xref: /openbmc/linux/tools/perf/util/cs-etm.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19 
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40 
41 struct cs_etm_auxtrace {
42 	struct auxtrace auxtrace;
43 	struct auxtrace_queues queues;
44 	struct auxtrace_heap heap;
45 	struct itrace_synth_opts synth_opts;
46 	struct perf_session *session;
47 	struct machine *machine;
48 	struct thread *unknown_thread;
49 
50 	u8 timeless_decoding;
51 	u8 snapshot_mode;
52 	u8 data_queued;
53 	u8 sample_branches;
54 	u8 sample_instructions;
55 
56 	int num_cpu;
57 	u64 latest_kernel_timestamp;
58 	u32 auxtrace_type;
59 	u64 branches_sample_type;
60 	u64 branches_id;
61 	u64 instructions_sample_type;
62 	u64 instructions_sample_period;
63 	u64 instructions_id;
64 	u64 **metadata;
65 	unsigned int pmu_type;
66 };
67 
68 struct cs_etm_traceid_queue {
69 	u8 trace_chan_id;
70 	pid_t pid, tid;
71 	u64 period_instructions;
72 	size_t last_branch_pos;
73 	union perf_event *event_buf;
74 	struct thread *thread;
75 	struct branch_stack *last_branch;
76 	struct branch_stack *last_branch_rb;
77 	struct cs_etm_packet *prev_packet;
78 	struct cs_etm_packet *packet;
79 	struct cs_etm_packet_queue packet_queue;
80 };
81 
82 struct cs_etm_queue {
83 	struct cs_etm_auxtrace *etm;
84 	struct cs_etm_decoder *decoder;
85 	struct auxtrace_buffer *buffer;
86 	unsigned int queue_nr;
87 	u8 pending_timestamp_chan_id;
88 	u64 offset;
89 	const unsigned char *buf;
90 	size_t buf_len, buf_used;
91 	/* Conversion between traceID and index in traceid_queues array */
92 	struct intlist *traceid_queues_list;
93 	struct cs_etm_traceid_queue **traceid_queues;
94 };
95 
96 /* RB tree for quick conversion between traceID and metadata pointers */
97 static struct intlist *traceid_list;
98 
99 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
100 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
101 					   pid_t tid);
102 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
103 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
104 
105 /* PTMs ETMIDR [11:8] set to b0011 */
106 #define ETMIDR_PTM_VERSION 0x00000300
107 
108 /*
109  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
110  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
111  * encode the etm queue number as the upper 16 bit and the channel as
112  * the lower 16 bit.
113  */
114 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
115 		      (queue_nr << 16 | trace_chan_id)
116 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
117 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
118 
119 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
120 {
121 	etmidr &= ETMIDR_PTM_VERSION;
122 
123 	if (etmidr == ETMIDR_PTM_VERSION)
124 		return CS_ETM_PROTO_PTM;
125 
126 	return CS_ETM_PROTO_ETMV3;
127 }
128 
129 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
130 {
131 	struct int_node *inode;
132 	u64 *metadata;
133 
134 	inode = intlist__find(traceid_list, trace_chan_id);
135 	if (!inode)
136 		return -EINVAL;
137 
138 	metadata = inode->priv;
139 	*magic = metadata[CS_ETM_MAGIC];
140 	return 0;
141 }
142 
143 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
144 {
145 	struct int_node *inode;
146 	u64 *metadata;
147 
148 	inode = intlist__find(traceid_list, trace_chan_id);
149 	if (!inode)
150 		return -EINVAL;
151 
152 	metadata = inode->priv;
153 	*cpu = (int)metadata[CS_ETM_CPU];
154 	return 0;
155 }
156 
157 /*
158  * The returned PID format is presented by two bits:
159  *
160  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
161  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
162  *
163  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
164  * are enabled at the same time when the session runs on an EL2 kernel.
165  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
166  * recorded in the trace data, the tool will selectively use
167  * CONTEXTIDR_EL2 as PID.
168  */
169 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
170 {
171 	struct int_node *inode;
172 	u64 *metadata, val;
173 
174 	inode = intlist__find(traceid_list, trace_chan_id);
175 	if (!inode)
176 		return -EINVAL;
177 
178 	metadata = inode->priv;
179 
180 	if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
181 		val = metadata[CS_ETM_ETMCR];
182 		/* CONTEXTIDR is traced */
183 		if (val & BIT(ETM_OPT_CTXTID))
184 			*pid_fmt = BIT(ETM_OPT_CTXTID);
185 	} else {
186 		val = metadata[CS_ETMV4_TRCCONFIGR];
187 		/* CONTEXTIDR_EL2 is traced */
188 		if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
189 			*pid_fmt = BIT(ETM_OPT_CTXTID2);
190 		/* CONTEXTIDR_EL1 is traced */
191 		else if (val & BIT(ETM4_CFG_BIT_CTXTID))
192 			*pid_fmt = BIT(ETM_OPT_CTXTID);
193 	}
194 
195 	return 0;
196 }
197 
198 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
199 					      u8 trace_chan_id)
200 {
201 	/*
202 	 * When a timestamp packet is encountered the backend code
203 	 * is stopped so that the front end has time to process packets
204 	 * that were accumulated in the traceID queue.  Since there can
205 	 * be more than one channel per cs_etm_queue, we need to specify
206 	 * what traceID queue needs servicing.
207 	 */
208 	etmq->pending_timestamp_chan_id = trace_chan_id;
209 }
210 
211 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
212 				      u8 *trace_chan_id)
213 {
214 	struct cs_etm_packet_queue *packet_queue;
215 
216 	if (!etmq->pending_timestamp_chan_id)
217 		return 0;
218 
219 	if (trace_chan_id)
220 		*trace_chan_id = etmq->pending_timestamp_chan_id;
221 
222 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
223 						     etmq->pending_timestamp_chan_id);
224 	if (!packet_queue)
225 		return 0;
226 
227 	/* Acknowledge pending status */
228 	etmq->pending_timestamp_chan_id = 0;
229 
230 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
231 	return packet_queue->cs_timestamp;
232 }
233 
234 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
235 {
236 	int i;
237 
238 	queue->head = 0;
239 	queue->tail = 0;
240 	queue->packet_count = 0;
241 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
242 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
243 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
244 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
245 		queue->packet_buffer[i].instr_count = 0;
246 		queue->packet_buffer[i].last_instr_taken_branch = false;
247 		queue->packet_buffer[i].last_instr_size = 0;
248 		queue->packet_buffer[i].last_instr_type = 0;
249 		queue->packet_buffer[i].last_instr_subtype = 0;
250 		queue->packet_buffer[i].last_instr_cond = 0;
251 		queue->packet_buffer[i].flags = 0;
252 		queue->packet_buffer[i].exception_number = UINT32_MAX;
253 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
254 		queue->packet_buffer[i].cpu = INT_MIN;
255 	}
256 }
257 
258 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
259 {
260 	int idx;
261 	struct int_node *inode;
262 	struct cs_etm_traceid_queue *tidq;
263 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
264 
265 	intlist__for_each_entry(inode, traceid_queues_list) {
266 		idx = (int)(intptr_t)inode->priv;
267 		tidq = etmq->traceid_queues[idx];
268 		cs_etm__clear_packet_queue(&tidq->packet_queue);
269 	}
270 }
271 
272 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
273 				      struct cs_etm_traceid_queue *tidq,
274 				      u8 trace_chan_id)
275 {
276 	int rc = -ENOMEM;
277 	struct auxtrace_queue *queue;
278 	struct cs_etm_auxtrace *etm = etmq->etm;
279 
280 	cs_etm__clear_packet_queue(&tidq->packet_queue);
281 
282 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
283 	tidq->tid = queue->tid;
284 	tidq->pid = -1;
285 	tidq->trace_chan_id = trace_chan_id;
286 
287 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
288 	if (!tidq->packet)
289 		goto out;
290 
291 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
292 	if (!tidq->prev_packet)
293 		goto out_free;
294 
295 	if (etm->synth_opts.last_branch) {
296 		size_t sz = sizeof(struct branch_stack);
297 
298 		sz += etm->synth_opts.last_branch_sz *
299 		      sizeof(struct branch_entry);
300 		tidq->last_branch = zalloc(sz);
301 		if (!tidq->last_branch)
302 			goto out_free;
303 		tidq->last_branch_rb = zalloc(sz);
304 		if (!tidq->last_branch_rb)
305 			goto out_free;
306 	}
307 
308 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
309 	if (!tidq->event_buf)
310 		goto out_free;
311 
312 	return 0;
313 
314 out_free:
315 	zfree(&tidq->last_branch_rb);
316 	zfree(&tidq->last_branch);
317 	zfree(&tidq->prev_packet);
318 	zfree(&tidq->packet);
319 out:
320 	return rc;
321 }
322 
323 static struct cs_etm_traceid_queue
324 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
325 {
326 	int idx;
327 	struct int_node *inode;
328 	struct intlist *traceid_queues_list;
329 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
330 	struct cs_etm_auxtrace *etm = etmq->etm;
331 
332 	if (etm->timeless_decoding)
333 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
334 
335 	traceid_queues_list = etmq->traceid_queues_list;
336 
337 	/*
338 	 * Check if the traceid_queue exist for this traceID by looking
339 	 * in the queue list.
340 	 */
341 	inode = intlist__find(traceid_queues_list, trace_chan_id);
342 	if (inode) {
343 		idx = (int)(intptr_t)inode->priv;
344 		return etmq->traceid_queues[idx];
345 	}
346 
347 	/* We couldn't find a traceid_queue for this traceID, allocate one */
348 	tidq = malloc(sizeof(*tidq));
349 	if (!tidq)
350 		return NULL;
351 
352 	memset(tidq, 0, sizeof(*tidq));
353 
354 	/* Get a valid index for the new traceid_queue */
355 	idx = intlist__nr_entries(traceid_queues_list);
356 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
357 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
358 	if (!inode)
359 		goto out_free;
360 
361 	/* Associate this traceID with this index */
362 	inode->priv = (void *)(intptr_t)idx;
363 
364 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
365 		goto out_free;
366 
367 	/* Grow the traceid_queues array by one unit */
368 	traceid_queues = etmq->traceid_queues;
369 	traceid_queues = reallocarray(traceid_queues,
370 				      idx + 1,
371 				      sizeof(*traceid_queues));
372 
373 	/*
374 	 * On failure reallocarray() returns NULL and the original block of
375 	 * memory is left untouched.
376 	 */
377 	if (!traceid_queues)
378 		goto out_free;
379 
380 	traceid_queues[idx] = tidq;
381 	etmq->traceid_queues = traceid_queues;
382 
383 	return etmq->traceid_queues[idx];
384 
385 out_free:
386 	/*
387 	 * Function intlist__remove() removes the inode from the list
388 	 * and delete the memory associated to it.
389 	 */
390 	intlist__remove(traceid_queues_list, inode);
391 	free(tidq);
392 
393 	return NULL;
394 }
395 
396 struct cs_etm_packet_queue
397 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
398 {
399 	struct cs_etm_traceid_queue *tidq;
400 
401 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
402 	if (tidq)
403 		return &tidq->packet_queue;
404 
405 	return NULL;
406 }
407 
408 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
409 				struct cs_etm_traceid_queue *tidq)
410 {
411 	struct cs_etm_packet *tmp;
412 
413 	if (etm->sample_branches || etm->synth_opts.last_branch ||
414 	    etm->sample_instructions) {
415 		/*
416 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
417 		 * the next incoming packet.
418 		 */
419 		tmp = tidq->packet;
420 		tidq->packet = tidq->prev_packet;
421 		tidq->prev_packet = tmp;
422 	}
423 }
424 
425 static void cs_etm__packet_dump(const char *pkt_string)
426 {
427 	const char *color = PERF_COLOR_BLUE;
428 	int len = strlen(pkt_string);
429 
430 	if (len && (pkt_string[len-1] == '\n'))
431 		color_fprintf(stdout, color, "	%s", pkt_string);
432 	else
433 		color_fprintf(stdout, color, "	%s\n", pkt_string);
434 
435 	fflush(stdout);
436 }
437 
438 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
439 					  struct cs_etm_auxtrace *etm, int idx,
440 					  u32 etmidr)
441 {
442 	u64 **metadata = etm->metadata;
443 
444 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
445 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
446 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
447 }
448 
449 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
450 					  struct cs_etm_auxtrace *etm, int idx)
451 {
452 	u64 **metadata = etm->metadata;
453 
454 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
455 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
456 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
457 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
458 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
459 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
460 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
461 }
462 
463 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
464 					  struct cs_etm_auxtrace *etm, int idx)
465 {
466 	u64 **metadata = etm->metadata;
467 
468 	t_params[idx].protocol = CS_ETM_PROTO_ETE;
469 	t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
470 	t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
471 	t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
472 	t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
473 	t_params[idx].ete.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
474 	t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
475 	t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
476 }
477 
478 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
479 				     struct cs_etm_auxtrace *etm,
480 				     int decoders)
481 {
482 	int i;
483 	u32 etmidr;
484 	u64 architecture;
485 
486 	for (i = 0; i < decoders; i++) {
487 		architecture = etm->metadata[i][CS_ETM_MAGIC];
488 
489 		switch (architecture) {
490 		case __perf_cs_etmv3_magic:
491 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
492 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
493 			break;
494 		case __perf_cs_etmv4_magic:
495 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
496 			break;
497 		case __perf_cs_ete_magic:
498 			cs_etm__set_trace_param_ete(t_params, etm, i);
499 			break;
500 		default:
501 			return -EINVAL;
502 		}
503 	}
504 
505 	return 0;
506 }
507 
508 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
509 				       struct cs_etm_queue *etmq,
510 				       enum cs_etm_decoder_operation mode,
511 				       bool formatted)
512 {
513 	int ret = -EINVAL;
514 
515 	if (!(mode < CS_ETM_OPERATION_MAX))
516 		goto out;
517 
518 	d_params->packet_printer = cs_etm__packet_dump;
519 	d_params->operation = mode;
520 	d_params->data = etmq;
521 	d_params->formatted = formatted;
522 	d_params->fsyncs = false;
523 	d_params->hsyncs = false;
524 	d_params->frame_aligned = true;
525 
526 	ret = 0;
527 out:
528 	return ret;
529 }
530 
531 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
532 			       struct auxtrace_buffer *buffer)
533 {
534 	int ret;
535 	const char *color = PERF_COLOR_BLUE;
536 	size_t buffer_used = 0;
537 
538 	fprintf(stdout, "\n");
539 	color_fprintf(stdout, color,
540 		     ". ... CoreSight %s Trace data: size %#zx bytes\n",
541 		     cs_etm_decoder__get_name(etmq->decoder), buffer->size);
542 
543 	do {
544 		size_t consumed;
545 
546 		ret = cs_etm_decoder__process_data_block(
547 				etmq->decoder, buffer->offset,
548 				&((u8 *)buffer->data)[buffer_used],
549 				buffer->size - buffer_used, &consumed);
550 		if (ret)
551 			break;
552 
553 		buffer_used += consumed;
554 	} while (buffer_used < buffer->size);
555 
556 	cs_etm_decoder__reset(etmq->decoder);
557 }
558 
559 static int cs_etm__flush_events(struct perf_session *session,
560 				struct perf_tool *tool)
561 {
562 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
563 						   struct cs_etm_auxtrace,
564 						   auxtrace);
565 	if (dump_trace)
566 		return 0;
567 
568 	if (!tool->ordered_events)
569 		return -EINVAL;
570 
571 	if (etm->timeless_decoding)
572 		return cs_etm__process_timeless_queues(etm, -1);
573 
574 	return cs_etm__process_queues(etm);
575 }
576 
577 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
578 {
579 	int idx;
580 	uintptr_t priv;
581 	struct int_node *inode, *tmp;
582 	struct cs_etm_traceid_queue *tidq;
583 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
584 
585 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
586 		priv = (uintptr_t)inode->priv;
587 		idx = priv;
588 
589 		/* Free this traceid_queue from the array */
590 		tidq = etmq->traceid_queues[idx];
591 		thread__zput(tidq->thread);
592 		zfree(&tidq->event_buf);
593 		zfree(&tidq->last_branch);
594 		zfree(&tidq->last_branch_rb);
595 		zfree(&tidq->prev_packet);
596 		zfree(&tidq->packet);
597 		zfree(&tidq);
598 
599 		/*
600 		 * Function intlist__remove() removes the inode from the list
601 		 * and delete the memory associated to it.
602 		 */
603 		intlist__remove(traceid_queues_list, inode);
604 	}
605 
606 	/* Then the RB tree itself */
607 	intlist__delete(traceid_queues_list);
608 	etmq->traceid_queues_list = NULL;
609 
610 	/* finally free the traceid_queues array */
611 	zfree(&etmq->traceid_queues);
612 }
613 
614 static void cs_etm__free_queue(void *priv)
615 {
616 	struct cs_etm_queue *etmq = priv;
617 
618 	if (!etmq)
619 		return;
620 
621 	cs_etm_decoder__free(etmq->decoder);
622 	cs_etm__free_traceid_queues(etmq);
623 	free(etmq);
624 }
625 
626 static void cs_etm__free_events(struct perf_session *session)
627 {
628 	unsigned int i;
629 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
630 						   struct cs_etm_auxtrace,
631 						   auxtrace);
632 	struct auxtrace_queues *queues = &aux->queues;
633 
634 	for (i = 0; i < queues->nr_queues; i++) {
635 		cs_etm__free_queue(queues->queue_array[i].priv);
636 		queues->queue_array[i].priv = NULL;
637 	}
638 
639 	auxtrace_queues__free(queues);
640 }
641 
642 static void cs_etm__free(struct perf_session *session)
643 {
644 	int i;
645 	struct int_node *inode, *tmp;
646 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
647 						   struct cs_etm_auxtrace,
648 						   auxtrace);
649 	cs_etm__free_events(session);
650 	session->auxtrace = NULL;
651 
652 	/* First remove all traceID/metadata nodes for the RB tree */
653 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
654 		intlist__remove(traceid_list, inode);
655 	/* Then the RB tree itself */
656 	intlist__delete(traceid_list);
657 
658 	for (i = 0; i < aux->num_cpu; i++)
659 		zfree(&aux->metadata[i]);
660 
661 	thread__zput(aux->unknown_thread);
662 	zfree(&aux->metadata);
663 	zfree(&aux);
664 }
665 
666 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
667 				      struct evsel *evsel)
668 {
669 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
670 						   struct cs_etm_auxtrace,
671 						   auxtrace);
672 
673 	return evsel->core.attr.type == aux->pmu_type;
674 }
675 
676 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
677 {
678 	struct machine *machine;
679 
680 	machine = etmq->etm->machine;
681 
682 	if (address >= machine__kernel_start(machine)) {
683 		if (machine__is_host(machine))
684 			return PERF_RECORD_MISC_KERNEL;
685 		else
686 			return PERF_RECORD_MISC_GUEST_KERNEL;
687 	} else {
688 		if (machine__is_host(machine))
689 			return PERF_RECORD_MISC_USER;
690 		else if (perf_guest)
691 			return PERF_RECORD_MISC_GUEST_USER;
692 		else
693 			return PERF_RECORD_MISC_HYPERVISOR;
694 	}
695 }
696 
697 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
698 			      u64 address, size_t size, u8 *buffer)
699 {
700 	u8  cpumode;
701 	u64 offset;
702 	int len;
703 	struct thread *thread;
704 	struct machine *machine;
705 	struct addr_location al;
706 	struct cs_etm_traceid_queue *tidq;
707 
708 	if (!etmq)
709 		return 0;
710 
711 	machine = etmq->etm->machine;
712 	cpumode = cs_etm__cpu_mode(etmq, address);
713 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
714 	if (!tidq)
715 		return 0;
716 
717 	thread = tidq->thread;
718 	if (!thread) {
719 		if (cpumode != PERF_RECORD_MISC_KERNEL)
720 			return 0;
721 		thread = etmq->etm->unknown_thread;
722 	}
723 
724 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
725 		return 0;
726 
727 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
728 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
729 		return 0;
730 
731 	offset = al.map->map_ip(al.map, address);
732 
733 	map__load(al.map);
734 
735 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
736 
737 	if (len <= 0) {
738 		ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
739 				 "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
740 		if (!al.map->dso->auxtrace_warned) {
741 			pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
742 				    address,
743 				    al.map->dso->long_name ? al.map->dso->long_name : "Unknown");
744 			al.map->dso->auxtrace_warned = true;
745 		}
746 		return 0;
747 	}
748 
749 	return len;
750 }
751 
752 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
753 						bool formatted)
754 {
755 	struct cs_etm_decoder_params d_params;
756 	struct cs_etm_trace_params  *t_params = NULL;
757 	struct cs_etm_queue *etmq;
758 	/*
759 	 * Each queue can only contain data from one CPU when unformatted, so only one decoder is
760 	 * needed.
761 	 */
762 	int decoders = formatted ? etm->num_cpu : 1;
763 
764 	etmq = zalloc(sizeof(*etmq));
765 	if (!etmq)
766 		return NULL;
767 
768 	etmq->traceid_queues_list = intlist__new(NULL);
769 	if (!etmq->traceid_queues_list)
770 		goto out_free;
771 
772 	/* Use metadata to fill in trace parameters for trace decoder */
773 	t_params = zalloc(sizeof(*t_params) * decoders);
774 
775 	if (!t_params)
776 		goto out_free;
777 
778 	if (cs_etm__init_trace_params(t_params, etm, decoders))
779 		goto out_free;
780 
781 	/* Set decoder parameters to decode trace packets */
782 	if (cs_etm__init_decoder_params(&d_params, etmq,
783 					dump_trace ? CS_ETM_OPERATION_PRINT :
784 						     CS_ETM_OPERATION_DECODE,
785 					formatted))
786 		goto out_free;
787 
788 	etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
789 					    t_params);
790 
791 	if (!etmq->decoder)
792 		goto out_free;
793 
794 	/*
795 	 * Register a function to handle all memory accesses required by
796 	 * the trace decoder library.
797 	 */
798 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
799 					      0x0L, ((u64) -1L),
800 					      cs_etm__mem_access))
801 		goto out_free_decoder;
802 
803 	zfree(&t_params);
804 	return etmq;
805 
806 out_free_decoder:
807 	cs_etm_decoder__free(etmq->decoder);
808 out_free:
809 	intlist__delete(etmq->traceid_queues_list);
810 	free(etmq);
811 
812 	return NULL;
813 }
814 
815 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
816 			       struct auxtrace_queue *queue,
817 			       unsigned int queue_nr,
818 			       bool formatted)
819 {
820 	struct cs_etm_queue *etmq = queue->priv;
821 
822 	if (list_empty(&queue->head) || etmq)
823 		return 0;
824 
825 	etmq = cs_etm__alloc_queue(etm, formatted);
826 
827 	if (!etmq)
828 		return -ENOMEM;
829 
830 	queue->priv = etmq;
831 	etmq->etm = etm;
832 	etmq->queue_nr = queue_nr;
833 	etmq->offset = 0;
834 
835 	return 0;
836 }
837 
838 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
839 					    struct cs_etm_queue *etmq,
840 					    unsigned int queue_nr)
841 {
842 	int ret = 0;
843 	unsigned int cs_queue_nr;
844 	u8 trace_chan_id;
845 	u64 cs_timestamp;
846 
847 	/*
848 	 * We are under a CPU-wide trace scenario.  As such we need to know
849 	 * when the code that generated the traces started to execute so that
850 	 * it can be correlated with execution on other CPUs.  So we get a
851 	 * handle on the beginning of traces and decode until we find a
852 	 * timestamp.  The timestamp is then added to the auxtrace min heap
853 	 * in order to know what nibble (of all the etmqs) to decode first.
854 	 */
855 	while (1) {
856 		/*
857 		 * Fetch an aux_buffer from this etmq.  Bail if no more
858 		 * blocks or an error has been encountered.
859 		 */
860 		ret = cs_etm__get_data_block(etmq);
861 		if (ret <= 0)
862 			goto out;
863 
864 		/*
865 		 * Run decoder on the trace block.  The decoder will stop when
866 		 * encountering a CS timestamp, a full packet queue or the end of
867 		 * trace for that block.
868 		 */
869 		ret = cs_etm__decode_data_block(etmq);
870 		if (ret)
871 			goto out;
872 
873 		/*
874 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
875 		 * the timestamp calculation for us.
876 		 */
877 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
878 
879 		/* We found a timestamp, no need to continue. */
880 		if (cs_timestamp)
881 			break;
882 
883 		/*
884 		 * We didn't find a timestamp so empty all the traceid packet
885 		 * queues before looking for another timestamp packet, either
886 		 * in the current data block or a new one.  Packets that were
887 		 * just decoded are useless since no timestamp has been
888 		 * associated with them.  As such simply discard them.
889 		 */
890 		cs_etm__clear_all_packet_queues(etmq);
891 	}
892 
893 	/*
894 	 * We have a timestamp.  Add it to the min heap to reflect when
895 	 * instructions conveyed by the range packets of this traceID queue
896 	 * started to execute.  Once the same has been done for all the traceID
897 	 * queues of each etmq, redenring and decoding can start in
898 	 * chronological order.
899 	 *
900 	 * Note that packets decoded above are still in the traceID's packet
901 	 * queue and will be processed in cs_etm__process_queues().
902 	 */
903 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
904 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
905 out:
906 	return ret;
907 }
908 
909 static inline
910 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
911 				 struct cs_etm_traceid_queue *tidq)
912 {
913 	struct branch_stack *bs_src = tidq->last_branch_rb;
914 	struct branch_stack *bs_dst = tidq->last_branch;
915 	size_t nr = 0;
916 
917 	/*
918 	 * Set the number of records before early exit: ->nr is used to
919 	 * determine how many branches to copy from ->entries.
920 	 */
921 	bs_dst->nr = bs_src->nr;
922 
923 	/*
924 	 * Early exit when there is nothing to copy.
925 	 */
926 	if (!bs_src->nr)
927 		return;
928 
929 	/*
930 	 * As bs_src->entries is a circular buffer, we need to copy from it in
931 	 * two steps.  First, copy the branches from the most recently inserted
932 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
933 	 */
934 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
935 	memcpy(&bs_dst->entries[0],
936 	       &bs_src->entries[tidq->last_branch_pos],
937 	       sizeof(struct branch_entry) * nr);
938 
939 	/*
940 	 * If we wrapped around at least once, the branches from the beginning
941 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
942 	 * are older valid branches: copy them over.  The total number of
943 	 * branches copied over will be equal to the number of branches asked by
944 	 * the user in last_branch_sz.
945 	 */
946 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
947 		memcpy(&bs_dst->entries[nr],
948 		       &bs_src->entries[0],
949 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
950 	}
951 }
952 
953 static inline
954 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
955 {
956 	tidq->last_branch_pos = 0;
957 	tidq->last_branch_rb->nr = 0;
958 }
959 
960 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
961 					 u8 trace_chan_id, u64 addr)
962 {
963 	u8 instrBytes[2];
964 
965 	cs_etm__mem_access(etmq, trace_chan_id, addr,
966 			   ARRAY_SIZE(instrBytes), instrBytes);
967 	/*
968 	 * T32 instruction size is indicated by bits[15:11] of the first
969 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
970 	 * denote a 32-bit instruction.
971 	 */
972 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
973 }
974 
975 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
976 {
977 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
978 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
979 		return 0;
980 
981 	return packet->start_addr;
982 }
983 
984 static inline
985 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
986 {
987 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
988 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
989 		return 0;
990 
991 	return packet->end_addr - packet->last_instr_size;
992 }
993 
994 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
995 				     u64 trace_chan_id,
996 				     const struct cs_etm_packet *packet,
997 				     u64 offset)
998 {
999 	if (packet->isa == CS_ETM_ISA_T32) {
1000 		u64 addr = packet->start_addr;
1001 
1002 		while (offset) {
1003 			addr += cs_etm__t32_instr_size(etmq,
1004 						       trace_chan_id, addr);
1005 			offset--;
1006 		}
1007 		return addr;
1008 	}
1009 
1010 	/* Assume a 4 byte instruction size (A32/A64) */
1011 	return packet->start_addr + offset * 4;
1012 }
1013 
1014 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1015 					  struct cs_etm_traceid_queue *tidq)
1016 {
1017 	struct branch_stack *bs = tidq->last_branch_rb;
1018 	struct branch_entry *be;
1019 
1020 	/*
1021 	 * The branches are recorded in a circular buffer in reverse
1022 	 * chronological order: we start recording from the last element of the
1023 	 * buffer down.  After writing the first element of the stack, move the
1024 	 * insert position back to the end of the buffer.
1025 	 */
1026 	if (!tidq->last_branch_pos)
1027 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1028 
1029 	tidq->last_branch_pos -= 1;
1030 
1031 	be       = &bs->entries[tidq->last_branch_pos];
1032 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1033 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1034 	/* No support for mispredict */
1035 	be->flags.mispred = 0;
1036 	be->flags.predicted = 1;
1037 
1038 	/*
1039 	 * Increment bs->nr until reaching the number of last branches asked by
1040 	 * the user on the command line.
1041 	 */
1042 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1043 		bs->nr += 1;
1044 }
1045 
1046 static int cs_etm__inject_event(union perf_event *event,
1047 			       struct perf_sample *sample, u64 type)
1048 {
1049 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1050 	return perf_event__synthesize_sample(event, type, 0, sample);
1051 }
1052 
1053 
1054 static int
1055 cs_etm__get_trace(struct cs_etm_queue *etmq)
1056 {
1057 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1058 	struct auxtrace_buffer *old_buffer = aux_buffer;
1059 	struct auxtrace_queue *queue;
1060 
1061 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1062 
1063 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1064 
1065 	/* If no more data, drop the previous auxtrace_buffer and return */
1066 	if (!aux_buffer) {
1067 		if (old_buffer)
1068 			auxtrace_buffer__drop_data(old_buffer);
1069 		etmq->buf_len = 0;
1070 		return 0;
1071 	}
1072 
1073 	etmq->buffer = aux_buffer;
1074 
1075 	/* If the aux_buffer doesn't have data associated, try to load it */
1076 	if (!aux_buffer->data) {
1077 		/* get the file desc associated with the perf data file */
1078 		int fd = perf_data__fd(etmq->etm->session->data);
1079 
1080 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1081 		if (!aux_buffer->data)
1082 			return -ENOMEM;
1083 	}
1084 
1085 	/* If valid, drop the previous buffer */
1086 	if (old_buffer)
1087 		auxtrace_buffer__drop_data(old_buffer);
1088 
1089 	etmq->buf_used = 0;
1090 	etmq->buf_len = aux_buffer->size;
1091 	etmq->buf = aux_buffer->data;
1092 
1093 	return etmq->buf_len;
1094 }
1095 
1096 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1097 				    struct cs_etm_traceid_queue *tidq)
1098 {
1099 	if ((!tidq->thread) && (tidq->tid != -1))
1100 		tidq->thread = machine__find_thread(etm->machine, -1,
1101 						    tidq->tid);
1102 
1103 	if (tidq->thread)
1104 		tidq->pid = tidq->thread->pid_;
1105 }
1106 
1107 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1108 			 pid_t tid, u8 trace_chan_id)
1109 {
1110 	int cpu, err = -EINVAL;
1111 	struct cs_etm_auxtrace *etm = etmq->etm;
1112 	struct cs_etm_traceid_queue *tidq;
1113 
1114 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1115 	if (!tidq)
1116 		return err;
1117 
1118 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1119 		return err;
1120 
1121 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1122 	if (err)
1123 		return err;
1124 
1125 	tidq->tid = tid;
1126 	thread__zput(tidq->thread);
1127 
1128 	cs_etm__set_pid_tid_cpu(etm, tidq);
1129 	return 0;
1130 }
1131 
1132 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1133 {
1134 	return !!etmq->etm->timeless_decoding;
1135 }
1136 
1137 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1138 			      u64 trace_chan_id,
1139 			      const struct cs_etm_packet *packet,
1140 			      struct perf_sample *sample)
1141 {
1142 	/*
1143 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1144 	 * packet, so directly bail out with 'insn_len' = 0.
1145 	 */
1146 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1147 		sample->insn_len = 0;
1148 		return;
1149 	}
1150 
1151 	/*
1152 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1153 	 * cs_etm__t32_instr_size().
1154 	 */
1155 	if (packet->isa == CS_ETM_ISA_T32)
1156 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1157 							  sample->ip);
1158 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1159 	else
1160 		sample->insn_len = 4;
1161 
1162 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1163 			   sample->insn_len, (void *)sample->insn);
1164 }
1165 
1166 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1167 					    struct cs_etm_traceid_queue *tidq,
1168 					    u64 addr, u64 period)
1169 {
1170 	int ret = 0;
1171 	struct cs_etm_auxtrace *etm = etmq->etm;
1172 	union perf_event *event = tidq->event_buf;
1173 	struct perf_sample sample = {.ip = 0,};
1174 
1175 	event->sample.header.type = PERF_RECORD_SAMPLE;
1176 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1177 	event->sample.header.size = sizeof(struct perf_event_header);
1178 
1179 	if (!etm->timeless_decoding)
1180 		sample.time = etm->latest_kernel_timestamp;
1181 	sample.ip = addr;
1182 	sample.pid = tidq->pid;
1183 	sample.tid = tidq->tid;
1184 	sample.id = etmq->etm->instructions_id;
1185 	sample.stream_id = etmq->etm->instructions_id;
1186 	sample.period = period;
1187 	sample.cpu = tidq->packet->cpu;
1188 	sample.flags = tidq->prev_packet->flags;
1189 	sample.cpumode = event->sample.header.misc;
1190 
1191 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1192 
1193 	if (etm->synth_opts.last_branch)
1194 		sample.branch_stack = tidq->last_branch;
1195 
1196 	if (etm->synth_opts.inject) {
1197 		ret = cs_etm__inject_event(event, &sample,
1198 					   etm->instructions_sample_type);
1199 		if (ret)
1200 			return ret;
1201 	}
1202 
1203 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1204 
1205 	if (ret)
1206 		pr_err(
1207 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1208 			ret);
1209 
1210 	return ret;
1211 }
1212 
1213 /*
1214  * The cs etm packet encodes an instruction range between a branch target
1215  * and the next taken branch. Generate sample accordingly.
1216  */
1217 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1218 				       struct cs_etm_traceid_queue *tidq)
1219 {
1220 	int ret = 0;
1221 	struct cs_etm_auxtrace *etm = etmq->etm;
1222 	struct perf_sample sample = {.ip = 0,};
1223 	union perf_event *event = tidq->event_buf;
1224 	struct dummy_branch_stack {
1225 		u64			nr;
1226 		u64			hw_idx;
1227 		struct branch_entry	entries;
1228 	} dummy_bs;
1229 	u64 ip;
1230 
1231 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1232 
1233 	event->sample.header.type = PERF_RECORD_SAMPLE;
1234 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1235 	event->sample.header.size = sizeof(struct perf_event_header);
1236 
1237 	if (!etm->timeless_decoding)
1238 		sample.time = etm->latest_kernel_timestamp;
1239 	sample.ip = ip;
1240 	sample.pid = tidq->pid;
1241 	sample.tid = tidq->tid;
1242 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1243 	sample.id = etmq->etm->branches_id;
1244 	sample.stream_id = etmq->etm->branches_id;
1245 	sample.period = 1;
1246 	sample.cpu = tidq->packet->cpu;
1247 	sample.flags = tidq->prev_packet->flags;
1248 	sample.cpumode = event->sample.header.misc;
1249 
1250 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1251 			  &sample);
1252 
1253 	/*
1254 	 * perf report cannot handle events without a branch stack
1255 	 */
1256 	if (etm->synth_opts.last_branch) {
1257 		dummy_bs = (struct dummy_branch_stack){
1258 			.nr = 1,
1259 			.hw_idx = -1ULL,
1260 			.entries = {
1261 				.from = sample.ip,
1262 				.to = sample.addr,
1263 			},
1264 		};
1265 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1266 	}
1267 
1268 	if (etm->synth_opts.inject) {
1269 		ret = cs_etm__inject_event(event, &sample,
1270 					   etm->branches_sample_type);
1271 		if (ret)
1272 			return ret;
1273 	}
1274 
1275 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1276 
1277 	if (ret)
1278 		pr_err(
1279 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1280 		ret);
1281 
1282 	return ret;
1283 }
1284 
1285 struct cs_etm_synth {
1286 	struct perf_tool dummy_tool;
1287 	struct perf_session *session;
1288 };
1289 
1290 static int cs_etm__event_synth(struct perf_tool *tool,
1291 			       union perf_event *event,
1292 			       struct perf_sample *sample __maybe_unused,
1293 			       struct machine *machine __maybe_unused)
1294 {
1295 	struct cs_etm_synth *cs_etm_synth =
1296 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1297 
1298 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1299 						 event, NULL);
1300 }
1301 
1302 static int cs_etm__synth_event(struct perf_session *session,
1303 			       struct perf_event_attr *attr, u64 id)
1304 {
1305 	struct cs_etm_synth cs_etm_synth;
1306 
1307 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1308 	cs_etm_synth.session = session;
1309 
1310 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1311 					   &id, cs_etm__event_synth);
1312 }
1313 
1314 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1315 				struct perf_session *session)
1316 {
1317 	struct evlist *evlist = session->evlist;
1318 	struct evsel *evsel;
1319 	struct perf_event_attr attr;
1320 	bool found = false;
1321 	u64 id;
1322 	int err;
1323 
1324 	evlist__for_each_entry(evlist, evsel) {
1325 		if (evsel->core.attr.type == etm->pmu_type) {
1326 			found = true;
1327 			break;
1328 		}
1329 	}
1330 
1331 	if (!found) {
1332 		pr_debug("No selected events with CoreSight Trace data\n");
1333 		return 0;
1334 	}
1335 
1336 	memset(&attr, 0, sizeof(struct perf_event_attr));
1337 	attr.size = sizeof(struct perf_event_attr);
1338 	attr.type = PERF_TYPE_HARDWARE;
1339 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1340 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1341 			    PERF_SAMPLE_PERIOD;
1342 	if (etm->timeless_decoding)
1343 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1344 	else
1345 		attr.sample_type |= PERF_SAMPLE_TIME;
1346 
1347 	attr.exclude_user = evsel->core.attr.exclude_user;
1348 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1349 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1350 	attr.exclude_host = evsel->core.attr.exclude_host;
1351 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1352 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1353 	attr.read_format = evsel->core.attr.read_format;
1354 
1355 	/* create new id val to be a fixed offset from evsel id */
1356 	id = evsel->core.id[0] + 1000000000;
1357 
1358 	if (!id)
1359 		id = 1;
1360 
1361 	if (etm->synth_opts.branches) {
1362 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1363 		attr.sample_period = 1;
1364 		attr.sample_type |= PERF_SAMPLE_ADDR;
1365 		err = cs_etm__synth_event(session, &attr, id);
1366 		if (err)
1367 			return err;
1368 		etm->sample_branches = true;
1369 		etm->branches_sample_type = attr.sample_type;
1370 		etm->branches_id = id;
1371 		id += 1;
1372 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1373 	}
1374 
1375 	if (etm->synth_opts.last_branch) {
1376 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1377 		/*
1378 		 * We don't use the hardware index, but the sample generation
1379 		 * code uses the new format branch_stack with this field,
1380 		 * so the event attributes must indicate that it's present.
1381 		 */
1382 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1383 	}
1384 
1385 	if (etm->synth_opts.instructions) {
1386 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1387 		attr.sample_period = etm->synth_opts.period;
1388 		etm->instructions_sample_period = attr.sample_period;
1389 		err = cs_etm__synth_event(session, &attr, id);
1390 		if (err)
1391 			return err;
1392 		etm->sample_instructions = true;
1393 		etm->instructions_sample_type = attr.sample_type;
1394 		etm->instructions_id = id;
1395 		id += 1;
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 static int cs_etm__sample(struct cs_etm_queue *etmq,
1402 			  struct cs_etm_traceid_queue *tidq)
1403 {
1404 	struct cs_etm_auxtrace *etm = etmq->etm;
1405 	int ret;
1406 	u8 trace_chan_id = tidq->trace_chan_id;
1407 	u64 instrs_prev;
1408 
1409 	/* Get instructions remainder from previous packet */
1410 	instrs_prev = tidq->period_instructions;
1411 
1412 	tidq->period_instructions += tidq->packet->instr_count;
1413 
1414 	/*
1415 	 * Record a branch when the last instruction in
1416 	 * PREV_PACKET is a branch.
1417 	 */
1418 	if (etm->synth_opts.last_branch &&
1419 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1420 	    tidq->prev_packet->last_instr_taken_branch)
1421 		cs_etm__update_last_branch_rb(etmq, tidq);
1422 
1423 	if (etm->sample_instructions &&
1424 	    tidq->period_instructions >= etm->instructions_sample_period) {
1425 		/*
1426 		 * Emit instruction sample periodically
1427 		 * TODO: allow period to be defined in cycles and clock time
1428 		 */
1429 
1430 		/*
1431 		 * Below diagram demonstrates the instruction samples
1432 		 * generation flows:
1433 		 *
1434 		 *    Instrs     Instrs       Instrs       Instrs
1435 		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1436 		 *    |            |            |            |
1437 		 *    V            V            V            V
1438 		 *   --------------------------------------------------
1439 		 *            ^                                  ^
1440 		 *            |                                  |
1441 		 *         Period                             Period
1442 		 *    instructions(Pi)                   instructions(Pi')
1443 		 *
1444 		 *            |                                  |
1445 		 *            \---------------- -----------------/
1446 		 *                             V
1447 		 *                 tidq->packet->instr_count
1448 		 *
1449 		 * Instrs Sample(n...) are the synthesised samples occurring
1450 		 * every etm->instructions_sample_period instructions - as
1451 		 * defined on the perf command line.  Sample(n) is being the
1452 		 * last sample before the current etm packet, n+1 to n+3
1453 		 * samples are generated from the current etm packet.
1454 		 *
1455 		 * tidq->packet->instr_count represents the number of
1456 		 * instructions in the current etm packet.
1457 		 *
1458 		 * Period instructions (Pi) contains the the number of
1459 		 * instructions executed after the sample point(n) from the
1460 		 * previous etm packet.  This will always be less than
1461 		 * etm->instructions_sample_period.
1462 		 *
1463 		 * When generate new samples, it combines with two parts
1464 		 * instructions, one is the tail of the old packet and another
1465 		 * is the head of the new coming packet, to generate
1466 		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1467 		 * instructions with sample period.  After sample(n+3), the rest
1468 		 * instructions will be used by later packet and it is assigned
1469 		 * to tidq->period_instructions for next round calculation.
1470 		 */
1471 
1472 		/*
1473 		 * Get the initial offset into the current packet instructions;
1474 		 * entry conditions ensure that instrs_prev is less than
1475 		 * etm->instructions_sample_period.
1476 		 */
1477 		u64 offset = etm->instructions_sample_period - instrs_prev;
1478 		u64 addr;
1479 
1480 		/* Prepare last branches for instruction sample */
1481 		if (etm->synth_opts.last_branch)
1482 			cs_etm__copy_last_branch_rb(etmq, tidq);
1483 
1484 		while (tidq->period_instructions >=
1485 				etm->instructions_sample_period) {
1486 			/*
1487 			 * Calculate the address of the sampled instruction (-1
1488 			 * as sample is reported as though instruction has just
1489 			 * been executed, but PC has not advanced to next
1490 			 * instruction)
1491 			 */
1492 			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1493 						  tidq->packet, offset - 1);
1494 			ret = cs_etm__synth_instruction_sample(
1495 				etmq, tidq, addr,
1496 				etm->instructions_sample_period);
1497 			if (ret)
1498 				return ret;
1499 
1500 			offset += etm->instructions_sample_period;
1501 			tidq->period_instructions -=
1502 				etm->instructions_sample_period;
1503 		}
1504 	}
1505 
1506 	if (etm->sample_branches) {
1507 		bool generate_sample = false;
1508 
1509 		/* Generate sample for tracing on packet */
1510 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1511 			generate_sample = true;
1512 
1513 		/* Generate sample for branch taken packet */
1514 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1515 		    tidq->prev_packet->last_instr_taken_branch)
1516 			generate_sample = true;
1517 
1518 		if (generate_sample) {
1519 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1520 			if (ret)
1521 				return ret;
1522 		}
1523 	}
1524 
1525 	cs_etm__packet_swap(etm, tidq);
1526 
1527 	return 0;
1528 }
1529 
1530 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1531 {
1532 	/*
1533 	 * When the exception packet is inserted, whether the last instruction
1534 	 * in previous range packet is taken branch or not, we need to force
1535 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1536 	 * to generate branch sample for the instruction range before the
1537 	 * exception is trapped to kernel or before the exception returning.
1538 	 *
1539 	 * The exception packet includes the dummy address values, so don't
1540 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1541 	 * for generating instruction and branch samples.
1542 	 */
1543 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1544 		tidq->prev_packet->last_instr_taken_branch = true;
1545 
1546 	return 0;
1547 }
1548 
1549 static int cs_etm__flush(struct cs_etm_queue *etmq,
1550 			 struct cs_etm_traceid_queue *tidq)
1551 {
1552 	int err = 0;
1553 	struct cs_etm_auxtrace *etm = etmq->etm;
1554 
1555 	/* Handle start tracing packet */
1556 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1557 		goto swap_packet;
1558 
1559 	if (etmq->etm->synth_opts.last_branch &&
1560 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1561 		u64 addr;
1562 
1563 		/* Prepare last branches for instruction sample */
1564 		cs_etm__copy_last_branch_rb(etmq, tidq);
1565 
1566 		/*
1567 		 * Generate a last branch event for the branches left in the
1568 		 * circular buffer at the end of the trace.
1569 		 *
1570 		 * Use the address of the end of the last reported execution
1571 		 * range
1572 		 */
1573 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1574 
1575 		err = cs_etm__synth_instruction_sample(
1576 			etmq, tidq, addr,
1577 			tidq->period_instructions);
1578 		if (err)
1579 			return err;
1580 
1581 		tidq->period_instructions = 0;
1582 
1583 	}
1584 
1585 	if (etm->sample_branches &&
1586 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1587 		err = cs_etm__synth_branch_sample(etmq, tidq);
1588 		if (err)
1589 			return err;
1590 	}
1591 
1592 swap_packet:
1593 	cs_etm__packet_swap(etm, tidq);
1594 
1595 	/* Reset last branches after flush the trace */
1596 	if (etm->synth_opts.last_branch)
1597 		cs_etm__reset_last_branch_rb(tidq);
1598 
1599 	return err;
1600 }
1601 
1602 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1603 			     struct cs_etm_traceid_queue *tidq)
1604 {
1605 	int err;
1606 
1607 	/*
1608 	 * It has no new packet coming and 'etmq->packet' contains the stale
1609 	 * packet which was set at the previous time with packets swapping;
1610 	 * so skip to generate branch sample to avoid stale packet.
1611 	 *
1612 	 * For this case only flush branch stack and generate a last branch
1613 	 * event for the branches left in the circular buffer at the end of
1614 	 * the trace.
1615 	 */
1616 	if (etmq->etm->synth_opts.last_branch &&
1617 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1618 		u64 addr;
1619 
1620 		/* Prepare last branches for instruction sample */
1621 		cs_etm__copy_last_branch_rb(etmq, tidq);
1622 
1623 		/*
1624 		 * Use the address of the end of the last reported execution
1625 		 * range.
1626 		 */
1627 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1628 
1629 		err = cs_etm__synth_instruction_sample(
1630 			etmq, tidq, addr,
1631 			tidq->period_instructions);
1632 		if (err)
1633 			return err;
1634 
1635 		tidq->period_instructions = 0;
1636 	}
1637 
1638 	return 0;
1639 }
1640 /*
1641  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1642  *			   if need be.
1643  * Returns:	< 0	if error
1644  *		= 0	if no more auxtrace_buffer to read
1645  *		> 0	if the current buffer isn't empty yet
1646  */
1647 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1648 {
1649 	int ret;
1650 
1651 	if (!etmq->buf_len) {
1652 		ret = cs_etm__get_trace(etmq);
1653 		if (ret <= 0)
1654 			return ret;
1655 		/*
1656 		 * We cannot assume consecutive blocks in the data file
1657 		 * are contiguous, reset the decoder to force re-sync.
1658 		 */
1659 		ret = cs_etm_decoder__reset(etmq->decoder);
1660 		if (ret)
1661 			return ret;
1662 	}
1663 
1664 	return etmq->buf_len;
1665 }
1666 
1667 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1668 				 struct cs_etm_packet *packet,
1669 				 u64 end_addr)
1670 {
1671 	/* Initialise to keep compiler happy */
1672 	u16 instr16 = 0;
1673 	u32 instr32 = 0;
1674 	u64 addr;
1675 
1676 	switch (packet->isa) {
1677 	case CS_ETM_ISA_T32:
1678 		/*
1679 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1680 		 *
1681 		 *  b'15         b'8
1682 		 * +-----------------+--------+
1683 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1684 		 * +-----------------+--------+
1685 		 *
1686 		 * According to the specification, it only defines SVC for T32
1687 		 * with 16 bits instruction and has no definition for 32bits;
1688 		 * so below only read 2 bytes as instruction size for T32.
1689 		 */
1690 		addr = end_addr - 2;
1691 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1692 				   sizeof(instr16), (u8 *)&instr16);
1693 		if ((instr16 & 0xFF00) == 0xDF00)
1694 			return true;
1695 
1696 		break;
1697 	case CS_ETM_ISA_A32:
1698 		/*
1699 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1700 		 *
1701 		 *  b'31 b'28 b'27 b'24
1702 		 * +---------+---------+-------------------------+
1703 		 * |  !1111  | 1 1 1 1 |        imm24            |
1704 		 * +---------+---------+-------------------------+
1705 		 */
1706 		addr = end_addr - 4;
1707 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1708 				   sizeof(instr32), (u8 *)&instr32);
1709 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1710 		    (instr32 & 0xF0000000) != 0xF0000000)
1711 			return true;
1712 
1713 		break;
1714 	case CS_ETM_ISA_A64:
1715 		/*
1716 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1717 		 *
1718 		 *  b'31               b'21           b'4     b'0
1719 		 * +-----------------------+---------+-----------+
1720 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1721 		 * +-----------------------+---------+-----------+
1722 		 */
1723 		addr = end_addr - 4;
1724 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1725 				   sizeof(instr32), (u8 *)&instr32);
1726 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1727 			return true;
1728 
1729 		break;
1730 	case CS_ETM_ISA_UNKNOWN:
1731 	default:
1732 		break;
1733 	}
1734 
1735 	return false;
1736 }
1737 
1738 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1739 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1740 {
1741 	u8 trace_chan_id = tidq->trace_chan_id;
1742 	struct cs_etm_packet *packet = tidq->packet;
1743 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1744 
1745 	if (magic == __perf_cs_etmv3_magic)
1746 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1747 			return true;
1748 
1749 	/*
1750 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1751 	 * HVC cases; need to check if it's SVC instruction based on
1752 	 * packet address.
1753 	 */
1754 	if (magic == __perf_cs_etmv4_magic) {
1755 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1756 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1757 					 prev_packet->end_addr))
1758 			return true;
1759 	}
1760 
1761 	return false;
1762 }
1763 
1764 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1765 				       u64 magic)
1766 {
1767 	struct cs_etm_packet *packet = tidq->packet;
1768 
1769 	if (magic == __perf_cs_etmv3_magic)
1770 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1771 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1772 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1773 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1774 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1775 			return true;
1776 
1777 	if (magic == __perf_cs_etmv4_magic)
1778 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1779 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1780 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1781 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1782 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1783 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1784 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1785 			return true;
1786 
1787 	return false;
1788 }
1789 
1790 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1791 				      struct cs_etm_traceid_queue *tidq,
1792 				      u64 magic)
1793 {
1794 	u8 trace_chan_id = tidq->trace_chan_id;
1795 	struct cs_etm_packet *packet = tidq->packet;
1796 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1797 
1798 	if (magic == __perf_cs_etmv3_magic)
1799 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1800 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1801 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1802 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1803 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1804 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1805 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1806 			return true;
1807 
1808 	if (magic == __perf_cs_etmv4_magic) {
1809 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1810 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1811 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1812 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1813 			return true;
1814 
1815 		/*
1816 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1817 		 * (SMC, HVC) are taken as sync exceptions.
1818 		 */
1819 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1820 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1821 					  prev_packet->end_addr))
1822 			return true;
1823 
1824 		/*
1825 		 * ETMv4 has 5 bits for exception number; if the numbers
1826 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1827 		 * they are implementation defined exceptions.
1828 		 *
1829 		 * For this case, simply take it as sync exception.
1830 		 */
1831 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1832 		    packet->exception_number <= CS_ETMV4_EXC_END)
1833 			return true;
1834 	}
1835 
1836 	return false;
1837 }
1838 
1839 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1840 				    struct cs_etm_traceid_queue *tidq)
1841 {
1842 	struct cs_etm_packet *packet = tidq->packet;
1843 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1844 	u8 trace_chan_id = tidq->trace_chan_id;
1845 	u64 magic;
1846 	int ret;
1847 
1848 	switch (packet->sample_type) {
1849 	case CS_ETM_RANGE:
1850 		/*
1851 		 * Immediate branch instruction without neither link nor
1852 		 * return flag, it's normal branch instruction within
1853 		 * the function.
1854 		 */
1855 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1856 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1857 			packet->flags = PERF_IP_FLAG_BRANCH;
1858 
1859 			if (packet->last_instr_cond)
1860 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1861 		}
1862 
1863 		/*
1864 		 * Immediate branch instruction with link (e.g. BL), this is
1865 		 * branch instruction for function call.
1866 		 */
1867 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1868 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1869 			packet->flags = PERF_IP_FLAG_BRANCH |
1870 					PERF_IP_FLAG_CALL;
1871 
1872 		/*
1873 		 * Indirect branch instruction with link (e.g. BLR), this is
1874 		 * branch instruction for function call.
1875 		 */
1876 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1877 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1878 			packet->flags = PERF_IP_FLAG_BRANCH |
1879 					PERF_IP_FLAG_CALL;
1880 
1881 		/*
1882 		 * Indirect branch instruction with subtype of
1883 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1884 		 * function return for A32/T32.
1885 		 */
1886 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1887 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1888 			packet->flags = PERF_IP_FLAG_BRANCH |
1889 					PERF_IP_FLAG_RETURN;
1890 
1891 		/*
1892 		 * Indirect branch instruction without link (e.g. BR), usually
1893 		 * this is used for function return, especially for functions
1894 		 * within dynamic link lib.
1895 		 */
1896 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1897 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1898 			packet->flags = PERF_IP_FLAG_BRANCH |
1899 					PERF_IP_FLAG_RETURN;
1900 
1901 		/* Return instruction for function return. */
1902 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1903 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1904 			packet->flags = PERF_IP_FLAG_BRANCH |
1905 					PERF_IP_FLAG_RETURN;
1906 
1907 		/*
1908 		 * Decoder might insert a discontinuity in the middle of
1909 		 * instruction packets, fixup prev_packet with flag
1910 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1911 		 */
1912 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1913 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1914 					      PERF_IP_FLAG_TRACE_BEGIN;
1915 
1916 		/*
1917 		 * If the previous packet is an exception return packet
1918 		 * and the return address just follows SVC instruction,
1919 		 * it needs to calibrate the previous packet sample flags
1920 		 * as PERF_IP_FLAG_SYSCALLRET.
1921 		 */
1922 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1923 					   PERF_IP_FLAG_RETURN |
1924 					   PERF_IP_FLAG_INTERRUPT) &&
1925 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1926 					 packet, packet->start_addr))
1927 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1928 					     PERF_IP_FLAG_RETURN |
1929 					     PERF_IP_FLAG_SYSCALLRET;
1930 		break;
1931 	case CS_ETM_DISCONTINUITY:
1932 		/*
1933 		 * The trace is discontinuous, if the previous packet is
1934 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1935 		 * for previous packet.
1936 		 */
1937 		if (prev_packet->sample_type == CS_ETM_RANGE)
1938 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1939 					      PERF_IP_FLAG_TRACE_END;
1940 		break;
1941 	case CS_ETM_EXCEPTION:
1942 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1943 		if (ret)
1944 			return ret;
1945 
1946 		/* The exception is for system call. */
1947 		if (cs_etm__is_syscall(etmq, tidq, magic))
1948 			packet->flags = PERF_IP_FLAG_BRANCH |
1949 					PERF_IP_FLAG_CALL |
1950 					PERF_IP_FLAG_SYSCALLRET;
1951 		/*
1952 		 * The exceptions are triggered by external signals from bus,
1953 		 * interrupt controller, debug module, PE reset or halt.
1954 		 */
1955 		else if (cs_etm__is_async_exception(tidq, magic))
1956 			packet->flags = PERF_IP_FLAG_BRANCH |
1957 					PERF_IP_FLAG_CALL |
1958 					PERF_IP_FLAG_ASYNC |
1959 					PERF_IP_FLAG_INTERRUPT;
1960 		/*
1961 		 * Otherwise, exception is caused by trap, instruction &
1962 		 * data fault, or alignment errors.
1963 		 */
1964 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1965 			packet->flags = PERF_IP_FLAG_BRANCH |
1966 					PERF_IP_FLAG_CALL |
1967 					PERF_IP_FLAG_INTERRUPT;
1968 
1969 		/*
1970 		 * When the exception packet is inserted, since exception
1971 		 * packet is not used standalone for generating samples
1972 		 * and it's affiliation to the previous instruction range
1973 		 * packet; so set previous range packet flags to tell perf
1974 		 * it is an exception taken branch.
1975 		 */
1976 		if (prev_packet->sample_type == CS_ETM_RANGE)
1977 			prev_packet->flags = packet->flags;
1978 		break;
1979 	case CS_ETM_EXCEPTION_RET:
1980 		/*
1981 		 * When the exception return packet is inserted, since
1982 		 * exception return packet is not used standalone for
1983 		 * generating samples and it's affiliation to the previous
1984 		 * instruction range packet; so set previous range packet
1985 		 * flags to tell perf it is an exception return branch.
1986 		 *
1987 		 * The exception return can be for either system call or
1988 		 * other exception types; unfortunately the packet doesn't
1989 		 * contain exception type related info so we cannot decide
1990 		 * the exception type purely based on exception return packet.
1991 		 * If we record the exception number from exception packet and
1992 		 * reuse it for exception return packet, this is not reliable
1993 		 * due the trace can be discontinuity or the interrupt can
1994 		 * be nested, thus the recorded exception number cannot be
1995 		 * used for exception return packet for these two cases.
1996 		 *
1997 		 * For exception return packet, we only need to distinguish the
1998 		 * packet is for system call or for other types.  Thus the
1999 		 * decision can be deferred when receive the next packet which
2000 		 * contains the return address, based on the return address we
2001 		 * can read out the previous instruction and check if it's a
2002 		 * system call instruction and then calibrate the sample flag
2003 		 * as needed.
2004 		 */
2005 		if (prev_packet->sample_type == CS_ETM_RANGE)
2006 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
2007 					     PERF_IP_FLAG_RETURN |
2008 					     PERF_IP_FLAG_INTERRUPT;
2009 		break;
2010 	case CS_ETM_EMPTY:
2011 	default:
2012 		break;
2013 	}
2014 
2015 	return 0;
2016 }
2017 
2018 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2019 {
2020 	int ret = 0;
2021 	size_t processed = 0;
2022 
2023 	/*
2024 	 * Packets are decoded and added to the decoder's packet queue
2025 	 * until the decoder packet processing callback has requested that
2026 	 * processing stops or there is nothing left in the buffer.  Normal
2027 	 * operations that stop processing are a timestamp packet or a full
2028 	 * decoder buffer queue.
2029 	 */
2030 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2031 						 etmq->offset,
2032 						 &etmq->buf[etmq->buf_used],
2033 						 etmq->buf_len,
2034 						 &processed);
2035 	if (ret)
2036 		goto out;
2037 
2038 	etmq->offset += processed;
2039 	etmq->buf_used += processed;
2040 	etmq->buf_len -= processed;
2041 
2042 out:
2043 	return ret;
2044 }
2045 
2046 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2047 					 struct cs_etm_traceid_queue *tidq)
2048 {
2049 	int ret;
2050 	struct cs_etm_packet_queue *packet_queue;
2051 
2052 	packet_queue = &tidq->packet_queue;
2053 
2054 	/* Process each packet in this chunk */
2055 	while (1) {
2056 		ret = cs_etm_decoder__get_packet(packet_queue,
2057 						 tidq->packet);
2058 		if (ret <= 0)
2059 			/*
2060 			 * Stop processing this chunk on
2061 			 * end of data or error
2062 			 */
2063 			break;
2064 
2065 		/*
2066 		 * Since packet addresses are swapped in packet
2067 		 * handling within below switch() statements,
2068 		 * thus setting sample flags must be called
2069 		 * prior to switch() statement to use address
2070 		 * information before packets swapping.
2071 		 */
2072 		ret = cs_etm__set_sample_flags(etmq, tidq);
2073 		if (ret < 0)
2074 			break;
2075 
2076 		switch (tidq->packet->sample_type) {
2077 		case CS_ETM_RANGE:
2078 			/*
2079 			 * If the packet contains an instruction
2080 			 * range, generate instruction sequence
2081 			 * events.
2082 			 */
2083 			cs_etm__sample(etmq, tidq);
2084 			break;
2085 		case CS_ETM_EXCEPTION:
2086 		case CS_ETM_EXCEPTION_RET:
2087 			/*
2088 			 * If the exception packet is coming,
2089 			 * make sure the previous instruction
2090 			 * range packet to be handled properly.
2091 			 */
2092 			cs_etm__exception(tidq);
2093 			break;
2094 		case CS_ETM_DISCONTINUITY:
2095 			/*
2096 			 * Discontinuity in trace, flush
2097 			 * previous branch stack
2098 			 */
2099 			cs_etm__flush(etmq, tidq);
2100 			break;
2101 		case CS_ETM_EMPTY:
2102 			/*
2103 			 * Should not receive empty packet,
2104 			 * report error.
2105 			 */
2106 			pr_err("CS ETM Trace: empty packet\n");
2107 			return -EINVAL;
2108 		default:
2109 			break;
2110 		}
2111 	}
2112 
2113 	return ret;
2114 }
2115 
2116 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2117 {
2118 	int idx;
2119 	struct int_node *inode;
2120 	struct cs_etm_traceid_queue *tidq;
2121 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2122 
2123 	intlist__for_each_entry(inode, traceid_queues_list) {
2124 		idx = (int)(intptr_t)inode->priv;
2125 		tidq = etmq->traceid_queues[idx];
2126 
2127 		/* Ignore return value */
2128 		cs_etm__process_traceid_queue(etmq, tidq);
2129 
2130 		/*
2131 		 * Generate an instruction sample with the remaining
2132 		 * branchstack entries.
2133 		 */
2134 		cs_etm__flush(etmq, tidq);
2135 	}
2136 }
2137 
2138 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2139 {
2140 	int err = 0;
2141 	struct cs_etm_traceid_queue *tidq;
2142 
2143 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2144 	if (!tidq)
2145 		return -EINVAL;
2146 
2147 	/* Go through each buffer in the queue and decode them one by one */
2148 	while (1) {
2149 		err = cs_etm__get_data_block(etmq);
2150 		if (err <= 0)
2151 			return err;
2152 
2153 		/* Run trace decoder until buffer consumed or end of trace */
2154 		do {
2155 			err = cs_etm__decode_data_block(etmq);
2156 			if (err)
2157 				return err;
2158 
2159 			/*
2160 			 * Process each packet in this chunk, nothing to do if
2161 			 * an error occurs other than hoping the next one will
2162 			 * be better.
2163 			 */
2164 			err = cs_etm__process_traceid_queue(etmq, tidq);
2165 
2166 		} while (etmq->buf_len);
2167 
2168 		if (err == 0)
2169 			/* Flush any remaining branch stack entries */
2170 			err = cs_etm__end_block(etmq, tidq);
2171 	}
2172 
2173 	return err;
2174 }
2175 
2176 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2177 					   pid_t tid)
2178 {
2179 	unsigned int i;
2180 	struct auxtrace_queues *queues = &etm->queues;
2181 
2182 	for (i = 0; i < queues->nr_queues; i++) {
2183 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2184 		struct cs_etm_queue *etmq = queue->priv;
2185 		struct cs_etm_traceid_queue *tidq;
2186 
2187 		if (!etmq)
2188 			continue;
2189 
2190 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2191 						CS_ETM_PER_THREAD_TRACEID);
2192 
2193 		if (!tidq)
2194 			continue;
2195 
2196 		if ((tid == -1) || (tidq->tid == tid)) {
2197 			cs_etm__set_pid_tid_cpu(etm, tidq);
2198 			cs_etm__run_decoder(etmq);
2199 		}
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2206 {
2207 	int ret = 0;
2208 	unsigned int cs_queue_nr, queue_nr, i;
2209 	u8 trace_chan_id;
2210 	u64 cs_timestamp;
2211 	struct auxtrace_queue *queue;
2212 	struct cs_etm_queue *etmq;
2213 	struct cs_etm_traceid_queue *tidq;
2214 
2215 	/*
2216 	 * Pre-populate the heap with one entry from each queue so that we can
2217 	 * start processing in time order across all queues.
2218 	 */
2219 	for (i = 0; i < etm->queues.nr_queues; i++) {
2220 		etmq = etm->queues.queue_array[i].priv;
2221 		if (!etmq)
2222 			continue;
2223 
2224 		ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2225 		if (ret)
2226 			return ret;
2227 	}
2228 
2229 	while (1) {
2230 		if (!etm->heap.heap_cnt)
2231 			goto out;
2232 
2233 		/* Take the entry at the top of the min heap */
2234 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2235 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2236 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2237 		queue = &etm->queues.queue_array[queue_nr];
2238 		etmq = queue->priv;
2239 
2240 		/*
2241 		 * Remove the top entry from the heap since we are about
2242 		 * to process it.
2243 		 */
2244 		auxtrace_heap__pop(&etm->heap);
2245 
2246 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2247 		if (!tidq) {
2248 			/*
2249 			 * No traceID queue has been allocated for this traceID,
2250 			 * which means something somewhere went very wrong.  No
2251 			 * other choice than simply exit.
2252 			 */
2253 			ret = -EINVAL;
2254 			goto out;
2255 		}
2256 
2257 		/*
2258 		 * Packets associated with this timestamp are already in
2259 		 * the etmq's traceID queue, so process them.
2260 		 */
2261 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2262 		if (ret < 0)
2263 			goto out;
2264 
2265 		/*
2266 		 * Packets for this timestamp have been processed, time to
2267 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2268 		 * if need be.
2269 		 */
2270 refetch:
2271 		ret = cs_etm__get_data_block(etmq);
2272 		if (ret < 0)
2273 			goto out;
2274 
2275 		/*
2276 		 * No more auxtrace_buffers to process in this etmq, simply
2277 		 * move on to another entry in the auxtrace_heap.
2278 		 */
2279 		if (!ret)
2280 			continue;
2281 
2282 		ret = cs_etm__decode_data_block(etmq);
2283 		if (ret)
2284 			goto out;
2285 
2286 		cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2287 
2288 		if (!cs_timestamp) {
2289 			/*
2290 			 * Function cs_etm__decode_data_block() returns when
2291 			 * there is no more traces to decode in the current
2292 			 * auxtrace_buffer OR when a timestamp has been
2293 			 * encountered on any of the traceID queues.  Since we
2294 			 * did not get a timestamp, there is no more traces to
2295 			 * process in this auxtrace_buffer.  As such empty and
2296 			 * flush all traceID queues.
2297 			 */
2298 			cs_etm__clear_all_traceid_queues(etmq);
2299 
2300 			/* Fetch another auxtrace_buffer for this etmq */
2301 			goto refetch;
2302 		}
2303 
2304 		/*
2305 		 * Add to the min heap the timestamp for packets that have
2306 		 * just been decoded.  They will be processed and synthesized
2307 		 * during the next call to cs_etm__process_traceid_queue() for
2308 		 * this queue/traceID.
2309 		 */
2310 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2311 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2312 	}
2313 
2314 out:
2315 	return ret;
2316 }
2317 
2318 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2319 					union perf_event *event)
2320 {
2321 	struct thread *th;
2322 
2323 	if (etm->timeless_decoding)
2324 		return 0;
2325 
2326 	/*
2327 	 * Add the tid/pid to the log so that we can get a match when
2328 	 * we get a contextID from the decoder.
2329 	 */
2330 	th = machine__findnew_thread(etm->machine,
2331 				     event->itrace_start.pid,
2332 				     event->itrace_start.tid);
2333 	if (!th)
2334 		return -ENOMEM;
2335 
2336 	thread__put(th);
2337 
2338 	return 0;
2339 }
2340 
2341 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2342 					   union perf_event *event)
2343 {
2344 	struct thread *th;
2345 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2346 
2347 	/*
2348 	 * Context switch in per-thread mode are irrelevant since perf
2349 	 * will start/stop tracing as the process is scheduled.
2350 	 */
2351 	if (etm->timeless_decoding)
2352 		return 0;
2353 
2354 	/*
2355 	 * SWITCH_IN events carry the next process to be switched out while
2356 	 * SWITCH_OUT events carry the process to be switched in.  As such
2357 	 * we don't care about IN events.
2358 	 */
2359 	if (!out)
2360 		return 0;
2361 
2362 	/*
2363 	 * Add the tid/pid to the log so that we can get a match when
2364 	 * we get a contextID from the decoder.
2365 	 */
2366 	th = machine__findnew_thread(etm->machine,
2367 				     event->context_switch.next_prev_pid,
2368 				     event->context_switch.next_prev_tid);
2369 	if (!th)
2370 		return -ENOMEM;
2371 
2372 	thread__put(th);
2373 
2374 	return 0;
2375 }
2376 
2377 static int cs_etm__process_event(struct perf_session *session,
2378 				 union perf_event *event,
2379 				 struct perf_sample *sample,
2380 				 struct perf_tool *tool)
2381 {
2382 	u64 sample_kernel_timestamp;
2383 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2384 						   struct cs_etm_auxtrace,
2385 						   auxtrace);
2386 
2387 	if (dump_trace)
2388 		return 0;
2389 
2390 	if (!tool->ordered_events) {
2391 		pr_err("CoreSight ETM Trace requires ordered events\n");
2392 		return -EINVAL;
2393 	}
2394 
2395 	if (sample->time && (sample->time != (u64) -1))
2396 		sample_kernel_timestamp = sample->time;
2397 	else
2398 		sample_kernel_timestamp = 0;
2399 
2400 	/*
2401 	 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2402 	 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2403 	 * ETM_OPT_CTXTID is not enabled.
2404 	 */
2405 	if (etm->timeless_decoding &&
2406 	    event->header.type == PERF_RECORD_EXIT)
2407 		return cs_etm__process_timeless_queues(etm,
2408 						       event->fork.tid);
2409 
2410 	if (event->header.type == PERF_RECORD_ITRACE_START)
2411 		return cs_etm__process_itrace_start(etm, event);
2412 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2413 		return cs_etm__process_switch_cpu_wide(etm, event);
2414 
2415 	if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2416 		/*
2417 		 * Record the latest kernel timestamp available in the header
2418 		 * for samples so that synthesised samples occur from this point
2419 		 * onwards.
2420 		 */
2421 		etm->latest_kernel_timestamp = sample_kernel_timestamp;
2422 	}
2423 
2424 	return 0;
2425 }
2426 
2427 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2428 			     struct perf_record_auxtrace *event)
2429 {
2430 	struct auxtrace_buffer *buf;
2431 	unsigned int i;
2432 	/*
2433 	 * Find all buffers with same reference in the queues and dump them.
2434 	 * This is because the queues can contain multiple entries of the same
2435 	 * buffer that were split on aux records.
2436 	 */
2437 	for (i = 0; i < etm->queues.nr_queues; ++i)
2438 		list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2439 			if (buf->reference == event->reference)
2440 				cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2441 }
2442 
2443 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2444 					  union perf_event *event,
2445 					  struct perf_tool *tool __maybe_unused)
2446 {
2447 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2448 						   struct cs_etm_auxtrace,
2449 						   auxtrace);
2450 	if (!etm->data_queued) {
2451 		struct auxtrace_buffer *buffer;
2452 		off_t  data_offset;
2453 		int fd = perf_data__fd(session->data);
2454 		bool is_pipe = perf_data__is_pipe(session->data);
2455 		int err;
2456 		int idx = event->auxtrace.idx;
2457 
2458 		if (is_pipe)
2459 			data_offset = 0;
2460 		else {
2461 			data_offset = lseek(fd, 0, SEEK_CUR);
2462 			if (data_offset == -1)
2463 				return -errno;
2464 		}
2465 
2466 		err = auxtrace_queues__add_event(&etm->queues, session,
2467 						 event, data_offset, &buffer);
2468 		if (err)
2469 			return err;
2470 
2471 		/*
2472 		 * Knowing if the trace is formatted or not requires a lookup of
2473 		 * the aux record so only works in non-piped mode where data is
2474 		 * queued in cs_etm__queue_aux_records(). Always assume
2475 		 * formatted in piped mode (true).
2476 		 */
2477 		err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2478 					  idx, true);
2479 		if (err)
2480 			return err;
2481 
2482 		if (dump_trace)
2483 			if (auxtrace_buffer__get_data(buffer, fd)) {
2484 				cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2485 				auxtrace_buffer__put_data(buffer);
2486 			}
2487 	} else if (dump_trace)
2488 		dump_queued_data(etm, &event->auxtrace);
2489 
2490 	return 0;
2491 }
2492 
2493 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2494 {
2495 	struct evsel *evsel;
2496 	struct evlist *evlist = etm->session->evlist;
2497 	bool timeless_decoding = true;
2498 
2499 	/* Override timeless mode with user input from --itrace=Z */
2500 	if (etm->synth_opts.timeless_decoding)
2501 		return true;
2502 
2503 	/*
2504 	 * Circle through the list of event and complain if we find one
2505 	 * with the time bit set.
2506 	 */
2507 	evlist__for_each_entry(evlist, evsel) {
2508 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2509 			timeless_decoding = false;
2510 	}
2511 
2512 	return timeless_decoding;
2513 }
2514 
2515 static const char * const cs_etm_global_header_fmts[] = {
2516 	[CS_HEADER_VERSION]	= "	Header version		       %llx\n",
2517 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2518 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2519 };
2520 
2521 static const char * const cs_etm_priv_fmts[] = {
2522 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2523 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2524 	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2525 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2526 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2527 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2528 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2529 };
2530 
2531 static const char * const cs_etmv4_priv_fmts[] = {
2532 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2533 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2534 	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2535 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2536 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2537 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2538 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2539 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2540 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2541 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2542 	[CS_ETE_TRCDEVARCH]	= "	TRCDEVARCH                     %llx\n"
2543 };
2544 
2545 static const char * const param_unk_fmt =
2546 	"	Unknown parameter [%d]	       %llx\n";
2547 static const char * const magic_unk_fmt =
2548 	"	Magic number Unknown	       %llx\n";
2549 
2550 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2551 {
2552 	int i = *offset, j, nr_params = 0, fmt_offset;
2553 	__u64 magic;
2554 
2555 	/* check magic value */
2556 	magic = val[i + CS_ETM_MAGIC];
2557 	if ((magic != __perf_cs_etmv3_magic) &&
2558 	    (magic != __perf_cs_etmv4_magic)) {
2559 		/* failure - note bad magic value */
2560 		fprintf(stdout, magic_unk_fmt, magic);
2561 		return -EINVAL;
2562 	}
2563 
2564 	/* print common header block */
2565 	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2566 	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2567 
2568 	if (magic == __perf_cs_etmv3_magic) {
2569 		nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2570 		fmt_offset = CS_ETM_ETMCR;
2571 		/* after common block, offset format index past NR_PARAMS */
2572 		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2573 			fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2574 	} else if (magic == __perf_cs_etmv4_magic) {
2575 		nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2576 		fmt_offset = CS_ETMV4_TRCCONFIGR;
2577 		/* after common block, offset format index past NR_PARAMS */
2578 		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2579 			fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2580 	}
2581 	*offset = i;
2582 	return 0;
2583 }
2584 
2585 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2586 {
2587 	int i = *offset, j, total_params = 0;
2588 	__u64 magic;
2589 
2590 	magic = val[i + CS_ETM_MAGIC];
2591 	/* total params to print is NR_PARAMS + common block size for v1 */
2592 	total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2593 
2594 	if (magic == __perf_cs_etmv3_magic) {
2595 		for (j = 0; j < total_params; j++, i++) {
2596 			/* if newer record - could be excess params */
2597 			if (j >= CS_ETM_PRIV_MAX)
2598 				fprintf(stdout, param_unk_fmt, j, val[i]);
2599 			else
2600 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2601 		}
2602 	} else if (magic == __perf_cs_etmv4_magic || magic == __perf_cs_ete_magic) {
2603 		/*
2604 		 * ETE and ETMv4 can be printed in the same block because the number of parameters
2605 		 * is saved and they share the list of parameter names. ETE is also only supported
2606 		 * in V1 files.
2607 		 */
2608 		for (j = 0; j < total_params; j++, i++) {
2609 			/* if newer record - could be excess params */
2610 			if (j >= CS_ETE_PRIV_MAX)
2611 				fprintf(stdout, param_unk_fmt, j, val[i]);
2612 			else
2613 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2614 		}
2615 	} else {
2616 		/* failure - note bad magic value and error out */
2617 		fprintf(stdout, magic_unk_fmt, magic);
2618 		return -EINVAL;
2619 	}
2620 	*offset = i;
2621 	return 0;
2622 }
2623 
2624 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2625 {
2626 	int i, cpu = 0, version, err;
2627 
2628 	/* bail out early on bad header version */
2629 	version = val[0];
2630 	if (version > CS_HEADER_CURRENT_VERSION) {
2631 		/* failure.. return */
2632 		fprintf(stdout, "	Unknown Header Version = %x, ", version);
2633 		fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2634 		return;
2635 	}
2636 
2637 	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2638 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2639 
2640 	for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2641 		if (version == 0)
2642 			err = cs_etm__print_cpu_metadata_v0(val, &i);
2643 		else if (version == 1)
2644 			err = cs_etm__print_cpu_metadata_v1(val, &i);
2645 		if (err)
2646 			return;
2647 	}
2648 }
2649 
2650 /*
2651  * Read a single cpu parameter block from the auxtrace_info priv block.
2652  *
2653  * For version 1 there is a per cpu nr_params entry. If we are handling
2654  * version 1 file, then there may be less, the same, or more params
2655  * indicated by this value than the compile time number we understand.
2656  *
2657  * For a version 0 info block, there are a fixed number, and we need to
2658  * fill out the nr_param value in the metadata we create.
2659  */
2660 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2661 				    int out_blk_size, int nr_params_v0)
2662 {
2663 	u64 *metadata = NULL;
2664 	int hdr_version;
2665 	int nr_in_params, nr_out_params, nr_cmn_params;
2666 	int i, k;
2667 
2668 	metadata = zalloc(sizeof(*metadata) * out_blk_size);
2669 	if (!metadata)
2670 		return NULL;
2671 
2672 	/* read block current index & version */
2673 	i = *buff_in_offset;
2674 	hdr_version = buff_in[CS_HEADER_VERSION];
2675 
2676 	if (!hdr_version) {
2677 	/* read version 0 info block into a version 1 metadata block  */
2678 		nr_in_params = nr_params_v0;
2679 		metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2680 		metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2681 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2682 		/* remaining block params at offset +1 from source */
2683 		for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2684 			metadata[k + 1] = buff_in[i + k];
2685 		/* version 0 has 2 common params */
2686 		nr_cmn_params = 2;
2687 	} else {
2688 	/* read version 1 info block - input and output nr_params may differ */
2689 		/* version 1 has 3 common params */
2690 		nr_cmn_params = 3;
2691 		nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2692 
2693 		/* if input has more params than output - skip excess */
2694 		nr_out_params = nr_in_params + nr_cmn_params;
2695 		if (nr_out_params > out_blk_size)
2696 			nr_out_params = out_blk_size;
2697 
2698 		for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2699 			metadata[k] = buff_in[i + k];
2700 
2701 		/* record the actual nr params we copied */
2702 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2703 	}
2704 
2705 	/* adjust in offset by number of in params used */
2706 	i += nr_in_params + nr_cmn_params;
2707 	*buff_in_offset = i;
2708 	return metadata;
2709 }
2710 
2711 /**
2712  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2713  * on the bounds of aux_event, if it matches with the buffer that's at
2714  * file_offset.
2715  *
2716  * Normally, whole auxtrace buffers would be added to the queue. But we
2717  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2718  * is reset across each buffer, so splitting the buffers up in advance has
2719  * the same effect.
2720  */
2721 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2722 				      struct perf_record_aux *aux_event, struct perf_sample *sample)
2723 {
2724 	int err;
2725 	char buf[PERF_SAMPLE_MAX_SIZE];
2726 	union perf_event *auxtrace_event_union;
2727 	struct perf_record_auxtrace *auxtrace_event;
2728 	union perf_event auxtrace_fragment;
2729 	__u64 aux_offset, aux_size;
2730 	__u32 idx;
2731 	bool formatted;
2732 
2733 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2734 						   struct cs_etm_auxtrace,
2735 						   auxtrace);
2736 
2737 	/*
2738 	 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2739 	 * from looping through the auxtrace index.
2740 	 */
2741 	err = perf_session__peek_event(session, file_offset, buf,
2742 				       PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2743 	if (err)
2744 		return err;
2745 	auxtrace_event = &auxtrace_event_union->auxtrace;
2746 	if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2747 		return -EINVAL;
2748 
2749 	if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2750 		auxtrace_event->header.size != sz) {
2751 		return -EINVAL;
2752 	}
2753 
2754 	/*
2755 	 * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2756 	 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2757 	 */
2758 	if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2759 			auxtrace_event->cpu != sample->cpu)
2760 		return 1;
2761 
2762 	if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2763 		/*
2764 		 * Clamp size in snapshot mode. The buffer size is clamped in
2765 		 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2766 		 * the buffer size.
2767 		 */
2768 		aux_size = min(aux_event->aux_size, auxtrace_event->size);
2769 
2770 		/*
2771 		 * In this mode, the head also points to the end of the buffer so aux_offset
2772 		 * needs to have the size subtracted so it points to the beginning as in normal mode
2773 		 */
2774 		aux_offset = aux_event->aux_offset - aux_size;
2775 	} else {
2776 		aux_size = aux_event->aux_size;
2777 		aux_offset = aux_event->aux_offset;
2778 	}
2779 
2780 	if (aux_offset >= auxtrace_event->offset &&
2781 	    aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2782 		/*
2783 		 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2784 		 * based on the sizes of the aux event, and queue that fragment.
2785 		 */
2786 		auxtrace_fragment.auxtrace = *auxtrace_event;
2787 		auxtrace_fragment.auxtrace.size = aux_size;
2788 		auxtrace_fragment.auxtrace.offset = aux_offset;
2789 		file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2790 
2791 		pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2792 			  " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2793 		err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2794 						 file_offset, NULL);
2795 		if (err)
2796 			return err;
2797 
2798 		idx = auxtrace_event->idx;
2799 		formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
2800 		return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2801 					   idx, formatted);
2802 	}
2803 
2804 	/* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2805 	return 1;
2806 }
2807 
2808 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2809 					u64 offset __maybe_unused, void *data __maybe_unused)
2810 {
2811 	struct perf_sample sample;
2812 	int ret;
2813 	struct auxtrace_index_entry *ent;
2814 	struct auxtrace_index *auxtrace_index;
2815 	struct evsel *evsel;
2816 	size_t i;
2817 
2818 	/* Don't care about any other events, we're only queuing buffers for AUX events */
2819 	if (event->header.type != PERF_RECORD_AUX)
2820 		return 0;
2821 
2822 	if (event->header.size < sizeof(struct perf_record_aux))
2823 		return -EINVAL;
2824 
2825 	/* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2826 	if (!event->aux.aux_size)
2827 		return 0;
2828 
2829 	/*
2830 	 * Parse the sample, we need the sample_id_all data that comes after the event so that the
2831 	 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2832 	 */
2833 	evsel = evlist__event2evsel(session->evlist, event);
2834 	if (!evsel)
2835 		return -EINVAL;
2836 	ret = evsel__parse_sample(evsel, event, &sample);
2837 	if (ret)
2838 		return ret;
2839 
2840 	/*
2841 	 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2842 	 */
2843 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2844 		for (i = 0; i < auxtrace_index->nr; i++) {
2845 			ent = &auxtrace_index->entries[i];
2846 			ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2847 							 ent->sz, &event->aux, &sample);
2848 			/*
2849 			 * Stop search on error or successful values. Continue search on
2850 			 * 1 ('not found')
2851 			 */
2852 			if (ret != 1)
2853 				return ret;
2854 		}
2855 	}
2856 
2857 	/*
2858 	 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2859 	 * don't exit with an error because it will still be possible to decode other aux records.
2860 	 */
2861 	pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2862 	       " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2863 	return 0;
2864 }
2865 
2866 static int cs_etm__queue_aux_records(struct perf_session *session)
2867 {
2868 	struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2869 								struct auxtrace_index, list);
2870 	if (index && index->nr > 0)
2871 		return perf_session__peek_events(session, session->header.data_offset,
2872 						 session->header.data_size,
2873 						 cs_etm__queue_aux_records_cb, NULL);
2874 
2875 	/*
2876 	 * We would get here if there are no entries in the index (either no auxtrace
2877 	 * buffers or no index at all). Fail silently as there is the possibility of
2878 	 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2879 	 * false.
2880 	 *
2881 	 * In that scenario, buffers will not be split by AUX records.
2882 	 */
2883 	return 0;
2884 }
2885 
2886 int cs_etm__process_auxtrace_info(union perf_event *event,
2887 				  struct perf_session *session)
2888 {
2889 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2890 	struct cs_etm_auxtrace *etm = NULL;
2891 	struct int_node *inode;
2892 	unsigned int pmu_type;
2893 	int event_header_size = sizeof(struct perf_event_header);
2894 	int info_header_size;
2895 	int total_size = auxtrace_info->header.size;
2896 	int priv_size = 0;
2897 	int num_cpu, trcidr_idx;
2898 	int err = 0;
2899 	int i, j;
2900 	u64 *ptr, *hdr = NULL;
2901 	u64 **metadata = NULL;
2902 	u64 hdr_version;
2903 
2904 	/*
2905 	 * sizeof(auxtrace_info_event::type) +
2906 	 * sizeof(auxtrace_info_event::reserved) == 8
2907 	 */
2908 	info_header_size = 8;
2909 
2910 	if (total_size < (event_header_size + info_header_size))
2911 		return -EINVAL;
2912 
2913 	priv_size = total_size - event_header_size - info_header_size;
2914 
2915 	/* First the global part */
2916 	ptr = (u64 *) auxtrace_info->priv;
2917 
2918 	/* Look for version of the header */
2919 	hdr_version = ptr[0];
2920 	if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2921 		/* print routine will print an error on bad version */
2922 		if (dump_trace)
2923 			cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2924 		return -EINVAL;
2925 	}
2926 
2927 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2928 	if (!hdr)
2929 		return -ENOMEM;
2930 
2931 	/* Extract header information - see cs-etm.h for format */
2932 	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2933 		hdr[i] = ptr[i];
2934 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2935 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2936 				    0xffffffff);
2937 
2938 	/*
2939 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2940 	 * has to be made for each packet that gets decoded, optimizing access
2941 	 * in anything other than a sequential array is worth doing.
2942 	 */
2943 	traceid_list = intlist__new(NULL);
2944 	if (!traceid_list) {
2945 		err = -ENOMEM;
2946 		goto err_free_hdr;
2947 	}
2948 
2949 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2950 	if (!metadata) {
2951 		err = -ENOMEM;
2952 		goto err_free_traceid_list;
2953 	}
2954 
2955 	/*
2956 	 * The metadata is stored in the auxtrace_info section and encodes
2957 	 * the configuration of the ARM embedded trace macrocell which is
2958 	 * required by the trace decoder to properly decode the trace due
2959 	 * to its highly compressed nature.
2960 	 */
2961 	for (j = 0; j < num_cpu; j++) {
2962 		if (ptr[i] == __perf_cs_etmv3_magic) {
2963 			metadata[j] =
2964 				cs_etm__create_meta_blk(ptr, &i,
2965 							CS_ETM_PRIV_MAX,
2966 							CS_ETM_NR_TRC_PARAMS_V0);
2967 
2968 			/* The traceID is our handle */
2969 			trcidr_idx = CS_ETM_ETMTRACEIDR;
2970 
2971 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2972 			metadata[j] =
2973 				cs_etm__create_meta_blk(ptr, &i,
2974 							CS_ETMV4_PRIV_MAX,
2975 							CS_ETMV4_NR_TRC_PARAMS_V0);
2976 
2977 			/* The traceID is our handle */
2978 			trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2979 		} else if (ptr[i] == __perf_cs_ete_magic) {
2980 			metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
2981 
2982 			/* ETE shares first part of metadata with ETMv4 */
2983 			trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2984 		} else {
2985 			ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
2986 				  ptr[i]);
2987 			err = -EINVAL;
2988 			goto err_free_metadata;
2989 		}
2990 
2991 		if (!metadata[j]) {
2992 			err = -ENOMEM;
2993 			goto err_free_metadata;
2994 		}
2995 
2996 		/* Get an RB node for this CPU */
2997 		inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2998 
2999 		/* Something went wrong, no need to continue */
3000 		if (!inode) {
3001 			err = -ENOMEM;
3002 			goto err_free_metadata;
3003 		}
3004 
3005 		/*
3006 		 * The node for that CPU should not be taken.
3007 		 * Back out if that's the case.
3008 		 */
3009 		if (inode->priv) {
3010 			err = -EINVAL;
3011 			goto err_free_metadata;
3012 		}
3013 		/* All good, associate the traceID with the metadata pointer */
3014 		inode->priv = metadata[j];
3015 	}
3016 
3017 	/*
3018 	 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
3019 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
3020 	 * global metadata, and each cpu's metadata respectively.
3021 	 * The following tests if the correct number of double words was
3022 	 * present in the auxtrace info section.
3023 	 */
3024 	if (i * 8 != priv_size) {
3025 		err = -EINVAL;
3026 		goto err_free_metadata;
3027 	}
3028 
3029 	etm = zalloc(sizeof(*etm));
3030 
3031 	if (!etm) {
3032 		err = -ENOMEM;
3033 		goto err_free_metadata;
3034 	}
3035 
3036 	err = auxtrace_queues__init(&etm->queues);
3037 	if (err)
3038 		goto err_free_etm;
3039 
3040 	if (session->itrace_synth_opts->set) {
3041 		etm->synth_opts = *session->itrace_synth_opts;
3042 	} else {
3043 		itrace_synth_opts__set_default(&etm->synth_opts,
3044 				session->itrace_synth_opts->default_no_sample);
3045 		etm->synth_opts.callchain = false;
3046 	}
3047 
3048 	etm->session = session;
3049 	etm->machine = &session->machines.host;
3050 
3051 	etm->num_cpu = num_cpu;
3052 	etm->pmu_type = pmu_type;
3053 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
3054 	etm->metadata = metadata;
3055 	etm->auxtrace_type = auxtrace_info->type;
3056 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
3057 
3058 	etm->auxtrace.process_event = cs_etm__process_event;
3059 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3060 	etm->auxtrace.flush_events = cs_etm__flush_events;
3061 	etm->auxtrace.free_events = cs_etm__free_events;
3062 	etm->auxtrace.free = cs_etm__free;
3063 	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3064 	session->auxtrace = &etm->auxtrace;
3065 
3066 	etm->unknown_thread = thread__new(999999999, 999999999);
3067 	if (!etm->unknown_thread) {
3068 		err = -ENOMEM;
3069 		goto err_free_queues;
3070 	}
3071 
3072 	/*
3073 	 * Initialize list node so that at thread__zput() we can avoid
3074 	 * segmentation fault at list_del_init().
3075 	 */
3076 	INIT_LIST_HEAD(&etm->unknown_thread->node);
3077 
3078 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
3079 	if (err)
3080 		goto err_delete_thread;
3081 
3082 	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3083 		err = -ENOMEM;
3084 		goto err_delete_thread;
3085 	}
3086 
3087 	if (dump_trace) {
3088 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3089 	}
3090 
3091 	err = cs_etm__synth_events(etm, session);
3092 	if (err)
3093 		goto err_delete_thread;
3094 
3095 	err = cs_etm__queue_aux_records(session);
3096 	if (err)
3097 		goto err_delete_thread;
3098 
3099 	etm->data_queued = etm->queues.populated;
3100 	/*
3101 	 * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
3102 	 * cs_etm__queue_aux_fragment() for details relating to limitations.
3103 	 */
3104 	if (!etm->data_queued)
3105 		pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
3106 			   "Continuing with best effort decoding in piped mode.\n\n");
3107 
3108 	return 0;
3109 
3110 err_delete_thread:
3111 	thread__zput(etm->unknown_thread);
3112 err_free_queues:
3113 	auxtrace_queues__free(&etm->queues);
3114 	session->auxtrace = NULL;
3115 err_free_etm:
3116 	zfree(&etm);
3117 err_free_metadata:
3118 	/* No need to check @metadata[j], free(NULL) is supported */
3119 	for (j = 0; j < num_cpu; j++)
3120 		zfree(&metadata[j]);
3121 	zfree(&metadata);
3122 err_free_traceid_list:
3123 	intlist__delete(traceid_list);
3124 err_free_hdr:
3125 	zfree(&hdr);
3126 	/*
3127 	 * At this point, as a minimum we have valid header. Dump the rest of
3128 	 * the info section - the print routines will error out on structural
3129 	 * issues.
3130 	 */
3131 	if (dump_trace)
3132 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3133 	return err;
3134 }
3135