;
391 
392 	/*
393 	 * if we are picking up the association from the packet, need to plug
394 	 * the correct trace ID into the metadata for setting up decoders later.
395 	 */
396 	err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data);
397 	return err;
398 }
399 
400 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
401 					      u8 trace_chan_id)
402 {
403 	/*
404 	 * When a timestamp packet is encountered the backend code
405 	 * is stopped so that the front end has time to process packets
406 	 * that were accumulated in the traceID queue.  Since there can
407 	 * be more than one channel per cs_etm_queue, we need to specify
408 	 * what traceID queue needs servicing.
409 	 */
410 	etmq->pending_timestamp_chan_id = trace_chan_id;
411 }
412 
413 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
414 				      u8 *trace_chan_id)
415 {
416 	struct cs_etm_packet_queue *packet_queue;
417 
418 	if (!etmq->pending_timestamp_chan_id)
419 		return 0;
420 
421 	if (trace_chan_id)
422 		*trace_chan_id = etmq->pending_timestamp_chan_id;
423 
424 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
425 						     etmq->pending_timestamp_chan_id);
426 	if (!packet_queue)
427 		return 0;
428 
429 	/* Acknowledge pending status */
430 	etmq->pending_timestamp_chan_id = 0;
431 
432 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
433 	return packet_queue->cs_timestamp;
434 }
435 
436 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
437 {
438 	int i;
439 
440 	queue->head = 0;
441 	queue->tail = 0;
442 	queue->packet_count = 0;
443 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
444 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
445 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
446 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
447 		queue->packet_buffer[i].instr_count = 0;
448 		queue->packet_buffer[i].last_instr_taken_branch = false;
449 		queue->packet_buffer[i].last_instr_size = 0;
450 		queue->packet_buffer[i].last_instr_type = 0;
451 		queue->packet_buffer[i].last_instr_subtype = 0;
452 		queue->packet_buffer[i].last_instr_cond = 0;
453 		queue->packet_buffer[i].flags = 0;
454 		queue->packet_buffer[i].exception_number = UINT32_MAX;
455 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
456 		queue->packet_buffer[i].cpu = INT_MIN;
457 	}
458 }
459 
460 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
461 {
462 	int idx;
463 	struct int_node *inode;
464 	struct cs_etm_traceid_queue *tidq;
465 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
466 
467 	intlist__for_each_entry(inode, traceid_queues_list) {
468 		idx = (int)(intptr_t)inode->priv;
469 		tidq = etmq->traceid_queues[idx];
470 		cs_etm__clear_packet_queue(&tidq->packet_queue);
471 	}
472 }
473 
474 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
475 				      struct cs_etm_traceid_queue *tidq,
476 				      u8 trace_chan_id)
477 {
478 	int rc = -ENOMEM;
479 	struct auxtrace_queue *queue;
480 	struct cs_etm_auxtrace *etm = etmq->etm;
481 
482 	cs_etm__clear_packet_queue(&tidq->packet_queue);
483 
484 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
485 	tidq->trace_chan_id = trace_chan_id;
486 	tidq->el = tidq->prev_packet_el = ocsd_EL_unknown;
487 	tidq->thread = machine__findnew_thread(&etm->session->machines.host, -1,
488 					       queue->tid);
489 	tidq->prev_packet_thread = machine__idle_thread(&etm->session->machines.host);
490 
491 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
492 	if (!tidq->packet)
493 		goto out;
494 
495 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
496 	if (!tidq->prev_packet)
497 		goto out_free;
498 
499 	if (etm->synth_opts.last_branch) {
500 		size_t sz = sizeof(struct branch_stack);
501 
502 		sz += etm->synth_opts.last_branch_sz *
503 		      sizeof(struct branch_entry);
504 		tidq->last_branch = zalloc(sz);
505 		if (!tidq->last_branch)
506 			goto out_free;
507 		tidq->last_branch_rb = zalloc(sz);
508 		if (!tidq->last_branch_rb)
509 			goto out_free;
510 	}
511 
512 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
513 	if (!tidq->event_buf)
514 		goto out_free;
515 
516 	return 0;
517 
518 out_free:
519 	zfree(&tidq->last_branch_rb);
520 	zfree(&tidq->last_branch);
521 	zfree(&tidq->prev_packet);
522 	zfree(&tidq->packet);
523 out:
524 	return rc;
525 }
526 
527 static struct cs_etm_traceid_queue
528 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
529 {
530 	int idx;
531 	struct int_node *inode;
532 	struct intlist *traceid_queues_list;
533 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
534 	struct cs_etm_auxtrace *etm = etmq->etm;
535 
536 	if (etm->per_thread_decoding)
537 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
538 
539 	traceid_queues_list = etmq->traceid_queues_list;
540 
541 	/*
542 	 * Check if the traceid_queue exist for this traceID by looking
543 	 * in the queue list.
544 	 */
545 	inode = intlist__find(traceid_queues_list, trace_chan_id);
546 	if (inode) {
547 		idx = (int)(intptr_t)inode->priv;
548 		return etmq->traceid_queues[idx];
549 	}
550 
551 	/* We couldn't find a traceid_queue for this traceID, allocate one */
552 	tidq = malloc(sizeof(*tidq));
553 	if (!tidq)
554 		return NULL;
555 
556 	memset(tidq, 0, sizeof(*tidq));
557 
558 	/* Get a valid index for the new traceid_queue */
559 	idx = intlist__nr_entries(traceid_queues_list);
560 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
561 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
562 	if (!inode)
563 		goto out_free;
564 
565 	/* Associate this traceID with this index */
566 	inode->priv = (void *)(intptr_t)idx;
567 
568 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
569 		goto out_free;
570 
571 	/* Grow the traceid_queues array by one unit */
572 	traceid_queues = etmq->traceid_queues;
573 	traceid_queues = reallocarray(traceid_queues,
574 				      idx + 1,
575 				      sizeof(*traceid_queues));
576 
577 	/*
578 	 * On failure reallocarray() returns NULL and the original block of
579 	 * memory is left untouched.
580 	 */
581 	if (!traceid_queues)
582 		goto out_free;
583 
584 	traceid_queues[idx] = tidq;
585 	etmq->traceid_queues = traceid_queues;
586 
587 	return etmq->traceid_queues[idx];
588 
589 out_free:
590 	/*
591 	 * Function intlist__remove() removes the inode from the list
592 	 * and delete the memory associated to it.
593 	 */
594 	intlist__remove(traceid_queues_list, inode);
595 	free(tidq);
596 
597 	return NULL;
598 }
599 
600 struct cs_etm_packet_queue
601 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
602 {
603 	struct cs_etm_traceid_queue *tidq;
604 
605 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
606 	if (tidq)
607 		return &tidq->packet_queue;
608 
609 	return NULL;
610 }
611 
612 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
613 				struct cs_etm_traceid_queue *tidq)
614 {
615 	struct cs_etm_packet *tmp;
616 
617 	if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
618 	    etm->synth_opts.instructions) {
619 		/*
620 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
621 		 * the next incoming packet.
622 		 *
623 		 * Threads and exception levels are also tracked for both the
624 		 * previous and current packets. This is because the previous
625 		 * packet is used for the 'from' IP for branch samples, so the
626 		 * thread at that time must also be assigned to that sample.
627 		 * Across discontinuity packets the thread can change, so by
628 		 * tracking the thread for the previous packet the branch sample
629 		 * will have the correct info.
630 		 */
631 		tmp = tidq->packet;
632 		tidq->packet = tidq->prev_packet;
633 		tidq->prev_packet = tmp;
634 		tidq->prev_packet_el = tidq->el;
635 		thread__put(tidq->prev_packet_thread);
636 		tidq->prev_packet_thread = thread__get(tidq->thread);
637 	}
638 }
639 
640 static void cs_etm__packet_dump(const char *pkt_string)
641 {
642 	const char *color = PERF_COLOR_BLUE;
643 	int len = strlen(pkt_string);
644 
645 	if (len && (pkt_string[len-1] == '\n'))
646 		color_fprintf(stdout, color, "	%s", pkt_string);
647 	else
648 		color_fprintf(stdout, color, "	%s\n", pkt_string);
649 
650 	fflush(stdout);
651 }
652 
653 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
654 					  struct cs_etm_auxtrace *etm, int idx,
655 					  u32 etmidr)
656 {
657 	u64 **metadata = etm->metadata;
658 
659 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
660 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
661 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
662 }
663 
664 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
665 					  struct cs_etm_auxtrace *etm, int idx)
666 {
667 	u64 **metadata = etm->metadata;
668 
669 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
670 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
671 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
672 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
673 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
674 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
675 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
676 }
677 
678 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
679 					  struct cs_etm_auxtrace *etm, int idx)
680 {
681 	u64 **metadata = etm->metadata;
682 
683 	t_params[idx].protocol = CS_ETM_PROTO_ETE;
684 	t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETE_TRCIDR0];
685 	t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETE_TRCIDR1];
686 	t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETE_TRCIDR2];
687 	t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETE_TRCIDR8];
688 	t_params[idx].ete.reg_configr = metadata[idx][CS_ETE_TRCCONFIGR];
689 	t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETE_TRCTRACEIDR];
690 	t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
691 }
692 
693 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
694 				     struct cs_etm_auxtrace *etm,
695 				     int decoders)
696 {
697 	int i;
698 	u32 etmidr;
699 	u64 architecture;
700 
701 	for (i = 0; i < decoders; i++) {
702 		architecture = etm->metadata[i][CS_ETM_MAGIC];
703 
704 		switch (architecture) {
705 		case __perf_cs_etmv3_magic:
706 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
707 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
708 			break;
709 		case __perf_cs_etmv4_magic:
710 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
711 			break;
712 		case __perf_cs_ete_magic:
713 			cs_etm__set_trace_param_ete(t_params, etm, i);
714 			break;
715 		default:
716 			return -EINVAL;
717 		}
718 	}
719 
720 	return 0;
721 }
722 
723 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
724 				       struct cs_etm_queue *etmq,
725 				       enum cs_etm_decoder_operation mode,
726 				       bool formatted)
727 {
728 	int ret = -EINVAL;
729 
730 	if (!(mode < CS_ETM_OPERATION_MAX))
731 		goto out;
732 
733 	d_params->packet_printer = cs_etm__packet_dump;
734 	d_params->operation = mode;
735 	d_params->data = etmq;
736 	d_params->formatted = formatted;
737 	d_params->fsyncs = false;
738 	d_params->hsyncs = false;
739 	d_params->frame_aligned = true;
740 
741 	ret = 0;
742 out:
743 	return ret;
744 }
745 
746 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
747 			       struct auxtrace_buffer *buffer)
748 {
749 	int ret;
750 	const char *color = PERF_COLOR_BLUE;
751 	size_t buffer_used = 0;
752 
753 	fprintf(stdout, "\n");
754 	color_fprintf(stdout, color,
755 		     ". ... CoreSight %s Trace data: size %#zx bytes\n",
756 		     cs_etm_decoder__get_name(etmq->decoder), buffer->size);
757 
758 	do {
759 		size_t consumed;
760 
761 		ret = cs_etm_decoder__process_data_block(
762 				etmq->decoder, buffer->offset,
763 				&((u8 *)buffer->data)[buffer_used],
764 				buffer->size - buffer_used, &consumed);
765 		if (ret)
766 			break;
767 
768 		buffer_used += consumed;
769 	} while (buffer_used < buffer->size);
770 
771 	cs_etm_decoder__reset(etmq->decoder);
772 }
773 
774 static int cs_etm__flush_events(struct perf_session *session,
775 				struct perf_tool *tool)
776 {
777 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
778 						   struct cs_etm_auxtrace,
779 						   auxtrace);
780 	if (dump_trace)
781 		return 0;
782 
783 	if (!tool->ordered_events)
784 		return -EINVAL;
785 
786 	if (etm->timeless_decoding) {
787 		/*
788 		 * Pass tid = -1 to process all queues. But likely they will have
789 		 * already been processed on PERF_RECORD_EXIT anyway.
790 		 */
791 		return cs_etm__process_timeless_queues(etm, -1);
792 	}
793 
794 	return cs_etm__process_timestamped_queues(etm);
795 }
796 
797 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
798 {
799 	int idx;
800 	uintptr_t priv;
801 	struct int_node *inode, *tmp;
802 	struct cs_etm_traceid_queue *tidq;
803 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
804 
805 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
806 		priv = (uintptr_t)inode->priv;
807 		idx = priv;
808 
809 		/* Free this traceid_queue from the array */
810 		tidq = etmq->traceid_queues[idx];
811 		thread__zput(tidq->thread);
812 		thread__zput(tidq->prev_packet_thread);
813 		zfree(&tidq->event_buf);
814 		zfree(&tidq->last_branch);
815 		zfree(&tidq->last_branch_rb);
816 		zfree(&tidq->prev_packet);
817 		zfree(&tidq->packet);
818 		zfree(&tidq);
819 
820 		/*
821 		 * Function intlist__remove() removes the inode from the list
822 		 * and delete the memory associated to it.
823 		 */
824 		intlist__remove(traceid_queues_list, inode);
825 	}
826 
827 	/* Then the RB tree itself */
828 	intlist__delete(traceid_queues_list);
829 	etmq->traceid_queues_list = NULL;
830 
831 	/* finally free the traceid_queues array */
832 	zfree(&etmq->traceid_queues);
833 }
834 
835 static void cs_etm__free_queue(void *priv)
836 {
837 	struct cs_etm_queue *etmq = priv;
838 
839 	if (!etmq)
840 		return;
841 
842 	cs_etm_decoder__free(etmq->decoder);
843 	cs_etm__free_traceid_queues(etmq);
844 	free(etmq);
845 }
846 
847 static void cs_etm__free_events(struct perf_session *session)
848 {
849 	unsigned int i;
850 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
851 						   struct cs_etm_auxtrace,
852 						   auxtrace);
853 	struct auxtrace_queues *queues = &aux->queues;
854 
855 	for (i = 0; i < queues->nr_queues; i++) {
856 		cs_etm__free_queue(queues->queue_array[i].priv);
857 		queues->queue_array[i].priv = NULL;
858 	}
859 
860 	auxtrace_queues__free(queues);
861 }
862 
863 static void cs_etm__free(struct perf_session *session)
864 {
865 	int i;
866 	struct int_node *inode, *tmp;
867 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
868 						   struct cs_etm_auxtrace,
869 						   auxtrace);
870 	cs_etm__free_events(session);
871 	session->auxtrace = NULL;
872 
873 	/* First remove all traceID/metadata nodes for the RB tree */
874 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
875 		intlist__remove(traceid_list, inode);
876 	/* Then the RB tree itself */
877 	intlist__delete(traceid_list);
878 
879 	for (i = 0; i < aux->num_cpu; i++)
880 		zfree(&aux->metadata[i]);
881 
882 	zfree(&aux->metadata);
883 	zfree(&aux);
884 }
885 
886 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
887 				      struct evsel *evsel)
888 {
889 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
890 						   struct cs_etm_auxtrace,
891 						   auxtrace);
892 
893 	return evsel->core.attr.type == aux->pmu_type;
894 }
895 
896 static struct machine *cs_etm__get_machine(struct cs_etm_queue *etmq,
897 					   ocsd_ex_level el)
898 {
899 	enum cs_etm_pid_fmt pid_fmt = cs_etm__get_pid_fmt(etmq);
900 
901 	/*
902 	 * For any virtualisation based on nVHE (e.g. pKVM), or host kernels
903 	 * running at EL1 assume everything is the host.
904 	 */
905 	if (pid_fmt == CS_ETM_PIDFMT_CTXTID)
906 		return &etmq->etm->session->machines.host;
907 
908 	/*
909 	 * Not perfect, but otherwise assume anything in EL1 is the default
910 	 * guest, and everything else is the host. Distinguishing between guest
911 	 * and host userspaces isn't currently supported either. Neither is
912 	 * multiple guest support. All this does is reduce the likeliness of
913 	 * decode errors where we look into the host kernel maps when it should
914 	 * have been the guest maps.
915 	 */
916 	switch (el) {
917 	case ocsd_EL1:
918 		return machines__find_guest(&etmq->etm->session->machines,
919 					    DEFAULT_GUEST_KERNEL_ID);
920 	case ocsd_EL3:
921 	case ocsd_EL2:
922 	case ocsd_EL0:
923 	case ocsd_EL_unknown:
924 	default:
925 		return &etmq->etm->session->machines.host;
926 	}
927 }
928 
929 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address,
930 			   ocsd_ex_level el)
931 {
932 	struct machine *machine = cs_etm__get_machine(etmq, el);
933 
934 	if (address >= machine__kernel_start(machine)) {
935 		if (machine__is_host(machine))
936 			return PERF_RECORD_MISC_KERNEL;
937 		else
938 			return PERF_RECORD_MISC_GUEST_KERNEL;
939 	} else {
940 		if (machine__is_host(machine))
941 			return PERF_RECORD_MISC_USER;
942 		else {
943 			/*
944 			 * Can't really happen at the moment because
945 			 * cs_etm__get_machine() will always return
946 			 * machines.host for any non EL1 trace.
947 			 */
948 			return PERF_RECORD_MISC_GUEST_USER;
949 		}
950 	}
951 }
952 
953 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
954 			      u64 address, size_t size, u8 *buffer,
955 			      const ocsd_mem_space_acc_t mem_space)
956 {
957 	u8  cpumode;
958 	u64 offset;
959 	int len;
960 	struct addr_location al;
961 	struct dso *dso;
962 	struct cs_etm_traceid_queue *tidq;
963 	int ret = 0;
964 
965 	if (!etmq)
966 		return 0;
967 
968 	addr_location__init(&al);
969 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
970 	if (!tidq)
971 		goto out;
972 
973 	/*
974 	 * We've already tracked EL along side the PID in cs_etm__set_thread()
975 	 * so double check that it matches what OpenCSD thinks as well. It
976 	 * doesn't distinguish between EL0 and EL1 for this mem access callback
977 	 * so we had to do the extra tracking. Skip validation if it's any of
978 	 * the 'any' values.
979 	 */
980 	if (!(mem_space == OCSD_MEM_SPACE_ANY ||
981 	      mem_space == OCSD_MEM_SPACE_N || mem_space == OCSD_MEM_SPACE_S)) {
982 		if (mem_space & OCSD_MEM_SPACE_EL1N) {
983 			/* Includes both non secure EL1 and EL0 */
984 			assert(tidq->el == ocsd_EL1 || tidq->el == ocsd_EL0);
985 		} else if (mem_space & OCSD_MEM_SPACE_EL2)
986 			assert(tidq->el == ocsd_EL2);
987 		else if (mem_space & OCSD_MEM_SPACE_EL3)
988 			assert(tidq->el == ocsd_EL3);
989 	}
990 
991 	cpumode = cs_etm__cpu_mode(etmq, address, tidq->el);
992 
993 	if (!thread__find_map(tidq->thread, cpumode, address, &al))
994 		goto out;
995 
996 	dso = map__dso(al.map);
997 	if (!dso)
998 		goto out;
999 
1000 	if (dso->data.status == DSO_DATA_STATUS_ERROR &&
1001 	    dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE))
1002 		goto out;
1003 
1004 	offset = map__map_ip(al.map, address);
1005 
1006 	map__load(al.map);
1007 
1008 	len = dso__data_read_offset(dso, maps__machine(thread__maps(tidq->thread)),
1009 				    offset, buffer, size);
1010 
1011 	if (len <= 0) {
1012 		ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
1013 				 "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
1014 		if (!dso->auxtrace_warned) {
1015 			pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
1016 				    address,
1017 				    dso->long_name ? dso->long_name : "Unknown");
1018 			dso->auxtrace_warned = true;
1019 		}
1020 		goto out;
1021 	}
1022 	ret = len;
1023 out:
1024 	addr_location__exit(&al);
1025 	return ret;
1026 }
1027 
1028 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
1029 						bool formatted)
1030 {
1031 	struct cs_etm_decoder_params d_params;
1032 	struct cs_etm_trace_params  *t_params = NULL;
1033 	struct cs_etm_queue *etmq;
1034 	/*
1035 	 * Each queue can only contain data from one CPU when unformatted, so only one decoder is
1036 	 * needed.
1037 	 */
1038 	int decoders = formatted ? etm->num_cpu : 1;
1039 
1040 	etmq = zalloc(sizeof(*etmq));
1041 	if (!etmq)
1042 		return NULL;
1043 
1044 	etmq->traceid_queues_list = intlist__new(NULL);
1045 	if (!etmq->traceid_queues_list)
1046 		goto out_free;
1047 
1048 	/* Use metadata to fill in trace parameters for trace decoder */
1049 	t_params = zalloc(sizeof(*t_params) * decoders);
1050 
1051 	if (!t_params)
1052 		goto out_free;
1053 
1054 	if (cs_etm__init_trace_params(t_params, etm, decoders))
1055 		goto out_free;
1056 
1057 	/* Set decoder parameters to decode trace packets */
1058 	if (cs_etm__init_decoder_params(&d_params, etmq,
1059 					dump_trace ? CS_ETM_OPERATION_PRINT :
1060 						     CS_ETM_OPERATION_DECODE,
1061 					formatted))
1062 		goto out_free;
1063 
1064 	etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
1065 					    t_params);
1066 
1067 	if (!etmq->decoder)
1068 		goto out_free;
1069 
1070 	/*
1071 	 * Register a function to handle all memory accesses required by
1072 	 * the trace decoder library.
1073 	 */
1074 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
1075 					      0x0L, ((u64) -1L),
1076 					      cs_etm__mem_access))
1077 		goto out_free_decoder;
1078 
1079 	zfree(&t_params);
1080 	return etmq;
1081 
1082 out_free_decoder:
1083 	cs_etm_decoder__free(etmq->decoder);
1084 out_free:
1085 	intlist__delete(etmq->traceid_queues_list);
1086 	free(etmq);
1087 
1088 	return NULL;
1089 }
1090 
1091 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
1092 			       struct auxtrace_queue *queue,
1093 			       unsigned int queue_nr,
1094 			       bool formatted)
1095 {
1096 	struct cs_etm_queue *etmq = queue->priv;
1097 
1098 	if (list_empty(&queue->head) || etmq)
1099 		return 0;
1100 
1101 	etmq = cs_etm__alloc_queue(etm, formatted);
1102 
1103 	if (!etmq)
1104 		return -ENOMEM;
1105 
1106 	queue->priv = etmq;
1107 	etmq->etm = etm;
1108 	etmq->queue_nr = queue_nr;
1109 	etmq->offset = 0;
1110 
1111 	return 0;
1112 }
1113 
1114 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
1115 					    struct cs_etm_queue *etmq,
1116 					    unsigned int queue_nr)
1117 {
1118 	int ret = 0;
1119 	unsigned int cs_queue_nr;
1120 	u8 trace_chan_id;
1121 	u64 cs_timestamp;
1122 
1123 	/*
1124 	 * We are under a CPU-wide trace scenario.  As such we need to know
1125 	 * when the code that generated the traces started to execute so that
1126 	 * it can be correlated with execution on other CPUs.  So we get a
1127 	 * handle on the beginning of traces and decode until we find a
1128 	 * timestamp.  The timestamp is then added to the auxtrace min heap
1129 	 * in order to know what nibble (of all the etmqs) to decode first.
1130 	 */
1131 	while (1) {
1132 		/*
1133 		 * Fetch an aux_buffer from this etmq.  Bail if no more
1134 		 * blocks or an error has been encountered.
1135 		 */
1136 		ret = cs_etm__get_data_block(etmq);
1137 		if (ret <= 0)
1138 			goto out;
1139 
1140 		/*
1141 		 * Run decoder on the trace block.  The decoder will stop when
1142 		 * encountering a CS timestamp, a full packet queue or the end of
1143 		 * trace for that block.
1144 		 */
1145 		ret = cs_etm__decode_data_block(etmq);
1146 		if (ret)
1147 			goto out;
1148 
1149 		/*
1150 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
1151 		 * the timestamp calculation for us.
1152 		 */
1153 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
1154 
1155 		/* We found a timestamp, no need to continue. */
1156 		if (cs_timestamp)
1157 			break;
1158 
1159 		/*
1160 		 * We didn't find a timestamp so empty all the traceid packet
1161 		 * queues before looking for another timestamp packet, either
1162 		 * in the current data block or a new one.  Packets that were
1163 		 * just decoded are useless since no timestamp has been
1164 		 * associated with them.  As such simply discard them.
1165 		 */
1166 		cs_etm__clear_all_packet_queues(etmq);
1167 	}
1168 
1169 	/*
1170 	 * We have a timestamp.  Add it to the min heap to reflect when
1171 	 * instructions conveyed by the range packets of this traceID queue
1172 	 * started to execute.  Once the same has been done for all the traceID
1173 	 * queues of each etmq, redenring and decoding can start in
1174 	 * chronological order.
1175 	 *
1176 	 * Note that packets decoded above are still in the traceID's packet
1177 	 * queue and will be processed in cs_etm__process_timestamped_queues().
1178 	 */
1179 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
1180 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
1181 out:
1182 	return ret;
1183 }
1184 
1185 static inline
1186 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
1187 				 struct cs_etm_traceid_queue *tidq)
1188 {
1189 	struct branch_stack *bs_src = tidq->last_branch_rb;
1190 	struct branch_stack *bs_dst = tidq->last_branch;
1191 	size_t nr = 0;
1192 
1193 	/*
1194 	 * Set the number of records before early exit: ->nr is used to
1195 	 * determine how many branches to copy from ->entries.
1196 	 */
1197 	bs_dst->nr = bs_src->nr;
1198 
1199 	/*
1200 	 * Early exit when there is nothing to copy.
1201 	 */
1202 	if (!bs_src->nr)
1203 		return;
1204 
1205 	/*
1206 	 * As bs_src->entries is a circular buffer, we need to copy from it in
1207 	 * two steps.  First, copy the branches from the most recently inserted
1208 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
1209 	 */
1210 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
1211 	memcpy(&bs_dst->entries[0],
1212 	       &bs_src->entries[tidq->last_branch_pos],
1213 	       sizeof(struct branch_entry) * nr);
1214 
1215 	/*
1216 	 * If we wrapped around at least once, the branches from the beginning
1217 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
1218 	 * are older valid branches: copy them over.  The total number of
1219 	 * branches copied over will be equal to the number of branches asked by
1220 	 * the user in last_branch_sz.
1221 	 */
1222 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
1223 		memcpy(&bs_dst->entries[nr],
1224 		       &bs_src->entries[0],
1225 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
1226 	}
1227 }
1228 
1229 static inline
1230 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
1231 {
1232 	tidq->last_branch_pos = 0;
1233 	tidq->last_branch_rb->nr = 0;
1234 }
1235 
1236 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
1237 					 u8 trace_chan_id, u64 addr)
1238 {
1239 	u8 instrBytes[2];
1240 
1241 	cs_etm__mem_access(etmq, trace_chan_id, addr, ARRAY_SIZE(instrBytes),
1242 			   instrBytes, 0);
1243 	/*
1244 	 * T32 instruction size is indicated by bits[15:11] of the first
1245 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
1246 	 * denote a 32-bit instruction.
1247 	 */
1248 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
1249 }
1250 
1251 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
1252 {
1253 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1254 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
1255 		return 0;
1256 
1257 	return packet->start_addr;
1258 }
1259 
1260 static inline
1261 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
1262 {
1263 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1264 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
1265 		return 0;
1266 
1267 	return packet->end_addr - packet->last_instr_size;
1268 }
1269 
1270 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
1271 				     u64 trace_chan_id,
1272 				     const struct cs_etm_packet *packet,
1273 				     u64 offset)
1274 {
1275 	if (packet->isa == CS_ETM_ISA_T32) {
1276 		u64 addr = packet->start_addr;
1277 
1278 		while (offset) {
1279 			addr += cs_etm__t32_instr_size(etmq,
1280 						       trace_chan_id, addr);
1281 			offset--;
1282 		}
1283 		return addr;
1284 	}
1285 
1286 	/* Assume a 4 byte instruction size (A32/A64) */
1287 	return packet->start_addr + offset * 4;
1288 }
1289 
1290 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1291 					  struct cs_etm_traceid_queue *tidq)
1292 {
1293 	struct branch_stack *bs = tidq->last_branch_rb;
1294 	struct branch_entry *be;
1295 
1296 	/*
1297 	 * The branches are recorded in a circular buffer in reverse
1298 	 * chronological order: we start recording from the last element of the
1299 	 * buffer down.  After writing the first element of the stack, move the
1300 	 * insert position back to the end of the buffer.
1301 	 */
1302 	if (!tidq->last_branch_pos)
1303 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1304 
1305 	tidq->last_branch_pos -= 1;
1306 
1307 	be       = &bs->entries[tidq->last_branch_pos];
1308 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1309 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1310 	/* No support for mispredict */
1311 	be->flags.mispred = 0;
1312 	be->flags.predicted = 1;
1313 
1314 	/*
1315 	 * Increment bs->nr until reaching the number of last branches asked by
1316 	 * the user on the command line.
1317 	 */
1318 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1319 		bs->nr += 1;
1320 }
1321 
1322 static int cs_etm__inject_event(union perf_event *event,
1323 			       struct perf_sample *sample, u64 type)
1324 {
1325 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1326 	return perf_event__synthesize_sample(event, type, 0, sample);
1327 }
1328 
1329 
1330 static int
1331 cs_etm__get_trace(struct cs_etm_queue *etmq)
1332 {
1333 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1334 	struct auxtrace_buffer *old_buffer = aux_buffer;
1335 	struct auxtrace_queue *queue;
1336 
1337 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1338 
1339 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1340 
1341 	/* If no more data, drop the previous auxtrace_buffer and return */
1342 	if (!aux_buffer) {
1343 		if (old_buffer)
1344 			auxtrace_buffer__drop_data(old_buffer);
1345 		etmq->buf_len = 0;
1346 		return 0;
1347 	}
1348 
1349 	etmq->buffer = aux_buffer;
1350 
1351 	/* If the aux_buffer doesn't have data associated, try to load it */
1352 	if (!aux_buffer->data) {
1353 		/* get the file desc associated with the perf data file */
1354 		int fd = perf_data__fd(etmq->etm->session->data);
1355 
1356 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1357 		if (!aux_buffer->data)
1358 			return -ENOMEM;
1359 	}
1360 
1361 	/* If valid, drop the previous buffer */
1362 	if (old_buffer)
1363 		auxtrace_buffer__drop_data(old_buffer);
1364 
1365 	etmq->buf_used = 0;
1366 	etmq->buf_len = aux_buffer->size;
1367 	etmq->buf = aux_buffer->data;
1368 
1369 	return etmq->buf_len;
1370 }
1371 
1372 static void cs_etm__set_thread(struct cs_etm_queue *etmq,
1373 			       struct cs_etm_traceid_queue *tidq, pid_t tid,
1374 			       ocsd_ex_level el)
1375 {
1376 	struct machine *machine = cs_etm__get_machine(etmq, el);
1377 
1378 	if (tid != -1) {
1379 		thread__zput(tidq->thread);
1380 		tidq->thread = machine__find_thread(machine, -1, tid);
1381 	}
1382 
1383 	/* Couldn't find a known thread */
1384 	if (!tidq->thread)
1385 		tidq->thread = machine__idle_thread(machine);
1386 
1387 	tidq->el = el;
1388 }
1389 
1390 int cs_etm__etmq_set_tid_el(struct cs_etm_queue *etmq, pid_t tid,
1391 			    u8 trace_chan_id, ocsd_ex_level el)
1392 {
1393 	struct cs_etm_traceid_queue *tidq;
1394 
1395 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1396 	if (!tidq)
1397 		return -EINVAL;
1398 
1399 	cs_etm__set_thread(etmq, tidq, tid, el);
1400 	return 0;
1401 }
1402 
1403 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1404 {
1405 	return !!etmq->etm->timeless_decoding;
1406 }
1407 
1408 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1409 			      u64 trace_chan_id,
1410 			      const struct cs_etm_packet *packet,
1411 			      struct perf_sample *sample)
1412 {
1413 	/*
1414 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1415 	 * packet, so directly bail out with 'insn_len' = 0.
1416 	 */
1417 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1418 		sample->insn_len = 0;
1419 		return;
1420 	}
1421 
1422 	/*
1423 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1424 	 * cs_etm__t32_instr_size().
1425 	 */
1426 	if (packet->isa == CS_ETM_ISA_T32)
1427 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1428 							  sample->ip);
1429 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1430 	else
1431 		sample->insn_len = 4;
1432 
1433 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip, sample->insn_len,
1434 			   (void *)sample->insn, 0);
1435 }
1436 
1437 u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp)
1438 {
1439 	struct cs_etm_auxtrace *etm = etmq->etm;
1440 
1441 	if (etm->has_virtual_ts)
1442 		return tsc_to_perf_time(cs_timestamp, &etm->tc);
1443 	else
1444 		return cs_timestamp;
1445 }
1446 
1447 static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq,
1448 					       struct cs_etm_traceid_queue *tidq)
1449 {
1450 	struct cs_etm_auxtrace *etm = etmq->etm;
1451 	struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue;
1452 
1453 	if (!etm->timeless_decoding && etm->has_virtual_ts)
1454 		return packet_queue->cs_timestamp;
1455 	else
1456 		return etm->latest_kernel_timestamp;
1457 }
1458 
1459 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1460 					    struct cs_etm_traceid_queue *tidq,
1461 					    u64 addr, u64 period)
1462 {
1463 	int ret = 0;
1464 	struct cs_etm_auxtrace *etm = etmq->etm;
1465 	union perf_event *event = tidq->event_buf;
1466 	struct perf_sample sample = {.ip = 0,};
1467 
1468 	event->sample.header.type = PERF_RECORD_SAMPLE;
1469 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr, tidq->el);
1470 	event->sample.header.size = sizeof(struct perf_event_header);
1471 
1472 	/* Set time field based on etm auxtrace config. */
1473 	sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1474 
1475 	sample.ip = addr;
1476 	sample.pid = thread__pid(tidq->thread);
1477 	sample.tid = thread__tid(tidq->thread);
1478 	sample.id = etmq->etm->instructions_id;
1479 	sample.stream_id = etmq->etm->instructions_id;
1480 	sample.period = period;
1481 	sample.cpu = tidq->packet->cpu;
1482 	sample.flags = tidq->prev_packet->flags;
1483 	sample.cpumode = event->sample.header.misc;
1484 
1485 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1486 
1487 	if (etm->synth_opts.last_branch)
1488 		sample.branch_stack = tidq->last_branch;
1489 
1490 	if (etm->synth_opts.inject) {
1491 		ret = cs_etm__inject_event(event, &sample,
1492 					   etm->instructions_sample_type);
1493 		if (ret)
1494 			return ret;
1495 	}
1496 
1497 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1498 
1499 	if (ret)
1500 		pr_err(
1501 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1502 			ret);
1503 
1504 	return ret;
1505 }
1506 
1507 /*
1508  * The cs etm packet encodes an instruction range between a branch target
1509  * and the next taken branch. Generate sample accordingly.
1510  */
1511 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1512 				       struct cs_etm_traceid_queue *tidq)
1513 {
1514 	int ret = 0;
1515 	struct cs_etm_auxtrace *etm = etmq->etm;
1516 	struct perf_sample sample = {.ip = 0,};
1517 	union perf_event *event = tidq->event_buf;
1518 	struct dummy_branch_stack {
1519 		u64			nr;
1520 		u64			hw_idx;
1521 		struct branch_entry	entries;
1522 	} dummy_bs;
1523 	u64 ip;
1524 
1525 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1526 
1527 	event->sample.header.type = PERF_RECORD_SAMPLE;
1528 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip,
1529 						     tidq->prev_packet_el);
1530 	event->sample.header.size = sizeof(struct perf_event_header);
1531 
1532 	/* Set time field based on etm auxtrace config. */
1533 	sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1534 
1535 	sample.ip = ip;
1536 	sample.pid = thread__pid(tidq->prev_packet_thread);
1537 	sample.tid = thread__tid(tidq->prev_packet_thread);
1538 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1539 	sample.id = etmq->etm->branches_id;
1540 	sample.stream_id = etmq->etm->branches_id;
1541 	sample.period = 1;
1542 	sample.cpu = tidq->packet->cpu;
1543 	sample.flags = tidq->prev_packet->flags;
1544 	sample.cpumode = event->sample.header.misc;
1545 
1546 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1547 			  &sample);
1548 
1549 	/*
1550 	 * perf report cannot handle events without a branch stack
1551 	 */
1552 	if (etm->synth_opts.last_branch) {
1553 		dummy_bs = (struct dummy_branch_stack){
1554 			.nr = 1,
1555 			.hw_idx = -1ULL,
1556 			.entries = {
1557 				.from = sample.ip,
1558 				.to = sample.addr,
1559 			},
1560 		};
1561 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1562 	}
1563 
1564 	if (etm->synth_opts.inject) {
1565 		ret = cs_etm__inject_event(event, &sample,
1566 					   etm->branches_sample_type);
1567 		if (ret)
1568 			return ret;
1569 	}
1570 
1571 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1572 
1573 	if (ret)
1574 		pr_err(
1575 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1576 		ret);
1577 
1578 	return ret;
1579 }
1580 
1581 struct cs_etm_synth {
1582 	struct perf_tool dummy_tool;
1583 	struct perf_session *session;
1584 };
1585 
1586 static int cs_etm__event_synth(struct perf_tool *tool,
1587 			       union perf_event *event,
1588 			       struct perf_sample *sample __maybe_unused,
1589 			       struct machine *machine __maybe_unused)
1590 {
1591 	struct cs_etm_synth *cs_etm_synth =
1592 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1593 
1594 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1595 						 event, NULL);
1596 }
1597 
1598 static int cs_etm__synth_event(struct perf_session *session,
1599 			       struct perf_event_attr *attr, u64 id)
1600 {
1601 	struct cs_etm_synth cs_etm_synth;
1602 
1603 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1604 	cs_etm_synth.session = session;
1605 
1606 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1607 					   &id, cs_etm__event_synth);
1608 }
1609 
1610 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1611 				struct perf_session *session)
1612 {
1613 	struct evlist *evlist = session->evlist;
1614 	struct evsel *evsel;
1615 	struct perf_event_attr attr;
1616 	bool found = false;
1617 	u64 id;
1618 	int err;
1619 
1620 	evlist__for_each_entry(evlist, evsel) {
1621 		if (evsel->core.attr.type == etm->pmu_type) {
1622 			found = true;
1623 			break;
1624 		}
1625 	}
1626 
1627 	if (!found) {
1628 		pr_debug("No selected events with CoreSight Trace data\n");
1629 		return 0;
1630 	}
1631 
1632 	memset(&attr, 0, sizeof(struct perf_event_attr));
1633 	attr.size = sizeof(struct perf_event_attr);
1634 	attr.type = PERF_TYPE_HARDWARE;
1635 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1636 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1637 			    PERF_SAMPLE_PERIOD;
1638 	if (etm->timeless_decoding)
1639 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1640 	else
1641 		attr.sample_type |= PERF_SAMPLE_TIME;
1642 
1643 	attr.exclude_user = evsel->core.attr.exclude_user;
1644 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1645 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1646 	attr.exclude_host = evsel->core.attr.exclude_host;
1647 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1648 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1649 	attr.read_format = evsel->core.attr.read_format;
1650 
1651 	/* create new id val to be a fixed offset from evsel id */
1652 	id = evsel->core.id[0] + 1000000000;
1653 
1654 	if (!id)
1655 		id = 1;
1656 
1657 	if (etm->synth_opts.branches) {
1658 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1659 		attr.sample_period = 1;
1660 		attr.sample_type |= PERF_SAMPLE_ADDR;
1661 		err = cs_etm__synth_event(session, &attr, id);
1662 		if (err)
1663 			return err;
1664 		etm->branches_sample_type = attr.sample_type;
1665 		etm->branches_id = id;
1666 		id += 1;
1667 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1668 	}
1669 
1670 	if (etm->synth_opts.last_branch) {
1671 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1672 		/*
1673 		 * We don't use the hardware index, but the sample generation
1674 		 * code uses the new format branch_stack with this field,
1675 		 * so the event attributes must indicate that it's present.
1676 		 */
1677 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1678 	}
1679 
1680 	if (etm->synth_opts.instructions) {
1681 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1682 		attr.sample_period = etm->synth_opts.period;
1683 		etm->instructions_sample_period = attr.sample_period;
1684 		err = cs_etm__synth_event(session, &attr, id);
1685 		if (err)
1686 			return err;
1687 		etm->instructions_sample_type = attr.sample_type;
1688 		etm->instructions_id = id;
1689 		id += 1;
1690 	}
1691 
1692 	return 0;
1693 }
1694 
1695 static int cs_etm__sample(struct cs_etm_queue *etmq,
1696 			  struct cs_etm_traceid_queue *tidq)
1697 {
1698 	struct cs_etm_auxtrace *etm = etmq->etm;
1699 	int ret;
1700 	u8 trace_chan_id = tidq->trace_chan_id;
1701 	u64 instrs_prev;
1702 
1703 	/* Get instructions remainder from previous packet */
1704 	instrs_prev = tidq->period_instructions;
1705 
1706 	tidq->period_instructions += tidq->packet->instr_count;
1707 
1708 	/*
1709 	 * Record a branch when the last instruction in
1710 	 * PREV_PACKET is a branch.
1711 	 */
1712 	if (etm->synth_opts.last_branch &&
1713 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1714 	    tidq->prev_packet->last_instr_taken_branch)
1715 		cs_etm__update_last_branch_rb(etmq, tidq);
1716 
1717 	if (etm->synth_opts.instructions &&
1718 	    tidq->period_instructions >= etm->instructions_sample_period) {
1719 		/*
1720 		 * Emit instruction sample periodically
1721 		 * TODO: allow period to be defined in cycles and clock time
1722 		 */
1723 
1724 		/*
1725 		 * Below diagram demonstrates the instruction samples
1726 		 * generation flows:
1727 		 *
1728 		 *    Instrs     Instrs       Instrs       Instrs
1729 		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1730 		 *    |            |            |            |
1731 		 *    V            V            V            V
1732 		 *   --------------------------------------------------
1733 		 *            ^                                  ^
1734 		 *            |                                  |
1735 		 *         Period                             Period
1736 		 *    instructions(Pi)                   instructions(Pi')
1737 		 *
1738 		 *            |                                  |
1739 		 *            \---------------- -----------------/
1740 		 *                             V
1741 		 *                 tidq->packet->instr_count
1742 		 *
1743 		 * Instrs Sample(n...) are the synthesised samples occurring
1744 		 * every etm->instructions_sample_period instructions - as
1745 		 * defined on the perf command line.  Sample(n) is being the
1746 		 * last sample before the current etm packet, n+1 to n+3
1747 		 * samples are generated from the current etm packet.
1748 		 *
1749 		 * tidq->packet->instr_count represents the number of
1750 		 * instructions in the current etm packet.
1751 		 *
1752 		 * Period instructions (Pi) contains the number of
1753 		 * instructions executed after the sample point(n) from the
1754 		 * previous etm packet.  This will always be less than
1755 		 * etm->instructions_sample_period.
1756 		 *
1757 		 * When generate new samples, it combines with two parts
1758 		 * instructions, one is the tail of the old packet and another
1759 		 * is the head of the new coming packet, to generate
1760 		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1761 		 * instructions with sample period.  After sample(n+3), the rest
1762 		 * instructions will be used by later packet and it is assigned
1763 		 * to tidq->period_instructions for next round calculation.
1764 		 */
1765 
1766 		/*
1767 		 * Get the initial offset into the current packet instructions;
1768 		 * entry conditions ensure that instrs_prev is less than
1769 		 * etm->instructions_sample_period.
1770 		 */
1771 		u64 offset = etm->instructions_sample_period - instrs_prev;
1772 		u64 addr;
1773 
1774 		/* Prepare last branches for instruction sample */
1775 		if (etm->synth_opts.last_branch)
1776 			cs_etm__copy_last_branch_rb(etmq, tidq);
1777 
1778 		while (tidq->period_instructions >=
1779 				etm->instructions_sample_period) {
1780 			/*
1781 			 * Calculate the address of the sampled instruction (-1
1782 			 * as sample is reported as though instruction has just
1783 			 * been executed, but PC has not advanced to next
1784 			 * instruction)
1785 			 */
1786 			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1787 						  tidq->packet, offset - 1);
1788 			ret = cs_etm__synth_instruction_sample(
1789 				etmq, tidq, addr,
1790 				etm->instructions_sample_period);
1791 			if (ret)
1792 				return ret;
1793 
1794 			offset += etm->instructions_sample_period;
1795 			tidq->period_instructions -=
1796 				etm->instructions_sample_period;
1797 		}
1798 	}
1799 
1800 	if (etm->synth_opts.branches) {
1801 		bool generate_sample = false;
1802 
1803 		/* Generate sample for tracing on packet */
1804 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1805 			generate_sample = true;
1806 
1807 		/* Generate sample for branch taken packet */
1808 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1809 		    tidq->prev_packet->last_instr_taken_branch)
1810 			generate_sample = true;
1811 
1812 		if (generate_sample) {
1813 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1814 			if (ret)
1815 				return ret;
1816 		}
1817 	}
1818 
1819 	cs_etm__packet_swap(etm, tidq);
1820 
1821 	return 0;
1822 }
1823 
1824 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1825 {
1826 	/*
1827 	 * When the exception packet is inserted, whether the last instruction
1828 	 * in previous range packet is taken branch or not, we need to force
1829 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1830 	 * to generate branch sample for the instruction range before the
1831 	 * exception is trapped to kernel or before the exception returning.
1832 	 *
1833 	 * The exception packet includes the dummy address values, so don't
1834 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1835 	 * for generating instruction and branch samples.
1836 	 */
1837 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1838 		tidq->prev_packet->last_instr_taken_branch = true;
1839 
1840 	return 0;
1841 }
1842 
1843 static int cs_etm__flush(struct cs_etm_queue *etmq,
1844 			 struct cs_etm_traceid_queue *tidq)
1845 {
1846 	int err = 0;
1847 	struct cs_etm_auxtrace *etm = etmq->etm;
1848 
1849 	/* Handle start tracing packet */
1850 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1851 		goto swap_packet;
1852 
1853 	if (etmq->etm->synth_opts.last_branch &&
1854 	    etmq->etm->synth_opts.instructions &&
1855 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1856 		u64 addr;
1857 
1858 		/* Prepare last branches for instruction sample */
1859 		cs_etm__copy_last_branch_rb(etmq, tidq);
1860 
1861 		/*
1862 		 * Generate a last branch event for the branches left in the
1863 		 * circular buffer at the end of the trace.
1864 		 *
1865 		 * Use the address of the end of the last reported execution
1866 		 * range
1867 		 */
1868 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1869 
1870 		err = cs_etm__synth_instruction_sample(
1871 			etmq, tidq, addr,
1872 			tidq->period_instructions);
1873 		if (err)
1874 			return err;
1875 
1876 		tidq->period_instructions = 0;
1877 
1878 	}
1879 
1880 	if (etm->synth_opts.branches &&
1881 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1882 		err = cs_etm__synth_branch_sample(etmq, tidq);
1883 		if (err)
1884 			return err;
1885 	}
1886 
1887 swap_packet:
1888 	cs_etm__packet_swap(etm, tidq);
1889 
1890 	/* Reset last branches after flush the trace */
1891 	if (etm->synth_opts.last_branch)
1892 		cs_etm__reset_last_branch_rb(tidq);
1893 
1894 	return err;
1895 }
1896 
1897 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1898 			     struct cs_etm_traceid_queue *tidq)
1899 {
1900 	int err;
1901 
1902 	/*
1903 	 * It has no new packet coming and 'etmq->packet' contains the stale
1904 	 * packet which was set at the previous time with packets swapping;
1905 	 * so skip to generate branch sample to avoid stale packet.
1906 	 *
1907 	 * For this case only flush branch stack and generate a last branch
1908 	 * event for the branches left in the circular buffer at the end of
1909 	 * the trace.
1910 	 */
1911 	if (etmq->etm->synth_opts.last_branch &&
1912 	    etmq->etm->synth_opts.instructions &&
1913 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1914 		u64 addr;
1915 
1916 		/* Prepare last branches for instruction sample */
1917 		cs_etm__copy_last_branch_rb(etmq, tidq);
1918 
1919 		/*
1920 		 * Use the address of the end of the last reported execution
1921 		 * range.
1922 		 */
1923 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1924 
1925 		err = cs_etm__synth_instruction_sample(
1926 			etmq, tidq, addr,
1927 			tidq->period_instructions);
1928 		if (err)
1929 			return err;
1930 
1931 		tidq->period_instructions = 0;
1932 	}
1933 
1934 	return 0;
1935 }
1936 /*
1937  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1938  *			   if need be.
1939  * Returns:	< 0	if error
1940  *		= 0	if no more auxtrace_buffer to read
1941  *		> 0	if the current buffer isn't empty yet
1942  */
1943 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1944 {
1945 	int ret;
1946 
1947 	if (!etmq->buf_len) {
1948 		ret = cs_etm__get_trace(etmq);
1949 		if (ret <= 0)
1950 			return ret;
1951 		/*
1952 		 * We cannot assume consecutive blocks in the data file
1953 		 * are contiguous, reset the decoder to force re-sync.
1954 		 */
1955 		ret = cs_etm_decoder__reset(etmq->decoder);
1956 		if (ret)
1957 			return ret;
1958 	}
1959 
1960 	return etmq->buf_len;
1961 }
1962 
1963 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1964 				 struct cs_etm_packet *packet,
1965 				 u64 end_addr)
1966 {
1967 	/* Initialise to keep compiler happy */
1968 	u16 instr16 = 0;
1969 	u32 instr32 = 0;
1970 	u64 addr;
1971 
1972 	switch (packet->isa) {
1973 	case CS_ETM_ISA_T32:
1974 		/*
1975 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1976 		 *
1977 		 *  b'15         b'8
1978 		 * +-----------------+--------+
1979 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1980 		 * +-----------------+--------+
1981 		 *
1982 		 * According to the specification, it only defines SVC for T32
1983 		 * with 16 bits instruction and has no definition for 32bits;
1984 		 * so below only read 2 bytes as instruction size for T32.
1985 		 */
1986 		addr = end_addr - 2;
1987 		cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr16),
1988 				   (u8 *)&instr16, 0);
1989 		if ((instr16 & 0xFF00) == 0xDF00)
1990 			return true;
1991 
1992 		break;
1993 	case CS_ETM_ISA_A32:
1994 		/*
1995 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1996 		 *
1997 		 *  b'31 b'28 b'27 b'24
1998 		 * +---------+---------+-------------------------+
1999 		 * |  !1111  | 1 1 1 1 |        imm24            |
2000 		 * +---------+---------+-------------------------+
2001 		 */
2002 		addr = end_addr - 4;
2003 		cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32),
2004 				   (u8 *)&instr32, 0);
2005 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
2006 		    (instr32 & 0xF0000000) != 0xF0000000)
2007 			return true;
2008 
2009 		break;
2010 	case CS_ETM_ISA_A64:
2011 		/*
2012 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
2013 		 *
2014 		 *  b'31               b'21           b'4     b'0
2015 		 * +-----------------------+---------+-----------+
2016 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
2017 		 * +-----------------------+---------+-----------+
2018 		 */
2019 		addr = end_addr - 4;
2020 		cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32),
2021 				   (u8 *)&instr32, 0);
2022 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
2023 			return true;
2024 
2025 		break;
2026 	case CS_ETM_ISA_UNKNOWN:
2027 	default:
2028 		break;
2029 	}
2030 
2031 	return false;
2032 }
2033 
2034 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
2035 			       struct cs_etm_traceid_queue *tidq, u64 magic)
2036 {
2037 	u8 trace_chan_id = tidq->trace_chan_id;
2038 	struct cs_etm_packet *packet = tidq->packet;
2039 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
2040 
2041 	if (magic == __perf_cs_etmv3_magic)
2042 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
2043 			return true;
2044 
2045 	/*
2046 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
2047 	 * HVC cases; need to check if it's SVC instruction based on
2048 	 * packet address.
2049 	 */
2050 	if (magic == __perf_cs_etmv4_magic) {
2051 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
2052 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
2053 					 prev_packet->end_addr))
2054 			return true;
2055 	}
2056 
2057 	return false;
2058 }
2059 
2060 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
2061 				       u64 magic)
2062 {
2063 	struct cs_etm_packet *packet = tidq->packet;
2064 
2065 	if (magic == __perf_cs_etmv3_magic)
2066 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
2067 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
2068 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
2069 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
2070 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
2071 			return true;
2072 
2073 	if (magic == __perf_cs_etmv4_magic)
2074 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
2075 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
2076 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
2077 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
2078 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
2079 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
2080 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
2081 			return true;
2082 
2083 	return false;
2084 }
2085 
2086 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
2087 				      struct cs_etm_traceid_queue *tidq,
2088 				      u64 magic)
2089 {
2090 	u8 trace_chan_id = tidq->trace_chan_id;
2091 	struct cs_etm_packet *packet = tidq->packet;
2092 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
2093 
2094 	if (magic == __perf_cs_etmv3_magic)
2095 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
2096 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
2097 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
2098 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
2099 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
2100 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
2101 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
2102 			return true;
2103 
2104 	if (magic == __perf_cs_etmv4_magic) {
2105 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
2106 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
2107 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
2108 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
2109 			return true;
2110 
2111 		/*
2112 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
2113 		 * (SMC, HVC) are taken as sync exceptions.
2114 		 */
2115 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
2116 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
2117 					  prev_packet->end_addr))
2118 			return true;
2119 
2120 		/*
2121 		 * ETMv4 has 5 bits for exception number; if the numbers
2122 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
2123 		 * they are implementation defined exceptions.
2124 		 *
2125 		 * For this case, simply take it as sync exception.
2126 		 */
2127 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
2128 		    packet->exception_number <= CS_ETMV4_EXC_END)
2129 			return true;
2130 	}
2131 
2132 	return false;
2133 }
2134 
2135 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
2136 				    struct cs_etm_traceid_queue *tidq)
2137 {
2138 	struct cs_etm_packet *packet = tidq->packet;
2139 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
2140 	u8 trace_chan_id = tidq->trace_chan_id;
2141 	u64 magic;
2142 	int ret;
2143 
2144 	switch (packet->sample_type) {
2145 	case CS_ETM_RANGE:
2146 		/*
2147 		 * Immediate branch instruction without neither link nor
2148 		 * return flag, it's normal branch instruction within
2149 		 * the function.
2150 		 */
2151 		if (packet->last_instr_type == OCSD_INSTR_BR &&
2152 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
2153 			packet->flags = PERF_IP_FLAG_BRANCH;
2154 
2155 			if (packet->last_instr_cond)
2156 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
2157 		}
2158 
2159 		/*
2160 		 * Immediate branch instruction with link (e.g. BL), this is
2161 		 * branch instruction for function call.
2162 		 */
2163 		if (packet->last_instr_type == OCSD_INSTR_BR &&
2164 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
2165 			packet->flags = PERF_IP_FLAG_BRANCH |
2166 					PERF_IP_FLAG_CALL;
2167 
2168 		/*
2169 		 * Indirect branch instruction with link (e.g. BLR), this is
2170 		 * branch instruction for function call.
2171 		 */
2172 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2173 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
2174 			packet->flags = PERF_IP_FLAG_BRANCH |
2175 					PERF_IP_FLAG_CALL;
2176 
2177 		/*
2178 		 * Indirect branch instruction with subtype of
2179 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
2180 		 * function return for A32/T32.
2181 		 */
2182 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2183 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
2184 			packet->flags = PERF_IP_FLAG_BRANCH |
2185 					PERF_IP_FLAG_RETURN;
2186 
2187 		/*
2188 		 * Indirect branch instruction without link (e.g. BR), usually
2189 		 * this is used for function return, especially for functions
2190 		 * within dynamic link lib.
2191 		 */
2192 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2193 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
2194 			packet->flags = PERF_IP_FLAG_BRANCH |
2195 					PERF_IP_FLAG_RETURN;
2196 
2197 		/* Return instruction for function return. */
2198 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
2199 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
2200 			packet->flags = PERF_IP_FLAG_BRANCH |
2201 					PERF_IP_FLAG_RETURN;
2202 
2203 		/*
2204 		 * Decoder might insert a discontinuity in the middle of
2205 		 * instruction packets, fixup prev_packet with flag
2206 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
2207 		 */
2208 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
2209 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
2210 					      PERF_IP_FLAG_TRACE_BEGIN;
2211 
2212 		/*
2213 		 * If the previous packet is an exception return packet
2214 		 * and the return address just follows SVC instruction,
2215 		 * it needs to calibrate the previous packet sample flags
2216 		 * as PERF_IP_FLAG_SYSCALLRET.
2217 		 */
2218 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
2219 					   PERF_IP_FLAG_RETURN |
2220 					   PERF_IP_FLAG_INTERRUPT) &&
2221 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
2222 					 packet, packet->start_addr))
2223 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
2224 					     PERF_IP_FLAG_RETURN |
2225 					     PERF_IP_FLAG_SYSCALLRET;
2226 		break;
2227 	case CS_ETM_DISCONTINUITY:
2228 		/*
2229 		 * The trace is discontinuous, if the previous packet is
2230 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
2231 		 * for previous packet.
2232 		 */
2233 		if (prev_packet->sample_type == CS_ETM_RANGE)
2234 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
2235 					      PERF_IP_FLAG_TRACE_END;
2236 		break;
2237 	case CS_ETM_EXCEPTION:
2238 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
2239 		if (ret)
2240 			return ret;
2241 
2242 		/* The exception is for system call. */
2243 		if (cs_etm__is_syscall(etmq, tidq, magic))
2244 			packet->flags = PERF_IP_FLAG_BRANCH |
2245 					PERF_IP_FLAG_CALL |
2246 					PERF_IP_FLAG_SYSCALLRET;
2247 		/*
2248 		 * The exceptions are triggered by external signals from bus,
2249 		 * interrupt controller, debug module, PE reset or halt.
2250 		 */
2251 		else if (cs_etm__is_async_exception(tidq, magic))
2252 			packet->flags = PERF_IP_FLAG_BRANCH |
2253 					PERF_IP_FLAG_CALL |
2254 					PERF_IP_FLAG_ASYNC |
2255 					PERF_IP_FLAG_INTERRUPT;
2256 		/*
2257 		 * Otherwise, exception is caused by trap, instruction &
2258 		 * data fault, or alignment errors.
2259 		 */
2260 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
2261 			packet->flags = PERF_IP_FLAG_BRANCH |
2262 					PERF_IP_FLAG_CALL |
2263 					PERF_IP_FLAG_INTERRUPT;
2264 
2265 		/*
2266 		 * When the exception packet is inserted, since exception
2267 		 * packet is not used standalone for generating samples
2268 		 * and it's affiliation to the previous instruction range
2269 		 * packet; so set previous range packet flags to tell perf
2270 		 * it is an exception taken branch.
2271 		 */
2272 		if (prev_packet->sample_type == CS_ETM_RANGE)
2273 			prev_packet->flags = packet->flags;
2274 		break;
2275 	case CS_ETM_EXCEPTION_RET:
2276 		/*
2277 		 * When the exception return packet is inserted, since
2278 		 * exception return packet is not used standalone for
2279 		 * generating samples and it's affiliation to the previous
2280 		 * instruction range packet; so set previous range packet
2281 		 * flags to tell perf it is an exception return branch.
2282 		 *
2283 		 * The exception return can be for either system call or
2284 		 * other exception types; unfortunately the packet doesn't
2285 		 * contain exception type related info so we cannot decide
2286 		 * the exception type purely based on exception return packet.
2287 		 * If we record the exception number from exception packet and
2288 		 * reuse it for exception return packet, this is not reliable
2289 		 * due the trace can be discontinuity or the interrupt can
2290 		 * be nested, thus the recorded exception number cannot be
2291 		 * used for exception return packet for these two cases.
2292 		 *
2293 		 * For exception return packet, we only need to distinguish the
2294 		 * packet is for system call or for other types.  Thus the
2295 		 * decision can be deferred when receive the next packet which
2296 		 * contains the return address, based on the return address we
2297 		 * can read out the previous instruction and check if it's a
2298 		 * system call instruction and then calibrate the sample flag
2299 		 * as needed.
2300 		 */
2301 		if (prev_packet->sample_type == CS_ETM_RANGE)
2302 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
2303 					     PERF_IP_FLAG_RETURN |
2304 					     PERF_IP_FLAG_INTERRUPT;
2305 		break;
2306 	case CS_ETM_EMPTY:
2307 	default:
2308 		break;
2309 	}
2310 
2311 	return 0;
2312 }
2313 
2314 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2315 {
2316 	int ret = 0;
2317 	size_t processed = 0;
2318 
2319 	/*
2320 	 * Packets are decoded and added to the decoder's packet queue
2321 	 * until the decoder packet processing callback has requested that
2322 	 * processing stops or there is nothing left in the buffer.  Normal
2323 	 * operations that stop processing are a timestamp packet or a full
2324 	 * decoder buffer queue.
2325 	 */
2326 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2327 						 etmq->offset,
2328 						 &etmq->buf[etmq->buf_used],
2329 						 etmq->buf_len,
2330 						 &processed);
2331 	if (ret)
2332 		goto out;
2333 
2334 	etmq->offset += processed;
2335 	etmq->buf_used += processed;
2336 	etmq->buf_len -= processed;
2337 
2338 out:
2339 	return ret;
2340 }
2341 
2342 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2343 					 struct cs_etm_traceid_queue *tidq)
2344 {
2345 	int ret;
2346 	struct cs_etm_packet_queue *packet_queue;
2347 
2348 	packet_queue = &tidq->packet_queue;
2349 
2350 	/* Process each packet in this chunk */
2351 	while (1) {
2352 		ret = cs_etm_decoder__get_packet(packet_queue,
2353 						 tidq->packet);
2354 		if (ret <= 0)
2355 			/*
2356 			 * Stop processing this chunk on
2357 			 * end of data or error
2358 			 */
2359 			break;
2360 
2361 		/*
2362 		 * Since packet addresses are swapped in packet
2363 		 * handling within below switch() statements,
2364 		 * thus setting sample flags must be called
2365 		 * prior to switch() statement to use address
2366 		 * information before packets swapping.
2367 		 */
2368 		ret = cs_etm__set_sample_flags(etmq, tidq);
2369 		if (ret < 0)
2370 			break;
2371 
2372 		switch (tidq->packet->sample_type) {
2373 		case CS_ETM_RANGE:
2374 			/*
2375 			 * If the packet contains an instruction
2376 			 * range, generate instruction sequence
2377 			 * events.
2378 			 */
2379 			cs_etm__sample(etmq, tidq);
2380 			break;
2381 		case CS_ETM_EXCEPTION:
2382 		case CS_ETM_EXCEPTION_RET:
2383 			/*
2384 			 * If the exception packet is coming,
2385 			 * make sure the previous instruction
2386 			 * range packet to be handled properly.
2387 			 */
2388 			cs_etm__exception(tidq);
2389 			break;
2390 		case CS_ETM_DISCONTINUITY:
2391 			/*
2392 			 * Discontinuity in trace, flush
2393 			 * previous branch stack
2394 			 */
2395 			cs_etm__flush(etmq, tidq);
2396 			break;
2397 		case CS_ETM_EMPTY:
2398 			/*
2399 			 * Should not receive empty packet,
2400 			 * report error.
2401 			 */
2402 			pr_err("CS ETM Trace: empty packet\n");
2403 			return -EINVAL;
2404 		default:
2405 			break;
2406 		}
2407 	}
2408 
2409 	return ret;
2410 }
2411 
2412 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2413 {
2414 	int idx;
2415 	struct int_node *inode;
2416 	struct cs_etm_traceid_queue *tidq;
2417 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2418 
2419 	intlist__for_each_entry(inode, traceid_queues_list) {
2420 		idx = (int)(intptr_t)inode->priv;
2421 		tidq = etmq->traceid_queues[idx];
2422 
2423 		/* Ignore return value */
2424 		cs_etm__process_traceid_queue(etmq, tidq);
2425 
2426 		/*
2427 		 * Generate an instruction sample with the remaining
2428 		 * branchstack entries.
2429 		 */
2430 		cs_etm__flush(etmq, tidq);
2431 	}
2432 }
2433 
2434 static int cs_etm__run_per_thread_timeless_decoder(struct cs_etm_queue *etmq)
2435 {
2436 	int err = 0;
2437 	struct cs_etm_traceid_queue *tidq;
2438 
2439 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2440 	if (!tidq)
2441 		return -EINVAL;
2442 
2443 	/* Go through each buffer in the queue and decode them one by one */
2444 	while (1) {
2445 		err = cs_etm__get_data_block(etmq);
2446 		if (err <= 0)
2447 			return err;
2448 
2449 		/* Run trace decoder until buffer consumed or end of trace */
2450 		do {
2451 			err = cs_etm__decode_data_block(etmq);
2452 			if (err)
2453 				return err;
2454 
2455 			/*
2456 			 * Process each packet in this chunk, nothing to do if
2457 			 * an error occurs other than hoping the next one will
2458 			 * be better.
2459 			 */
2460 			err = cs_etm__process_traceid_queue(etmq, tidq);
2461 
2462 		} while (etmq->buf_len);
2463 
2464 		if (err == 0)
2465 			/* Flush any remaining branch stack entries */
2466 			err = cs_etm__end_block(etmq, tidq);
2467 	}
2468 
2469 	return err;
2470 }
2471 
2472 static int cs_etm__run_per_cpu_timeless_decoder(struct cs_etm_queue *etmq)
2473 {
2474 	int idx, err = 0;
2475 	struct cs_etm_traceid_queue *tidq;
2476 	struct int_node *inode;
2477 
2478 	/* Go through each buffer in the queue and decode them one by one */
2479 	while (1) {
2480 		err = cs_etm__get_data_block(etmq);
2481 		if (err <= 0)
2482 			return err;
2483 
2484 		/* Run trace decoder until buffer consumed or end of trace */
2485 		do {
2486 			err = cs_etm__decode_data_block(etmq);
2487 			if (err)
2488 				return err;
2489 
2490 			/*
2491 			 * cs_etm__run_per_thread_timeless_decoder() runs on a
2492 			 * single traceID queue because each TID has a separate
2493 			 * buffer. But here in per-cpu mode we need to iterate
2494 			 * over each channel instead.
2495 			 */
2496 			intlist__for_each_entry(inode,
2497 						etmq->traceid_queues_list) {
2498 				idx = (int)(intptr_t)inode->priv;
2499 				tidq = etmq->traceid_queues[idx];
2500 				cs_etm__process_traceid_queue(etmq, tidq);
2501 			}
2502 		} while (etmq->buf_len);
2503 
2504 		intlist__for_each_entry(inode, etmq->traceid_queues_list) {
2505 			idx = (int)(intptr_t)inode->priv;
2506 			tidq = etmq->traceid_queues[idx];
2507 			/* Flush any remaining branch stack entries */
2508 			err = cs_etm__end_block(etmq, tidq);
2509 			if (err)
2510 				return err;
2511 		}
2512 	}
2513 
2514 	return err;
2515 }
2516 
2517 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2518 					   pid_t tid)
2519 {
2520 	unsigned int i;
2521 	struct auxtrace_queues *queues = &etm->queues;
2522 
2523 	for (i = 0; i < queues->nr_queues; i++) {
2524 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2525 		struct cs_etm_queue *etmq = queue->priv;
2526 		struct cs_etm_traceid_queue *tidq;
2527 
2528 		if (!etmq)
2529 			continue;
2530 
2531 		if (etm->per_thread_decoding) {
2532 			tidq = cs_etm__etmq_get_traceid_queue(
2533 				etmq, CS_ETM_PER_THREAD_TRACEID);
2534 
2535 			if (!tidq)
2536 				continue;
2537 
2538 			if (tid == -1 || thread__tid(tidq->thread) == tid)
2539 				cs_etm__run_per_thread_timeless_decoder(etmq);
2540 		} else
2541 			cs_etm__run_per_cpu_timeless_decoder(etmq);
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 static int cs_etm__process_timestamped_queues(struct cs_etm_auxtrace *etm)
2548 {
2549 	int ret = 0;
2550 	unsigned int cs_queue_nr, queue_nr, i;
2551 	u8 trace_chan_id;
2552 	u64 cs_timestamp;
2553 	struct auxtrace_queue *queue;
2554 	struct cs_etm_queue *etmq;
2555 	struct cs_etm_traceid_queue *tidq;
2556 
2557 	/*
2558 	 * Pre-populate the heap with one entry from each queue so that we can
2559 	 * start processing in time order across all queues.
2560 	 */
2561 	for (i = 0; i < etm->queues.nr_queues; i++) {
2562 		etmq = etm->queues.queue_array[i].priv;
2563 		if (!etmq)
2564 			continue;
2565 
2566 		ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2567 		if (ret)
2568 			return ret;
2569 	}
2570 
2571 	while (1) {
2572 		if (!etm->heap.heap_cnt)
2573 			goto out;
2574 
2575 		/* Take the entry at the top of the min heap */
2576 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2577 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2578 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2579 		queue = &etm->queues.queue_array[queue_nr];
2580 		etmq = queue->priv;
2581 
2582 		/*
2583 		 * Remove the top entry from the heap since we are about
2584 		 * to process it.
2585 		 */
2586 		auxtrace_heap__pop(&etm->heap);
2587 
2588 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2589 		if (!tidq) {
2590 			/*
2591 			 * No traceID queue has been allocated for this traceID,
2592 			 * which means something somewhere went very wrong.  No
2593 			 * other choice than simply exit.
2594 			 */
2595 			ret = -EINVAL;
2596 			goto out;
2597 		}
2598 
2599 		/*
2600 		 * Packets associated with this timestamp are already in
2601 		 * the etmq's traceID queue, so process them.
2602 		 */
2603 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2604 		if (ret < 0)
2605 			goto out;
2606 
2607 		/*
2608 		 * Packets for this timestamp have been processed, time to
2609 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2610 		 * if need be.
2611 		 */
2612 refetch:
2613 		ret = cs_etm__get_data_block(etmq);
2614 		if (ret < 0)
2615 			goto out;
2616 
2617 		/*
2618 		 * No more auxtrace_buffers to process in this etmq, simply
2619 		 * move on to another entry in the auxtrace_heap.
2620 		 */
2621 		if (!ret)
2622 			continue;
2623 
2624 		ret = cs_etm__decode_data_block(etmq);
2625 		if (ret)
2626 			goto out;
2627 
2628 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2629 
2630 		if (!cs_timestamp) {
2631 			/*
2632 			 * Function cs_etm__decode_data_block() returns when
2633 			 * there is no more traces to decode in the current
2634 			 * auxtrace_buffer OR when a timestamp has been
2635 			 * encountered on any of the traceID queues.  Since we
2636 			 * did not get a timestamp, there is no more traces to
2637 			 * process in this auxtrace_buffer.  As such empty and
2638 			 * flush all traceID queues.
2639 			 */
2640 			cs_etm__clear_all_traceid_queues(etmq);
2641 
2642 			/* Fetch another auxtrace_buffer for this etmq */
2643 			goto refetch;
2644 		}
2645 
2646 		/*
2647 		 * Add to the min heap the timestamp for packets that have
2648 		 * just been decoded.  They will be processed and synthesized
2649 		 * during the next call to cs_etm__process_traceid_queue() for
2650 		 * this queue/traceID.
2651 		 */
2652 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2653 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2654 	}
2655 
2656 out:
2657 	return ret;
2658 }
2659 
2660 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2661 					union perf_event *event)
2662 {
2663 	struct thread *th;
2664 
2665 	if (etm->timeless_decoding)
2666 		return 0;
2667 
2668 	/*
2669 	 * Add the tid/pid to the log so that we can get a match when we get a
2670 	 * contextID from the decoder. Only track for the host: only kernel
2671 	 * trace is supported for guests which wouldn't need pids so this should
2672 	 * be fine.
2673 	 */
2674 	th = machine__findnew_thread(&etm->session->machines.host,
2675 				     event->itrace_start.pid,
2676 				     event->itrace_start.tid);
2677 	if (!th)
2678 		return -ENOMEM;
2679 
2680 	thread__put(th);
2681 
2682 	return 0;
2683 }
2684 
2685 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2686 					   union perf_event *event)
2687 {
2688 	struct thread *th;
2689 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2690 
2691 	/*
2692 	 * Context switch in per-thread mode are irrelevant since perf
2693 	 * will start/stop tracing as the process is scheduled.
2694 	 */
2695 	if (etm->timeless_decoding)
2696 		return 0;
2697 
2698 	/*
2699 	 * SWITCH_IN events carry the next process to be switched out while
2700 	 * SWITCH_OUT events carry the process to be switched in.  As such
2701 	 * we don't care about IN events.
2702 	 */
2703 	if (!out)
2704 		return 0;
2705 
2706 	/*
2707 	 * Add the tid/pid to the log so that we can get a match when we get a
2708 	 * contextID from the decoder. Only track for the host: only kernel
2709 	 * trace is supported for guests which wouldn't need pids so this should
2710 	 * be fine.
2711 	 */
2712 	th = machine__findnew_thread(&etm->session->machines.host,
2713 				     event->context_switch.next_prev_pid,
2714 				     event->context_switch.next_prev_tid);
2715 	if (!th)
2716 		return -ENOMEM;
2717 
2718 	thread__put(th);
2719 
2720 	return 0;
2721 }
2722 
2723 static int cs_etm__process_event(struct perf_session *session,
2724 				 union perf_event *event,
2725 				 struct perf_sample *sample,
2726 				 struct perf_tool *tool)
2727 {
2728 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2729 						   struct cs_etm_auxtrace,
2730 						   auxtrace);
2731 
2732 	if (dump_trace)
2733 		return 0;
2734 
2735 	if (!tool->ordered_events) {
2736 		pr_err("CoreSight ETM Trace requires ordered events\n");
2737 		return -EINVAL;
2738 	}
2739 
2740 	switch (event->header.type) {
2741 	case PERF_RECORD_EXIT:
2742 		/*
2743 		 * Don't need to wait for cs_etm__flush_events() in per-thread mode to
2744 		 * start the decode because we know there will be no more trace from
2745 		 * this thread. All this does is emit samples earlier than waiting for
2746 		 * the flush in other modes, but with timestamps it makes sense to wait
2747 		 * for flush so that events from different threads are interleaved
2748 		 * properly.
2749 		 */
2750 		if (etm->per_thread_decoding && etm->timeless_decoding)
2751 			return cs_etm__process_timeless_queues(etm,
2752 							       event->fork.tid);
2753 		break;
2754 
2755 	case PERF_RECORD_ITRACE_START:
2756 		return cs_etm__process_itrace_start(etm, event);
2757 
2758 	case PERF_RECORD_SWITCH_CPU_WIDE:
2759 		return cs_etm__process_switch_cpu_wide(etm, event);
2760 
2761 	case PERF_RECORD_AUX:
2762 		/*
2763 		 * Record the latest kernel timestamp available in the header
2764 		 * for samples so that synthesised samples occur from this point
2765 		 * onwards.
2766 		 */
2767 		if (sample->time && (sample->time != (u64)-1))
2768 			etm->latest_kernel_timestamp = sample->time;
2769 		break;
2770 
2771 	default:
2772 		break;
2773 	}
2774 
2775 	return 0;
2776 }
2777 
2778 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2779 			     struct perf_record_auxtrace *event)
2780 {
2781 	struct auxtrace_buffer *buf;
2782 	unsigned int i;
2783 	/*
2784 	 * Find all buffers with same reference in the queues and dump them.
2785 	 * This is because the queues can contain multiple entries of the same
2786 	 * buffer that were split on aux records.
2787 	 */
2788 	for (i = 0; i < etm->queues.nr_queues; ++i)
2789 		list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2790 			if (buf->reference == event->reference)
2791 				cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2792 }
2793 
2794 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2795 					  union perf_event *event,
2796 					  struct perf_tool *tool __maybe_unused)
2797 {
2798 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2799 						   struct cs_etm_auxtrace,
2800 						   auxtrace);
2801 	if (!etm->data_queued) {
2802 		struct auxtrace_buffer *buffer;
2803 		off_t  data_offset;
2804 		int fd = perf_data__fd(session->data);
2805 		bool is_pipe = perf_data__is_pipe(session->data);
2806 		int err;
2807 		int idx = event->auxtrace.idx;
2808 
2809 		if (is_pipe)
2810 			data_offset = 0;
2811 		else {
2812 			data_offset = lseek(fd, 0, SEEK_CUR);
2813 			if (data_offset == -1)
2814 				return -errno;
2815 		}
2816 
2817 		err = auxtrace_queues__add_event(&etm->queues, session,
2818 						 event, data_offset, &buffer);
2819 		if (err)
2820 			return err;
2821 
2822 		/*
2823 		 * Knowing if the trace is formatted or not requires a lookup of
2824 		 * the aux record so only works in non-piped mode where data is
2825 		 * queued in cs_etm__queue_aux_records(). Always assume
2826 		 * formatted in piped mode (true).
2827 		 */
2828 		err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2829 					  idx, true);
2830 		if (err)
2831 			return err;
2832 
2833 		if (dump_trace)
2834 			if (auxtrace_buffer__get_data(buffer, fd)) {
2835 				cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2836 				auxtrace_buffer__put_data(buffer);
2837 			}
2838 	} else if (dump_trace)
2839 		dump_queued_data(etm, &event->auxtrace);
2840 
2841 	return 0;
2842 }
2843 
2844 static int cs_etm__setup_timeless_decoding(struct cs_etm_auxtrace *etm)
2845 {
2846 	struct evsel *evsel;
2847 	struct evlist *evlist = etm->session->evlist;
2848 
2849 	/* Override timeless mode with user input from --itrace=Z */
2850 	if (etm->synth_opts.timeless_decoding) {
2851 		etm->timeless_decoding = true;
2852 		return 0;
2853 	}
2854 
2855 	/*
2856 	 * Find the cs_etm evsel and look at what its timestamp setting was
2857 	 */
2858 	evlist__for_each_entry(evlist, evsel)
2859 		if (cs_etm__evsel_is_auxtrace(etm->session, evsel)) {
2860 			etm->timeless_decoding =
2861 				!(evsel->core.attr.config & BIT(ETM_OPT_TS));
2862 			return 0;
2863 		}
2864 
2865 	pr_err("CS ETM: Couldn't find ETM evsel\n");
2866 	return -EINVAL;
2867 }
2868 
2869 /*
2870  * Read a single cpu parameter block from the auxtrace_info priv block.
2871  *
2872  * For version 1 there is a per cpu nr_params entry. If we are handling
2873  * version 1 file, then there may be less, the same, or more params
2874  * indicated by this value than the compile time number we understand.
2875  *
2876  * For a version 0 info block, there are a fixed number, and we need to
2877  * fill out the nr_param value in the metadata we create.
2878  */
2879 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2880 				    int out_blk_size, int nr_params_v0)
2881 {
2882 	u64 *metadata = NULL;
2883 	int hdr_version;
2884 	int nr_in_params, nr_out_params, nr_cmn_params;
2885 	int i, k;
2886 
2887 	metadata = zalloc(sizeof(*metadata) * out_blk_size);
2888 	if (!metadata)
2889 		return NULL;
2890 
2891 	/* read block current index & version */
2892 	i = *buff_in_offset;
2893 	hdr_version = buff_in[CS_HEADER_VERSION];
2894 
2895 	if (!hdr_version) {
2896 	/* read version 0 info block into a version 1 metadata block  */
2897 		nr_in_params = nr_params_v0;
2898 		metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2899 		metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2900 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2901 		/* remaining block params at offset +1 from source */
2902 		for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2903 			metadata[k + 1] = buff_in[i + k];
2904 		/* version 0 has 2 common params */
2905 		nr_cmn_params = 2;
2906 	} else {
2907 	/* read version 1 info block - input and output nr_params may differ */
2908 		/* version 1 has 3 common params */
2909 		nr_cmn_params = 3;
2910 		nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2911 
2912 		/* if input has more params than output - skip excess */
2913 		nr_out_params = nr_in_params + nr_cmn_params;
2914 		if (nr_out_params > out_blk_size)
2915 			nr_out_params = out_blk_size;
2916 
2917 		for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2918 			metadata[k] = buff_in[i + k];
2919 
2920 		/* record the actual nr params we copied */
2921 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2922 	}
2923 
2924 	/* adjust in offset by number of in params used */
2925 	i += nr_in_params + nr_cmn_params;
2926 	*buff_in_offset = i;
2927 	return metadata;
2928 }
2929 
2930 /**
2931  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2932  * on the bounds of aux_event, if it matches with the buffer that's at
2933  * file_offset.
2934  *
2935  * Normally, whole auxtrace buffers would be added to the queue. But we
2936  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2937  * is reset across each buffer, so splitting the buffers up in advance has
2938  * the same effect.
2939  */
2940 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2941 				      struct perf_record_aux *aux_event, struct perf_sample *sample)
2942 {
2943 	int err;
2944 	char buf[PERF_SAMPLE_MAX_SIZE];
2945 	union perf_event *auxtrace_event_union;
2946 	struct perf_record_auxtrace *auxtrace_event;
2947 	union perf_event auxtrace_fragment;
2948 	__u64 aux_offset, aux_size;
2949 	__u32 idx;
2950 	bool formatted;
2951 
2952 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2953 						   struct cs_etm_auxtrace,
2954 						   auxtrace);
2955 
2956 	/*
2957 	 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2958 	 * from looping through the auxtrace index.
2959 	 */
2960 	err = perf_session__peek_event(session, file_offset, buf,
2961 				       PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2962 	if (err)
2963 		return err;
2964 	auxtrace_event = &auxtrace_event_union->auxtrace;
2965 	if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2966 		return -EINVAL;
2967 
2968 	if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2969 		auxtrace_event->header.size != sz) {
2970 		return -EINVAL;
2971 	}
2972 
2973 	/*
2974 	 * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See
2975 	 * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a
2976 	 * CPU as we set this always for the AUX_OUTPUT_HW_ID event.
2977 	 * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1.
2978 	 * Return 'not found' if mismatch.
2979 	 */
2980 	if (auxtrace_event->cpu == (__u32) -1) {
2981 		etm->per_thread_decoding = true;
2982 		if (auxtrace_event->tid != sample->tid)
2983 			return 1;
2984 	} else if (auxtrace_event->cpu != sample->cpu) {
2985 		if (etm->per_thread_decoding) {
2986 			/*
2987 			 * Found a per-cpu buffer after a per-thread one was
2988 			 * already found
2989 			 */
2990 			pr_err("CS ETM: Inconsistent per-thread/per-cpu mode.\n");
2991 			return -EINVAL;
2992 		}
2993 		return 1;
2994 	}
2995 
2996 	if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2997 		/*
2998 		 * Clamp size in snapshot mode. The buffer size is clamped in
2999 		 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
3000 		 * the buffer size.
3001 		 */
3002 		aux_size = min(aux_event->aux_size, auxtrace_event->size);
3003 
3004 		/*
3005 		 * In this mode, the head also points to the end of the buffer so aux_offset
3006 		 * needs to have the size subtracted so it points to the beginning as in normal mode
3007 		 */
3008 		aux_offset = aux_event->aux_offset - aux_size;
3009 	} else {
3010 		aux_size = aux_event->aux_size;
3011 		aux_offset = aux_event->aux_offset;
3012 	}
3013 
3014 	if (aux_offset >= auxtrace_event->offset &&
3015 	    aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
3016 		/*
3017 		 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
3018 		 * based on the sizes of the aux event, and queue that fragment.
3019 		 */
3020 		auxtrace_fragment.auxtrace = *auxtrace_event;
3021 		auxtrace_fragment.auxtrace.size = aux_size;
3022 		auxtrace_fragment.auxtrace.offset = aux_offset;
3023 		file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
3024 
3025 		pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
3026 			  " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
3027 		err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
3028 						 file_offset, NULL);
3029 		if (err)
3030 			return err;
3031 
3032 		idx = auxtrace_event->idx;
3033 		formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
3034 		return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
3035 					   idx, formatted);
3036 	}
3037 
3038 	/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
3039 	return 1;
3040 }
3041 
3042 static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event,
3043 					u64 offset __maybe_unused, void *data __maybe_unused)
3044 {
3045 	/* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */
3046 	if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) {
3047 		(*(int *)data)++; /* increment found count */
3048 		return cs_etm__process_aux_output_hw_id(session, event);
3049 	}
3050 	return 0;
3051 }
3052 
3053 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
3054 					u64 offset __maybe_unused, void *data __maybe_unused)
3055 {
3056 	struct perf_sample sample;
3057 	int ret;
3058 	struct auxtrace_index_entry *ent;
3059 	struct auxtrace_index *auxtrace_index;
3060 	struct evsel *evsel;
3061 	size_t i;
3062 
3063 	/* Don't care about any other events, we're only queuing buffers for AUX events */
3064 	if (event->header.type != PERF_RECORD_AUX)
3065 		return 0;
3066 
3067 	if (event->header.size < sizeof(struct perf_record_aux))
3068 		return -EINVAL;
3069 
3070 	/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
3071 	if (!event->aux.aux_size)
3072 		return 0;
3073 
3074 	/*
3075 	 * Parse the sample, we need the sample_id_all data that comes after the event so that the
3076 	 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
3077 	 */
3078 	evsel = evlist__event2evsel(session->evlist, event);
3079 	if (!evsel)
3080 		return -EINVAL;
3081 	ret = evsel__parse_sample(evsel, event, &sample);
3082 	if (ret)
3083 		return ret;
3084 
3085 	/*
3086 	 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
3087 	 */
3088 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
3089 		for (i = 0; i < auxtrace_index->nr; i++) {
3090 			ent = &auxtrace_index->entries[i];
3091 			ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
3092 							 ent->sz, &event->aux, &sample);
3093 			/*
3094 			 * Stop search on error or successful values. Continue search on
3095 			 * 1 ('not found')
3096 			 */
3097 			if (ret != 1)
3098 				return ret;
3099 		}
3100 	}
3101 
3102 	/*
3103 	 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
3104 	 * don't exit with an error because it will still be possible to decode other aux records.
3105 	 */
3106 	pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
3107 	       " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
3108 	return 0;
3109 }
3110 
3111 static int cs_etm__queue_aux_records(struct perf_session *session)
3112 {
3113 	struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
3114 								struct auxtrace_index, list);
3115 	if (index && index->nr > 0)
3116 		return perf_session__peek_events(session, session->header.data_offset,
3117 						 session->header.data_size,
3118 						 cs_etm__queue_aux_records_cb, NULL);
3119 
3120 	/*
3121 	 * We would get here if there are no entries in the index (either no auxtrace
3122 	 * buffers or no index at all). Fail silently as there is the possibility of
3123 	 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
3124 	 * false.
3125 	 *
3126 	 * In that scenario, buffers will not be split by AUX records.
3127 	 */
3128 	return 0;
3129 }
3130 
3131 #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \
3132 				  (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1))
3133 
3134 /*
3135  * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual
3136  * timestamps).
3137  */
3138 static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu)
3139 {
3140 	int j;
3141 
3142 	for (j = 0; j < num_cpu; j++) {
3143 		switch (metadata[j][CS_ETM_MAGIC]) {
3144 		case __perf_cs_etmv4_magic:
3145 			if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1)
3146 				return false;
3147 			break;
3148 		case __perf_cs_ete_magic:
3149 			if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1)
3150 				return false;
3151 			break;
3152 		default:
3153 			/* Unknown / unsupported magic number. */
3154 			return false;
3155 		}
3156 	}
3157 	return true;
3158 }
3159 
3160 /* map trace ids to correct metadata block, from information in metadata */
3161 static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata)
3162 {
3163 	u64 cs_etm_magic;
3164 	u8 trace_chan_id;
3165 	int i, err;
3166 
3167 	for (i = 0; i < num_cpu; i++) {
3168 		cs_etm_magic = metadata[i][CS_ETM_MAGIC];
3169 		switch (cs_etm_magic) {
3170 		case __perf_cs_etmv3_magic:
3171 			metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK;
3172 			trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]);
3173 			break;
3174 		case __perf_cs_etmv4_magic:
3175 		case __perf_cs_ete_magic:
3176 			metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK;
3177 			trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]);
3178 			break;
3179 		default:
3180 			/* unknown magic number */
3181 			return -EINVAL;
3182 		}
3183 		err = cs_etm__map_trace_id(trace_chan_id, metadata[i]);
3184 		if (err)
3185 			return err;
3186 	}
3187 	return 0;
3188 }
3189 
3190 /*
3191  * If we found AUX_HW_ID packets, then set any metadata marked as unused to the
3192  * unused value to reduce the number of unneeded decoders created.
3193  */
3194 static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata)
3195 {
3196 	u64 cs_etm_magic;
3197 	int i;
3198 
3199 	for (i = 0; i < num_cpu; i++) {
3200 		cs_etm_magic = metadata[i][CS_ETM_MAGIC];
3201 		switch (cs_etm_magic) {
3202 		case __perf_cs_etmv3_magic:
3203 			if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG)
3204 				metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL;
3205 			break;
3206 		case __perf_cs_etmv4_magic:
3207 		case __perf_cs_ete_magic:
3208 			if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG)
3209 				metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL;
3210 			break;
3211 		default:
3212 			/* unknown magic number */
3213 			return -EINVAL;
3214 		}
3215 	}
3216 	return 0;
3217 }
3218 
3219 int cs_etm__process_auxtrace_info_full(union perf_event *event,
3220 				       struct perf_session *session)
3221 {
3222 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3223 	struct cs_etm_auxtrace *etm = NULL;
3224 	struct perf_record_time_conv *tc = &session->time_conv;
3225 	int event_header_size = sizeof(struct perf_event_header);
3226 	int total_size = auxtrace_info->header.size;
3227 	int priv_size = 0;
3228 	int num_cpu;
3229 	int err = 0;
3230 	int aux_hw_id_found;
3231 	int i, j;
3232 	u64 *ptr = NULL;
3233 	u64 **metadata = NULL;
3234 
3235 	/*
3236 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
3237 	 * has to be made for each packet that gets decoded, optimizing access
3238 	 * in anything other than a sequential array is worth doing.
3239 	 */
3240 	traceid_list = intlist__new(NULL);
3241 	if (!traceid_list)
3242 		return -ENOMEM;
3243 
3244 	/* First the global part */
3245 	ptr = (u64 *) auxtrace_info->priv;
3246 	num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff;
3247 	metadata = zalloc(sizeof(*metadata) * num_cpu);
3248 	if (!metadata) {
3249 		err = -ENOMEM;
3250 		goto err_free_traceid_list;
3251 	}
3252 
3253 	/* Start parsing after the common part of the header */
3254 	i = CS_HEADER_VERSION_MAX;
3255 
3256 	/*
3257 	 * The metadata is stored in the auxtrace_info section and encodes
3258 	 * the configuration of the ARM embedded trace macrocell which is
3259 	 * required by the trace decoder to properly decode the trace due
3260 	 * to its highly compressed nature.
3261 	 */
3262 	for (j = 0; j < num_cpu; j++) {
3263 		if (ptr[i] == __perf_cs_etmv3_magic) {
3264 			metadata[j] =
3265 				cs_etm__create_meta_blk(ptr, &i,
3266 							CS_ETM_PRIV_MAX,
3267 							CS_ETM_NR_TRC_PARAMS_V0);
3268 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
3269 			metadata[j] =
3270 				cs_etm__create_meta_blk(ptr, &i,
3271 							CS_ETMV4_PRIV_MAX,
3272 							CS_ETMV4_NR_TRC_PARAMS_V0);
3273 		} else if (ptr[i] == __perf_cs_ete_magic) {
3274 			metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
3275 		} else {
3276 			ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
3277 				  ptr[i]);
3278 			err = -EINVAL;
3279 			goto err_free_metadata;
3280 		}
3281 
3282 		if (!metadata[j]) {
3283 			err = -ENOMEM;
3284 			goto err_free_metadata;
3285 		}
3286 	}
3287 
3288 	/*
3289 	 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
3290 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
3291 	 * global metadata, and each cpu's metadata respectively.
3292 	 * The following tests if the correct number of double words was
3293 	 * present in the auxtrace info section.
3294 	 */
3295 	priv_size = total_size - event_header_size - INFO_HEADER_SIZE;
3296 	if (i * 8 != priv_size) {
3297 		err = -EINVAL;
3298 		goto err_free_metadata;
3299 	}
3300 
3301 	etm = zalloc(sizeof(*etm));
3302 
3303 	if (!etm) {
3304 		err = -ENOMEM;
3305 		goto err_free_metadata;
3306 	}
3307 
3308 	/*
3309 	 * As all the ETMs run at the same exception level, the system should
3310 	 * have the same PID format crossing CPUs.  So cache the PID format
3311 	 * and reuse it for sequential decoding.
3312 	 */
3313 	etm->pid_fmt = cs_etm__init_pid_fmt(metadata[0]);
3314 
3315 	err = auxtrace_queues__init(&etm->queues);
3316 	if (err)
3317 		goto err_free_etm;
3318 
3319 	if (session->itrace_synth_opts->set) {
3320 		etm->synth_opts = *session->itrace_synth_opts;
3321 	} else {
3322 		itrace_synth_opts__set_default(&etm->synth_opts,
3323 				session->itrace_synth_opts->default_no_sample);
3324 		etm->synth_opts.callchain = false;
3325 	}
3326 
3327 	etm->session = session;
3328 
3329 	etm->num_cpu = num_cpu;
3330 	etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff);
3331 	etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0);
3332 	etm->metadata = metadata;
3333 	etm->auxtrace_type = auxtrace_info->type;
3334 
3335 	/* Use virtual timestamps if all ETMs report ts_source = 1 */
3336 	etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu);
3337 
3338 	if (!etm->has_virtual_ts)
3339 		ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n"
3340 			    "The time field of the samples will not be set accurately.\n\n");
3341 
3342 	etm->auxtrace.process_event = cs_etm__process_event;
3343 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3344 	etm->auxtrace.flush_events = cs_etm__flush_events;
3345 	etm->auxtrace.free_events = cs_etm__free_events;
3346 	etm->auxtrace.free = cs_etm__free;
3347 	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3348 	session->auxtrace = &etm->auxtrace;
3349 
3350 	err = cs_etm__setup_timeless_decoding(etm);
3351 	if (err)
3352 		return err;
3353 
3354 	etm->tc.time_shift = tc->time_shift;
3355 	etm->tc.time_mult = tc->time_mult;
3356 	etm->tc.time_zero = tc->time_zero;
3357 	if (event_contains(*tc, time_cycles)) {
3358 		etm->tc.time_cycles = tc->time_cycles;
3359 		etm->tc.time_mask = tc->time_mask;
3360 		etm->tc.cap_user_time_zero = tc->cap_user_time_zero;
3361 		etm->tc.cap_user_time_short = tc->cap_user_time_short;
3362 	}
3363 	err = cs_etm__synth_events(etm, session);
3364 	if (err)
3365 		goto err_free_queues;
3366 
3367 	/*
3368 	 * Map Trace ID values to CPU metadata.
3369 	 *
3370 	 * Trace metadata will always contain Trace ID values from the legacy algorithm. If the
3371 	 * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata
3372 	 * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set.
3373 	 *
3374 	 * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use
3375 	 * the same IDs as the old algorithm as far as is possible, unless there are clashes
3376 	 * in which case a different value will be used. This means an older perf may still
3377 	 * be able to record and read files generate on a newer system.
3378 	 *
3379 	 * For a perf able to interpret AUX_HW_ID packets we first check for the presence of
3380 	 * those packets. If they are there then the values will be mapped and plugged into
3381 	 * the metadata. We then set any remaining metadata values with the used flag to a
3382 	 * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required.
3383 	 *
3384 	 * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel
3385 	 * then we map Trace ID values to CPU directly from the metadata - clearing any unused
3386 	 * flags if present.
3387 	 */
3388 
3389 	/* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */
3390 	aux_hw_id_found = 0;
3391 	err = perf_session__peek_events(session, session->header.data_offset,
3392 					session->header.data_size,
3393 					cs_etm__process_aux_hw_id_cb, &aux_hw_id_found);
3394 	if (err)
3395 		goto err_free_queues;
3396 
3397 	/* if HW ID found then clear any unused metadata ID values */
3398 	if (aux_hw_id_found)
3399 		err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata);
3400 	/* otherwise, this is a file with metadata values only, map from metadata */
3401 	else
3402 		err = cs_etm__map_trace_ids_metadata(num_cpu, metadata);
3403 
3404 	if (err)
3405 		goto err_free_queues;
3406 
3407 	err = cs_etm__queue_aux_records(session);
3408 	if (err)
3409 		goto err_free_queues;
3410 
3411 	etm->data_queued = etm->queues.populated;
3412 	return 0;
3413 
3414 err_free_queues:
3415 	auxtrace_queues__free(&etm->queues);
3416 	session->auxtrace = NULL;
3417 err_free_etm:
3418 	zfree(&etm);
3419 err_free_metadata:
3420 	/* No need to check @metadata[j], free(NULL) is supported */
3421 	for (j = 0; j < num_cpu; j++)
3422 		zfree(&metadata[j]);
3423 	zfree(&metadata);
3424 err_free_traceid_list:
3425 	intlist__delete(traceid_list);
3426 	return err;
3427 }
3428