xref: /openbmc/linux/tools/perf/util/cs-etm.c (revision 35267cea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19 
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40 
41 struct cs_etm_auxtrace {
42 	struct auxtrace auxtrace;
43 	struct auxtrace_queues queues;
44 	struct auxtrace_heap heap;
45 	struct itrace_synth_opts synth_opts;
46 	struct perf_session *session;
47 	struct machine *machine;
48 	struct thread *unknown_thread;
49 
50 	u8 timeless_decoding;
51 	u8 snapshot_mode;
52 	u8 data_queued;
53 	u8 sample_branches;
54 	u8 sample_instructions;
55 
56 	int num_cpu;
57 	u64 latest_kernel_timestamp;
58 	u32 auxtrace_type;
59 	u64 branches_sample_type;
60 	u64 branches_id;
61 	u64 instructions_sample_type;
62 	u64 instructions_sample_period;
63 	u64 instructions_id;
64 	u64 **metadata;
65 	unsigned int pmu_type;
66 };
67 
68 struct cs_etm_traceid_queue {
69 	u8 trace_chan_id;
70 	pid_t pid, tid;
71 	u64 period_instructions;
72 	size_t last_branch_pos;
73 	union perf_event *event_buf;
74 	struct thread *thread;
75 	struct branch_stack *last_branch;
76 	struct branch_stack *last_branch_rb;
77 	struct cs_etm_packet *prev_packet;
78 	struct cs_etm_packet *packet;
79 	struct cs_etm_packet_queue packet_queue;
80 };
81 
82 struct cs_etm_queue {
83 	struct cs_etm_auxtrace *etm;
84 	struct cs_etm_decoder *decoder;
85 	struct auxtrace_buffer *buffer;
86 	unsigned int queue_nr;
87 	u8 pending_timestamp_chan_id;
88 	u64 offset;
89 	const unsigned char *buf;
90 	size_t buf_len, buf_used;
91 	/* Conversion between traceID and index in traceid_queues array */
92 	struct intlist *traceid_queues_list;
93 	struct cs_etm_traceid_queue **traceid_queues;
94 };
95 
96 /* RB tree for quick conversion between traceID and metadata pointers */
97 static struct intlist *traceid_list;
98 
99 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
100 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
101 					   pid_t tid);
102 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
103 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
104 
105 /* PTMs ETMIDR [11:8] set to b0011 */
106 #define ETMIDR_PTM_VERSION 0x00000300
107 
108 /*
109  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
110  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
111  * encode the etm queue number as the upper 16 bit and the channel as
112  * the lower 16 bit.
113  */
114 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
115 		      (queue_nr << 16 | trace_chan_id)
116 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
117 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
118 
119 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
120 {
121 	etmidr &= ETMIDR_PTM_VERSION;
122 
123 	if (etmidr == ETMIDR_PTM_VERSION)
124 		return CS_ETM_PROTO_PTM;
125 
126 	return CS_ETM_PROTO_ETMV3;
127 }
128 
129 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
130 {
131 	struct int_node *inode;
132 	u64 *metadata;
133 
134 	inode = intlist__find(traceid_list, trace_chan_id);
135 	if (!inode)
136 		return -EINVAL;
137 
138 	metadata = inode->priv;
139 	*magic = metadata[CS_ETM_MAGIC];
140 	return 0;
141 }
142 
143 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
144 {
145 	struct int_node *inode;
146 	u64 *metadata;
147 
148 	inode = intlist__find(traceid_list, trace_chan_id);
149 	if (!inode)
150 		return -EINVAL;
151 
152 	metadata = inode->priv;
153 	*cpu = (int)metadata[CS_ETM_CPU];
154 	return 0;
155 }
156 
157 /*
158  * The returned PID format is presented by two bits:
159  *
160  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
161  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
162  *
163  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
164  * are enabled at the same time when the session runs on an EL2 kernel.
165  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
166  * recorded in the trace data, the tool will selectively use
167  * CONTEXTIDR_EL2 as PID.
168  */
169 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
170 {
171 	struct int_node *inode;
172 	u64 *metadata, val;
173 
174 	inode = intlist__find(traceid_list, trace_chan_id);
175 	if (!inode)
176 		return -EINVAL;
177 
178 	metadata = inode->priv;
179 
180 	if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
181 		val = metadata[CS_ETM_ETMCR];
182 		/* CONTEXTIDR is traced */
183 		if (val & BIT(ETM_OPT_CTXTID))
184 			*pid_fmt = BIT(ETM_OPT_CTXTID);
185 	} else {
186 		val = metadata[CS_ETMV4_TRCCONFIGR];
187 		/* CONTEXTIDR_EL2 is traced */
188 		if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
189 			*pid_fmt = BIT(ETM_OPT_CTXTID2);
190 		/* CONTEXTIDR_EL1 is traced */
191 		else if (val & BIT(ETM4_CFG_BIT_CTXTID))
192 			*pid_fmt = BIT(ETM_OPT_CTXTID);
193 	}
194 
195 	return 0;
196 }
197 
198 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
199 					      u8 trace_chan_id)
200 {
201 	/*
202 	 * When a timestamp packet is encountered the backend code
203 	 * is stopped so that the front end has time to process packets
204 	 * that were accumulated in the traceID queue.  Since there can
205 	 * be more than one channel per cs_etm_queue, we need to specify
206 	 * what traceID queue needs servicing.
207 	 */
208 	etmq->pending_timestamp_chan_id = trace_chan_id;
209 }
210 
211 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
212 				      u8 *trace_chan_id)
213 {
214 	struct cs_etm_packet_queue *packet_queue;
215 
216 	if (!etmq->pending_timestamp_chan_id)
217 		return 0;
218 
219 	if (trace_chan_id)
220 		*trace_chan_id = etmq->pending_timestamp_chan_id;
221 
222 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
223 						     etmq->pending_timestamp_chan_id);
224 	if (!packet_queue)
225 		return 0;
226 
227 	/* Acknowledge pending status */
228 	etmq->pending_timestamp_chan_id = 0;
229 
230 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
231 	return packet_queue->cs_timestamp;
232 }
233 
234 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
235 {
236 	int i;
237 
238 	queue->head = 0;
239 	queue->tail = 0;
240 	queue->packet_count = 0;
241 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
242 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
243 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
244 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
245 		queue->packet_buffer[i].instr_count = 0;
246 		queue->packet_buffer[i].last_instr_taken_branch = false;
247 		queue->packet_buffer[i].last_instr_size = 0;
248 		queue->packet_buffer[i].last_instr_type = 0;
249 		queue->packet_buffer[i].last_instr_subtype = 0;
250 		queue->packet_buffer[i].last_instr_cond = 0;
251 		queue->packet_buffer[i].flags = 0;
252 		queue->packet_buffer[i].exception_number = UINT32_MAX;
253 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
254 		queue->packet_buffer[i].cpu = INT_MIN;
255 	}
256 }
257 
258 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
259 {
260 	int idx;
261 	struct int_node *inode;
262 	struct cs_etm_traceid_queue *tidq;
263 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
264 
265 	intlist__for_each_entry(inode, traceid_queues_list) {
266 		idx = (int)(intptr_t)inode->priv;
267 		tidq = etmq->traceid_queues[idx];
268 		cs_etm__clear_packet_queue(&tidq->packet_queue);
269 	}
270 }
271 
272 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
273 				      struct cs_etm_traceid_queue *tidq,
274 				      u8 trace_chan_id)
275 {
276 	int rc = -ENOMEM;
277 	struct auxtrace_queue *queue;
278 	struct cs_etm_auxtrace *etm = etmq->etm;
279 
280 	cs_etm__clear_packet_queue(&tidq->packet_queue);
281 
282 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
283 	tidq->tid = queue->tid;
284 	tidq->pid = -1;
285 	tidq->trace_chan_id = trace_chan_id;
286 
287 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
288 	if (!tidq->packet)
289 		goto out;
290 
291 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
292 	if (!tidq->prev_packet)
293 		goto out_free;
294 
295 	if (etm->synth_opts.last_branch) {
296 		size_t sz = sizeof(struct branch_stack);
297 
298 		sz += etm->synth_opts.last_branch_sz *
299 		      sizeof(struct branch_entry);
300 		tidq->last_branch = zalloc(sz);
301 		if (!tidq->last_branch)
302 			goto out_free;
303 		tidq->last_branch_rb = zalloc(sz);
304 		if (!tidq->last_branch_rb)
305 			goto out_free;
306 	}
307 
308 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
309 	if (!tidq->event_buf)
310 		goto out_free;
311 
312 	return 0;
313 
314 out_free:
315 	zfree(&tidq->last_branch_rb);
316 	zfree(&tidq->last_branch);
317 	zfree(&tidq->prev_packet);
318 	zfree(&tidq->packet);
319 out:
320 	return rc;
321 }
322 
323 static struct cs_etm_traceid_queue
324 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
325 {
326 	int idx;
327 	struct int_node *inode;
328 	struct intlist *traceid_queues_list;
329 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
330 	struct cs_etm_auxtrace *etm = etmq->etm;
331 
332 	if (etm->timeless_decoding)
333 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
334 
335 	traceid_queues_list = etmq->traceid_queues_list;
336 
337 	/*
338 	 * Check if the traceid_queue exist for this traceID by looking
339 	 * in the queue list.
340 	 */
341 	inode = intlist__find(traceid_queues_list, trace_chan_id);
342 	if (inode) {
343 		idx = (int)(intptr_t)inode->priv;
344 		return etmq->traceid_queues[idx];
345 	}
346 
347 	/* We couldn't find a traceid_queue for this traceID, allocate one */
348 	tidq = malloc(sizeof(*tidq));
349 	if (!tidq)
350 		return NULL;
351 
352 	memset(tidq, 0, sizeof(*tidq));
353 
354 	/* Get a valid index for the new traceid_queue */
355 	idx = intlist__nr_entries(traceid_queues_list);
356 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
357 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
358 	if (!inode)
359 		goto out_free;
360 
361 	/* Associate this traceID with this index */
362 	inode->priv = (void *)(intptr_t)idx;
363 
364 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
365 		goto out_free;
366 
367 	/* Grow the traceid_queues array by one unit */
368 	traceid_queues = etmq->traceid_queues;
369 	traceid_queues = reallocarray(traceid_queues,
370 				      idx + 1,
371 				      sizeof(*traceid_queues));
372 
373 	/*
374 	 * On failure reallocarray() returns NULL and the original block of
375 	 * memory is left untouched.
376 	 */
377 	if (!traceid_queues)
378 		goto out_free;
379 
380 	traceid_queues[idx] = tidq;
381 	etmq->traceid_queues = traceid_queues;
382 
383 	return etmq->traceid_queues[idx];
384 
385 out_free:
386 	/*
387 	 * Function intlist__remove() removes the inode from the list
388 	 * and delete the memory associated to it.
389 	 */
390 	intlist__remove(traceid_queues_list, inode);
391 	free(tidq);
392 
393 	return NULL;
394 }
395 
396 struct cs_etm_packet_queue
397 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
398 {
399 	struct cs_etm_traceid_queue *tidq;
400 
401 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
402 	if (tidq)
403 		return &tidq->packet_queue;
404 
405 	return NULL;
406 }
407 
408 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
409 				struct cs_etm_traceid_queue *tidq)
410 {
411 	struct cs_etm_packet *tmp;
412 
413 	if (etm->sample_branches || etm->synth_opts.last_branch ||
414 	    etm->sample_instructions) {
415 		/*
416 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
417 		 * the next incoming packet.
418 		 */
419 		tmp = tidq->packet;
420 		tidq->packet = tidq->prev_packet;
421 		tidq->prev_packet = tmp;
422 	}
423 }
424 
425 static void cs_etm__packet_dump(const char *pkt_string)
426 {
427 	const char *color = PERF_COLOR_BLUE;
428 	int len = strlen(pkt_string);
429 
430 	if (len && (pkt_string[len-1] == '\n'))
431 		color_fprintf(stdout, color, "	%s", pkt_string);
432 	else
433 		color_fprintf(stdout, color, "	%s\n", pkt_string);
434 
435 	fflush(stdout);
436 }
437 
438 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
439 					  struct cs_etm_auxtrace *etm, int idx,
440 					  u32 etmidr)
441 {
442 	u64 **metadata = etm->metadata;
443 
444 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
445 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
446 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
447 }
448 
449 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
450 					  struct cs_etm_auxtrace *etm, int idx)
451 {
452 	u64 **metadata = etm->metadata;
453 
454 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
455 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
456 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
457 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
458 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
459 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
460 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
461 }
462 
463 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
464 				     struct cs_etm_auxtrace *etm,
465 				     int decoders)
466 {
467 	int i;
468 	u32 etmidr;
469 	u64 architecture;
470 
471 	for (i = 0; i < decoders; i++) {
472 		architecture = etm->metadata[i][CS_ETM_MAGIC];
473 
474 		switch (architecture) {
475 		case __perf_cs_etmv3_magic:
476 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
477 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
478 			break;
479 		case __perf_cs_etmv4_magic:
480 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
481 			break;
482 		default:
483 			return -EINVAL;
484 		}
485 	}
486 
487 	return 0;
488 }
489 
490 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
491 				       struct cs_etm_queue *etmq,
492 				       enum cs_etm_decoder_operation mode,
493 				       bool formatted)
494 {
495 	int ret = -EINVAL;
496 
497 	if (!(mode < CS_ETM_OPERATION_MAX))
498 		goto out;
499 
500 	d_params->packet_printer = cs_etm__packet_dump;
501 	d_params->operation = mode;
502 	d_params->data = etmq;
503 	d_params->formatted = formatted;
504 	d_params->fsyncs = false;
505 	d_params->hsyncs = false;
506 	d_params->frame_aligned = true;
507 
508 	ret = 0;
509 out:
510 	return ret;
511 }
512 
513 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
514 			       struct auxtrace_buffer *buffer)
515 {
516 	int ret;
517 	const char *color = PERF_COLOR_BLUE;
518 	size_t buffer_used = 0;
519 
520 	fprintf(stdout, "\n");
521 	color_fprintf(stdout, color,
522 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
523 		     buffer->size);
524 
525 	do {
526 		size_t consumed;
527 
528 		ret = cs_etm_decoder__process_data_block(
529 				etmq->decoder, buffer->offset,
530 				&((u8 *)buffer->data)[buffer_used],
531 				buffer->size - buffer_used, &consumed);
532 		if (ret)
533 			break;
534 
535 		buffer_used += consumed;
536 	} while (buffer_used < buffer->size);
537 
538 	cs_etm_decoder__reset(etmq->decoder);
539 }
540 
541 static int cs_etm__flush_events(struct perf_session *session,
542 				struct perf_tool *tool)
543 {
544 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
545 						   struct cs_etm_auxtrace,
546 						   auxtrace);
547 	if (dump_trace)
548 		return 0;
549 
550 	if (!tool->ordered_events)
551 		return -EINVAL;
552 
553 	if (etm->timeless_decoding)
554 		return cs_etm__process_timeless_queues(etm, -1);
555 
556 	return cs_etm__process_queues(etm);
557 }
558 
559 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
560 {
561 	int idx;
562 	uintptr_t priv;
563 	struct int_node *inode, *tmp;
564 	struct cs_etm_traceid_queue *tidq;
565 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
566 
567 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
568 		priv = (uintptr_t)inode->priv;
569 		idx = priv;
570 
571 		/* Free this traceid_queue from the array */
572 		tidq = etmq->traceid_queues[idx];
573 		thread__zput(tidq->thread);
574 		zfree(&tidq->event_buf);
575 		zfree(&tidq->last_branch);
576 		zfree(&tidq->last_branch_rb);
577 		zfree(&tidq->prev_packet);
578 		zfree(&tidq->packet);
579 		zfree(&tidq);
580 
581 		/*
582 		 * Function intlist__remove() removes the inode from the list
583 		 * and delete the memory associated to it.
584 		 */
585 		intlist__remove(traceid_queues_list, inode);
586 	}
587 
588 	/* Then the RB tree itself */
589 	intlist__delete(traceid_queues_list);
590 	etmq->traceid_queues_list = NULL;
591 
592 	/* finally free the traceid_queues array */
593 	zfree(&etmq->traceid_queues);
594 }
595 
596 static void cs_etm__free_queue(void *priv)
597 {
598 	struct cs_etm_queue *etmq = priv;
599 
600 	if (!etmq)
601 		return;
602 
603 	cs_etm_decoder__free(etmq->decoder);
604 	cs_etm__free_traceid_queues(etmq);
605 	free(etmq);
606 }
607 
608 static void cs_etm__free_events(struct perf_session *session)
609 {
610 	unsigned int i;
611 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
612 						   struct cs_etm_auxtrace,
613 						   auxtrace);
614 	struct auxtrace_queues *queues = &aux->queues;
615 
616 	for (i = 0; i < queues->nr_queues; i++) {
617 		cs_etm__free_queue(queues->queue_array[i].priv);
618 		queues->queue_array[i].priv = NULL;
619 	}
620 
621 	auxtrace_queues__free(queues);
622 }
623 
624 static void cs_etm__free(struct perf_session *session)
625 {
626 	int i;
627 	struct int_node *inode, *tmp;
628 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
629 						   struct cs_etm_auxtrace,
630 						   auxtrace);
631 	cs_etm__free_events(session);
632 	session->auxtrace = NULL;
633 
634 	/* First remove all traceID/metadata nodes for the RB tree */
635 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
636 		intlist__remove(traceid_list, inode);
637 	/* Then the RB tree itself */
638 	intlist__delete(traceid_list);
639 
640 	for (i = 0; i < aux->num_cpu; i++)
641 		zfree(&aux->metadata[i]);
642 
643 	thread__zput(aux->unknown_thread);
644 	zfree(&aux->metadata);
645 	zfree(&aux);
646 }
647 
648 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
649 				      struct evsel *evsel)
650 {
651 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
652 						   struct cs_etm_auxtrace,
653 						   auxtrace);
654 
655 	return evsel->core.attr.type == aux->pmu_type;
656 }
657 
658 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
659 {
660 	struct machine *machine;
661 
662 	machine = etmq->etm->machine;
663 
664 	if (address >= machine__kernel_start(machine)) {
665 		if (machine__is_host(machine))
666 			return PERF_RECORD_MISC_KERNEL;
667 		else
668 			return PERF_RECORD_MISC_GUEST_KERNEL;
669 	} else {
670 		if (machine__is_host(machine))
671 			return PERF_RECORD_MISC_USER;
672 		else if (perf_guest)
673 			return PERF_RECORD_MISC_GUEST_USER;
674 		else
675 			return PERF_RECORD_MISC_HYPERVISOR;
676 	}
677 }
678 
679 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
680 			      u64 address, size_t size, u8 *buffer)
681 {
682 	u8  cpumode;
683 	u64 offset;
684 	int len;
685 	struct thread *thread;
686 	struct machine *machine;
687 	struct addr_location al;
688 	struct cs_etm_traceid_queue *tidq;
689 
690 	if (!etmq)
691 		return 0;
692 
693 	machine = etmq->etm->machine;
694 	cpumode = cs_etm__cpu_mode(etmq, address);
695 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
696 	if (!tidq)
697 		return 0;
698 
699 	thread = tidq->thread;
700 	if (!thread) {
701 		if (cpumode != PERF_RECORD_MISC_KERNEL)
702 			return 0;
703 		thread = etmq->etm->unknown_thread;
704 	}
705 
706 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
707 		return 0;
708 
709 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
710 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
711 		return 0;
712 
713 	offset = al.map->map_ip(al.map, address);
714 
715 	map__load(al.map);
716 
717 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
718 
719 	if (len <= 0) {
720 		ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
721 				 "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
722 		if (!al.map->dso->auxtrace_warned) {
723 			pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
724 				    address,
725 				    al.map->dso->long_name ? al.map->dso->long_name : "Unknown");
726 			al.map->dso->auxtrace_warned = true;
727 		}
728 		return 0;
729 	}
730 
731 	return len;
732 }
733 
734 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
735 						bool formatted)
736 {
737 	struct cs_etm_decoder_params d_params;
738 	struct cs_etm_trace_params  *t_params = NULL;
739 	struct cs_etm_queue *etmq;
740 	/*
741 	 * Each queue can only contain data from one CPU when unformatted, so only one decoder is
742 	 * needed.
743 	 */
744 	int decoders = formatted ? etm->num_cpu : 1;
745 
746 	etmq = zalloc(sizeof(*etmq));
747 	if (!etmq)
748 		return NULL;
749 
750 	etmq->traceid_queues_list = intlist__new(NULL);
751 	if (!etmq->traceid_queues_list)
752 		goto out_free;
753 
754 	/* Use metadata to fill in trace parameters for trace decoder */
755 	t_params = zalloc(sizeof(*t_params) * decoders);
756 
757 	if (!t_params)
758 		goto out_free;
759 
760 	if (cs_etm__init_trace_params(t_params, etm, decoders))
761 		goto out_free;
762 
763 	/* Set decoder parameters to decode trace packets */
764 	if (cs_etm__init_decoder_params(&d_params, etmq,
765 					dump_trace ? CS_ETM_OPERATION_PRINT :
766 						     CS_ETM_OPERATION_DECODE,
767 					formatted))
768 		goto out_free;
769 
770 	etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
771 					    t_params);
772 
773 	if (!etmq->decoder)
774 		goto out_free;
775 
776 	/*
777 	 * Register a function to handle all memory accesses required by
778 	 * the trace decoder library.
779 	 */
780 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
781 					      0x0L, ((u64) -1L),
782 					      cs_etm__mem_access))
783 		goto out_free_decoder;
784 
785 	zfree(&t_params);
786 	return etmq;
787 
788 out_free_decoder:
789 	cs_etm_decoder__free(etmq->decoder);
790 out_free:
791 	intlist__delete(etmq->traceid_queues_list);
792 	free(etmq);
793 
794 	return NULL;
795 }
796 
797 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
798 			       struct auxtrace_queue *queue,
799 			       unsigned int queue_nr,
800 			       bool formatted)
801 {
802 	struct cs_etm_queue *etmq = queue->priv;
803 
804 	if (list_empty(&queue->head) || etmq)
805 		return 0;
806 
807 	etmq = cs_etm__alloc_queue(etm, formatted);
808 
809 	if (!etmq)
810 		return -ENOMEM;
811 
812 	queue->priv = etmq;
813 	etmq->etm = etm;
814 	etmq->queue_nr = queue_nr;
815 	etmq->offset = 0;
816 
817 	return 0;
818 }
819 
820 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
821 					    struct cs_etm_queue *etmq,
822 					    unsigned int queue_nr)
823 {
824 	int ret = 0;
825 	unsigned int cs_queue_nr;
826 	u8 trace_chan_id;
827 	u64 cs_timestamp;
828 
829 	/*
830 	 * We are under a CPU-wide trace scenario.  As such we need to know
831 	 * when the code that generated the traces started to execute so that
832 	 * it can be correlated with execution on other CPUs.  So we get a
833 	 * handle on the beginning of traces and decode until we find a
834 	 * timestamp.  The timestamp is then added to the auxtrace min heap
835 	 * in order to know what nibble (of all the etmqs) to decode first.
836 	 */
837 	while (1) {
838 		/*
839 		 * Fetch an aux_buffer from this etmq.  Bail if no more
840 		 * blocks or an error has been encountered.
841 		 */
842 		ret = cs_etm__get_data_block(etmq);
843 		if (ret <= 0)
844 			goto out;
845 
846 		/*
847 		 * Run decoder on the trace block.  The decoder will stop when
848 		 * encountering a CS timestamp, a full packet queue or the end of
849 		 * trace for that block.
850 		 */
851 		ret = cs_etm__decode_data_block(etmq);
852 		if (ret)
853 			goto out;
854 
855 		/*
856 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
857 		 * the timestamp calculation for us.
858 		 */
859 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
860 
861 		/* We found a timestamp, no need to continue. */
862 		if (cs_timestamp)
863 			break;
864 
865 		/*
866 		 * We didn't find a timestamp so empty all the traceid packet
867 		 * queues before looking for another timestamp packet, either
868 		 * in the current data block or a new one.  Packets that were
869 		 * just decoded are useless since no timestamp has been
870 		 * associated with them.  As such simply discard them.
871 		 */
872 		cs_etm__clear_all_packet_queues(etmq);
873 	}
874 
875 	/*
876 	 * We have a timestamp.  Add it to the min heap to reflect when
877 	 * instructions conveyed by the range packets of this traceID queue
878 	 * started to execute.  Once the same has been done for all the traceID
879 	 * queues of each etmq, redenring and decoding can start in
880 	 * chronological order.
881 	 *
882 	 * Note that packets decoded above are still in the traceID's packet
883 	 * queue and will be processed in cs_etm__process_queues().
884 	 */
885 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
886 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
887 out:
888 	return ret;
889 }
890 
891 static inline
892 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
893 				 struct cs_etm_traceid_queue *tidq)
894 {
895 	struct branch_stack *bs_src = tidq->last_branch_rb;
896 	struct branch_stack *bs_dst = tidq->last_branch;
897 	size_t nr = 0;
898 
899 	/*
900 	 * Set the number of records before early exit: ->nr is used to
901 	 * determine how many branches to copy from ->entries.
902 	 */
903 	bs_dst->nr = bs_src->nr;
904 
905 	/*
906 	 * Early exit when there is nothing to copy.
907 	 */
908 	if (!bs_src->nr)
909 		return;
910 
911 	/*
912 	 * As bs_src->entries is a circular buffer, we need to copy from it in
913 	 * two steps.  First, copy the branches from the most recently inserted
914 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
915 	 */
916 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
917 	memcpy(&bs_dst->entries[0],
918 	       &bs_src->entries[tidq->last_branch_pos],
919 	       sizeof(struct branch_entry) * nr);
920 
921 	/*
922 	 * If we wrapped around at least once, the branches from the beginning
923 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
924 	 * are older valid branches: copy them over.  The total number of
925 	 * branches copied over will be equal to the number of branches asked by
926 	 * the user in last_branch_sz.
927 	 */
928 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
929 		memcpy(&bs_dst->entries[nr],
930 		       &bs_src->entries[0],
931 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
932 	}
933 }
934 
935 static inline
936 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
937 {
938 	tidq->last_branch_pos = 0;
939 	tidq->last_branch_rb->nr = 0;
940 }
941 
942 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
943 					 u8 trace_chan_id, u64 addr)
944 {
945 	u8 instrBytes[2];
946 
947 	cs_etm__mem_access(etmq, trace_chan_id, addr,
948 			   ARRAY_SIZE(instrBytes), instrBytes);
949 	/*
950 	 * T32 instruction size is indicated by bits[15:11] of the first
951 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
952 	 * denote a 32-bit instruction.
953 	 */
954 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
955 }
956 
957 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
958 {
959 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
960 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
961 		return 0;
962 
963 	return packet->start_addr;
964 }
965 
966 static inline
967 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
968 {
969 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
970 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
971 		return 0;
972 
973 	return packet->end_addr - packet->last_instr_size;
974 }
975 
976 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
977 				     u64 trace_chan_id,
978 				     const struct cs_etm_packet *packet,
979 				     u64 offset)
980 {
981 	if (packet->isa == CS_ETM_ISA_T32) {
982 		u64 addr = packet->start_addr;
983 
984 		while (offset) {
985 			addr += cs_etm__t32_instr_size(etmq,
986 						       trace_chan_id, addr);
987 			offset--;
988 		}
989 		return addr;
990 	}
991 
992 	/* Assume a 4 byte instruction size (A32/A64) */
993 	return packet->start_addr + offset * 4;
994 }
995 
996 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
997 					  struct cs_etm_traceid_queue *tidq)
998 {
999 	struct branch_stack *bs = tidq->last_branch_rb;
1000 	struct branch_entry *be;
1001 
1002 	/*
1003 	 * The branches are recorded in a circular buffer in reverse
1004 	 * chronological order: we start recording from the last element of the
1005 	 * buffer down.  After writing the first element of the stack, move the
1006 	 * insert position back to the end of the buffer.
1007 	 */
1008 	if (!tidq->last_branch_pos)
1009 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1010 
1011 	tidq->last_branch_pos -= 1;
1012 
1013 	be       = &bs->entries[tidq->last_branch_pos];
1014 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1015 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1016 	/* No support for mispredict */
1017 	be->flags.mispred = 0;
1018 	be->flags.predicted = 1;
1019 
1020 	/*
1021 	 * Increment bs->nr until reaching the number of last branches asked by
1022 	 * the user on the command line.
1023 	 */
1024 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1025 		bs->nr += 1;
1026 }
1027 
1028 static int cs_etm__inject_event(union perf_event *event,
1029 			       struct perf_sample *sample, u64 type)
1030 {
1031 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1032 	return perf_event__synthesize_sample(event, type, 0, sample);
1033 }
1034 
1035 
1036 static int
1037 cs_etm__get_trace(struct cs_etm_queue *etmq)
1038 {
1039 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1040 	struct auxtrace_buffer *old_buffer = aux_buffer;
1041 	struct auxtrace_queue *queue;
1042 
1043 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1044 
1045 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1046 
1047 	/* If no more data, drop the previous auxtrace_buffer and return */
1048 	if (!aux_buffer) {
1049 		if (old_buffer)
1050 			auxtrace_buffer__drop_data(old_buffer);
1051 		etmq->buf_len = 0;
1052 		return 0;
1053 	}
1054 
1055 	etmq->buffer = aux_buffer;
1056 
1057 	/* If the aux_buffer doesn't have data associated, try to load it */
1058 	if (!aux_buffer->data) {
1059 		/* get the file desc associated with the perf data file */
1060 		int fd = perf_data__fd(etmq->etm->session->data);
1061 
1062 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1063 		if (!aux_buffer->data)
1064 			return -ENOMEM;
1065 	}
1066 
1067 	/* If valid, drop the previous buffer */
1068 	if (old_buffer)
1069 		auxtrace_buffer__drop_data(old_buffer);
1070 
1071 	etmq->buf_used = 0;
1072 	etmq->buf_len = aux_buffer->size;
1073 	etmq->buf = aux_buffer->data;
1074 
1075 	return etmq->buf_len;
1076 }
1077 
1078 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1079 				    struct cs_etm_traceid_queue *tidq)
1080 {
1081 	if ((!tidq->thread) && (tidq->tid != -1))
1082 		tidq->thread = machine__find_thread(etm->machine, -1,
1083 						    tidq->tid);
1084 
1085 	if (tidq->thread)
1086 		tidq->pid = tidq->thread->pid_;
1087 }
1088 
1089 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1090 			 pid_t tid, u8 trace_chan_id)
1091 {
1092 	int cpu, err = -EINVAL;
1093 	struct cs_etm_auxtrace *etm = etmq->etm;
1094 	struct cs_etm_traceid_queue *tidq;
1095 
1096 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1097 	if (!tidq)
1098 		return err;
1099 
1100 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1101 		return err;
1102 
1103 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1104 	if (err)
1105 		return err;
1106 
1107 	tidq->tid = tid;
1108 	thread__zput(tidq->thread);
1109 
1110 	cs_etm__set_pid_tid_cpu(etm, tidq);
1111 	return 0;
1112 }
1113 
1114 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1115 {
1116 	return !!etmq->etm->timeless_decoding;
1117 }
1118 
1119 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1120 			      u64 trace_chan_id,
1121 			      const struct cs_etm_packet *packet,
1122 			      struct perf_sample *sample)
1123 {
1124 	/*
1125 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1126 	 * packet, so directly bail out with 'insn_len' = 0.
1127 	 */
1128 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1129 		sample->insn_len = 0;
1130 		return;
1131 	}
1132 
1133 	/*
1134 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1135 	 * cs_etm__t32_instr_size().
1136 	 */
1137 	if (packet->isa == CS_ETM_ISA_T32)
1138 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1139 							  sample->ip);
1140 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1141 	else
1142 		sample->insn_len = 4;
1143 
1144 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1145 			   sample->insn_len, (void *)sample->insn);
1146 }
1147 
1148 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1149 					    struct cs_etm_traceid_queue *tidq,
1150 					    u64 addr, u64 period)
1151 {
1152 	int ret = 0;
1153 	struct cs_etm_auxtrace *etm = etmq->etm;
1154 	union perf_event *event = tidq->event_buf;
1155 	struct perf_sample sample = {.ip = 0,};
1156 
1157 	event->sample.header.type = PERF_RECORD_SAMPLE;
1158 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1159 	event->sample.header.size = sizeof(struct perf_event_header);
1160 
1161 	if (!etm->timeless_decoding)
1162 		sample.time = etm->latest_kernel_timestamp;
1163 	sample.ip = addr;
1164 	sample.pid = tidq->pid;
1165 	sample.tid = tidq->tid;
1166 	sample.id = etmq->etm->instructions_id;
1167 	sample.stream_id = etmq->etm->instructions_id;
1168 	sample.period = period;
1169 	sample.cpu = tidq->packet->cpu;
1170 	sample.flags = tidq->prev_packet->flags;
1171 	sample.cpumode = event->sample.header.misc;
1172 
1173 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1174 
1175 	if (etm->synth_opts.last_branch)
1176 		sample.branch_stack = tidq->last_branch;
1177 
1178 	if (etm->synth_opts.inject) {
1179 		ret = cs_etm__inject_event(event, &sample,
1180 					   etm->instructions_sample_type);
1181 		if (ret)
1182 			return ret;
1183 	}
1184 
1185 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1186 
1187 	if (ret)
1188 		pr_err(
1189 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1190 			ret);
1191 
1192 	return ret;
1193 }
1194 
1195 /*
1196  * The cs etm packet encodes an instruction range between a branch target
1197  * and the next taken branch. Generate sample accordingly.
1198  */
1199 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1200 				       struct cs_etm_traceid_queue *tidq)
1201 {
1202 	int ret = 0;
1203 	struct cs_etm_auxtrace *etm = etmq->etm;
1204 	struct perf_sample sample = {.ip = 0,};
1205 	union perf_event *event = tidq->event_buf;
1206 	struct dummy_branch_stack {
1207 		u64			nr;
1208 		u64			hw_idx;
1209 		struct branch_entry	entries;
1210 	} dummy_bs;
1211 	u64 ip;
1212 
1213 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1214 
1215 	event->sample.header.type = PERF_RECORD_SAMPLE;
1216 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1217 	event->sample.header.size = sizeof(struct perf_event_header);
1218 
1219 	if (!etm->timeless_decoding)
1220 		sample.time = etm->latest_kernel_timestamp;
1221 	sample.ip = ip;
1222 	sample.pid = tidq->pid;
1223 	sample.tid = tidq->tid;
1224 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1225 	sample.id = etmq->etm->branches_id;
1226 	sample.stream_id = etmq->etm->branches_id;
1227 	sample.period = 1;
1228 	sample.cpu = tidq->packet->cpu;
1229 	sample.flags = tidq->prev_packet->flags;
1230 	sample.cpumode = event->sample.header.misc;
1231 
1232 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1233 			  &sample);
1234 
1235 	/*
1236 	 * perf report cannot handle events without a branch stack
1237 	 */
1238 	if (etm->synth_opts.last_branch) {
1239 		dummy_bs = (struct dummy_branch_stack){
1240 			.nr = 1,
1241 			.hw_idx = -1ULL,
1242 			.entries = {
1243 				.from = sample.ip,
1244 				.to = sample.addr,
1245 			},
1246 		};
1247 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1248 	}
1249 
1250 	if (etm->synth_opts.inject) {
1251 		ret = cs_etm__inject_event(event, &sample,
1252 					   etm->branches_sample_type);
1253 		if (ret)
1254 			return ret;
1255 	}
1256 
1257 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1258 
1259 	if (ret)
1260 		pr_err(
1261 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1262 		ret);
1263 
1264 	return ret;
1265 }
1266 
1267 struct cs_etm_synth {
1268 	struct perf_tool dummy_tool;
1269 	struct perf_session *session;
1270 };
1271 
1272 static int cs_etm__event_synth(struct perf_tool *tool,
1273 			       union perf_event *event,
1274 			       struct perf_sample *sample __maybe_unused,
1275 			       struct machine *machine __maybe_unused)
1276 {
1277 	struct cs_etm_synth *cs_etm_synth =
1278 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1279 
1280 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1281 						 event, NULL);
1282 }
1283 
1284 static int cs_etm__synth_event(struct perf_session *session,
1285 			       struct perf_event_attr *attr, u64 id)
1286 {
1287 	struct cs_etm_synth cs_etm_synth;
1288 
1289 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1290 	cs_etm_synth.session = session;
1291 
1292 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1293 					   &id, cs_etm__event_synth);
1294 }
1295 
1296 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1297 				struct perf_session *session)
1298 {
1299 	struct evlist *evlist = session->evlist;
1300 	struct evsel *evsel;
1301 	struct perf_event_attr attr;
1302 	bool found = false;
1303 	u64 id;
1304 	int err;
1305 
1306 	evlist__for_each_entry(evlist, evsel) {
1307 		if (evsel->core.attr.type == etm->pmu_type) {
1308 			found = true;
1309 			break;
1310 		}
1311 	}
1312 
1313 	if (!found) {
1314 		pr_debug("No selected events with CoreSight Trace data\n");
1315 		return 0;
1316 	}
1317 
1318 	memset(&attr, 0, sizeof(struct perf_event_attr));
1319 	attr.size = sizeof(struct perf_event_attr);
1320 	attr.type = PERF_TYPE_HARDWARE;
1321 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1322 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1323 			    PERF_SAMPLE_PERIOD;
1324 	if (etm->timeless_decoding)
1325 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1326 	else
1327 		attr.sample_type |= PERF_SAMPLE_TIME;
1328 
1329 	attr.exclude_user = evsel->core.attr.exclude_user;
1330 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1331 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1332 	attr.exclude_host = evsel->core.attr.exclude_host;
1333 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1334 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1335 	attr.read_format = evsel->core.attr.read_format;
1336 
1337 	/* create new id val to be a fixed offset from evsel id */
1338 	id = evsel->core.id[0] + 1000000000;
1339 
1340 	if (!id)
1341 		id = 1;
1342 
1343 	if (etm->synth_opts.branches) {
1344 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1345 		attr.sample_period = 1;
1346 		attr.sample_type |= PERF_SAMPLE_ADDR;
1347 		err = cs_etm__synth_event(session, &attr, id);
1348 		if (err)
1349 			return err;
1350 		etm->sample_branches = true;
1351 		etm->branches_sample_type = attr.sample_type;
1352 		etm->branches_id = id;
1353 		id += 1;
1354 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1355 	}
1356 
1357 	if (etm->synth_opts.last_branch) {
1358 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1359 		/*
1360 		 * We don't use the hardware index, but the sample generation
1361 		 * code uses the new format branch_stack with this field,
1362 		 * so the event attributes must indicate that it's present.
1363 		 */
1364 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1365 	}
1366 
1367 	if (etm->synth_opts.instructions) {
1368 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1369 		attr.sample_period = etm->synth_opts.period;
1370 		etm->instructions_sample_period = attr.sample_period;
1371 		err = cs_etm__synth_event(session, &attr, id);
1372 		if (err)
1373 			return err;
1374 		etm->sample_instructions = true;
1375 		etm->instructions_sample_type = attr.sample_type;
1376 		etm->instructions_id = id;
1377 		id += 1;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 static int cs_etm__sample(struct cs_etm_queue *etmq,
1384 			  struct cs_etm_traceid_queue *tidq)
1385 {
1386 	struct cs_etm_auxtrace *etm = etmq->etm;
1387 	int ret;
1388 	u8 trace_chan_id = tidq->trace_chan_id;
1389 	u64 instrs_prev;
1390 
1391 	/* Get instructions remainder from previous packet */
1392 	instrs_prev = tidq->period_instructions;
1393 
1394 	tidq->period_instructions += tidq->packet->instr_count;
1395 
1396 	/*
1397 	 * Record a branch when the last instruction in
1398 	 * PREV_PACKET is a branch.
1399 	 */
1400 	if (etm->synth_opts.last_branch &&
1401 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1402 	    tidq->prev_packet->last_instr_taken_branch)
1403 		cs_etm__update_last_branch_rb(etmq, tidq);
1404 
1405 	if (etm->sample_instructions &&
1406 	    tidq->period_instructions >= etm->instructions_sample_period) {
1407 		/*
1408 		 * Emit instruction sample periodically
1409 		 * TODO: allow period to be defined in cycles and clock time
1410 		 */
1411 
1412 		/*
1413 		 * Below diagram demonstrates the instruction samples
1414 		 * generation flows:
1415 		 *
1416 		 *    Instrs     Instrs       Instrs       Instrs
1417 		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1418 		 *    |            |            |            |
1419 		 *    V            V            V            V
1420 		 *   --------------------------------------------------
1421 		 *            ^                                  ^
1422 		 *            |                                  |
1423 		 *         Period                             Period
1424 		 *    instructions(Pi)                   instructions(Pi')
1425 		 *
1426 		 *            |                                  |
1427 		 *            \---------------- -----------------/
1428 		 *                             V
1429 		 *                 tidq->packet->instr_count
1430 		 *
1431 		 * Instrs Sample(n...) are the synthesised samples occurring
1432 		 * every etm->instructions_sample_period instructions - as
1433 		 * defined on the perf command line.  Sample(n) is being the
1434 		 * last sample before the current etm packet, n+1 to n+3
1435 		 * samples are generated from the current etm packet.
1436 		 *
1437 		 * tidq->packet->instr_count represents the number of
1438 		 * instructions in the current etm packet.
1439 		 *
1440 		 * Period instructions (Pi) contains the the number of
1441 		 * instructions executed after the sample point(n) from the
1442 		 * previous etm packet.  This will always be less than
1443 		 * etm->instructions_sample_period.
1444 		 *
1445 		 * When generate new samples, it combines with two parts
1446 		 * instructions, one is the tail of the old packet and another
1447 		 * is the head of the new coming packet, to generate
1448 		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1449 		 * instructions with sample period.  After sample(n+3), the rest
1450 		 * instructions will be used by later packet and it is assigned
1451 		 * to tidq->period_instructions for next round calculation.
1452 		 */
1453 
1454 		/*
1455 		 * Get the initial offset into the current packet instructions;
1456 		 * entry conditions ensure that instrs_prev is less than
1457 		 * etm->instructions_sample_period.
1458 		 */
1459 		u64 offset = etm->instructions_sample_period - instrs_prev;
1460 		u64 addr;
1461 
1462 		/* Prepare last branches for instruction sample */
1463 		if (etm->synth_opts.last_branch)
1464 			cs_etm__copy_last_branch_rb(etmq, tidq);
1465 
1466 		while (tidq->period_instructions >=
1467 				etm->instructions_sample_period) {
1468 			/*
1469 			 * Calculate the address of the sampled instruction (-1
1470 			 * as sample is reported as though instruction has just
1471 			 * been executed, but PC has not advanced to next
1472 			 * instruction)
1473 			 */
1474 			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1475 						  tidq->packet, offset - 1);
1476 			ret = cs_etm__synth_instruction_sample(
1477 				etmq, tidq, addr,
1478 				etm->instructions_sample_period);
1479 			if (ret)
1480 				return ret;
1481 
1482 			offset += etm->instructions_sample_period;
1483 			tidq->period_instructions -=
1484 				etm->instructions_sample_period;
1485 		}
1486 	}
1487 
1488 	if (etm->sample_branches) {
1489 		bool generate_sample = false;
1490 
1491 		/* Generate sample for tracing on packet */
1492 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1493 			generate_sample = true;
1494 
1495 		/* Generate sample for branch taken packet */
1496 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1497 		    tidq->prev_packet->last_instr_taken_branch)
1498 			generate_sample = true;
1499 
1500 		if (generate_sample) {
1501 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1502 			if (ret)
1503 				return ret;
1504 		}
1505 	}
1506 
1507 	cs_etm__packet_swap(etm, tidq);
1508 
1509 	return 0;
1510 }
1511 
1512 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1513 {
1514 	/*
1515 	 * When the exception packet is inserted, whether the last instruction
1516 	 * in previous range packet is taken branch or not, we need to force
1517 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1518 	 * to generate branch sample for the instruction range before the
1519 	 * exception is trapped to kernel or before the exception returning.
1520 	 *
1521 	 * The exception packet includes the dummy address values, so don't
1522 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1523 	 * for generating instruction and branch samples.
1524 	 */
1525 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1526 		tidq->prev_packet->last_instr_taken_branch = true;
1527 
1528 	return 0;
1529 }
1530 
1531 static int cs_etm__flush(struct cs_etm_queue *etmq,
1532 			 struct cs_etm_traceid_queue *tidq)
1533 {
1534 	int err = 0;
1535 	struct cs_etm_auxtrace *etm = etmq->etm;
1536 
1537 	/* Handle start tracing packet */
1538 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1539 		goto swap_packet;
1540 
1541 	if (etmq->etm->synth_opts.last_branch &&
1542 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1543 		u64 addr;
1544 
1545 		/* Prepare last branches for instruction sample */
1546 		cs_etm__copy_last_branch_rb(etmq, tidq);
1547 
1548 		/*
1549 		 * Generate a last branch event for the branches left in the
1550 		 * circular buffer at the end of the trace.
1551 		 *
1552 		 * Use the address of the end of the last reported execution
1553 		 * range
1554 		 */
1555 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1556 
1557 		err = cs_etm__synth_instruction_sample(
1558 			etmq, tidq, addr,
1559 			tidq->period_instructions);
1560 		if (err)
1561 			return err;
1562 
1563 		tidq->period_instructions = 0;
1564 
1565 	}
1566 
1567 	if (etm->sample_branches &&
1568 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1569 		err = cs_etm__synth_branch_sample(etmq, tidq);
1570 		if (err)
1571 			return err;
1572 	}
1573 
1574 swap_packet:
1575 	cs_etm__packet_swap(etm, tidq);
1576 
1577 	/* Reset last branches after flush the trace */
1578 	if (etm->synth_opts.last_branch)
1579 		cs_etm__reset_last_branch_rb(tidq);
1580 
1581 	return err;
1582 }
1583 
1584 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1585 			     struct cs_etm_traceid_queue *tidq)
1586 {
1587 	int err;
1588 
1589 	/*
1590 	 * It has no new packet coming and 'etmq->packet' contains the stale
1591 	 * packet which was set at the previous time with packets swapping;
1592 	 * so skip to generate branch sample to avoid stale packet.
1593 	 *
1594 	 * For this case only flush branch stack and generate a last branch
1595 	 * event for the branches left in the circular buffer at the end of
1596 	 * the trace.
1597 	 */
1598 	if (etmq->etm->synth_opts.last_branch &&
1599 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1600 		u64 addr;
1601 
1602 		/* Prepare last branches for instruction sample */
1603 		cs_etm__copy_last_branch_rb(etmq, tidq);
1604 
1605 		/*
1606 		 * Use the address of the end of the last reported execution
1607 		 * range.
1608 		 */
1609 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1610 
1611 		err = cs_etm__synth_instruction_sample(
1612 			etmq, tidq, addr,
1613 			tidq->period_instructions);
1614 		if (err)
1615 			return err;
1616 
1617 		tidq->period_instructions = 0;
1618 	}
1619 
1620 	return 0;
1621 }
1622 /*
1623  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1624  *			   if need be.
1625  * Returns:	< 0	if error
1626  *		= 0	if no more auxtrace_buffer to read
1627  *		> 0	if the current buffer isn't empty yet
1628  */
1629 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1630 {
1631 	int ret;
1632 
1633 	if (!etmq->buf_len) {
1634 		ret = cs_etm__get_trace(etmq);
1635 		if (ret <= 0)
1636 			return ret;
1637 		/*
1638 		 * We cannot assume consecutive blocks in the data file
1639 		 * are contiguous, reset the decoder to force re-sync.
1640 		 */
1641 		ret = cs_etm_decoder__reset(etmq->decoder);
1642 		if (ret)
1643 			return ret;
1644 	}
1645 
1646 	return etmq->buf_len;
1647 }
1648 
1649 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1650 				 struct cs_etm_packet *packet,
1651 				 u64 end_addr)
1652 {
1653 	/* Initialise to keep compiler happy */
1654 	u16 instr16 = 0;
1655 	u32 instr32 = 0;
1656 	u64 addr;
1657 
1658 	switch (packet->isa) {
1659 	case CS_ETM_ISA_T32:
1660 		/*
1661 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1662 		 *
1663 		 *  b'15         b'8
1664 		 * +-----------------+--------+
1665 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1666 		 * +-----------------+--------+
1667 		 *
1668 		 * According to the specification, it only defines SVC for T32
1669 		 * with 16 bits instruction and has no definition for 32bits;
1670 		 * so below only read 2 bytes as instruction size for T32.
1671 		 */
1672 		addr = end_addr - 2;
1673 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1674 				   sizeof(instr16), (u8 *)&instr16);
1675 		if ((instr16 & 0xFF00) == 0xDF00)
1676 			return true;
1677 
1678 		break;
1679 	case CS_ETM_ISA_A32:
1680 		/*
1681 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1682 		 *
1683 		 *  b'31 b'28 b'27 b'24
1684 		 * +---------+---------+-------------------------+
1685 		 * |  !1111  | 1 1 1 1 |        imm24            |
1686 		 * +---------+---------+-------------------------+
1687 		 */
1688 		addr = end_addr - 4;
1689 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1690 				   sizeof(instr32), (u8 *)&instr32);
1691 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1692 		    (instr32 & 0xF0000000) != 0xF0000000)
1693 			return true;
1694 
1695 		break;
1696 	case CS_ETM_ISA_A64:
1697 		/*
1698 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1699 		 *
1700 		 *  b'31               b'21           b'4     b'0
1701 		 * +-----------------------+---------+-----------+
1702 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1703 		 * +-----------------------+---------+-----------+
1704 		 */
1705 		addr = end_addr - 4;
1706 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1707 				   sizeof(instr32), (u8 *)&instr32);
1708 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1709 			return true;
1710 
1711 		break;
1712 	case CS_ETM_ISA_UNKNOWN:
1713 	default:
1714 		break;
1715 	}
1716 
1717 	return false;
1718 }
1719 
1720 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1721 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1722 {
1723 	u8 trace_chan_id = tidq->trace_chan_id;
1724 	struct cs_etm_packet *packet = tidq->packet;
1725 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1726 
1727 	if (magic == __perf_cs_etmv3_magic)
1728 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1729 			return true;
1730 
1731 	/*
1732 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1733 	 * HVC cases; need to check if it's SVC instruction based on
1734 	 * packet address.
1735 	 */
1736 	if (magic == __perf_cs_etmv4_magic) {
1737 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1738 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1739 					 prev_packet->end_addr))
1740 			return true;
1741 	}
1742 
1743 	return false;
1744 }
1745 
1746 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1747 				       u64 magic)
1748 {
1749 	struct cs_etm_packet *packet = tidq->packet;
1750 
1751 	if (magic == __perf_cs_etmv3_magic)
1752 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1753 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1754 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1755 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1756 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1757 			return true;
1758 
1759 	if (magic == __perf_cs_etmv4_magic)
1760 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1761 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1762 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1763 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1764 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1765 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1766 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1767 			return true;
1768 
1769 	return false;
1770 }
1771 
1772 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1773 				      struct cs_etm_traceid_queue *tidq,
1774 				      u64 magic)
1775 {
1776 	u8 trace_chan_id = tidq->trace_chan_id;
1777 	struct cs_etm_packet *packet = tidq->packet;
1778 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1779 
1780 	if (magic == __perf_cs_etmv3_magic)
1781 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1782 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1783 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1784 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1785 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1786 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1787 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1788 			return true;
1789 
1790 	if (magic == __perf_cs_etmv4_magic) {
1791 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1792 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1793 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1794 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1795 			return true;
1796 
1797 		/*
1798 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1799 		 * (SMC, HVC) are taken as sync exceptions.
1800 		 */
1801 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1802 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1803 					  prev_packet->end_addr))
1804 			return true;
1805 
1806 		/*
1807 		 * ETMv4 has 5 bits for exception number; if the numbers
1808 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1809 		 * they are implementation defined exceptions.
1810 		 *
1811 		 * For this case, simply take it as sync exception.
1812 		 */
1813 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1814 		    packet->exception_number <= CS_ETMV4_EXC_END)
1815 			return true;
1816 	}
1817 
1818 	return false;
1819 }
1820 
1821 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1822 				    struct cs_etm_traceid_queue *tidq)
1823 {
1824 	struct cs_etm_packet *packet = tidq->packet;
1825 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1826 	u8 trace_chan_id = tidq->trace_chan_id;
1827 	u64 magic;
1828 	int ret;
1829 
1830 	switch (packet->sample_type) {
1831 	case CS_ETM_RANGE:
1832 		/*
1833 		 * Immediate branch instruction without neither link nor
1834 		 * return flag, it's normal branch instruction within
1835 		 * the function.
1836 		 */
1837 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1838 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1839 			packet->flags = PERF_IP_FLAG_BRANCH;
1840 
1841 			if (packet->last_instr_cond)
1842 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1843 		}
1844 
1845 		/*
1846 		 * Immediate branch instruction with link (e.g. BL), this is
1847 		 * branch instruction for function call.
1848 		 */
1849 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1850 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1851 			packet->flags = PERF_IP_FLAG_BRANCH |
1852 					PERF_IP_FLAG_CALL;
1853 
1854 		/*
1855 		 * Indirect branch instruction with link (e.g. BLR), this is
1856 		 * branch instruction for function call.
1857 		 */
1858 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1859 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1860 			packet->flags = PERF_IP_FLAG_BRANCH |
1861 					PERF_IP_FLAG_CALL;
1862 
1863 		/*
1864 		 * Indirect branch instruction with subtype of
1865 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1866 		 * function return for A32/T32.
1867 		 */
1868 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1869 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1870 			packet->flags = PERF_IP_FLAG_BRANCH |
1871 					PERF_IP_FLAG_RETURN;
1872 
1873 		/*
1874 		 * Indirect branch instruction without link (e.g. BR), usually
1875 		 * this is used for function return, especially for functions
1876 		 * within dynamic link lib.
1877 		 */
1878 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1879 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1880 			packet->flags = PERF_IP_FLAG_BRANCH |
1881 					PERF_IP_FLAG_RETURN;
1882 
1883 		/* Return instruction for function return. */
1884 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1885 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1886 			packet->flags = PERF_IP_FLAG_BRANCH |
1887 					PERF_IP_FLAG_RETURN;
1888 
1889 		/*
1890 		 * Decoder might insert a discontinuity in the middle of
1891 		 * instruction packets, fixup prev_packet with flag
1892 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1893 		 */
1894 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1895 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1896 					      PERF_IP_FLAG_TRACE_BEGIN;
1897 
1898 		/*
1899 		 * If the previous packet is an exception return packet
1900 		 * and the return address just follows SVC instruction,
1901 		 * it needs to calibrate the previous packet sample flags
1902 		 * as PERF_IP_FLAG_SYSCALLRET.
1903 		 */
1904 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1905 					   PERF_IP_FLAG_RETURN |
1906 					   PERF_IP_FLAG_INTERRUPT) &&
1907 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1908 					 packet, packet->start_addr))
1909 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1910 					     PERF_IP_FLAG_RETURN |
1911 					     PERF_IP_FLAG_SYSCALLRET;
1912 		break;
1913 	case CS_ETM_DISCONTINUITY:
1914 		/*
1915 		 * The trace is discontinuous, if the previous packet is
1916 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1917 		 * for previous packet.
1918 		 */
1919 		if (prev_packet->sample_type == CS_ETM_RANGE)
1920 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1921 					      PERF_IP_FLAG_TRACE_END;
1922 		break;
1923 	case CS_ETM_EXCEPTION:
1924 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1925 		if (ret)
1926 			return ret;
1927 
1928 		/* The exception is for system call. */
1929 		if (cs_etm__is_syscall(etmq, tidq, magic))
1930 			packet->flags = PERF_IP_FLAG_BRANCH |
1931 					PERF_IP_FLAG_CALL |
1932 					PERF_IP_FLAG_SYSCALLRET;
1933 		/*
1934 		 * The exceptions are triggered by external signals from bus,
1935 		 * interrupt controller, debug module, PE reset or halt.
1936 		 */
1937 		else if (cs_etm__is_async_exception(tidq, magic))
1938 			packet->flags = PERF_IP_FLAG_BRANCH |
1939 					PERF_IP_FLAG_CALL |
1940 					PERF_IP_FLAG_ASYNC |
1941 					PERF_IP_FLAG_INTERRUPT;
1942 		/*
1943 		 * Otherwise, exception is caused by trap, instruction &
1944 		 * data fault, or alignment errors.
1945 		 */
1946 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1947 			packet->flags = PERF_IP_FLAG_BRANCH |
1948 					PERF_IP_FLAG_CALL |
1949 					PERF_IP_FLAG_INTERRUPT;
1950 
1951 		/*
1952 		 * When the exception packet is inserted, since exception
1953 		 * packet is not used standalone for generating samples
1954 		 * and it's affiliation to the previous instruction range
1955 		 * packet; so set previous range packet flags to tell perf
1956 		 * it is an exception taken branch.
1957 		 */
1958 		if (prev_packet->sample_type == CS_ETM_RANGE)
1959 			prev_packet->flags = packet->flags;
1960 		break;
1961 	case CS_ETM_EXCEPTION_RET:
1962 		/*
1963 		 * When the exception return packet is inserted, since
1964 		 * exception return packet is not used standalone for
1965 		 * generating samples and it's affiliation to the previous
1966 		 * instruction range packet; so set previous range packet
1967 		 * flags to tell perf it is an exception return branch.
1968 		 *
1969 		 * The exception return can be for either system call or
1970 		 * other exception types; unfortunately the packet doesn't
1971 		 * contain exception type related info so we cannot decide
1972 		 * the exception type purely based on exception return packet.
1973 		 * If we record the exception number from exception packet and
1974 		 * reuse it for exception return packet, this is not reliable
1975 		 * due the trace can be discontinuity or the interrupt can
1976 		 * be nested, thus the recorded exception number cannot be
1977 		 * used for exception return packet for these two cases.
1978 		 *
1979 		 * For exception return packet, we only need to distinguish the
1980 		 * packet is for system call or for other types.  Thus the
1981 		 * decision can be deferred when receive the next packet which
1982 		 * contains the return address, based on the return address we
1983 		 * can read out the previous instruction and check if it's a
1984 		 * system call instruction and then calibrate the sample flag
1985 		 * as needed.
1986 		 */
1987 		if (prev_packet->sample_type == CS_ETM_RANGE)
1988 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1989 					     PERF_IP_FLAG_RETURN |
1990 					     PERF_IP_FLAG_INTERRUPT;
1991 		break;
1992 	case CS_ETM_EMPTY:
1993 	default:
1994 		break;
1995 	}
1996 
1997 	return 0;
1998 }
1999 
2000 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2001 {
2002 	int ret = 0;
2003 	size_t processed = 0;
2004 
2005 	/*
2006 	 * Packets are decoded and added to the decoder's packet queue
2007 	 * until the decoder packet processing callback has requested that
2008 	 * processing stops or there is nothing left in the buffer.  Normal
2009 	 * operations that stop processing are a timestamp packet or a full
2010 	 * decoder buffer queue.
2011 	 */
2012 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2013 						 etmq->offset,
2014 						 &etmq->buf[etmq->buf_used],
2015 						 etmq->buf_len,
2016 						 &processed);
2017 	if (ret)
2018 		goto out;
2019 
2020 	etmq->offset += processed;
2021 	etmq->buf_used += processed;
2022 	etmq->buf_len -= processed;
2023 
2024 out:
2025 	return ret;
2026 }
2027 
2028 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2029 					 struct cs_etm_traceid_queue *tidq)
2030 {
2031 	int ret;
2032 	struct cs_etm_packet_queue *packet_queue;
2033 
2034 	packet_queue = &tidq->packet_queue;
2035 
2036 	/* Process each packet in this chunk */
2037 	while (1) {
2038 		ret = cs_etm_decoder__get_packet(packet_queue,
2039 						 tidq->packet);
2040 		if (ret <= 0)
2041 			/*
2042 			 * Stop processing this chunk on
2043 			 * end of data or error
2044 			 */
2045 			break;
2046 
2047 		/*
2048 		 * Since packet addresses are swapped in packet
2049 		 * handling within below switch() statements,
2050 		 * thus setting sample flags must be called
2051 		 * prior to switch() statement to use address
2052 		 * information before packets swapping.
2053 		 */
2054 		ret = cs_etm__set_sample_flags(etmq, tidq);
2055 		if (ret < 0)
2056 			break;
2057 
2058 		switch (tidq->packet->sample_type) {
2059 		case CS_ETM_RANGE:
2060 			/*
2061 			 * If the packet contains an instruction
2062 			 * range, generate instruction sequence
2063 			 * events.
2064 			 */
2065 			cs_etm__sample(etmq, tidq);
2066 			break;
2067 		case CS_ETM_EXCEPTION:
2068 		case CS_ETM_EXCEPTION_RET:
2069 			/*
2070 			 * If the exception packet is coming,
2071 			 * make sure the previous instruction
2072 			 * range packet to be handled properly.
2073 			 */
2074 			cs_etm__exception(tidq);
2075 			break;
2076 		case CS_ETM_DISCONTINUITY:
2077 			/*
2078 			 * Discontinuity in trace, flush
2079 			 * previous branch stack
2080 			 */
2081 			cs_etm__flush(etmq, tidq);
2082 			break;
2083 		case CS_ETM_EMPTY:
2084 			/*
2085 			 * Should not receive empty packet,
2086 			 * report error.
2087 			 */
2088 			pr_err("CS ETM Trace: empty packet\n");
2089 			return -EINVAL;
2090 		default:
2091 			break;
2092 		}
2093 	}
2094 
2095 	return ret;
2096 }
2097 
2098 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2099 {
2100 	int idx;
2101 	struct int_node *inode;
2102 	struct cs_etm_traceid_queue *tidq;
2103 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2104 
2105 	intlist__for_each_entry(inode, traceid_queues_list) {
2106 		idx = (int)(intptr_t)inode->priv;
2107 		tidq = etmq->traceid_queues[idx];
2108 
2109 		/* Ignore return value */
2110 		cs_etm__process_traceid_queue(etmq, tidq);
2111 
2112 		/*
2113 		 * Generate an instruction sample with the remaining
2114 		 * branchstack entries.
2115 		 */
2116 		cs_etm__flush(etmq, tidq);
2117 	}
2118 }
2119 
2120 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2121 {
2122 	int err = 0;
2123 	struct cs_etm_traceid_queue *tidq;
2124 
2125 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2126 	if (!tidq)
2127 		return -EINVAL;
2128 
2129 	/* Go through each buffer in the queue and decode them one by one */
2130 	while (1) {
2131 		err = cs_etm__get_data_block(etmq);
2132 		if (err <= 0)
2133 			return err;
2134 
2135 		/* Run trace decoder until buffer consumed or end of trace */
2136 		do {
2137 			err = cs_etm__decode_data_block(etmq);
2138 			if (err)
2139 				return err;
2140 
2141 			/*
2142 			 * Process each packet in this chunk, nothing to do if
2143 			 * an error occurs other than hoping the next one will
2144 			 * be better.
2145 			 */
2146 			err = cs_etm__process_traceid_queue(etmq, tidq);
2147 
2148 		} while (etmq->buf_len);
2149 
2150 		if (err == 0)
2151 			/* Flush any remaining branch stack entries */
2152 			err = cs_etm__end_block(etmq, tidq);
2153 	}
2154 
2155 	return err;
2156 }
2157 
2158 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2159 					   pid_t tid)
2160 {
2161 	unsigned int i;
2162 	struct auxtrace_queues *queues = &etm->queues;
2163 
2164 	for (i = 0; i < queues->nr_queues; i++) {
2165 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2166 		struct cs_etm_queue *etmq = queue->priv;
2167 		struct cs_etm_traceid_queue *tidq;
2168 
2169 		if (!etmq)
2170 			continue;
2171 
2172 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2173 						CS_ETM_PER_THREAD_TRACEID);
2174 
2175 		if (!tidq)
2176 			continue;
2177 
2178 		if ((tid == -1) || (tidq->tid == tid)) {
2179 			cs_etm__set_pid_tid_cpu(etm, tidq);
2180 			cs_etm__run_decoder(etmq);
2181 		}
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2188 {
2189 	int ret = 0;
2190 	unsigned int cs_queue_nr, queue_nr, i;
2191 	u8 trace_chan_id;
2192 	u64 cs_timestamp;
2193 	struct auxtrace_queue *queue;
2194 	struct cs_etm_queue *etmq;
2195 	struct cs_etm_traceid_queue *tidq;
2196 
2197 	/*
2198 	 * Pre-populate the heap with one entry from each queue so that we can
2199 	 * start processing in time order across all queues.
2200 	 */
2201 	for (i = 0; i < etm->queues.nr_queues; i++) {
2202 		etmq = etm->queues.queue_array[i].priv;
2203 		if (!etmq)
2204 			continue;
2205 
2206 		ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2207 		if (ret)
2208 			return ret;
2209 	}
2210 
2211 	while (1) {
2212 		if (!etm->heap.heap_cnt)
2213 			goto out;
2214 
2215 		/* Take the entry at the top of the min heap */
2216 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2217 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2218 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2219 		queue = &etm->queues.queue_array[queue_nr];
2220 		etmq = queue->priv;
2221 
2222 		/*
2223 		 * Remove the top entry from the heap since we are about
2224 		 * to process it.
2225 		 */
2226 		auxtrace_heap__pop(&etm->heap);
2227 
2228 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2229 		if (!tidq) {
2230 			/*
2231 			 * No traceID queue has been allocated for this traceID,
2232 			 * which means something somewhere went very wrong.  No
2233 			 * other choice than simply exit.
2234 			 */
2235 			ret = -EINVAL;
2236 			goto out;
2237 		}
2238 
2239 		/*
2240 		 * Packets associated with this timestamp are already in
2241 		 * the etmq's traceID queue, so process them.
2242 		 */
2243 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2244 		if (ret < 0)
2245 			goto out;
2246 
2247 		/*
2248 		 * Packets for this timestamp have been processed, time to
2249 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2250 		 * if need be.
2251 		 */
2252 refetch:
2253 		ret = cs_etm__get_data_block(etmq);
2254 		if (ret < 0)
2255 			goto out;
2256 
2257 		/*
2258 		 * No more auxtrace_buffers to process in this etmq, simply
2259 		 * move on to another entry in the auxtrace_heap.
2260 		 */
2261 		if (!ret)
2262 			continue;
2263 
2264 		ret = cs_etm__decode_data_block(etmq);
2265 		if (ret)
2266 			goto out;
2267 
2268 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2269 
2270 		if (!cs_timestamp) {
2271 			/*
2272 			 * Function cs_etm__decode_data_block() returns when
2273 			 * there is no more traces to decode in the current
2274 			 * auxtrace_buffer OR when a timestamp has been
2275 			 * encountered on any of the traceID queues.  Since we
2276 			 * did not get a timestamp, there is no more traces to
2277 			 * process in this auxtrace_buffer.  As such empty and
2278 			 * flush all traceID queues.
2279 			 */
2280 			cs_etm__clear_all_traceid_queues(etmq);
2281 
2282 			/* Fetch another auxtrace_buffer for this etmq */
2283 			goto refetch;
2284 		}
2285 
2286 		/*
2287 		 * Add to the min heap the timestamp for packets that have
2288 		 * just been decoded.  They will be processed and synthesized
2289 		 * during the next call to cs_etm__process_traceid_queue() for
2290 		 * this queue/traceID.
2291 		 */
2292 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2293 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2294 	}
2295 
2296 out:
2297 	return ret;
2298 }
2299 
2300 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2301 					union perf_event *event)
2302 {
2303 	struct thread *th;
2304 
2305 	if (etm->timeless_decoding)
2306 		return 0;
2307 
2308 	/*
2309 	 * Add the tid/pid to the log so that we can get a match when
2310 	 * we get a contextID from the decoder.
2311 	 */
2312 	th = machine__findnew_thread(etm->machine,
2313 				     event->itrace_start.pid,
2314 				     event->itrace_start.tid);
2315 	if (!th)
2316 		return -ENOMEM;
2317 
2318 	thread__put(th);
2319 
2320 	return 0;
2321 }
2322 
2323 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2324 					   union perf_event *event)
2325 {
2326 	struct thread *th;
2327 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2328 
2329 	/*
2330 	 * Context switch in per-thread mode are irrelevant since perf
2331 	 * will start/stop tracing as the process is scheduled.
2332 	 */
2333 	if (etm->timeless_decoding)
2334 		return 0;
2335 
2336 	/*
2337 	 * SWITCH_IN events carry the next process to be switched out while
2338 	 * SWITCH_OUT events carry the process to be switched in.  As such
2339 	 * we don't care about IN events.
2340 	 */
2341 	if (!out)
2342 		return 0;
2343 
2344 	/*
2345 	 * Add the tid/pid to the log so that we can get a match when
2346 	 * we get a contextID from the decoder.
2347 	 */
2348 	th = machine__findnew_thread(etm->machine,
2349 				     event->context_switch.next_prev_pid,
2350 				     event->context_switch.next_prev_tid);
2351 	if (!th)
2352 		return -ENOMEM;
2353 
2354 	thread__put(th);
2355 
2356 	return 0;
2357 }
2358 
2359 static int cs_etm__process_event(struct perf_session *session,
2360 				 union perf_event *event,
2361 				 struct perf_sample *sample,
2362 				 struct perf_tool *tool)
2363 {
2364 	u64 sample_kernel_timestamp;
2365 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2366 						   struct cs_etm_auxtrace,
2367 						   auxtrace);
2368 
2369 	if (dump_trace)
2370 		return 0;
2371 
2372 	if (!tool->ordered_events) {
2373 		pr_err("CoreSight ETM Trace requires ordered events\n");
2374 		return -EINVAL;
2375 	}
2376 
2377 	if (sample->time && (sample->time != (u64) -1))
2378 		sample_kernel_timestamp = sample->time;
2379 	else
2380 		sample_kernel_timestamp = 0;
2381 
2382 	/*
2383 	 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2384 	 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2385 	 * ETM_OPT_CTXTID is not enabled.
2386 	 */
2387 	if (etm->timeless_decoding &&
2388 	    event->header.type == PERF_RECORD_EXIT)
2389 		return cs_etm__process_timeless_queues(etm,
2390 						       event->fork.tid);
2391 
2392 	if (event->header.type == PERF_RECORD_ITRACE_START)
2393 		return cs_etm__process_itrace_start(etm, event);
2394 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2395 		return cs_etm__process_switch_cpu_wide(etm, event);
2396 
2397 	if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2398 		/*
2399 		 * Record the latest kernel timestamp available in the header
2400 		 * for samples so that synthesised samples occur from this point
2401 		 * onwards.
2402 		 */
2403 		etm->latest_kernel_timestamp = sample_kernel_timestamp;
2404 	}
2405 
2406 	return 0;
2407 }
2408 
2409 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2410 			     struct perf_record_auxtrace *event)
2411 {
2412 	struct auxtrace_buffer *buf;
2413 	unsigned int i;
2414 	/*
2415 	 * Find all buffers with same reference in the queues and dump them.
2416 	 * This is because the queues can contain multiple entries of the same
2417 	 * buffer that were split on aux records.
2418 	 */
2419 	for (i = 0; i < etm->queues.nr_queues; ++i)
2420 		list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2421 			if (buf->reference == event->reference)
2422 				cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2423 }
2424 
2425 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2426 					  union perf_event *event,
2427 					  struct perf_tool *tool __maybe_unused)
2428 {
2429 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2430 						   struct cs_etm_auxtrace,
2431 						   auxtrace);
2432 	if (!etm->data_queued) {
2433 		struct auxtrace_buffer *buffer;
2434 		off_t  data_offset;
2435 		int fd = perf_data__fd(session->data);
2436 		bool is_pipe = perf_data__is_pipe(session->data);
2437 		int err;
2438 		int idx = event->auxtrace.idx;
2439 
2440 		if (is_pipe)
2441 			data_offset = 0;
2442 		else {
2443 			data_offset = lseek(fd, 0, SEEK_CUR);
2444 			if (data_offset == -1)
2445 				return -errno;
2446 		}
2447 
2448 		err = auxtrace_queues__add_event(&etm->queues, session,
2449 						 event, data_offset, &buffer);
2450 		if (err)
2451 			return err;
2452 
2453 		/*
2454 		 * Knowing if the trace is formatted or not requires a lookup of
2455 		 * the aux record so only works in non-piped mode where data is
2456 		 * queued in cs_etm__queue_aux_records(). Always assume
2457 		 * formatted in piped mode (true).
2458 		 */
2459 		err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2460 					  idx, true);
2461 		if (err)
2462 			return err;
2463 
2464 		if (dump_trace)
2465 			if (auxtrace_buffer__get_data(buffer, fd)) {
2466 				cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2467 				auxtrace_buffer__put_data(buffer);
2468 			}
2469 	} else if (dump_trace)
2470 		dump_queued_data(etm, &event->auxtrace);
2471 
2472 	return 0;
2473 }
2474 
2475 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2476 {
2477 	struct evsel *evsel;
2478 	struct evlist *evlist = etm->session->evlist;
2479 	bool timeless_decoding = true;
2480 
2481 	/* Override timeless mode with user input from --itrace=Z */
2482 	if (etm->synth_opts.timeless_decoding)
2483 		return true;
2484 
2485 	/*
2486 	 * Circle through the list of event and complain if we find one
2487 	 * with the time bit set.
2488 	 */
2489 	evlist__for_each_entry(evlist, evsel) {
2490 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2491 			timeless_decoding = false;
2492 	}
2493 
2494 	return timeless_decoding;
2495 }
2496 
2497 static const char * const cs_etm_global_header_fmts[] = {
2498 	[CS_HEADER_VERSION]	= "	Header version		       %llx\n",
2499 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2500 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2501 };
2502 
2503 static const char * const cs_etm_priv_fmts[] = {
2504 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2505 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2506 	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2507 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2508 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2509 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2510 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2511 };
2512 
2513 static const char * const cs_etmv4_priv_fmts[] = {
2514 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2515 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2516 	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2517 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2518 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2519 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2520 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2521 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2522 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2523 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2524 };
2525 
2526 static const char * const param_unk_fmt =
2527 	"	Unknown parameter [%d]	       %llx\n";
2528 static const char * const magic_unk_fmt =
2529 	"	Magic number Unknown	       %llx\n";
2530 
2531 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2532 {
2533 	int i = *offset, j, nr_params = 0, fmt_offset;
2534 	__u64 magic;
2535 
2536 	/* check magic value */
2537 	magic = val[i + CS_ETM_MAGIC];
2538 	if ((magic != __perf_cs_etmv3_magic) &&
2539 	    (magic != __perf_cs_etmv4_magic)) {
2540 		/* failure - note bad magic value */
2541 		fprintf(stdout, magic_unk_fmt, magic);
2542 		return -EINVAL;
2543 	}
2544 
2545 	/* print common header block */
2546 	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2547 	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2548 
2549 	if (magic == __perf_cs_etmv3_magic) {
2550 		nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2551 		fmt_offset = CS_ETM_ETMCR;
2552 		/* after common block, offset format index past NR_PARAMS */
2553 		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2554 			fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2555 	} else if (magic == __perf_cs_etmv4_magic) {
2556 		nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2557 		fmt_offset = CS_ETMV4_TRCCONFIGR;
2558 		/* after common block, offset format index past NR_PARAMS */
2559 		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2560 			fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2561 	}
2562 	*offset = i;
2563 	return 0;
2564 }
2565 
2566 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2567 {
2568 	int i = *offset, j, total_params = 0;
2569 	__u64 magic;
2570 
2571 	magic = val[i + CS_ETM_MAGIC];
2572 	/* total params to print is NR_PARAMS + common block size for v1 */
2573 	total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2574 
2575 	if (magic == __perf_cs_etmv3_magic) {
2576 		for (j = 0; j < total_params; j++, i++) {
2577 			/* if newer record - could be excess params */
2578 			if (j >= CS_ETM_PRIV_MAX)
2579 				fprintf(stdout, param_unk_fmt, j, val[i]);
2580 			else
2581 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2582 		}
2583 	} else if (magic == __perf_cs_etmv4_magic) {
2584 		for (j = 0; j < total_params; j++, i++) {
2585 			/* if newer record - could be excess params */
2586 			if (j >= CS_ETMV4_PRIV_MAX)
2587 				fprintf(stdout, param_unk_fmt, j, val[i]);
2588 			else
2589 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2590 		}
2591 	} else {
2592 		/* failure - note bad magic value and error out */
2593 		fprintf(stdout, magic_unk_fmt, magic);
2594 		return -EINVAL;
2595 	}
2596 	*offset = i;
2597 	return 0;
2598 }
2599 
2600 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2601 {
2602 	int i, cpu = 0, version, err;
2603 
2604 	/* bail out early on bad header version */
2605 	version = val[0];
2606 	if (version > CS_HEADER_CURRENT_VERSION) {
2607 		/* failure.. return */
2608 		fprintf(stdout, "	Unknown Header Version = %x, ", version);
2609 		fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2610 		return;
2611 	}
2612 
2613 	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2614 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2615 
2616 	for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2617 		if (version == 0)
2618 			err = cs_etm__print_cpu_metadata_v0(val, &i);
2619 		else if (version == 1)
2620 			err = cs_etm__print_cpu_metadata_v1(val, &i);
2621 		if (err)
2622 			return;
2623 	}
2624 }
2625 
2626 /*
2627  * Read a single cpu parameter block from the auxtrace_info priv block.
2628  *
2629  * For version 1 there is a per cpu nr_params entry. If we are handling
2630  * version 1 file, then there may be less, the same, or more params
2631  * indicated by this value than the compile time number we understand.
2632  *
2633  * For a version 0 info block, there are a fixed number, and we need to
2634  * fill out the nr_param value in the metadata we create.
2635  */
2636 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2637 				    int out_blk_size, int nr_params_v0)
2638 {
2639 	u64 *metadata = NULL;
2640 	int hdr_version;
2641 	int nr_in_params, nr_out_params, nr_cmn_params;
2642 	int i, k;
2643 
2644 	metadata = zalloc(sizeof(*metadata) * out_blk_size);
2645 	if (!metadata)
2646 		return NULL;
2647 
2648 	/* read block current index & version */
2649 	i = *buff_in_offset;
2650 	hdr_version = buff_in[CS_HEADER_VERSION];
2651 
2652 	if (!hdr_version) {
2653 	/* read version 0 info block into a version 1 metadata block  */
2654 		nr_in_params = nr_params_v0;
2655 		metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2656 		metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2657 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2658 		/* remaining block params at offset +1 from source */
2659 		for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2660 			metadata[k + 1] = buff_in[i + k];
2661 		/* version 0 has 2 common params */
2662 		nr_cmn_params = 2;
2663 	} else {
2664 	/* read version 1 info block - input and output nr_params may differ */
2665 		/* version 1 has 3 common params */
2666 		nr_cmn_params = 3;
2667 		nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2668 
2669 		/* if input has more params than output - skip excess */
2670 		nr_out_params = nr_in_params + nr_cmn_params;
2671 		if (nr_out_params > out_blk_size)
2672 			nr_out_params = out_blk_size;
2673 
2674 		for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2675 			metadata[k] = buff_in[i + k];
2676 
2677 		/* record the actual nr params we copied */
2678 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2679 	}
2680 
2681 	/* adjust in offset by number of in params used */
2682 	i += nr_in_params + nr_cmn_params;
2683 	*buff_in_offset = i;
2684 	return metadata;
2685 }
2686 
2687 /**
2688  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2689  * on the bounds of aux_event, if it matches with the buffer that's at
2690  * file_offset.
2691  *
2692  * Normally, whole auxtrace buffers would be added to the queue. But we
2693  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2694  * is reset across each buffer, so splitting the buffers up in advance has
2695  * the same effect.
2696  */
2697 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2698 				      struct perf_record_aux *aux_event, struct perf_sample *sample)
2699 {
2700 	int err;
2701 	char buf[PERF_SAMPLE_MAX_SIZE];
2702 	union perf_event *auxtrace_event_union;
2703 	struct perf_record_auxtrace *auxtrace_event;
2704 	union perf_event auxtrace_fragment;
2705 	__u64 aux_offset, aux_size;
2706 	__u32 idx;
2707 	bool formatted;
2708 
2709 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2710 						   struct cs_etm_auxtrace,
2711 						   auxtrace);
2712 
2713 	/*
2714 	 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2715 	 * from looping through the auxtrace index.
2716 	 */
2717 	err = perf_session__peek_event(session, file_offset, buf,
2718 				       PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2719 	if (err)
2720 		return err;
2721 	auxtrace_event = &auxtrace_event_union->auxtrace;
2722 	if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2723 		return -EINVAL;
2724 
2725 	if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2726 		auxtrace_event->header.size != sz) {
2727 		return -EINVAL;
2728 	}
2729 
2730 	/*
2731 	 * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2732 	 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2733 	 */
2734 	if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2735 			auxtrace_event->cpu != sample->cpu)
2736 		return 1;
2737 
2738 	if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2739 		/*
2740 		 * Clamp size in snapshot mode. The buffer size is clamped in
2741 		 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2742 		 * the buffer size.
2743 		 */
2744 		aux_size = min(aux_event->aux_size, auxtrace_event->size);
2745 
2746 		/*
2747 		 * In this mode, the head also points to the end of the buffer so aux_offset
2748 		 * needs to have the size subtracted so it points to the beginning as in normal mode
2749 		 */
2750 		aux_offset = aux_event->aux_offset - aux_size;
2751 	} else {
2752 		aux_size = aux_event->aux_size;
2753 		aux_offset = aux_event->aux_offset;
2754 	}
2755 
2756 	if (aux_offset >= auxtrace_event->offset &&
2757 	    aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2758 		/*
2759 		 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2760 		 * based on the sizes of the aux event, and queue that fragment.
2761 		 */
2762 		auxtrace_fragment.auxtrace = *auxtrace_event;
2763 		auxtrace_fragment.auxtrace.size = aux_size;
2764 		auxtrace_fragment.auxtrace.offset = aux_offset;
2765 		file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2766 
2767 		pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2768 			  " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2769 		err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2770 						 file_offset, NULL);
2771 		if (err)
2772 			return err;
2773 
2774 		idx = auxtrace_event->idx;
2775 		formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
2776 		return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2777 					   idx, formatted);
2778 	}
2779 
2780 	/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2781 	return 1;
2782 }
2783 
2784 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2785 					u64 offset __maybe_unused, void *data __maybe_unused)
2786 {
2787 	struct perf_sample sample;
2788 	int ret;
2789 	struct auxtrace_index_entry *ent;
2790 	struct auxtrace_index *auxtrace_index;
2791 	struct evsel *evsel;
2792 	size_t i;
2793 
2794 	/* Don't care about any other events, we're only queuing buffers for AUX events */
2795 	if (event->header.type != PERF_RECORD_AUX)
2796 		return 0;
2797 
2798 	if (event->header.size < sizeof(struct perf_record_aux))
2799 		return -EINVAL;
2800 
2801 	/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2802 	if (!event->aux.aux_size)
2803 		return 0;
2804 
2805 	/*
2806 	 * Parse the sample, we need the sample_id_all data that comes after the event so that the
2807 	 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2808 	 */
2809 	evsel = evlist__event2evsel(session->evlist, event);
2810 	if (!evsel)
2811 		return -EINVAL;
2812 	ret = evsel__parse_sample(evsel, event, &sample);
2813 	if (ret)
2814 		return ret;
2815 
2816 	/*
2817 	 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2818 	 */
2819 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2820 		for (i = 0; i < auxtrace_index->nr; i++) {
2821 			ent = &auxtrace_index->entries[i];
2822 			ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2823 							 ent->sz, &event->aux, &sample);
2824 			/*
2825 			 * Stop search on error or successful values. Continue search on
2826 			 * 1 ('not found')
2827 			 */
2828 			if (ret != 1)
2829 				return ret;
2830 		}
2831 	}
2832 
2833 	/*
2834 	 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2835 	 * don't exit with an error because it will still be possible to decode other aux records.
2836 	 */
2837 	pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2838 	       " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2839 	return 0;
2840 }
2841 
2842 static int cs_etm__queue_aux_records(struct perf_session *session)
2843 {
2844 	struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2845 								struct auxtrace_index, list);
2846 	if (index && index->nr > 0)
2847 		return perf_session__peek_events(session, session->header.data_offset,
2848 						 session->header.data_size,
2849 						 cs_etm__queue_aux_records_cb, NULL);
2850 
2851 	/*
2852 	 * We would get here if there are no entries in the index (either no auxtrace
2853 	 * buffers or no index at all). Fail silently as there is the possibility of
2854 	 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2855 	 * false.
2856 	 *
2857 	 * In that scenario, buffers will not be split by AUX records.
2858 	 */
2859 	return 0;
2860 }
2861 
2862 int cs_etm__process_auxtrace_info(union perf_event *event,
2863 				  struct perf_session *session)
2864 {
2865 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2866 	struct cs_etm_auxtrace *etm = NULL;
2867 	struct int_node *inode;
2868 	unsigned int pmu_type;
2869 	int event_header_size = sizeof(struct perf_event_header);
2870 	int info_header_size;
2871 	int total_size = auxtrace_info->header.size;
2872 	int priv_size = 0;
2873 	int num_cpu, trcidr_idx;
2874 	int err = 0;
2875 	int i, j;
2876 	u64 *ptr, *hdr = NULL;
2877 	u64 **metadata = NULL;
2878 	u64 hdr_version;
2879 
2880 	/*
2881 	 * sizeof(auxtrace_info_event::type) +
2882 	 * sizeof(auxtrace_info_event::reserved) == 8
2883 	 */
2884 	info_header_size = 8;
2885 
2886 	if (total_size < (event_header_size + info_header_size))
2887 		return -EINVAL;
2888 
2889 	priv_size = total_size - event_header_size - info_header_size;
2890 
2891 	/* First the global part */
2892 	ptr = (u64 *) auxtrace_info->priv;
2893 
2894 	/* Look for version of the header */
2895 	hdr_version = ptr[0];
2896 	if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2897 		/* print routine will print an error on bad version */
2898 		if (dump_trace)
2899 			cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2900 		return -EINVAL;
2901 	}
2902 
2903 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2904 	if (!hdr)
2905 		return -ENOMEM;
2906 
2907 	/* Extract header information - see cs-etm.h for format */
2908 	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2909 		hdr[i] = ptr[i];
2910 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2911 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2912 				    0xffffffff);
2913 
2914 	/*
2915 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2916 	 * has to be made for each packet that gets decoded, optimizing access
2917 	 * in anything other than a sequential array is worth doing.
2918 	 */
2919 	traceid_list = intlist__new(NULL);
2920 	if (!traceid_list) {
2921 		err = -ENOMEM;
2922 		goto err_free_hdr;
2923 	}
2924 
2925 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2926 	if (!metadata) {
2927 		err = -ENOMEM;
2928 		goto err_free_traceid_list;
2929 	}
2930 
2931 	/*
2932 	 * The metadata is stored in the auxtrace_info section and encodes
2933 	 * the configuration of the ARM embedded trace macrocell which is
2934 	 * required by the trace decoder to properly decode the trace due
2935 	 * to its highly compressed nature.
2936 	 */
2937 	for (j = 0; j < num_cpu; j++) {
2938 		if (ptr[i] == __perf_cs_etmv3_magic) {
2939 			metadata[j] =
2940 				cs_etm__create_meta_blk(ptr, &i,
2941 							CS_ETM_PRIV_MAX,
2942 							CS_ETM_NR_TRC_PARAMS_V0);
2943 
2944 			/* The traceID is our handle */
2945 			trcidr_idx = CS_ETM_ETMTRACEIDR;
2946 
2947 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2948 			metadata[j] =
2949 				cs_etm__create_meta_blk(ptr, &i,
2950 							CS_ETMV4_PRIV_MAX,
2951 							CS_ETMV4_NR_TRC_PARAMS_V0);
2952 
2953 			/* The traceID is our handle */
2954 			trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2955 		}
2956 
2957 		if (!metadata[j]) {
2958 			err = -ENOMEM;
2959 			goto err_free_metadata;
2960 		}
2961 
2962 		/* Get an RB node for this CPU */
2963 		inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2964 
2965 		/* Something went wrong, no need to continue */
2966 		if (!inode) {
2967 			err = -ENOMEM;
2968 			goto err_free_metadata;
2969 		}
2970 
2971 		/*
2972 		 * The node for that CPU should not be taken.
2973 		 * Back out if that's the case.
2974 		 */
2975 		if (inode->priv) {
2976 			err = -EINVAL;
2977 			goto err_free_metadata;
2978 		}
2979 		/* All good, associate the traceID with the metadata pointer */
2980 		inode->priv = metadata[j];
2981 	}
2982 
2983 	/*
2984 	 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2985 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2986 	 * global metadata, and each cpu's metadata respectively.
2987 	 * The following tests if the correct number of double words was
2988 	 * present in the auxtrace info section.
2989 	 */
2990 	if (i * 8 != priv_size) {
2991 		err = -EINVAL;
2992 		goto err_free_metadata;
2993 	}
2994 
2995 	etm = zalloc(sizeof(*etm));
2996 
2997 	if (!etm) {
2998 		err = -ENOMEM;
2999 		goto err_free_metadata;
3000 	}
3001 
3002 	err = auxtrace_queues__init(&etm->queues);
3003 	if (err)
3004 		goto err_free_etm;
3005 
3006 	if (session->itrace_synth_opts->set) {
3007 		etm->synth_opts = *session->itrace_synth_opts;
3008 	} else {
3009 		itrace_synth_opts__set_default(&etm->synth_opts,
3010 				session->itrace_synth_opts->default_no_sample);
3011 		etm->synth_opts.callchain = false;
3012 	}
3013 
3014 	etm->session = session;
3015 	etm->machine = &session->machines.host;
3016 
3017 	etm->num_cpu = num_cpu;
3018 	etm->pmu_type = pmu_type;
3019 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
3020 	etm->metadata = metadata;
3021 	etm->auxtrace_type = auxtrace_info->type;
3022 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
3023 
3024 	etm->auxtrace.process_event = cs_etm__process_event;
3025 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3026 	etm->auxtrace.flush_events = cs_etm__flush_events;
3027 	etm->auxtrace.free_events = cs_etm__free_events;
3028 	etm->auxtrace.free = cs_etm__free;
3029 	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3030 	session->auxtrace = &etm->auxtrace;
3031 
3032 	etm->unknown_thread = thread__new(999999999, 999999999);
3033 	if (!etm->unknown_thread) {
3034 		err = -ENOMEM;
3035 		goto err_free_queues;
3036 	}
3037 
3038 	/*
3039 	 * Initialize list node so that at thread__zput() we can avoid
3040 	 * segmentation fault at list_del_init().
3041 	 */
3042 	INIT_LIST_HEAD(&etm->unknown_thread->node);
3043 
3044 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
3045 	if (err)
3046 		goto err_delete_thread;
3047 
3048 	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3049 		err = -ENOMEM;
3050 		goto err_delete_thread;
3051 	}
3052 
3053 	if (dump_trace) {
3054 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3055 	}
3056 
3057 	err = cs_etm__synth_events(etm, session);
3058 	if (err)
3059 		goto err_delete_thread;
3060 
3061 	err = cs_etm__queue_aux_records(session);
3062 	if (err)
3063 		goto err_delete_thread;
3064 
3065 	etm->data_queued = etm->queues.populated;
3066 	/*
3067 	 * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
3068 	 * cs_etm__queue_aux_fragment() for details relating to limitations.
3069 	 */
3070 	if (!etm->data_queued)
3071 		pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
3072 			   "Continuing with best effort decoding in piped mode.\n\n");
3073 
3074 	return 0;
3075 
3076 err_delete_thread:
3077 	thread__zput(etm->unknown_thread);
3078 err_free_queues:
3079 	auxtrace_queues__free(&etm->queues);
3080 	session->auxtrace = NULL;
3081 err_free_etm:
3082 	zfree(&etm);
3083 err_free_metadata:
3084 	/* No need to check @metadata[j], free(NULL) is supported */
3085 	for (j = 0; j < num_cpu; j++)
3086 		zfree(&metadata[j]);
3087 	zfree(&metadata);
3088 err_free_traceid_list:
3089 	intlist__delete(traceid_list);
3090 err_free_hdr:
3091 	zfree(&hdr);
3092 	/*
3093 	 * At this point, as a minimum we have valid header. Dump the rest of
3094 	 * the info section - the print routines will error out on structural
3095 	 * issues.
3096 	 */
3097 	if (dump_trace)
3098 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3099 	return err;
3100 }
3101