1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/coresight-pmu.h> 11 #include <linux/err.h> 12 #include <linux/kernel.h> 13 #include <linux/log2.h> 14 #include <linux/types.h> 15 #include <linux/zalloc.h> 16 17 #include <opencsd/ocsd_if_types.h> 18 #include <stdlib.h> 19 20 #include "auxtrace.h" 21 #include "color.h" 22 #include "cs-etm.h" 23 #include "cs-etm-decoder/cs-etm-decoder.h" 24 #include "debug.h" 25 #include "dso.h" 26 #include "evlist.h" 27 #include "intlist.h" 28 #include "machine.h" 29 #include "map.h" 30 #include "perf.h" 31 #include "session.h" 32 #include "map_symbol.h" 33 #include "branch.h" 34 #include "symbol.h" 35 #include "tool.h" 36 #include "thread.h" 37 #include "thread-stack.h" 38 #include <tools/libc_compat.h> 39 #include "util/synthetic-events.h" 40 41 struct cs_etm_auxtrace { 42 struct auxtrace auxtrace; 43 struct auxtrace_queues queues; 44 struct auxtrace_heap heap; 45 struct itrace_synth_opts synth_opts; 46 struct perf_session *session; 47 struct machine *machine; 48 struct thread *unknown_thread; 49 50 u8 timeless_decoding; 51 u8 snapshot_mode; 52 u8 data_queued; 53 54 int num_cpu; 55 u64 latest_kernel_timestamp; 56 u32 auxtrace_type; 57 u64 branches_sample_type; 58 u64 branches_id; 59 u64 instructions_sample_type; 60 u64 instructions_sample_period; 61 u64 instructions_id; 62 u64 **metadata; 63 unsigned int pmu_type; 64 }; 65 66 struct cs_etm_traceid_queue { 67 u8 trace_chan_id; 68 pid_t pid, tid; 69 u64 period_instructions; 70 size_t last_branch_pos; 71 union perf_event *event_buf; 72 struct thread *thread; 73 struct branch_stack *last_branch; 74 struct branch_stack *last_branch_rb; 75 struct cs_etm_packet *prev_packet; 76 struct cs_etm_packet *packet; 77 struct cs_etm_packet_queue packet_queue; 78 }; 79 80 struct cs_etm_queue { 81 struct cs_etm_auxtrace *etm; 82 struct cs_etm_decoder *decoder; 83 struct auxtrace_buffer *buffer; 84 unsigned int queue_nr; 85 u8 pending_timestamp_chan_id; 86 u64 offset; 87 const unsigned char *buf; 88 size_t buf_len, buf_used; 89 /* Conversion between traceID and index in traceid_queues array */ 90 struct intlist *traceid_queues_list; 91 struct cs_etm_traceid_queue **traceid_queues; 92 }; 93 94 /* RB tree for quick conversion between traceID and metadata pointers */ 95 static struct intlist *traceid_list; 96 97 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm); 98 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 99 pid_t tid); 100 static int cs_etm__get_data_block(struct cs_etm_queue *etmq); 101 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); 102 103 /* PTMs ETMIDR [11:8] set to b0011 */ 104 #define ETMIDR_PTM_VERSION 0x00000300 105 106 /* 107 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to 108 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply 109 * encode the etm queue number as the upper 16 bit and the channel as 110 * the lower 16 bit. 111 */ 112 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \ 113 (queue_nr << 16 | trace_chan_id) 114 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) 115 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) 116 117 static u32 cs_etm__get_v7_protocol_version(u32 etmidr) 118 { 119 etmidr &= ETMIDR_PTM_VERSION; 120 121 if (etmidr == ETMIDR_PTM_VERSION) 122 return CS_ETM_PROTO_PTM; 123 124 return CS_ETM_PROTO_ETMV3; 125 } 126 127 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) 128 { 129 struct int_node *inode; 130 u64 *metadata; 131 132 inode = intlist__find(traceid_list, trace_chan_id); 133 if (!inode) 134 return -EINVAL; 135 136 metadata = inode->priv; 137 *magic = metadata[CS_ETM_MAGIC]; 138 return 0; 139 } 140 141 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) 142 { 143 struct int_node *inode; 144 u64 *metadata; 145 146 inode = intlist__find(traceid_list, trace_chan_id); 147 if (!inode) 148 return -EINVAL; 149 150 metadata = inode->priv; 151 *cpu = (int)metadata[CS_ETM_CPU]; 152 return 0; 153 } 154 155 /* 156 * The returned PID format is presented by two bits: 157 * 158 * Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced; 159 * Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced. 160 * 161 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2 162 * are enabled at the same time when the session runs on an EL2 kernel. 163 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be 164 * recorded in the trace data, the tool will selectively use 165 * CONTEXTIDR_EL2 as PID. 166 */ 167 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt) 168 { 169 struct int_node *inode; 170 u64 *metadata, val; 171 172 inode = intlist__find(traceid_list, trace_chan_id); 173 if (!inode) 174 return -EINVAL; 175 176 metadata = inode->priv; 177 178 if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) { 179 val = metadata[CS_ETM_ETMCR]; 180 /* CONTEXTIDR is traced */ 181 if (val & BIT(ETM_OPT_CTXTID)) 182 *pid_fmt = BIT(ETM_OPT_CTXTID); 183 } else { 184 val = metadata[CS_ETMV4_TRCCONFIGR]; 185 /* CONTEXTIDR_EL2 is traced */ 186 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT))) 187 *pid_fmt = BIT(ETM_OPT_CTXTID2); 188 /* CONTEXTIDR_EL1 is traced */ 189 else if (val & BIT(ETM4_CFG_BIT_CTXTID)) 190 *pid_fmt = BIT(ETM_OPT_CTXTID); 191 } 192 193 return 0; 194 } 195 196 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, 197 u8 trace_chan_id) 198 { 199 /* 200 * When a timestamp packet is encountered the backend code 201 * is stopped so that the front end has time to process packets 202 * that were accumulated in the traceID queue. Since there can 203 * be more than one channel per cs_etm_queue, we need to specify 204 * what traceID queue needs servicing. 205 */ 206 etmq->pending_timestamp_chan_id = trace_chan_id; 207 } 208 209 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, 210 u8 *trace_chan_id) 211 { 212 struct cs_etm_packet_queue *packet_queue; 213 214 if (!etmq->pending_timestamp_chan_id) 215 return 0; 216 217 if (trace_chan_id) 218 *trace_chan_id = etmq->pending_timestamp_chan_id; 219 220 packet_queue = cs_etm__etmq_get_packet_queue(etmq, 221 etmq->pending_timestamp_chan_id); 222 if (!packet_queue) 223 return 0; 224 225 /* Acknowledge pending status */ 226 etmq->pending_timestamp_chan_id = 0; 227 228 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ 229 return packet_queue->cs_timestamp; 230 } 231 232 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) 233 { 234 int i; 235 236 queue->head = 0; 237 queue->tail = 0; 238 queue->packet_count = 0; 239 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { 240 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; 241 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; 242 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; 243 queue->packet_buffer[i].instr_count = 0; 244 queue->packet_buffer[i].last_instr_taken_branch = false; 245 queue->packet_buffer[i].last_instr_size = 0; 246 queue->packet_buffer[i].last_instr_type = 0; 247 queue->packet_buffer[i].last_instr_subtype = 0; 248 queue->packet_buffer[i].last_instr_cond = 0; 249 queue->packet_buffer[i].flags = 0; 250 queue->packet_buffer[i].exception_number = UINT32_MAX; 251 queue->packet_buffer[i].trace_chan_id = UINT8_MAX; 252 queue->packet_buffer[i].cpu = INT_MIN; 253 } 254 } 255 256 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) 257 { 258 int idx; 259 struct int_node *inode; 260 struct cs_etm_traceid_queue *tidq; 261 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 262 263 intlist__for_each_entry(inode, traceid_queues_list) { 264 idx = (int)(intptr_t)inode->priv; 265 tidq = etmq->traceid_queues[idx]; 266 cs_etm__clear_packet_queue(&tidq->packet_queue); 267 } 268 } 269 270 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, 271 struct cs_etm_traceid_queue *tidq, 272 u8 trace_chan_id) 273 { 274 int rc = -ENOMEM; 275 struct auxtrace_queue *queue; 276 struct cs_etm_auxtrace *etm = etmq->etm; 277 278 cs_etm__clear_packet_queue(&tidq->packet_queue); 279 280 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 281 tidq->tid = queue->tid; 282 tidq->pid = -1; 283 tidq->trace_chan_id = trace_chan_id; 284 285 tidq->packet = zalloc(sizeof(struct cs_etm_packet)); 286 if (!tidq->packet) 287 goto out; 288 289 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); 290 if (!tidq->prev_packet) 291 goto out_free; 292 293 if (etm->synth_opts.last_branch) { 294 size_t sz = sizeof(struct branch_stack); 295 296 sz += etm->synth_opts.last_branch_sz * 297 sizeof(struct branch_entry); 298 tidq->last_branch = zalloc(sz); 299 if (!tidq->last_branch) 300 goto out_free; 301 tidq->last_branch_rb = zalloc(sz); 302 if (!tidq->last_branch_rb) 303 goto out_free; 304 } 305 306 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 307 if (!tidq->event_buf) 308 goto out_free; 309 310 return 0; 311 312 out_free: 313 zfree(&tidq->last_branch_rb); 314 zfree(&tidq->last_branch); 315 zfree(&tidq->prev_packet); 316 zfree(&tidq->packet); 317 out: 318 return rc; 319 } 320 321 static struct cs_etm_traceid_queue 322 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 323 { 324 int idx; 325 struct int_node *inode; 326 struct intlist *traceid_queues_list; 327 struct cs_etm_traceid_queue *tidq, **traceid_queues; 328 struct cs_etm_auxtrace *etm = etmq->etm; 329 330 if (etm->timeless_decoding) 331 trace_chan_id = CS_ETM_PER_THREAD_TRACEID; 332 333 traceid_queues_list = etmq->traceid_queues_list; 334 335 /* 336 * Check if the traceid_queue exist for this traceID by looking 337 * in the queue list. 338 */ 339 inode = intlist__find(traceid_queues_list, trace_chan_id); 340 if (inode) { 341 idx = (int)(intptr_t)inode->priv; 342 return etmq->traceid_queues[idx]; 343 } 344 345 /* We couldn't find a traceid_queue for this traceID, allocate one */ 346 tidq = malloc(sizeof(*tidq)); 347 if (!tidq) 348 return NULL; 349 350 memset(tidq, 0, sizeof(*tidq)); 351 352 /* Get a valid index for the new traceid_queue */ 353 idx = intlist__nr_entries(traceid_queues_list); 354 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ 355 inode = intlist__findnew(traceid_queues_list, trace_chan_id); 356 if (!inode) 357 goto out_free; 358 359 /* Associate this traceID with this index */ 360 inode->priv = (void *)(intptr_t)idx; 361 362 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) 363 goto out_free; 364 365 /* Grow the traceid_queues array by one unit */ 366 traceid_queues = etmq->traceid_queues; 367 traceid_queues = reallocarray(traceid_queues, 368 idx + 1, 369 sizeof(*traceid_queues)); 370 371 /* 372 * On failure reallocarray() returns NULL and the original block of 373 * memory is left untouched. 374 */ 375 if (!traceid_queues) 376 goto out_free; 377 378 traceid_queues[idx] = tidq; 379 etmq->traceid_queues = traceid_queues; 380 381 return etmq->traceid_queues[idx]; 382 383 out_free: 384 /* 385 * Function intlist__remove() removes the inode from the list 386 * and delete the memory associated to it. 387 */ 388 intlist__remove(traceid_queues_list, inode); 389 free(tidq); 390 391 return NULL; 392 } 393 394 struct cs_etm_packet_queue 395 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 396 { 397 struct cs_etm_traceid_queue *tidq; 398 399 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 400 if (tidq) 401 return &tidq->packet_queue; 402 403 return NULL; 404 } 405 406 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, 407 struct cs_etm_traceid_queue *tidq) 408 { 409 struct cs_etm_packet *tmp; 410 411 if (etm->synth_opts.branches || etm->synth_opts.last_branch || 412 etm->synth_opts.instructions) { 413 /* 414 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 415 * the next incoming packet. 416 */ 417 tmp = tidq->packet; 418 tidq->packet = tidq->prev_packet; 419 tidq->prev_packet = tmp; 420 } 421 } 422 423 static void cs_etm__packet_dump(const char *pkt_string) 424 { 425 const char *color = PERF_COLOR_BLUE; 426 int len = strlen(pkt_string); 427 428 if (len && (pkt_string[len-1] == '\n')) 429 color_fprintf(stdout, color, " %s", pkt_string); 430 else 431 color_fprintf(stdout, color, " %s\n", pkt_string); 432 433 fflush(stdout); 434 } 435 436 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, 437 struct cs_etm_auxtrace *etm, int idx, 438 u32 etmidr) 439 { 440 u64 **metadata = etm->metadata; 441 442 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr); 443 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR]; 444 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR]; 445 } 446 447 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, 448 struct cs_etm_auxtrace *etm, int idx) 449 { 450 u64 **metadata = etm->metadata; 451 452 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i; 453 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; 454 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; 455 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; 456 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; 457 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; 458 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; 459 } 460 461 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params, 462 struct cs_etm_auxtrace *etm, int idx) 463 { 464 u64 **metadata = etm->metadata; 465 466 t_params[idx].protocol = CS_ETM_PROTO_ETE; 467 t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; 468 t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; 469 t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; 470 t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; 471 t_params[idx].ete.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; 472 t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; 473 t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH]; 474 } 475 476 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, 477 struct cs_etm_auxtrace *etm, 478 int decoders) 479 { 480 int i; 481 u32 etmidr; 482 u64 architecture; 483 484 for (i = 0; i < decoders; i++) { 485 architecture = etm->metadata[i][CS_ETM_MAGIC]; 486 487 switch (architecture) { 488 case __perf_cs_etmv3_magic: 489 etmidr = etm->metadata[i][CS_ETM_ETMIDR]; 490 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr); 491 break; 492 case __perf_cs_etmv4_magic: 493 cs_etm__set_trace_param_etmv4(t_params, etm, i); 494 break; 495 case __perf_cs_ete_magic: 496 cs_etm__set_trace_param_ete(t_params, etm, i); 497 break; 498 default: 499 return -EINVAL; 500 } 501 } 502 503 return 0; 504 } 505 506 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, 507 struct cs_etm_queue *etmq, 508 enum cs_etm_decoder_operation mode, 509 bool formatted) 510 { 511 int ret = -EINVAL; 512 513 if (!(mode < CS_ETM_OPERATION_MAX)) 514 goto out; 515 516 d_params->packet_printer = cs_etm__packet_dump; 517 d_params->operation = mode; 518 d_params->data = etmq; 519 d_params->formatted = formatted; 520 d_params->fsyncs = false; 521 d_params->hsyncs = false; 522 d_params->frame_aligned = true; 523 524 ret = 0; 525 out: 526 return ret; 527 } 528 529 static void cs_etm__dump_event(struct cs_etm_queue *etmq, 530 struct auxtrace_buffer *buffer) 531 { 532 int ret; 533 const char *color = PERF_COLOR_BLUE; 534 size_t buffer_used = 0; 535 536 fprintf(stdout, "\n"); 537 color_fprintf(stdout, color, 538 ". ... CoreSight %s Trace data: size %#zx bytes\n", 539 cs_etm_decoder__get_name(etmq->decoder), buffer->size); 540 541 do { 542 size_t consumed; 543 544 ret = cs_etm_decoder__process_data_block( 545 etmq->decoder, buffer->offset, 546 &((u8 *)buffer->data)[buffer_used], 547 buffer->size - buffer_used, &consumed); 548 if (ret) 549 break; 550 551 buffer_used += consumed; 552 } while (buffer_used < buffer->size); 553 554 cs_etm_decoder__reset(etmq->decoder); 555 } 556 557 static int cs_etm__flush_events(struct perf_session *session, 558 struct perf_tool *tool) 559 { 560 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 561 struct cs_etm_auxtrace, 562 auxtrace); 563 if (dump_trace) 564 return 0; 565 566 if (!tool->ordered_events) 567 return -EINVAL; 568 569 if (etm->timeless_decoding) 570 return cs_etm__process_timeless_queues(etm, -1); 571 572 return cs_etm__process_queues(etm); 573 } 574 575 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) 576 { 577 int idx; 578 uintptr_t priv; 579 struct int_node *inode, *tmp; 580 struct cs_etm_traceid_queue *tidq; 581 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 582 583 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { 584 priv = (uintptr_t)inode->priv; 585 idx = priv; 586 587 /* Free this traceid_queue from the array */ 588 tidq = etmq->traceid_queues[idx]; 589 thread__zput(tidq->thread); 590 zfree(&tidq->event_buf); 591 zfree(&tidq->last_branch); 592 zfree(&tidq->last_branch_rb); 593 zfree(&tidq->prev_packet); 594 zfree(&tidq->packet); 595 zfree(&tidq); 596 597 /* 598 * Function intlist__remove() removes the inode from the list 599 * and delete the memory associated to it. 600 */ 601 intlist__remove(traceid_queues_list, inode); 602 } 603 604 /* Then the RB tree itself */ 605 intlist__delete(traceid_queues_list); 606 etmq->traceid_queues_list = NULL; 607 608 /* finally free the traceid_queues array */ 609 zfree(&etmq->traceid_queues); 610 } 611 612 static void cs_etm__free_queue(void *priv) 613 { 614 struct cs_etm_queue *etmq = priv; 615 616 if (!etmq) 617 return; 618 619 cs_etm_decoder__free(etmq->decoder); 620 cs_etm__free_traceid_queues(etmq); 621 free(etmq); 622 } 623 624 static void cs_etm__free_events(struct perf_session *session) 625 { 626 unsigned int i; 627 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 628 struct cs_etm_auxtrace, 629 auxtrace); 630 struct auxtrace_queues *queues = &aux->queues; 631 632 for (i = 0; i < queues->nr_queues; i++) { 633 cs_etm__free_queue(queues->queue_array[i].priv); 634 queues->queue_array[i].priv = NULL; 635 } 636 637 auxtrace_queues__free(queues); 638 } 639 640 static void cs_etm__free(struct perf_session *session) 641 { 642 int i; 643 struct int_node *inode, *tmp; 644 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 645 struct cs_etm_auxtrace, 646 auxtrace); 647 cs_etm__free_events(session); 648 session->auxtrace = NULL; 649 650 /* First remove all traceID/metadata nodes for the RB tree */ 651 intlist__for_each_entry_safe(inode, tmp, traceid_list) 652 intlist__remove(traceid_list, inode); 653 /* Then the RB tree itself */ 654 intlist__delete(traceid_list); 655 656 for (i = 0; i < aux->num_cpu; i++) 657 zfree(&aux->metadata[i]); 658 659 thread__zput(aux->unknown_thread); 660 zfree(&aux->metadata); 661 zfree(&aux); 662 } 663 664 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, 665 struct evsel *evsel) 666 { 667 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 668 struct cs_etm_auxtrace, 669 auxtrace); 670 671 return evsel->core.attr.type == aux->pmu_type; 672 } 673 674 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address) 675 { 676 struct machine *machine; 677 678 machine = etmq->etm->machine; 679 680 if (address >= machine__kernel_start(machine)) { 681 if (machine__is_host(machine)) 682 return PERF_RECORD_MISC_KERNEL; 683 else 684 return PERF_RECORD_MISC_GUEST_KERNEL; 685 } else { 686 if (machine__is_host(machine)) 687 return PERF_RECORD_MISC_USER; 688 else if (perf_guest) 689 return PERF_RECORD_MISC_GUEST_USER; 690 else 691 return PERF_RECORD_MISC_HYPERVISOR; 692 } 693 } 694 695 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, 696 u64 address, size_t size, u8 *buffer) 697 { 698 u8 cpumode; 699 u64 offset; 700 int len; 701 struct thread *thread; 702 struct machine *machine; 703 struct addr_location al; 704 struct cs_etm_traceid_queue *tidq; 705 706 if (!etmq) 707 return 0; 708 709 machine = etmq->etm->machine; 710 cpumode = cs_etm__cpu_mode(etmq, address); 711 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 712 if (!tidq) 713 return 0; 714 715 thread = tidq->thread; 716 if (!thread) { 717 if (cpumode != PERF_RECORD_MISC_KERNEL) 718 return 0; 719 thread = etmq->etm->unknown_thread; 720 } 721 722 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso) 723 return 0; 724 725 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 726 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) 727 return 0; 728 729 offset = al.map->map_ip(al.map, address); 730 731 map__load(al.map); 732 733 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size); 734 735 if (len <= 0) { 736 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n" 737 " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n"); 738 if (!al.map->dso->auxtrace_warned) { 739 pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n", 740 address, 741 al.map->dso->long_name ? al.map->dso->long_name : "Unknown"); 742 al.map->dso->auxtrace_warned = true; 743 } 744 return 0; 745 } 746 747 return len; 748 } 749 750 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, 751 bool formatted) 752 { 753 struct cs_etm_decoder_params d_params; 754 struct cs_etm_trace_params *t_params = NULL; 755 struct cs_etm_queue *etmq; 756 /* 757 * Each queue can only contain data from one CPU when unformatted, so only one decoder is 758 * needed. 759 */ 760 int decoders = formatted ? etm->num_cpu : 1; 761 762 etmq = zalloc(sizeof(*etmq)); 763 if (!etmq) 764 return NULL; 765 766 etmq->traceid_queues_list = intlist__new(NULL); 767 if (!etmq->traceid_queues_list) 768 goto out_free; 769 770 /* Use metadata to fill in trace parameters for trace decoder */ 771 t_params = zalloc(sizeof(*t_params) * decoders); 772 773 if (!t_params) 774 goto out_free; 775 776 if (cs_etm__init_trace_params(t_params, etm, decoders)) 777 goto out_free; 778 779 /* Set decoder parameters to decode trace packets */ 780 if (cs_etm__init_decoder_params(&d_params, etmq, 781 dump_trace ? CS_ETM_OPERATION_PRINT : 782 CS_ETM_OPERATION_DECODE, 783 formatted)) 784 goto out_free; 785 786 etmq->decoder = cs_etm_decoder__new(decoders, &d_params, 787 t_params); 788 789 if (!etmq->decoder) 790 goto out_free; 791 792 /* 793 * Register a function to handle all memory accesses required by 794 * the trace decoder library. 795 */ 796 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 797 0x0L, ((u64) -1L), 798 cs_etm__mem_access)) 799 goto out_free_decoder; 800 801 zfree(&t_params); 802 return etmq; 803 804 out_free_decoder: 805 cs_etm_decoder__free(etmq->decoder); 806 out_free: 807 intlist__delete(etmq->traceid_queues_list); 808 free(etmq); 809 810 return NULL; 811 } 812 813 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 814 struct auxtrace_queue *queue, 815 unsigned int queue_nr, 816 bool formatted) 817 { 818 struct cs_etm_queue *etmq = queue->priv; 819 820 if (list_empty(&queue->head) || etmq) 821 return 0; 822 823 etmq = cs_etm__alloc_queue(etm, formatted); 824 825 if (!etmq) 826 return -ENOMEM; 827 828 queue->priv = etmq; 829 etmq->etm = etm; 830 etmq->queue_nr = queue_nr; 831 etmq->offset = 0; 832 833 return 0; 834 } 835 836 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm, 837 struct cs_etm_queue *etmq, 838 unsigned int queue_nr) 839 { 840 int ret = 0; 841 unsigned int cs_queue_nr; 842 u8 trace_chan_id; 843 u64 cs_timestamp; 844 845 /* 846 * We are under a CPU-wide trace scenario. As such we need to know 847 * when the code that generated the traces started to execute so that 848 * it can be correlated with execution on other CPUs. So we get a 849 * handle on the beginning of traces and decode until we find a 850 * timestamp. The timestamp is then added to the auxtrace min heap 851 * in order to know what nibble (of all the etmqs) to decode first. 852 */ 853 while (1) { 854 /* 855 * Fetch an aux_buffer from this etmq. Bail if no more 856 * blocks or an error has been encountered. 857 */ 858 ret = cs_etm__get_data_block(etmq); 859 if (ret <= 0) 860 goto out; 861 862 /* 863 * Run decoder on the trace block. The decoder will stop when 864 * encountering a CS timestamp, a full packet queue or the end of 865 * trace for that block. 866 */ 867 ret = cs_etm__decode_data_block(etmq); 868 if (ret) 869 goto out; 870 871 /* 872 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all 873 * the timestamp calculation for us. 874 */ 875 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 876 877 /* We found a timestamp, no need to continue. */ 878 if (cs_timestamp) 879 break; 880 881 /* 882 * We didn't find a timestamp so empty all the traceid packet 883 * queues before looking for another timestamp packet, either 884 * in the current data block or a new one. Packets that were 885 * just decoded are useless since no timestamp has been 886 * associated with them. As such simply discard them. 887 */ 888 cs_etm__clear_all_packet_queues(etmq); 889 } 890 891 /* 892 * We have a timestamp. Add it to the min heap to reflect when 893 * instructions conveyed by the range packets of this traceID queue 894 * started to execute. Once the same has been done for all the traceID 895 * queues of each etmq, redenring and decoding can start in 896 * chronological order. 897 * 898 * Note that packets decoded above are still in the traceID's packet 899 * queue and will be processed in cs_etm__process_queues(). 900 */ 901 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 902 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 903 out: 904 return ret; 905 } 906 907 static inline 908 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, 909 struct cs_etm_traceid_queue *tidq) 910 { 911 struct branch_stack *bs_src = tidq->last_branch_rb; 912 struct branch_stack *bs_dst = tidq->last_branch; 913 size_t nr = 0; 914 915 /* 916 * Set the number of records before early exit: ->nr is used to 917 * determine how many branches to copy from ->entries. 918 */ 919 bs_dst->nr = bs_src->nr; 920 921 /* 922 * Early exit when there is nothing to copy. 923 */ 924 if (!bs_src->nr) 925 return; 926 927 /* 928 * As bs_src->entries is a circular buffer, we need to copy from it in 929 * two steps. First, copy the branches from the most recently inserted 930 * branch ->last_branch_pos until the end of bs_src->entries buffer. 931 */ 932 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; 933 memcpy(&bs_dst->entries[0], 934 &bs_src->entries[tidq->last_branch_pos], 935 sizeof(struct branch_entry) * nr); 936 937 /* 938 * If we wrapped around at least once, the branches from the beginning 939 * of the bs_src->entries buffer and until the ->last_branch_pos element 940 * are older valid branches: copy them over. The total number of 941 * branches copied over will be equal to the number of branches asked by 942 * the user in last_branch_sz. 943 */ 944 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 945 memcpy(&bs_dst->entries[nr], 946 &bs_src->entries[0], 947 sizeof(struct branch_entry) * tidq->last_branch_pos); 948 } 949 } 950 951 static inline 952 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) 953 { 954 tidq->last_branch_pos = 0; 955 tidq->last_branch_rb->nr = 0; 956 } 957 958 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, 959 u8 trace_chan_id, u64 addr) 960 { 961 u8 instrBytes[2]; 962 963 cs_etm__mem_access(etmq, trace_chan_id, addr, 964 ARRAY_SIZE(instrBytes), instrBytes); 965 /* 966 * T32 instruction size is indicated by bits[15:11] of the first 967 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 968 * denote a 32-bit instruction. 969 */ 970 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; 971 } 972 973 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) 974 { 975 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 976 if (packet->sample_type == CS_ETM_DISCONTINUITY) 977 return 0; 978 979 return packet->start_addr; 980 } 981 982 static inline 983 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) 984 { 985 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 986 if (packet->sample_type == CS_ETM_DISCONTINUITY) 987 return 0; 988 989 return packet->end_addr - packet->last_instr_size; 990 } 991 992 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, 993 u64 trace_chan_id, 994 const struct cs_etm_packet *packet, 995 u64 offset) 996 { 997 if (packet->isa == CS_ETM_ISA_T32) { 998 u64 addr = packet->start_addr; 999 1000 while (offset) { 1001 addr += cs_etm__t32_instr_size(etmq, 1002 trace_chan_id, addr); 1003 offset--; 1004 } 1005 return addr; 1006 } 1007 1008 /* Assume a 4 byte instruction size (A32/A64) */ 1009 return packet->start_addr + offset * 4; 1010 } 1011 1012 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, 1013 struct cs_etm_traceid_queue *tidq) 1014 { 1015 struct branch_stack *bs = tidq->last_branch_rb; 1016 struct branch_entry *be; 1017 1018 /* 1019 * The branches are recorded in a circular buffer in reverse 1020 * chronological order: we start recording from the last element of the 1021 * buffer down. After writing the first element of the stack, move the 1022 * insert position back to the end of the buffer. 1023 */ 1024 if (!tidq->last_branch_pos) 1025 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 1026 1027 tidq->last_branch_pos -= 1; 1028 1029 be = &bs->entries[tidq->last_branch_pos]; 1030 be->from = cs_etm__last_executed_instr(tidq->prev_packet); 1031 be->to = cs_etm__first_executed_instr(tidq->packet); 1032 /* No support for mispredict */ 1033 be->flags.mispred = 0; 1034 be->flags.predicted = 1; 1035 1036 /* 1037 * Increment bs->nr until reaching the number of last branches asked by 1038 * the user on the command line. 1039 */ 1040 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 1041 bs->nr += 1; 1042 } 1043 1044 static int cs_etm__inject_event(union perf_event *event, 1045 struct perf_sample *sample, u64 type) 1046 { 1047 event->header.size = perf_event__sample_event_size(sample, type, 0); 1048 return perf_event__synthesize_sample(event, type, 0, sample); 1049 } 1050 1051 1052 static int 1053 cs_etm__get_trace(struct cs_etm_queue *etmq) 1054 { 1055 struct auxtrace_buffer *aux_buffer = etmq->buffer; 1056 struct auxtrace_buffer *old_buffer = aux_buffer; 1057 struct auxtrace_queue *queue; 1058 1059 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 1060 1061 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 1062 1063 /* If no more data, drop the previous auxtrace_buffer and return */ 1064 if (!aux_buffer) { 1065 if (old_buffer) 1066 auxtrace_buffer__drop_data(old_buffer); 1067 etmq->buf_len = 0; 1068 return 0; 1069 } 1070 1071 etmq->buffer = aux_buffer; 1072 1073 /* If the aux_buffer doesn't have data associated, try to load it */ 1074 if (!aux_buffer->data) { 1075 /* get the file desc associated with the perf data file */ 1076 int fd = perf_data__fd(etmq->etm->session->data); 1077 1078 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 1079 if (!aux_buffer->data) 1080 return -ENOMEM; 1081 } 1082 1083 /* If valid, drop the previous buffer */ 1084 if (old_buffer) 1085 auxtrace_buffer__drop_data(old_buffer); 1086 1087 etmq->buf_used = 0; 1088 etmq->buf_len = aux_buffer->size; 1089 etmq->buf = aux_buffer->data; 1090 1091 return etmq->buf_len; 1092 } 1093 1094 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, 1095 struct cs_etm_traceid_queue *tidq) 1096 { 1097 if ((!tidq->thread) && (tidq->tid != -1)) 1098 tidq->thread = machine__find_thread(etm->machine, -1, 1099 tidq->tid); 1100 1101 if (tidq->thread) 1102 tidq->pid = tidq->thread->pid_; 1103 } 1104 1105 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq, 1106 pid_t tid, u8 trace_chan_id) 1107 { 1108 int cpu, err = -EINVAL; 1109 struct cs_etm_auxtrace *etm = etmq->etm; 1110 struct cs_etm_traceid_queue *tidq; 1111 1112 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 1113 if (!tidq) 1114 return err; 1115 1116 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) 1117 return err; 1118 1119 err = machine__set_current_tid(etm->machine, cpu, tid, tid); 1120 if (err) 1121 return err; 1122 1123 tidq->tid = tid; 1124 thread__zput(tidq->thread); 1125 1126 cs_etm__set_pid_tid_cpu(etm, tidq); 1127 return 0; 1128 } 1129 1130 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) 1131 { 1132 return !!etmq->etm->timeless_decoding; 1133 } 1134 1135 static void cs_etm__copy_insn(struct cs_etm_queue *etmq, 1136 u64 trace_chan_id, 1137 const struct cs_etm_packet *packet, 1138 struct perf_sample *sample) 1139 { 1140 /* 1141 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY 1142 * packet, so directly bail out with 'insn_len' = 0. 1143 */ 1144 if (packet->sample_type == CS_ETM_DISCONTINUITY) { 1145 sample->insn_len = 0; 1146 return; 1147 } 1148 1149 /* 1150 * T32 instruction size might be 32-bit or 16-bit, decide by calling 1151 * cs_etm__t32_instr_size(). 1152 */ 1153 if (packet->isa == CS_ETM_ISA_T32) 1154 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, 1155 sample->ip); 1156 /* Otherwise, A64 and A32 instruction size are always 32-bit. */ 1157 else 1158 sample->insn_len = 4; 1159 1160 cs_etm__mem_access(etmq, trace_chan_id, sample->ip, 1161 sample->insn_len, (void *)sample->insn); 1162 } 1163 1164 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 1165 struct cs_etm_traceid_queue *tidq, 1166 u64 addr, u64 period) 1167 { 1168 int ret = 0; 1169 struct cs_etm_auxtrace *etm = etmq->etm; 1170 union perf_event *event = tidq->event_buf; 1171 struct perf_sample sample = {.ip = 0,}; 1172 1173 event->sample.header.type = PERF_RECORD_SAMPLE; 1174 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr); 1175 event->sample.header.size = sizeof(struct perf_event_header); 1176 1177 if (!etm->timeless_decoding) 1178 sample.time = etm->latest_kernel_timestamp; 1179 sample.ip = addr; 1180 sample.pid = tidq->pid; 1181 sample.tid = tidq->tid; 1182 sample.id = etmq->etm->instructions_id; 1183 sample.stream_id = etmq->etm->instructions_id; 1184 sample.period = period; 1185 sample.cpu = tidq->packet->cpu; 1186 sample.flags = tidq->prev_packet->flags; 1187 sample.cpumode = event->sample.header.misc; 1188 1189 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); 1190 1191 if (etm->synth_opts.last_branch) 1192 sample.branch_stack = tidq->last_branch; 1193 1194 if (etm->synth_opts.inject) { 1195 ret = cs_etm__inject_event(event, &sample, 1196 etm->instructions_sample_type); 1197 if (ret) 1198 return ret; 1199 } 1200 1201 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1202 1203 if (ret) 1204 pr_err( 1205 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1206 ret); 1207 1208 return ret; 1209 } 1210 1211 /* 1212 * The cs etm packet encodes an instruction range between a branch target 1213 * and the next taken branch. Generate sample accordingly. 1214 */ 1215 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, 1216 struct cs_etm_traceid_queue *tidq) 1217 { 1218 int ret = 0; 1219 struct cs_etm_auxtrace *etm = etmq->etm; 1220 struct perf_sample sample = {.ip = 0,}; 1221 union perf_event *event = tidq->event_buf; 1222 struct dummy_branch_stack { 1223 u64 nr; 1224 u64 hw_idx; 1225 struct branch_entry entries; 1226 } dummy_bs; 1227 u64 ip; 1228 1229 ip = cs_etm__last_executed_instr(tidq->prev_packet); 1230 1231 event->sample.header.type = PERF_RECORD_SAMPLE; 1232 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip); 1233 event->sample.header.size = sizeof(struct perf_event_header); 1234 1235 if (!etm->timeless_decoding) 1236 sample.time = etm->latest_kernel_timestamp; 1237 sample.ip = ip; 1238 sample.pid = tidq->pid; 1239 sample.tid = tidq->tid; 1240 sample.addr = cs_etm__first_executed_instr(tidq->packet); 1241 sample.id = etmq->etm->branches_id; 1242 sample.stream_id = etmq->etm->branches_id; 1243 sample.period = 1; 1244 sample.cpu = tidq->packet->cpu; 1245 sample.flags = tidq->prev_packet->flags; 1246 sample.cpumode = event->sample.header.misc; 1247 1248 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, 1249 &sample); 1250 1251 /* 1252 * perf report cannot handle events without a branch stack 1253 */ 1254 if (etm->synth_opts.last_branch) { 1255 dummy_bs = (struct dummy_branch_stack){ 1256 .nr = 1, 1257 .hw_idx = -1ULL, 1258 .entries = { 1259 .from = sample.ip, 1260 .to = sample.addr, 1261 }, 1262 }; 1263 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1264 } 1265 1266 if (etm->synth_opts.inject) { 1267 ret = cs_etm__inject_event(event, &sample, 1268 etm->branches_sample_type); 1269 if (ret) 1270 return ret; 1271 } 1272 1273 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1274 1275 if (ret) 1276 pr_err( 1277 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1278 ret); 1279 1280 return ret; 1281 } 1282 1283 struct cs_etm_synth { 1284 struct perf_tool dummy_tool; 1285 struct perf_session *session; 1286 }; 1287 1288 static int cs_etm__event_synth(struct perf_tool *tool, 1289 union perf_event *event, 1290 struct perf_sample *sample __maybe_unused, 1291 struct machine *machine __maybe_unused) 1292 { 1293 struct cs_etm_synth *cs_etm_synth = 1294 container_of(tool, struct cs_etm_synth, dummy_tool); 1295 1296 return perf_session__deliver_synth_event(cs_etm_synth->session, 1297 event, NULL); 1298 } 1299 1300 static int cs_etm__synth_event(struct perf_session *session, 1301 struct perf_event_attr *attr, u64 id) 1302 { 1303 struct cs_etm_synth cs_etm_synth; 1304 1305 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 1306 cs_etm_synth.session = session; 1307 1308 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 1309 &id, cs_etm__event_synth); 1310 } 1311 1312 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 1313 struct perf_session *session) 1314 { 1315 struct evlist *evlist = session->evlist; 1316 struct evsel *evsel; 1317 struct perf_event_attr attr; 1318 bool found = false; 1319 u64 id; 1320 int err; 1321 1322 evlist__for_each_entry(evlist, evsel) { 1323 if (evsel->core.attr.type == etm->pmu_type) { 1324 found = true; 1325 break; 1326 } 1327 } 1328 1329 if (!found) { 1330 pr_debug("No selected events with CoreSight Trace data\n"); 1331 return 0; 1332 } 1333 1334 memset(&attr, 0, sizeof(struct perf_event_attr)); 1335 attr.size = sizeof(struct perf_event_attr); 1336 attr.type = PERF_TYPE_HARDWARE; 1337 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 1338 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 1339 PERF_SAMPLE_PERIOD; 1340 if (etm->timeless_decoding) 1341 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 1342 else 1343 attr.sample_type |= PERF_SAMPLE_TIME; 1344 1345 attr.exclude_user = evsel->core.attr.exclude_user; 1346 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 1347 attr.exclude_hv = evsel->core.attr.exclude_hv; 1348 attr.exclude_host = evsel->core.attr.exclude_host; 1349 attr.exclude_guest = evsel->core.attr.exclude_guest; 1350 attr.sample_id_all = evsel->core.attr.sample_id_all; 1351 attr.read_format = evsel->core.attr.read_format; 1352 1353 /* create new id val to be a fixed offset from evsel id */ 1354 id = evsel->core.id[0] + 1000000000; 1355 1356 if (!id) 1357 id = 1; 1358 1359 if (etm->synth_opts.branches) { 1360 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 1361 attr.sample_period = 1; 1362 attr.sample_type |= PERF_SAMPLE_ADDR; 1363 err = cs_etm__synth_event(session, &attr, id); 1364 if (err) 1365 return err; 1366 etm->branches_sample_type = attr.sample_type; 1367 etm->branches_id = id; 1368 id += 1; 1369 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 1370 } 1371 1372 if (etm->synth_opts.last_branch) { 1373 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 1374 /* 1375 * We don't use the hardware index, but the sample generation 1376 * code uses the new format branch_stack with this field, 1377 * so the event attributes must indicate that it's present. 1378 */ 1379 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 1380 } 1381 1382 if (etm->synth_opts.instructions) { 1383 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 1384 attr.sample_period = etm->synth_opts.period; 1385 etm->instructions_sample_period = attr.sample_period; 1386 err = cs_etm__synth_event(session, &attr, id); 1387 if (err) 1388 return err; 1389 etm->instructions_sample_type = attr.sample_type; 1390 etm->instructions_id = id; 1391 id += 1; 1392 } 1393 1394 return 0; 1395 } 1396 1397 static int cs_etm__sample(struct cs_etm_queue *etmq, 1398 struct cs_etm_traceid_queue *tidq) 1399 { 1400 struct cs_etm_auxtrace *etm = etmq->etm; 1401 int ret; 1402 u8 trace_chan_id = tidq->trace_chan_id; 1403 u64 instrs_prev; 1404 1405 /* Get instructions remainder from previous packet */ 1406 instrs_prev = tidq->period_instructions; 1407 1408 tidq->period_instructions += tidq->packet->instr_count; 1409 1410 /* 1411 * Record a branch when the last instruction in 1412 * PREV_PACKET is a branch. 1413 */ 1414 if (etm->synth_opts.last_branch && 1415 tidq->prev_packet->sample_type == CS_ETM_RANGE && 1416 tidq->prev_packet->last_instr_taken_branch) 1417 cs_etm__update_last_branch_rb(etmq, tidq); 1418 1419 if (etm->synth_opts.instructions && 1420 tidq->period_instructions >= etm->instructions_sample_period) { 1421 /* 1422 * Emit instruction sample periodically 1423 * TODO: allow period to be defined in cycles and clock time 1424 */ 1425 1426 /* 1427 * Below diagram demonstrates the instruction samples 1428 * generation flows: 1429 * 1430 * Instrs Instrs Instrs Instrs 1431 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) 1432 * | | | | 1433 * V V V V 1434 * -------------------------------------------------- 1435 * ^ ^ 1436 * | | 1437 * Period Period 1438 * instructions(Pi) instructions(Pi') 1439 * 1440 * | | 1441 * \---------------- -----------------/ 1442 * V 1443 * tidq->packet->instr_count 1444 * 1445 * Instrs Sample(n...) are the synthesised samples occurring 1446 * every etm->instructions_sample_period instructions - as 1447 * defined on the perf command line. Sample(n) is being the 1448 * last sample before the current etm packet, n+1 to n+3 1449 * samples are generated from the current etm packet. 1450 * 1451 * tidq->packet->instr_count represents the number of 1452 * instructions in the current etm packet. 1453 * 1454 * Period instructions (Pi) contains the the number of 1455 * instructions executed after the sample point(n) from the 1456 * previous etm packet. This will always be less than 1457 * etm->instructions_sample_period. 1458 * 1459 * When generate new samples, it combines with two parts 1460 * instructions, one is the tail of the old packet and another 1461 * is the head of the new coming packet, to generate 1462 * sample(n+1); sample(n+2) and sample(n+3) consume the 1463 * instructions with sample period. After sample(n+3), the rest 1464 * instructions will be used by later packet and it is assigned 1465 * to tidq->period_instructions for next round calculation. 1466 */ 1467 1468 /* 1469 * Get the initial offset into the current packet instructions; 1470 * entry conditions ensure that instrs_prev is less than 1471 * etm->instructions_sample_period. 1472 */ 1473 u64 offset = etm->instructions_sample_period - instrs_prev; 1474 u64 addr; 1475 1476 /* Prepare last branches for instruction sample */ 1477 if (etm->synth_opts.last_branch) 1478 cs_etm__copy_last_branch_rb(etmq, tidq); 1479 1480 while (tidq->period_instructions >= 1481 etm->instructions_sample_period) { 1482 /* 1483 * Calculate the address of the sampled instruction (-1 1484 * as sample is reported as though instruction has just 1485 * been executed, but PC has not advanced to next 1486 * instruction) 1487 */ 1488 addr = cs_etm__instr_addr(etmq, trace_chan_id, 1489 tidq->packet, offset - 1); 1490 ret = cs_etm__synth_instruction_sample( 1491 etmq, tidq, addr, 1492 etm->instructions_sample_period); 1493 if (ret) 1494 return ret; 1495 1496 offset += etm->instructions_sample_period; 1497 tidq->period_instructions -= 1498 etm->instructions_sample_period; 1499 } 1500 } 1501 1502 if (etm->synth_opts.branches) { 1503 bool generate_sample = false; 1504 1505 /* Generate sample for tracing on packet */ 1506 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1507 generate_sample = true; 1508 1509 /* Generate sample for branch taken packet */ 1510 if (tidq->prev_packet->sample_type == CS_ETM_RANGE && 1511 tidq->prev_packet->last_instr_taken_branch) 1512 generate_sample = true; 1513 1514 if (generate_sample) { 1515 ret = cs_etm__synth_branch_sample(etmq, tidq); 1516 if (ret) 1517 return ret; 1518 } 1519 } 1520 1521 cs_etm__packet_swap(etm, tidq); 1522 1523 return 0; 1524 } 1525 1526 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) 1527 { 1528 /* 1529 * When the exception packet is inserted, whether the last instruction 1530 * in previous range packet is taken branch or not, we need to force 1531 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures 1532 * to generate branch sample for the instruction range before the 1533 * exception is trapped to kernel or before the exception returning. 1534 * 1535 * The exception packet includes the dummy address values, so don't 1536 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful 1537 * for generating instruction and branch samples. 1538 */ 1539 if (tidq->prev_packet->sample_type == CS_ETM_RANGE) 1540 tidq->prev_packet->last_instr_taken_branch = true; 1541 1542 return 0; 1543 } 1544 1545 static int cs_etm__flush(struct cs_etm_queue *etmq, 1546 struct cs_etm_traceid_queue *tidq) 1547 { 1548 int err = 0; 1549 struct cs_etm_auxtrace *etm = etmq->etm; 1550 1551 /* Handle start tracing packet */ 1552 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) 1553 goto swap_packet; 1554 1555 if (etmq->etm->synth_opts.last_branch && 1556 etmq->etm->synth_opts.instructions && 1557 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1558 u64 addr; 1559 1560 /* Prepare last branches for instruction sample */ 1561 cs_etm__copy_last_branch_rb(etmq, tidq); 1562 1563 /* 1564 * Generate a last branch event for the branches left in the 1565 * circular buffer at the end of the trace. 1566 * 1567 * Use the address of the end of the last reported execution 1568 * range 1569 */ 1570 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1571 1572 err = cs_etm__synth_instruction_sample( 1573 etmq, tidq, addr, 1574 tidq->period_instructions); 1575 if (err) 1576 return err; 1577 1578 tidq->period_instructions = 0; 1579 1580 } 1581 1582 if (etm->synth_opts.branches && 1583 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1584 err = cs_etm__synth_branch_sample(etmq, tidq); 1585 if (err) 1586 return err; 1587 } 1588 1589 swap_packet: 1590 cs_etm__packet_swap(etm, tidq); 1591 1592 /* Reset last branches after flush the trace */ 1593 if (etm->synth_opts.last_branch) 1594 cs_etm__reset_last_branch_rb(tidq); 1595 1596 return err; 1597 } 1598 1599 static int cs_etm__end_block(struct cs_etm_queue *etmq, 1600 struct cs_etm_traceid_queue *tidq) 1601 { 1602 int err; 1603 1604 /* 1605 * It has no new packet coming and 'etmq->packet' contains the stale 1606 * packet which was set at the previous time with packets swapping; 1607 * so skip to generate branch sample to avoid stale packet. 1608 * 1609 * For this case only flush branch stack and generate a last branch 1610 * event for the branches left in the circular buffer at the end of 1611 * the trace. 1612 */ 1613 if (etmq->etm->synth_opts.last_branch && 1614 etmq->etm->synth_opts.instructions && 1615 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1616 u64 addr; 1617 1618 /* Prepare last branches for instruction sample */ 1619 cs_etm__copy_last_branch_rb(etmq, tidq); 1620 1621 /* 1622 * Use the address of the end of the last reported execution 1623 * range. 1624 */ 1625 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1626 1627 err = cs_etm__synth_instruction_sample( 1628 etmq, tidq, addr, 1629 tidq->period_instructions); 1630 if (err) 1631 return err; 1632 1633 tidq->period_instructions = 0; 1634 } 1635 1636 return 0; 1637 } 1638 /* 1639 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue 1640 * if need be. 1641 * Returns: < 0 if error 1642 * = 0 if no more auxtrace_buffer to read 1643 * > 0 if the current buffer isn't empty yet 1644 */ 1645 static int cs_etm__get_data_block(struct cs_etm_queue *etmq) 1646 { 1647 int ret; 1648 1649 if (!etmq->buf_len) { 1650 ret = cs_etm__get_trace(etmq); 1651 if (ret <= 0) 1652 return ret; 1653 /* 1654 * We cannot assume consecutive blocks in the data file 1655 * are contiguous, reset the decoder to force re-sync. 1656 */ 1657 ret = cs_etm_decoder__reset(etmq->decoder); 1658 if (ret) 1659 return ret; 1660 } 1661 1662 return etmq->buf_len; 1663 } 1664 1665 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, 1666 struct cs_etm_packet *packet, 1667 u64 end_addr) 1668 { 1669 /* Initialise to keep compiler happy */ 1670 u16 instr16 = 0; 1671 u32 instr32 = 0; 1672 u64 addr; 1673 1674 switch (packet->isa) { 1675 case CS_ETM_ISA_T32: 1676 /* 1677 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: 1678 * 1679 * b'15 b'8 1680 * +-----------------+--------+ 1681 * | 1 1 0 1 1 1 1 1 | imm8 | 1682 * +-----------------+--------+ 1683 * 1684 * According to the specification, it only defines SVC for T32 1685 * with 16 bits instruction and has no definition for 32bits; 1686 * so below only read 2 bytes as instruction size for T32. 1687 */ 1688 addr = end_addr - 2; 1689 cs_etm__mem_access(etmq, trace_chan_id, addr, 1690 sizeof(instr16), (u8 *)&instr16); 1691 if ((instr16 & 0xFF00) == 0xDF00) 1692 return true; 1693 1694 break; 1695 case CS_ETM_ISA_A32: 1696 /* 1697 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: 1698 * 1699 * b'31 b'28 b'27 b'24 1700 * +---------+---------+-------------------------+ 1701 * | !1111 | 1 1 1 1 | imm24 | 1702 * +---------+---------+-------------------------+ 1703 */ 1704 addr = end_addr - 4; 1705 cs_etm__mem_access(etmq, trace_chan_id, addr, 1706 sizeof(instr32), (u8 *)&instr32); 1707 if ((instr32 & 0x0F000000) == 0x0F000000 && 1708 (instr32 & 0xF0000000) != 0xF0000000) 1709 return true; 1710 1711 break; 1712 case CS_ETM_ISA_A64: 1713 /* 1714 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: 1715 * 1716 * b'31 b'21 b'4 b'0 1717 * +-----------------------+---------+-----------+ 1718 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | 1719 * +-----------------------+---------+-----------+ 1720 */ 1721 addr = end_addr - 4; 1722 cs_etm__mem_access(etmq, trace_chan_id, addr, 1723 sizeof(instr32), (u8 *)&instr32); 1724 if ((instr32 & 0xFFE0001F) == 0xd4000001) 1725 return true; 1726 1727 break; 1728 case CS_ETM_ISA_UNKNOWN: 1729 default: 1730 break; 1731 } 1732 1733 return false; 1734 } 1735 1736 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, 1737 struct cs_etm_traceid_queue *tidq, u64 magic) 1738 { 1739 u8 trace_chan_id = tidq->trace_chan_id; 1740 struct cs_etm_packet *packet = tidq->packet; 1741 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1742 1743 if (magic == __perf_cs_etmv3_magic) 1744 if (packet->exception_number == CS_ETMV3_EXC_SVC) 1745 return true; 1746 1747 /* 1748 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and 1749 * HVC cases; need to check if it's SVC instruction based on 1750 * packet address. 1751 */ 1752 if (magic == __perf_cs_etmv4_magic) { 1753 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1754 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1755 prev_packet->end_addr)) 1756 return true; 1757 } 1758 1759 return false; 1760 } 1761 1762 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, 1763 u64 magic) 1764 { 1765 struct cs_etm_packet *packet = tidq->packet; 1766 1767 if (magic == __perf_cs_etmv3_magic) 1768 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || 1769 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || 1770 packet->exception_number == CS_ETMV3_EXC_PE_RESET || 1771 packet->exception_number == CS_ETMV3_EXC_IRQ || 1772 packet->exception_number == CS_ETMV3_EXC_FIQ) 1773 return true; 1774 1775 if (magic == __perf_cs_etmv4_magic) 1776 if (packet->exception_number == CS_ETMV4_EXC_RESET || 1777 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || 1778 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || 1779 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || 1780 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || 1781 packet->exception_number == CS_ETMV4_EXC_IRQ || 1782 packet->exception_number == CS_ETMV4_EXC_FIQ) 1783 return true; 1784 1785 return false; 1786 } 1787 1788 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, 1789 struct cs_etm_traceid_queue *tidq, 1790 u64 magic) 1791 { 1792 u8 trace_chan_id = tidq->trace_chan_id; 1793 struct cs_etm_packet *packet = tidq->packet; 1794 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1795 1796 if (magic == __perf_cs_etmv3_magic) 1797 if (packet->exception_number == CS_ETMV3_EXC_SMC || 1798 packet->exception_number == CS_ETMV3_EXC_HYP || 1799 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || 1800 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || 1801 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || 1802 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || 1803 packet->exception_number == CS_ETMV3_EXC_GENERIC) 1804 return true; 1805 1806 if (magic == __perf_cs_etmv4_magic) { 1807 if (packet->exception_number == CS_ETMV4_EXC_TRAP || 1808 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || 1809 packet->exception_number == CS_ETMV4_EXC_INST_FAULT || 1810 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) 1811 return true; 1812 1813 /* 1814 * For CS_ETMV4_EXC_CALL, except SVC other instructions 1815 * (SMC, HVC) are taken as sync exceptions. 1816 */ 1817 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1818 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1819 prev_packet->end_addr)) 1820 return true; 1821 1822 /* 1823 * ETMv4 has 5 bits for exception number; if the numbers 1824 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] 1825 * they are implementation defined exceptions. 1826 * 1827 * For this case, simply take it as sync exception. 1828 */ 1829 if (packet->exception_number > CS_ETMV4_EXC_FIQ && 1830 packet->exception_number <= CS_ETMV4_EXC_END) 1831 return true; 1832 } 1833 1834 return false; 1835 } 1836 1837 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, 1838 struct cs_etm_traceid_queue *tidq) 1839 { 1840 struct cs_etm_packet *packet = tidq->packet; 1841 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1842 u8 trace_chan_id = tidq->trace_chan_id; 1843 u64 magic; 1844 int ret; 1845 1846 switch (packet->sample_type) { 1847 case CS_ETM_RANGE: 1848 /* 1849 * Immediate branch instruction without neither link nor 1850 * return flag, it's normal branch instruction within 1851 * the function. 1852 */ 1853 if (packet->last_instr_type == OCSD_INSTR_BR && 1854 packet->last_instr_subtype == OCSD_S_INSTR_NONE) { 1855 packet->flags = PERF_IP_FLAG_BRANCH; 1856 1857 if (packet->last_instr_cond) 1858 packet->flags |= PERF_IP_FLAG_CONDITIONAL; 1859 } 1860 1861 /* 1862 * Immediate branch instruction with link (e.g. BL), this is 1863 * branch instruction for function call. 1864 */ 1865 if (packet->last_instr_type == OCSD_INSTR_BR && 1866 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 1867 packet->flags = PERF_IP_FLAG_BRANCH | 1868 PERF_IP_FLAG_CALL; 1869 1870 /* 1871 * Indirect branch instruction with link (e.g. BLR), this is 1872 * branch instruction for function call. 1873 */ 1874 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1875 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 1876 packet->flags = PERF_IP_FLAG_BRANCH | 1877 PERF_IP_FLAG_CALL; 1878 1879 /* 1880 * Indirect branch instruction with subtype of 1881 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for 1882 * function return for A32/T32. 1883 */ 1884 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1885 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) 1886 packet->flags = PERF_IP_FLAG_BRANCH | 1887 PERF_IP_FLAG_RETURN; 1888 1889 /* 1890 * Indirect branch instruction without link (e.g. BR), usually 1891 * this is used for function return, especially for functions 1892 * within dynamic link lib. 1893 */ 1894 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1895 packet->last_instr_subtype == OCSD_S_INSTR_NONE) 1896 packet->flags = PERF_IP_FLAG_BRANCH | 1897 PERF_IP_FLAG_RETURN; 1898 1899 /* Return instruction for function return. */ 1900 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1901 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) 1902 packet->flags = PERF_IP_FLAG_BRANCH | 1903 PERF_IP_FLAG_RETURN; 1904 1905 /* 1906 * Decoder might insert a discontinuity in the middle of 1907 * instruction packets, fixup prev_packet with flag 1908 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. 1909 */ 1910 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1911 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 1912 PERF_IP_FLAG_TRACE_BEGIN; 1913 1914 /* 1915 * If the previous packet is an exception return packet 1916 * and the return address just follows SVC instruction, 1917 * it needs to calibrate the previous packet sample flags 1918 * as PERF_IP_FLAG_SYSCALLRET. 1919 */ 1920 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | 1921 PERF_IP_FLAG_RETURN | 1922 PERF_IP_FLAG_INTERRUPT) && 1923 cs_etm__is_svc_instr(etmq, trace_chan_id, 1924 packet, packet->start_addr)) 1925 prev_packet->flags = PERF_IP_FLAG_BRANCH | 1926 PERF_IP_FLAG_RETURN | 1927 PERF_IP_FLAG_SYSCALLRET; 1928 break; 1929 case CS_ETM_DISCONTINUITY: 1930 /* 1931 * The trace is discontinuous, if the previous packet is 1932 * instruction packet, set flag PERF_IP_FLAG_TRACE_END 1933 * for previous packet. 1934 */ 1935 if (prev_packet->sample_type == CS_ETM_RANGE) 1936 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 1937 PERF_IP_FLAG_TRACE_END; 1938 break; 1939 case CS_ETM_EXCEPTION: 1940 ret = cs_etm__get_magic(packet->trace_chan_id, &magic); 1941 if (ret) 1942 return ret; 1943 1944 /* The exception is for system call. */ 1945 if (cs_etm__is_syscall(etmq, tidq, magic)) 1946 packet->flags = PERF_IP_FLAG_BRANCH | 1947 PERF_IP_FLAG_CALL | 1948 PERF_IP_FLAG_SYSCALLRET; 1949 /* 1950 * The exceptions are triggered by external signals from bus, 1951 * interrupt controller, debug module, PE reset or halt. 1952 */ 1953 else if (cs_etm__is_async_exception(tidq, magic)) 1954 packet->flags = PERF_IP_FLAG_BRANCH | 1955 PERF_IP_FLAG_CALL | 1956 PERF_IP_FLAG_ASYNC | 1957 PERF_IP_FLAG_INTERRUPT; 1958 /* 1959 * Otherwise, exception is caused by trap, instruction & 1960 * data fault, or alignment errors. 1961 */ 1962 else if (cs_etm__is_sync_exception(etmq, tidq, magic)) 1963 packet->flags = PERF_IP_FLAG_BRANCH | 1964 PERF_IP_FLAG_CALL | 1965 PERF_IP_FLAG_INTERRUPT; 1966 1967 /* 1968 * When the exception packet is inserted, since exception 1969 * packet is not used standalone for generating samples 1970 * and it's affiliation to the previous instruction range 1971 * packet; so set previous range packet flags to tell perf 1972 * it is an exception taken branch. 1973 */ 1974 if (prev_packet->sample_type == CS_ETM_RANGE) 1975 prev_packet->flags = packet->flags; 1976 break; 1977 case CS_ETM_EXCEPTION_RET: 1978 /* 1979 * When the exception return packet is inserted, since 1980 * exception return packet is not used standalone for 1981 * generating samples and it's affiliation to the previous 1982 * instruction range packet; so set previous range packet 1983 * flags to tell perf it is an exception return branch. 1984 * 1985 * The exception return can be for either system call or 1986 * other exception types; unfortunately the packet doesn't 1987 * contain exception type related info so we cannot decide 1988 * the exception type purely based on exception return packet. 1989 * If we record the exception number from exception packet and 1990 * reuse it for exception return packet, this is not reliable 1991 * due the trace can be discontinuity or the interrupt can 1992 * be nested, thus the recorded exception number cannot be 1993 * used for exception return packet for these two cases. 1994 * 1995 * For exception return packet, we only need to distinguish the 1996 * packet is for system call or for other types. Thus the 1997 * decision can be deferred when receive the next packet which 1998 * contains the return address, based on the return address we 1999 * can read out the previous instruction and check if it's a 2000 * system call instruction and then calibrate the sample flag 2001 * as needed. 2002 */ 2003 if (prev_packet->sample_type == CS_ETM_RANGE) 2004 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2005 PERF_IP_FLAG_RETURN | 2006 PERF_IP_FLAG_INTERRUPT; 2007 break; 2008 case CS_ETM_EMPTY: 2009 default: 2010 break; 2011 } 2012 2013 return 0; 2014 } 2015 2016 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) 2017 { 2018 int ret = 0; 2019 size_t processed = 0; 2020 2021 /* 2022 * Packets are decoded and added to the decoder's packet queue 2023 * until the decoder packet processing callback has requested that 2024 * processing stops or there is nothing left in the buffer. Normal 2025 * operations that stop processing are a timestamp packet or a full 2026 * decoder buffer queue. 2027 */ 2028 ret = cs_etm_decoder__process_data_block(etmq->decoder, 2029 etmq->offset, 2030 &etmq->buf[etmq->buf_used], 2031 etmq->buf_len, 2032 &processed); 2033 if (ret) 2034 goto out; 2035 2036 etmq->offset += processed; 2037 etmq->buf_used += processed; 2038 etmq->buf_len -= processed; 2039 2040 out: 2041 return ret; 2042 } 2043 2044 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, 2045 struct cs_etm_traceid_queue *tidq) 2046 { 2047 int ret; 2048 struct cs_etm_packet_queue *packet_queue; 2049 2050 packet_queue = &tidq->packet_queue; 2051 2052 /* Process each packet in this chunk */ 2053 while (1) { 2054 ret = cs_etm_decoder__get_packet(packet_queue, 2055 tidq->packet); 2056 if (ret <= 0) 2057 /* 2058 * Stop processing this chunk on 2059 * end of data or error 2060 */ 2061 break; 2062 2063 /* 2064 * Since packet addresses are swapped in packet 2065 * handling within below switch() statements, 2066 * thus setting sample flags must be called 2067 * prior to switch() statement to use address 2068 * information before packets swapping. 2069 */ 2070 ret = cs_etm__set_sample_flags(etmq, tidq); 2071 if (ret < 0) 2072 break; 2073 2074 switch (tidq->packet->sample_type) { 2075 case CS_ETM_RANGE: 2076 /* 2077 * If the packet contains an instruction 2078 * range, generate instruction sequence 2079 * events. 2080 */ 2081 cs_etm__sample(etmq, tidq); 2082 break; 2083 case CS_ETM_EXCEPTION: 2084 case CS_ETM_EXCEPTION_RET: 2085 /* 2086 * If the exception packet is coming, 2087 * make sure the previous instruction 2088 * range packet to be handled properly. 2089 */ 2090 cs_etm__exception(tidq); 2091 break; 2092 case CS_ETM_DISCONTINUITY: 2093 /* 2094 * Discontinuity in trace, flush 2095 * previous branch stack 2096 */ 2097 cs_etm__flush(etmq, tidq); 2098 break; 2099 case CS_ETM_EMPTY: 2100 /* 2101 * Should not receive empty packet, 2102 * report error. 2103 */ 2104 pr_err("CS ETM Trace: empty packet\n"); 2105 return -EINVAL; 2106 default: 2107 break; 2108 } 2109 } 2110 2111 return ret; 2112 } 2113 2114 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) 2115 { 2116 int idx; 2117 struct int_node *inode; 2118 struct cs_etm_traceid_queue *tidq; 2119 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 2120 2121 intlist__for_each_entry(inode, traceid_queues_list) { 2122 idx = (int)(intptr_t)inode->priv; 2123 tidq = etmq->traceid_queues[idx]; 2124 2125 /* Ignore return value */ 2126 cs_etm__process_traceid_queue(etmq, tidq); 2127 2128 /* 2129 * Generate an instruction sample with the remaining 2130 * branchstack entries. 2131 */ 2132 cs_etm__flush(etmq, tidq); 2133 } 2134 } 2135 2136 static int cs_etm__run_decoder(struct cs_etm_queue *etmq) 2137 { 2138 int err = 0; 2139 struct cs_etm_traceid_queue *tidq; 2140 2141 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); 2142 if (!tidq) 2143 return -EINVAL; 2144 2145 /* Go through each buffer in the queue and decode them one by one */ 2146 while (1) { 2147 err = cs_etm__get_data_block(etmq); 2148 if (err <= 0) 2149 return err; 2150 2151 /* Run trace decoder until buffer consumed or end of trace */ 2152 do { 2153 err = cs_etm__decode_data_block(etmq); 2154 if (err) 2155 return err; 2156 2157 /* 2158 * Process each packet in this chunk, nothing to do if 2159 * an error occurs other than hoping the next one will 2160 * be better. 2161 */ 2162 err = cs_etm__process_traceid_queue(etmq, tidq); 2163 2164 } while (etmq->buf_len); 2165 2166 if (err == 0) 2167 /* Flush any remaining branch stack entries */ 2168 err = cs_etm__end_block(etmq, tidq); 2169 } 2170 2171 return err; 2172 } 2173 2174 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 2175 pid_t tid) 2176 { 2177 unsigned int i; 2178 struct auxtrace_queues *queues = &etm->queues; 2179 2180 for (i = 0; i < queues->nr_queues; i++) { 2181 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 2182 struct cs_etm_queue *etmq = queue->priv; 2183 struct cs_etm_traceid_queue *tidq; 2184 2185 if (!etmq) 2186 continue; 2187 2188 tidq = cs_etm__etmq_get_traceid_queue(etmq, 2189 CS_ETM_PER_THREAD_TRACEID); 2190 2191 if (!tidq) 2192 continue; 2193 2194 if ((tid == -1) || (tidq->tid == tid)) { 2195 cs_etm__set_pid_tid_cpu(etm, tidq); 2196 cs_etm__run_decoder(etmq); 2197 } 2198 } 2199 2200 return 0; 2201 } 2202 2203 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm) 2204 { 2205 int ret = 0; 2206 unsigned int cs_queue_nr, queue_nr, i; 2207 u8 trace_chan_id; 2208 u64 cs_timestamp; 2209 struct auxtrace_queue *queue; 2210 struct cs_etm_queue *etmq; 2211 struct cs_etm_traceid_queue *tidq; 2212 2213 /* 2214 * Pre-populate the heap with one entry from each queue so that we can 2215 * start processing in time order across all queues. 2216 */ 2217 for (i = 0; i < etm->queues.nr_queues; i++) { 2218 etmq = etm->queues.queue_array[i].priv; 2219 if (!etmq) 2220 continue; 2221 2222 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i); 2223 if (ret) 2224 return ret; 2225 } 2226 2227 while (1) { 2228 if (!etm->heap.heap_cnt) 2229 goto out; 2230 2231 /* Take the entry at the top of the min heap */ 2232 cs_queue_nr = etm->heap.heap_array[0].queue_nr; 2233 queue_nr = TO_QUEUE_NR(cs_queue_nr); 2234 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); 2235 queue = &etm->queues.queue_array[queue_nr]; 2236 etmq = queue->priv; 2237 2238 /* 2239 * Remove the top entry from the heap since we are about 2240 * to process it. 2241 */ 2242 auxtrace_heap__pop(&etm->heap); 2243 2244 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 2245 if (!tidq) { 2246 /* 2247 * No traceID queue has been allocated for this traceID, 2248 * which means something somewhere went very wrong. No 2249 * other choice than simply exit. 2250 */ 2251 ret = -EINVAL; 2252 goto out; 2253 } 2254 2255 /* 2256 * Packets associated with this timestamp are already in 2257 * the etmq's traceID queue, so process them. 2258 */ 2259 ret = cs_etm__process_traceid_queue(etmq, tidq); 2260 if (ret < 0) 2261 goto out; 2262 2263 /* 2264 * Packets for this timestamp have been processed, time to 2265 * move on to the next timestamp, fetching a new auxtrace_buffer 2266 * if need be. 2267 */ 2268 refetch: 2269 ret = cs_etm__get_data_block(etmq); 2270 if (ret < 0) 2271 goto out; 2272 2273 /* 2274 * No more auxtrace_buffers to process in this etmq, simply 2275 * move on to another entry in the auxtrace_heap. 2276 */ 2277 if (!ret) 2278 continue; 2279 2280 ret = cs_etm__decode_data_block(etmq); 2281 if (ret) 2282 goto out; 2283 2284 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 2285 2286 if (!cs_timestamp) { 2287 /* 2288 * Function cs_etm__decode_data_block() returns when 2289 * there is no more traces to decode in the current 2290 * auxtrace_buffer OR when a timestamp has been 2291 * encountered on any of the traceID queues. Since we 2292 * did not get a timestamp, there is no more traces to 2293 * process in this auxtrace_buffer. As such empty and 2294 * flush all traceID queues. 2295 */ 2296 cs_etm__clear_all_traceid_queues(etmq); 2297 2298 /* Fetch another auxtrace_buffer for this etmq */ 2299 goto refetch; 2300 } 2301 2302 /* 2303 * Add to the min heap the timestamp for packets that have 2304 * just been decoded. They will be processed and synthesized 2305 * during the next call to cs_etm__process_traceid_queue() for 2306 * this queue/traceID. 2307 */ 2308 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 2309 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 2310 } 2311 2312 out: 2313 return ret; 2314 } 2315 2316 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, 2317 union perf_event *event) 2318 { 2319 struct thread *th; 2320 2321 if (etm->timeless_decoding) 2322 return 0; 2323 2324 /* 2325 * Add the tid/pid to the log so that we can get a match when 2326 * we get a contextID from the decoder. 2327 */ 2328 th = machine__findnew_thread(etm->machine, 2329 event->itrace_start.pid, 2330 event->itrace_start.tid); 2331 if (!th) 2332 return -ENOMEM; 2333 2334 thread__put(th); 2335 2336 return 0; 2337 } 2338 2339 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, 2340 union perf_event *event) 2341 { 2342 struct thread *th; 2343 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2344 2345 /* 2346 * Context switch in per-thread mode are irrelevant since perf 2347 * will start/stop tracing as the process is scheduled. 2348 */ 2349 if (etm->timeless_decoding) 2350 return 0; 2351 2352 /* 2353 * SWITCH_IN events carry the next process to be switched out while 2354 * SWITCH_OUT events carry the process to be switched in. As such 2355 * we don't care about IN events. 2356 */ 2357 if (!out) 2358 return 0; 2359 2360 /* 2361 * Add the tid/pid to the log so that we can get a match when 2362 * we get a contextID from the decoder. 2363 */ 2364 th = machine__findnew_thread(etm->machine, 2365 event->context_switch.next_prev_pid, 2366 event->context_switch.next_prev_tid); 2367 if (!th) 2368 return -ENOMEM; 2369 2370 thread__put(th); 2371 2372 return 0; 2373 } 2374 2375 static int cs_etm__process_event(struct perf_session *session, 2376 union perf_event *event, 2377 struct perf_sample *sample, 2378 struct perf_tool *tool) 2379 { 2380 u64 sample_kernel_timestamp; 2381 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2382 struct cs_etm_auxtrace, 2383 auxtrace); 2384 2385 if (dump_trace) 2386 return 0; 2387 2388 if (!tool->ordered_events) { 2389 pr_err("CoreSight ETM Trace requires ordered events\n"); 2390 return -EINVAL; 2391 } 2392 2393 if (sample->time && (sample->time != (u64) -1)) 2394 sample_kernel_timestamp = sample->time; 2395 else 2396 sample_kernel_timestamp = 0; 2397 2398 /* 2399 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We 2400 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because 2401 * ETM_OPT_CTXTID is not enabled. 2402 */ 2403 if (etm->timeless_decoding && 2404 event->header.type == PERF_RECORD_EXIT) 2405 return cs_etm__process_timeless_queues(etm, 2406 event->fork.tid); 2407 2408 if (event->header.type == PERF_RECORD_ITRACE_START) 2409 return cs_etm__process_itrace_start(etm, event); 2410 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2411 return cs_etm__process_switch_cpu_wide(etm, event); 2412 2413 if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) { 2414 /* 2415 * Record the latest kernel timestamp available in the header 2416 * for samples so that synthesised samples occur from this point 2417 * onwards. 2418 */ 2419 etm->latest_kernel_timestamp = sample_kernel_timestamp; 2420 } 2421 2422 return 0; 2423 } 2424 2425 static void dump_queued_data(struct cs_etm_auxtrace *etm, 2426 struct perf_record_auxtrace *event) 2427 { 2428 struct auxtrace_buffer *buf; 2429 unsigned int i; 2430 /* 2431 * Find all buffers with same reference in the queues and dump them. 2432 * This is because the queues can contain multiple entries of the same 2433 * buffer that were split on aux records. 2434 */ 2435 for (i = 0; i < etm->queues.nr_queues; ++i) 2436 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list) 2437 if (buf->reference == event->reference) 2438 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf); 2439 } 2440 2441 static int cs_etm__process_auxtrace_event(struct perf_session *session, 2442 union perf_event *event, 2443 struct perf_tool *tool __maybe_unused) 2444 { 2445 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2446 struct cs_etm_auxtrace, 2447 auxtrace); 2448 if (!etm->data_queued) { 2449 struct auxtrace_buffer *buffer; 2450 off_t data_offset; 2451 int fd = perf_data__fd(session->data); 2452 bool is_pipe = perf_data__is_pipe(session->data); 2453 int err; 2454 int idx = event->auxtrace.idx; 2455 2456 if (is_pipe) 2457 data_offset = 0; 2458 else { 2459 data_offset = lseek(fd, 0, SEEK_CUR); 2460 if (data_offset == -1) 2461 return -errno; 2462 } 2463 2464 err = auxtrace_queues__add_event(&etm->queues, session, 2465 event, data_offset, &buffer); 2466 if (err) 2467 return err; 2468 2469 /* 2470 * Knowing if the trace is formatted or not requires a lookup of 2471 * the aux record so only works in non-piped mode where data is 2472 * queued in cs_etm__queue_aux_records(). Always assume 2473 * formatted in piped mode (true). 2474 */ 2475 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2476 idx, true); 2477 if (err) 2478 return err; 2479 2480 if (dump_trace) 2481 if (auxtrace_buffer__get_data(buffer, fd)) { 2482 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer); 2483 auxtrace_buffer__put_data(buffer); 2484 } 2485 } else if (dump_trace) 2486 dump_queued_data(etm, &event->auxtrace); 2487 2488 return 0; 2489 } 2490 2491 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) 2492 { 2493 struct evsel *evsel; 2494 struct evlist *evlist = etm->session->evlist; 2495 bool timeless_decoding = true; 2496 2497 /* Override timeless mode with user input from --itrace=Z */ 2498 if (etm->synth_opts.timeless_decoding) 2499 return true; 2500 2501 /* 2502 * Circle through the list of event and complain if we find one 2503 * with the time bit set. 2504 */ 2505 evlist__for_each_entry(evlist, evsel) { 2506 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 2507 timeless_decoding = false; 2508 } 2509 2510 return timeless_decoding; 2511 } 2512 2513 static const char * const cs_etm_global_header_fmts[] = { 2514 [CS_HEADER_VERSION] = " Header version %llx\n", 2515 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n", 2516 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n", 2517 }; 2518 2519 static const char * const cs_etm_priv_fmts[] = { 2520 [CS_ETM_MAGIC] = " Magic number %llx\n", 2521 [CS_ETM_CPU] = " CPU %lld\n", 2522 [CS_ETM_NR_TRC_PARAMS] = " NR_TRC_PARAMS %llx\n", 2523 [CS_ETM_ETMCR] = " ETMCR %llx\n", 2524 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n", 2525 [CS_ETM_ETMCCER] = " ETMCCER %llx\n", 2526 [CS_ETM_ETMIDR] = " ETMIDR %llx\n", 2527 }; 2528 2529 static const char * const cs_etmv4_priv_fmts[] = { 2530 [CS_ETM_MAGIC] = " Magic number %llx\n", 2531 [CS_ETM_CPU] = " CPU %lld\n", 2532 [CS_ETM_NR_TRC_PARAMS] = " NR_TRC_PARAMS %llx\n", 2533 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n", 2534 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n", 2535 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n", 2536 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n", 2537 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n", 2538 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n", 2539 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n", 2540 [CS_ETE_TRCDEVARCH] = " TRCDEVARCH %llx\n" 2541 }; 2542 2543 static const char * const param_unk_fmt = 2544 " Unknown parameter [%d] %llx\n"; 2545 static const char * const magic_unk_fmt = 2546 " Magic number Unknown %llx\n"; 2547 2548 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset) 2549 { 2550 int i = *offset, j, nr_params = 0, fmt_offset; 2551 __u64 magic; 2552 2553 /* check magic value */ 2554 magic = val[i + CS_ETM_MAGIC]; 2555 if ((magic != __perf_cs_etmv3_magic) && 2556 (magic != __perf_cs_etmv4_magic)) { 2557 /* failure - note bad magic value */ 2558 fprintf(stdout, magic_unk_fmt, magic); 2559 return -EINVAL; 2560 } 2561 2562 /* print common header block */ 2563 fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]); 2564 fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]); 2565 2566 if (magic == __perf_cs_etmv3_magic) { 2567 nr_params = CS_ETM_NR_TRC_PARAMS_V0; 2568 fmt_offset = CS_ETM_ETMCR; 2569 /* after common block, offset format index past NR_PARAMS */ 2570 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++) 2571 fprintf(stdout, cs_etm_priv_fmts[j], val[i]); 2572 } else if (magic == __perf_cs_etmv4_magic) { 2573 nr_params = CS_ETMV4_NR_TRC_PARAMS_V0; 2574 fmt_offset = CS_ETMV4_TRCCONFIGR; 2575 /* after common block, offset format index past NR_PARAMS */ 2576 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++) 2577 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); 2578 } 2579 *offset = i; 2580 return 0; 2581 } 2582 2583 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset) 2584 { 2585 int i = *offset, j, total_params = 0; 2586 __u64 magic; 2587 2588 magic = val[i + CS_ETM_MAGIC]; 2589 /* total params to print is NR_PARAMS + common block size for v1 */ 2590 total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1; 2591 2592 if (magic == __perf_cs_etmv3_magic) { 2593 for (j = 0; j < total_params; j++, i++) { 2594 /* if newer record - could be excess params */ 2595 if (j >= CS_ETM_PRIV_MAX) 2596 fprintf(stdout, param_unk_fmt, j, val[i]); 2597 else 2598 fprintf(stdout, cs_etm_priv_fmts[j], val[i]); 2599 } 2600 } else if (magic == __perf_cs_etmv4_magic || magic == __perf_cs_ete_magic) { 2601 /* 2602 * ETE and ETMv4 can be printed in the same block because the number of parameters 2603 * is saved and they share the list of parameter names. ETE is also only supported 2604 * in V1 files. 2605 */ 2606 for (j = 0; j < total_params; j++, i++) { 2607 /* if newer record - could be excess params */ 2608 if (j >= CS_ETE_PRIV_MAX) 2609 fprintf(stdout, param_unk_fmt, j, val[i]); 2610 else 2611 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); 2612 } 2613 } else { 2614 /* failure - note bad magic value and error out */ 2615 fprintf(stdout, magic_unk_fmt, magic); 2616 return -EINVAL; 2617 } 2618 *offset = i; 2619 return 0; 2620 } 2621 2622 static void cs_etm__print_auxtrace_info(__u64 *val, int num) 2623 { 2624 int i, cpu = 0, version, err; 2625 2626 /* bail out early on bad header version */ 2627 version = val[0]; 2628 if (version > CS_HEADER_CURRENT_VERSION) { 2629 /* failure.. return */ 2630 fprintf(stdout, " Unknown Header Version = %x, ", version); 2631 fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION); 2632 return; 2633 } 2634 2635 for (i = 0; i < CS_HEADER_VERSION_MAX; i++) 2636 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]); 2637 2638 for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) { 2639 if (version == 0) 2640 err = cs_etm__print_cpu_metadata_v0(val, &i); 2641 else if (version == 1) 2642 err = cs_etm__print_cpu_metadata_v1(val, &i); 2643 if (err) 2644 return; 2645 } 2646 } 2647 2648 /* 2649 * Read a single cpu parameter block from the auxtrace_info priv block. 2650 * 2651 * For version 1 there is a per cpu nr_params entry. If we are handling 2652 * version 1 file, then there may be less, the same, or more params 2653 * indicated by this value than the compile time number we understand. 2654 * 2655 * For a version 0 info block, there are a fixed number, and we need to 2656 * fill out the nr_param value in the metadata we create. 2657 */ 2658 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset, 2659 int out_blk_size, int nr_params_v0) 2660 { 2661 u64 *metadata = NULL; 2662 int hdr_version; 2663 int nr_in_params, nr_out_params, nr_cmn_params; 2664 int i, k; 2665 2666 metadata = zalloc(sizeof(*metadata) * out_blk_size); 2667 if (!metadata) 2668 return NULL; 2669 2670 /* read block current index & version */ 2671 i = *buff_in_offset; 2672 hdr_version = buff_in[CS_HEADER_VERSION]; 2673 2674 if (!hdr_version) { 2675 /* read version 0 info block into a version 1 metadata block */ 2676 nr_in_params = nr_params_v0; 2677 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC]; 2678 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU]; 2679 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params; 2680 /* remaining block params at offset +1 from source */ 2681 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++) 2682 metadata[k + 1] = buff_in[i + k]; 2683 /* version 0 has 2 common params */ 2684 nr_cmn_params = 2; 2685 } else { 2686 /* read version 1 info block - input and output nr_params may differ */ 2687 /* version 1 has 3 common params */ 2688 nr_cmn_params = 3; 2689 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS]; 2690 2691 /* if input has more params than output - skip excess */ 2692 nr_out_params = nr_in_params + nr_cmn_params; 2693 if (nr_out_params > out_blk_size) 2694 nr_out_params = out_blk_size; 2695 2696 for (k = CS_ETM_MAGIC; k < nr_out_params; k++) 2697 metadata[k] = buff_in[i + k]; 2698 2699 /* record the actual nr params we copied */ 2700 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params; 2701 } 2702 2703 /* adjust in offset by number of in params used */ 2704 i += nr_in_params + nr_cmn_params; 2705 *buff_in_offset = i; 2706 return metadata; 2707 } 2708 2709 /** 2710 * Puts a fragment of an auxtrace buffer into the auxtrace queues based 2711 * on the bounds of aux_event, if it matches with the buffer that's at 2712 * file_offset. 2713 * 2714 * Normally, whole auxtrace buffers would be added to the queue. But we 2715 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder 2716 * is reset across each buffer, so splitting the buffers up in advance has 2717 * the same effect. 2718 */ 2719 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz, 2720 struct perf_record_aux *aux_event, struct perf_sample *sample) 2721 { 2722 int err; 2723 char buf[PERF_SAMPLE_MAX_SIZE]; 2724 union perf_event *auxtrace_event_union; 2725 struct perf_record_auxtrace *auxtrace_event; 2726 union perf_event auxtrace_fragment; 2727 __u64 aux_offset, aux_size; 2728 __u32 idx; 2729 bool formatted; 2730 2731 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2732 struct cs_etm_auxtrace, 2733 auxtrace); 2734 2735 /* 2736 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got 2737 * from looping through the auxtrace index. 2738 */ 2739 err = perf_session__peek_event(session, file_offset, buf, 2740 PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL); 2741 if (err) 2742 return err; 2743 auxtrace_event = &auxtrace_event_union->auxtrace; 2744 if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE) 2745 return -EINVAL; 2746 2747 if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) || 2748 auxtrace_event->header.size != sz) { 2749 return -EINVAL; 2750 } 2751 2752 /* 2753 * In per-thread mode, CPU is set to -1, but TID will be set instead. See 2754 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match. 2755 */ 2756 if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) || 2757 auxtrace_event->cpu != sample->cpu) 2758 return 1; 2759 2760 if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) { 2761 /* 2762 * Clamp size in snapshot mode. The buffer size is clamped in 2763 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect 2764 * the buffer size. 2765 */ 2766 aux_size = min(aux_event->aux_size, auxtrace_event->size); 2767 2768 /* 2769 * In this mode, the head also points to the end of the buffer so aux_offset 2770 * needs to have the size subtracted so it points to the beginning as in normal mode 2771 */ 2772 aux_offset = aux_event->aux_offset - aux_size; 2773 } else { 2774 aux_size = aux_event->aux_size; 2775 aux_offset = aux_event->aux_offset; 2776 } 2777 2778 if (aux_offset >= auxtrace_event->offset && 2779 aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) { 2780 /* 2781 * If this AUX event was inside this buffer somewhere, create a new auxtrace event 2782 * based on the sizes of the aux event, and queue that fragment. 2783 */ 2784 auxtrace_fragment.auxtrace = *auxtrace_event; 2785 auxtrace_fragment.auxtrace.size = aux_size; 2786 auxtrace_fragment.auxtrace.offset = aux_offset; 2787 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size; 2788 2789 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64 2790 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu); 2791 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment, 2792 file_offset, NULL); 2793 if (err) 2794 return err; 2795 2796 idx = auxtrace_event->idx; 2797 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW); 2798 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2799 idx, formatted); 2800 } 2801 2802 /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */ 2803 return 1; 2804 } 2805 2806 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event, 2807 u64 offset __maybe_unused, void *data __maybe_unused) 2808 { 2809 struct perf_sample sample; 2810 int ret; 2811 struct auxtrace_index_entry *ent; 2812 struct auxtrace_index *auxtrace_index; 2813 struct evsel *evsel; 2814 size_t i; 2815 2816 /* Don't care about any other events, we're only queuing buffers for AUX events */ 2817 if (event->header.type != PERF_RECORD_AUX) 2818 return 0; 2819 2820 if (event->header.size < sizeof(struct perf_record_aux)) 2821 return -EINVAL; 2822 2823 /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */ 2824 if (!event->aux.aux_size) 2825 return 0; 2826 2827 /* 2828 * Parse the sample, we need the sample_id_all data that comes after the event so that the 2829 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID. 2830 */ 2831 evsel = evlist__event2evsel(session->evlist, event); 2832 if (!evsel) 2833 return -EINVAL; 2834 ret = evsel__parse_sample(evsel, event, &sample); 2835 if (ret) 2836 return ret; 2837 2838 /* 2839 * Loop through the auxtrace index to find the buffer that matches up with this aux event. 2840 */ 2841 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 2842 for (i = 0; i < auxtrace_index->nr; i++) { 2843 ent = &auxtrace_index->entries[i]; 2844 ret = cs_etm__queue_aux_fragment(session, ent->file_offset, 2845 ent->sz, &event->aux, &sample); 2846 /* 2847 * Stop search on error or successful values. Continue search on 2848 * 1 ('not found') 2849 */ 2850 if (ret != 1) 2851 return ret; 2852 } 2853 } 2854 2855 /* 2856 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but 2857 * don't exit with an error because it will still be possible to decode other aux records. 2858 */ 2859 pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64 2860 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu); 2861 return 0; 2862 } 2863 2864 static int cs_etm__queue_aux_records(struct perf_session *session) 2865 { 2866 struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index, 2867 struct auxtrace_index, list); 2868 if (index && index->nr > 0) 2869 return perf_session__peek_events(session, session->header.data_offset, 2870 session->header.data_size, 2871 cs_etm__queue_aux_records_cb, NULL); 2872 2873 /* 2874 * We would get here if there are no entries in the index (either no auxtrace 2875 * buffers or no index at all). Fail silently as there is the possibility of 2876 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still 2877 * false. 2878 * 2879 * In that scenario, buffers will not be split by AUX records. 2880 */ 2881 return 0; 2882 } 2883 2884 int cs_etm__process_auxtrace_info(union perf_event *event, 2885 struct perf_session *session) 2886 { 2887 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 2888 struct cs_etm_auxtrace *etm = NULL; 2889 struct int_node *inode; 2890 unsigned int pmu_type; 2891 int event_header_size = sizeof(struct perf_event_header); 2892 int info_header_size; 2893 int total_size = auxtrace_info->header.size; 2894 int priv_size = 0; 2895 int num_cpu, trcidr_idx; 2896 int err = 0; 2897 int i, j; 2898 u64 *ptr, *hdr = NULL; 2899 u64 **metadata = NULL; 2900 u64 hdr_version; 2901 2902 /* 2903 * sizeof(auxtrace_info_event::type) + 2904 * sizeof(auxtrace_info_event::reserved) == 8 2905 */ 2906 info_header_size = 8; 2907 2908 if (total_size < (event_header_size + info_header_size)) 2909 return -EINVAL; 2910 2911 priv_size = total_size - event_header_size - info_header_size; 2912 2913 /* First the global part */ 2914 ptr = (u64 *) auxtrace_info->priv; 2915 2916 /* Look for version of the header */ 2917 hdr_version = ptr[0]; 2918 if (hdr_version > CS_HEADER_CURRENT_VERSION) { 2919 /* print routine will print an error on bad version */ 2920 if (dump_trace) 2921 cs_etm__print_auxtrace_info(auxtrace_info->priv, 0); 2922 return -EINVAL; 2923 } 2924 2925 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX); 2926 if (!hdr) 2927 return -ENOMEM; 2928 2929 /* Extract header information - see cs-etm.h for format */ 2930 for (i = 0; i < CS_HEADER_VERSION_MAX; i++) 2931 hdr[i] = ptr[i]; 2932 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff; 2933 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) & 2934 0xffffffff); 2935 2936 /* 2937 * Create an RB tree for traceID-metadata tuple. Since the conversion 2938 * has to be made for each packet that gets decoded, optimizing access 2939 * in anything other than a sequential array is worth doing. 2940 */ 2941 traceid_list = intlist__new(NULL); 2942 if (!traceid_list) { 2943 err = -ENOMEM; 2944 goto err_free_hdr; 2945 } 2946 2947 metadata = zalloc(sizeof(*metadata) * num_cpu); 2948 if (!metadata) { 2949 err = -ENOMEM; 2950 goto err_free_traceid_list; 2951 } 2952 2953 /* 2954 * The metadata is stored in the auxtrace_info section and encodes 2955 * the configuration of the ARM embedded trace macrocell which is 2956 * required by the trace decoder to properly decode the trace due 2957 * to its highly compressed nature. 2958 */ 2959 for (j = 0; j < num_cpu; j++) { 2960 if (ptr[i] == __perf_cs_etmv3_magic) { 2961 metadata[j] = 2962 cs_etm__create_meta_blk(ptr, &i, 2963 CS_ETM_PRIV_MAX, 2964 CS_ETM_NR_TRC_PARAMS_V0); 2965 2966 /* The traceID is our handle */ 2967 trcidr_idx = CS_ETM_ETMTRACEIDR; 2968 2969 } else if (ptr[i] == __perf_cs_etmv4_magic) { 2970 metadata[j] = 2971 cs_etm__create_meta_blk(ptr, &i, 2972 CS_ETMV4_PRIV_MAX, 2973 CS_ETMV4_NR_TRC_PARAMS_V0); 2974 2975 /* The traceID is our handle */ 2976 trcidr_idx = CS_ETMV4_TRCTRACEIDR; 2977 } else if (ptr[i] == __perf_cs_ete_magic) { 2978 metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1); 2979 2980 /* ETE shares first part of metadata with ETMv4 */ 2981 trcidr_idx = CS_ETMV4_TRCTRACEIDR; 2982 } else { 2983 ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n", 2984 ptr[i]); 2985 err = -EINVAL; 2986 goto err_free_metadata; 2987 } 2988 2989 if (!metadata[j]) { 2990 err = -ENOMEM; 2991 goto err_free_metadata; 2992 } 2993 2994 /* Get an RB node for this CPU */ 2995 inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]); 2996 2997 /* Something went wrong, no need to continue */ 2998 if (!inode) { 2999 err = -ENOMEM; 3000 goto err_free_metadata; 3001 } 3002 3003 /* 3004 * The node for that CPU should not be taken. 3005 * Back out if that's the case. 3006 */ 3007 if (inode->priv) { 3008 err = -EINVAL; 3009 goto err_free_metadata; 3010 } 3011 /* All good, associate the traceID with the metadata pointer */ 3012 inode->priv = metadata[j]; 3013 } 3014 3015 /* 3016 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and 3017 * CS_ETMV4_PRIV_MAX mark how many double words are in the 3018 * global metadata, and each cpu's metadata respectively. 3019 * The following tests if the correct number of double words was 3020 * present in the auxtrace info section. 3021 */ 3022 if (i * 8 != priv_size) { 3023 err = -EINVAL; 3024 goto err_free_metadata; 3025 } 3026 3027 etm = zalloc(sizeof(*etm)); 3028 3029 if (!etm) { 3030 err = -ENOMEM; 3031 goto err_free_metadata; 3032 } 3033 3034 err = auxtrace_queues__init(&etm->queues); 3035 if (err) 3036 goto err_free_etm; 3037 3038 if (session->itrace_synth_opts->set) { 3039 etm->synth_opts = *session->itrace_synth_opts; 3040 } else { 3041 itrace_synth_opts__set_default(&etm->synth_opts, 3042 session->itrace_synth_opts->default_no_sample); 3043 etm->synth_opts.callchain = false; 3044 } 3045 3046 etm->session = session; 3047 etm->machine = &session->machines.host; 3048 3049 etm->num_cpu = num_cpu; 3050 etm->pmu_type = pmu_type; 3051 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0); 3052 etm->metadata = metadata; 3053 etm->auxtrace_type = auxtrace_info->type; 3054 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); 3055 3056 etm->auxtrace.process_event = cs_etm__process_event; 3057 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 3058 etm->auxtrace.flush_events = cs_etm__flush_events; 3059 etm->auxtrace.free_events = cs_etm__free_events; 3060 etm->auxtrace.free = cs_etm__free; 3061 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; 3062 session->auxtrace = &etm->auxtrace; 3063 3064 etm->unknown_thread = thread__new(999999999, 999999999); 3065 if (!etm->unknown_thread) { 3066 err = -ENOMEM; 3067 goto err_free_queues; 3068 } 3069 3070 /* 3071 * Initialize list node so that at thread__zput() we can avoid 3072 * segmentation fault at list_del_init(). 3073 */ 3074 INIT_LIST_HEAD(&etm->unknown_thread->node); 3075 3076 err = thread__set_comm(etm->unknown_thread, "unknown", 0); 3077 if (err) 3078 goto err_delete_thread; 3079 3080 if (thread__init_maps(etm->unknown_thread, etm->machine)) { 3081 err = -ENOMEM; 3082 goto err_delete_thread; 3083 } 3084 3085 if (dump_trace) { 3086 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); 3087 } 3088 3089 err = cs_etm__synth_events(etm, session); 3090 if (err) 3091 goto err_delete_thread; 3092 3093 err = cs_etm__queue_aux_records(session); 3094 if (err) 3095 goto err_delete_thread; 3096 3097 etm->data_queued = etm->queues.populated; 3098 /* 3099 * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and 3100 * cs_etm__queue_aux_fragment() for details relating to limitations. 3101 */ 3102 if (!etm->data_queued) 3103 pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n" 3104 "Continuing with best effort decoding in piped mode.\n\n"); 3105 3106 return 0; 3107 3108 err_delete_thread: 3109 thread__zput(etm->unknown_thread); 3110 err_free_queues: 3111 auxtrace_queues__free(&etm->queues); 3112 session->auxtrace = NULL; 3113 err_free_etm: 3114 zfree(&etm); 3115 err_free_metadata: 3116 /* No need to check @metadata[j], free(NULL) is supported */ 3117 for (j = 0; j < num_cpu; j++) 3118 zfree(&metadata[j]); 3119 zfree(&metadata); 3120 err_free_traceid_list: 3121 intlist__delete(traceid_list); 3122 err_free_hdr: 3123 zfree(&hdr); 3124 /* 3125 * At this point, as a minimum we have valid header. Dump the rest of 3126 * the info section - the print routines will error out on structural 3127 * issues. 3128 */ 3129 if (dump_trace) 3130 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); 3131 return err; 3132 } 3133