1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <linux/bitops.h> 10 #include <linux/coresight-pmu.h> 11 #include <linux/err.h> 12 #include <linux/kernel.h> 13 #include <linux/log2.h> 14 #include <linux/types.h> 15 #include <linux/zalloc.h> 16 17 #include <opencsd/ocsd_if_types.h> 18 #include <stdlib.h> 19 20 #include "auxtrace.h" 21 #include "color.h" 22 #include "cs-etm.h" 23 #include "cs-etm-decoder/cs-etm-decoder.h" 24 #include "debug.h" 25 #include "dso.h" 26 #include "evlist.h" 27 #include "intlist.h" 28 #include "machine.h" 29 #include "map.h" 30 #include "perf.h" 31 #include "session.h" 32 #include "map_symbol.h" 33 #include "branch.h" 34 #include "symbol.h" 35 #include "tool.h" 36 #include "thread.h" 37 #include "thread-stack.h" 38 #include "tsc.h" 39 #include <tools/libc_compat.h> 40 #include "util/synthetic-events.h" 41 42 struct cs_etm_auxtrace { 43 struct auxtrace auxtrace; 44 struct auxtrace_queues queues; 45 struct auxtrace_heap heap; 46 struct itrace_synth_opts synth_opts; 47 struct perf_session *session; 48 struct machine *machine; 49 struct thread *unknown_thread; 50 struct perf_tsc_conversion tc; 51 52 u8 timeless_decoding; 53 u8 snapshot_mode; 54 u8 data_queued; 55 u8 has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */ 56 57 int num_cpu; 58 u64 latest_kernel_timestamp; 59 u32 auxtrace_type; 60 u64 branches_sample_type; 61 u64 branches_id; 62 u64 instructions_sample_type; 63 u64 instructions_sample_period; 64 u64 instructions_id; 65 u64 **metadata; 66 unsigned int pmu_type; 67 }; 68 69 struct cs_etm_traceid_queue { 70 u8 trace_chan_id; 71 pid_t pid, tid; 72 u64 period_instructions; 73 size_t last_branch_pos; 74 union perf_event *event_buf; 75 struct thread *thread; 76 struct branch_stack *last_branch; 77 struct branch_stack *last_branch_rb; 78 struct cs_etm_packet *prev_packet; 79 struct cs_etm_packet *packet; 80 struct cs_etm_packet_queue packet_queue; 81 }; 82 83 struct cs_etm_queue { 84 struct cs_etm_auxtrace *etm; 85 struct cs_etm_decoder *decoder; 86 struct auxtrace_buffer *buffer; 87 unsigned int queue_nr; 88 u8 pending_timestamp_chan_id; 89 u64 offset; 90 const unsigned char *buf; 91 size_t buf_len, buf_used; 92 /* Conversion between traceID and index in traceid_queues array */ 93 struct intlist *traceid_queues_list; 94 struct cs_etm_traceid_queue **traceid_queues; 95 }; 96 97 /* RB tree for quick conversion between traceID and metadata pointers */ 98 static struct intlist *traceid_list; 99 100 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm); 101 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 102 pid_t tid); 103 static int cs_etm__get_data_block(struct cs_etm_queue *etmq); 104 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); 105 106 /* PTMs ETMIDR [11:8] set to b0011 */ 107 #define ETMIDR_PTM_VERSION 0x00000300 108 109 /* 110 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to 111 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply 112 * encode the etm queue number as the upper 16 bit and the channel as 113 * the lower 16 bit. 114 */ 115 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \ 116 (queue_nr << 16 | trace_chan_id) 117 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) 118 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) 119 120 static u32 cs_etm__get_v7_protocol_version(u32 etmidr) 121 { 122 etmidr &= ETMIDR_PTM_VERSION; 123 124 if (etmidr == ETMIDR_PTM_VERSION) 125 return CS_ETM_PROTO_PTM; 126 127 return CS_ETM_PROTO_ETMV3; 128 } 129 130 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) 131 { 132 struct int_node *inode; 133 u64 *metadata; 134 135 inode = intlist__find(traceid_list, trace_chan_id); 136 if (!inode) 137 return -EINVAL; 138 139 metadata = inode->priv; 140 *magic = metadata[CS_ETM_MAGIC]; 141 return 0; 142 } 143 144 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) 145 { 146 struct int_node *inode; 147 u64 *metadata; 148 149 inode = intlist__find(traceid_list, trace_chan_id); 150 if (!inode) 151 return -EINVAL; 152 153 metadata = inode->priv; 154 *cpu = (int)metadata[CS_ETM_CPU]; 155 return 0; 156 } 157 158 /* 159 * The returned PID format is presented by two bits: 160 * 161 * Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced; 162 * Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced. 163 * 164 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2 165 * are enabled at the same time when the session runs on an EL2 kernel. 166 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be 167 * recorded in the trace data, the tool will selectively use 168 * CONTEXTIDR_EL2 as PID. 169 */ 170 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt) 171 { 172 struct int_node *inode; 173 u64 *metadata, val; 174 175 inode = intlist__find(traceid_list, trace_chan_id); 176 if (!inode) 177 return -EINVAL; 178 179 metadata = inode->priv; 180 181 if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) { 182 val = metadata[CS_ETM_ETMCR]; 183 /* CONTEXTIDR is traced */ 184 if (val & BIT(ETM_OPT_CTXTID)) 185 *pid_fmt = BIT(ETM_OPT_CTXTID); 186 } else { 187 val = metadata[CS_ETMV4_TRCCONFIGR]; 188 /* CONTEXTIDR_EL2 is traced */ 189 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT))) 190 *pid_fmt = BIT(ETM_OPT_CTXTID2); 191 /* CONTEXTIDR_EL1 is traced */ 192 else if (val & BIT(ETM4_CFG_BIT_CTXTID)) 193 *pid_fmt = BIT(ETM_OPT_CTXTID); 194 } 195 196 return 0; 197 } 198 199 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, 200 u8 trace_chan_id) 201 { 202 /* 203 * When a timestamp packet is encountered the backend code 204 * is stopped so that the front end has time to process packets 205 * that were accumulated in the traceID queue. Since there can 206 * be more than one channel per cs_etm_queue, we need to specify 207 * what traceID queue needs servicing. 208 */ 209 etmq->pending_timestamp_chan_id = trace_chan_id; 210 } 211 212 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, 213 u8 *trace_chan_id) 214 { 215 struct cs_etm_packet_queue *packet_queue; 216 217 if (!etmq->pending_timestamp_chan_id) 218 return 0; 219 220 if (trace_chan_id) 221 *trace_chan_id = etmq->pending_timestamp_chan_id; 222 223 packet_queue = cs_etm__etmq_get_packet_queue(etmq, 224 etmq->pending_timestamp_chan_id); 225 if (!packet_queue) 226 return 0; 227 228 /* Acknowledge pending status */ 229 etmq->pending_timestamp_chan_id = 0; 230 231 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ 232 return packet_queue->cs_timestamp; 233 } 234 235 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) 236 { 237 int i; 238 239 queue->head = 0; 240 queue->tail = 0; 241 queue->packet_count = 0; 242 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { 243 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; 244 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; 245 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; 246 queue->packet_buffer[i].instr_count = 0; 247 queue->packet_buffer[i].last_instr_taken_branch = false; 248 queue->packet_buffer[i].last_instr_size = 0; 249 queue->packet_buffer[i].last_instr_type = 0; 250 queue->packet_buffer[i].last_instr_subtype = 0; 251 queue->packet_buffer[i].last_instr_cond = 0; 252 queue->packet_buffer[i].flags = 0; 253 queue->packet_buffer[i].exception_number = UINT32_MAX; 254 queue->packet_buffer[i].trace_chan_id = UINT8_MAX; 255 queue->packet_buffer[i].cpu = INT_MIN; 256 } 257 } 258 259 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) 260 { 261 int idx; 262 struct int_node *inode; 263 struct cs_etm_traceid_queue *tidq; 264 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 265 266 intlist__for_each_entry(inode, traceid_queues_list) { 267 idx = (int)(intptr_t)inode->priv; 268 tidq = etmq->traceid_queues[idx]; 269 cs_etm__clear_packet_queue(&tidq->packet_queue); 270 } 271 } 272 273 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, 274 struct cs_etm_traceid_queue *tidq, 275 u8 trace_chan_id) 276 { 277 int rc = -ENOMEM; 278 struct auxtrace_queue *queue; 279 struct cs_etm_auxtrace *etm = etmq->etm; 280 281 cs_etm__clear_packet_queue(&tidq->packet_queue); 282 283 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 284 tidq->tid = queue->tid; 285 tidq->pid = -1; 286 tidq->trace_chan_id = trace_chan_id; 287 288 tidq->packet = zalloc(sizeof(struct cs_etm_packet)); 289 if (!tidq->packet) 290 goto out; 291 292 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); 293 if (!tidq->prev_packet) 294 goto out_free; 295 296 if (etm->synth_opts.last_branch) { 297 size_t sz = sizeof(struct branch_stack); 298 299 sz += etm->synth_opts.last_branch_sz * 300 sizeof(struct branch_entry); 301 tidq->last_branch = zalloc(sz); 302 if (!tidq->last_branch) 303 goto out_free; 304 tidq->last_branch_rb = zalloc(sz); 305 if (!tidq->last_branch_rb) 306 goto out_free; 307 } 308 309 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 310 if (!tidq->event_buf) 311 goto out_free; 312 313 return 0; 314 315 out_free: 316 zfree(&tidq->last_branch_rb); 317 zfree(&tidq->last_branch); 318 zfree(&tidq->prev_packet); 319 zfree(&tidq->packet); 320 out: 321 return rc; 322 } 323 324 static struct cs_etm_traceid_queue 325 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 326 { 327 int idx; 328 struct int_node *inode; 329 struct intlist *traceid_queues_list; 330 struct cs_etm_traceid_queue *tidq, **traceid_queues; 331 struct cs_etm_auxtrace *etm = etmq->etm; 332 333 if (etm->timeless_decoding) 334 trace_chan_id = CS_ETM_PER_THREAD_TRACEID; 335 336 traceid_queues_list = etmq->traceid_queues_list; 337 338 /* 339 * Check if the traceid_queue exist for this traceID by looking 340 * in the queue list. 341 */ 342 inode = intlist__find(traceid_queues_list, trace_chan_id); 343 if (inode) { 344 idx = (int)(intptr_t)inode->priv; 345 return etmq->traceid_queues[idx]; 346 } 347 348 /* We couldn't find a traceid_queue for this traceID, allocate one */ 349 tidq = malloc(sizeof(*tidq)); 350 if (!tidq) 351 return NULL; 352 353 memset(tidq, 0, sizeof(*tidq)); 354 355 /* Get a valid index for the new traceid_queue */ 356 idx = intlist__nr_entries(traceid_queues_list); 357 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ 358 inode = intlist__findnew(traceid_queues_list, trace_chan_id); 359 if (!inode) 360 goto out_free; 361 362 /* Associate this traceID with this index */ 363 inode->priv = (void *)(intptr_t)idx; 364 365 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) 366 goto out_free; 367 368 /* Grow the traceid_queues array by one unit */ 369 traceid_queues = etmq->traceid_queues; 370 traceid_queues = reallocarray(traceid_queues, 371 idx + 1, 372 sizeof(*traceid_queues)); 373 374 /* 375 * On failure reallocarray() returns NULL and the original block of 376 * memory is left untouched. 377 */ 378 if (!traceid_queues) 379 goto out_free; 380 381 traceid_queues[idx] = tidq; 382 etmq->traceid_queues = traceid_queues; 383 384 return etmq->traceid_queues[idx]; 385 386 out_free: 387 /* 388 * Function intlist__remove() removes the inode from the list 389 * and delete the memory associated to it. 390 */ 391 intlist__remove(traceid_queues_list, inode); 392 free(tidq); 393 394 return NULL; 395 } 396 397 struct cs_etm_packet_queue 398 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) 399 { 400 struct cs_etm_traceid_queue *tidq; 401 402 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 403 if (tidq) 404 return &tidq->packet_queue; 405 406 return NULL; 407 } 408 409 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, 410 struct cs_etm_traceid_queue *tidq) 411 { 412 struct cs_etm_packet *tmp; 413 414 if (etm->synth_opts.branches || etm->synth_opts.last_branch || 415 etm->synth_opts.instructions) { 416 /* 417 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for 418 * the next incoming packet. 419 */ 420 tmp = tidq->packet; 421 tidq->packet = tidq->prev_packet; 422 tidq->prev_packet = tmp; 423 } 424 } 425 426 static void cs_etm__packet_dump(const char *pkt_string) 427 { 428 const char *color = PERF_COLOR_BLUE; 429 int len = strlen(pkt_string); 430 431 if (len && (pkt_string[len-1] == '\n')) 432 color_fprintf(stdout, color, " %s", pkt_string); 433 else 434 color_fprintf(stdout, color, " %s\n", pkt_string); 435 436 fflush(stdout); 437 } 438 439 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, 440 struct cs_etm_auxtrace *etm, int idx, 441 u32 etmidr) 442 { 443 u64 **metadata = etm->metadata; 444 445 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr); 446 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR]; 447 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR]; 448 } 449 450 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, 451 struct cs_etm_auxtrace *etm, int idx) 452 { 453 u64 **metadata = etm->metadata; 454 455 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i; 456 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; 457 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; 458 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; 459 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; 460 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; 461 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; 462 } 463 464 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params, 465 struct cs_etm_auxtrace *etm, int idx) 466 { 467 u64 **metadata = etm->metadata; 468 469 t_params[idx].protocol = CS_ETM_PROTO_ETE; 470 t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETE_TRCIDR0]; 471 t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETE_TRCIDR1]; 472 t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETE_TRCIDR2]; 473 t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETE_TRCIDR8]; 474 t_params[idx].ete.reg_configr = metadata[idx][CS_ETE_TRCCONFIGR]; 475 t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETE_TRCTRACEIDR]; 476 t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH]; 477 } 478 479 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, 480 struct cs_etm_auxtrace *etm, 481 int decoders) 482 { 483 int i; 484 u32 etmidr; 485 u64 architecture; 486 487 for (i = 0; i < decoders; i++) { 488 architecture = etm->metadata[i][CS_ETM_MAGIC]; 489 490 switch (architecture) { 491 case __perf_cs_etmv3_magic: 492 etmidr = etm->metadata[i][CS_ETM_ETMIDR]; 493 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr); 494 break; 495 case __perf_cs_etmv4_magic: 496 cs_etm__set_trace_param_etmv4(t_params, etm, i); 497 break; 498 case __perf_cs_ete_magic: 499 cs_etm__set_trace_param_ete(t_params, etm, i); 500 break; 501 default: 502 return -EINVAL; 503 } 504 } 505 506 return 0; 507 } 508 509 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, 510 struct cs_etm_queue *etmq, 511 enum cs_etm_decoder_operation mode, 512 bool formatted) 513 { 514 int ret = -EINVAL; 515 516 if (!(mode < CS_ETM_OPERATION_MAX)) 517 goto out; 518 519 d_params->packet_printer = cs_etm__packet_dump; 520 d_params->operation = mode; 521 d_params->data = etmq; 522 d_params->formatted = formatted; 523 d_params->fsyncs = false; 524 d_params->hsyncs = false; 525 d_params->frame_aligned = true; 526 527 ret = 0; 528 out: 529 return ret; 530 } 531 532 static void cs_etm__dump_event(struct cs_etm_queue *etmq, 533 struct auxtrace_buffer *buffer) 534 { 535 int ret; 536 const char *color = PERF_COLOR_BLUE; 537 size_t buffer_used = 0; 538 539 fprintf(stdout, "\n"); 540 color_fprintf(stdout, color, 541 ". ... CoreSight %s Trace data: size %#zx bytes\n", 542 cs_etm_decoder__get_name(etmq->decoder), buffer->size); 543 544 do { 545 size_t consumed; 546 547 ret = cs_etm_decoder__process_data_block( 548 etmq->decoder, buffer->offset, 549 &((u8 *)buffer->data)[buffer_used], 550 buffer->size - buffer_used, &consumed); 551 if (ret) 552 break; 553 554 buffer_used += consumed; 555 } while (buffer_used < buffer->size); 556 557 cs_etm_decoder__reset(etmq->decoder); 558 } 559 560 static int cs_etm__flush_events(struct perf_session *session, 561 struct perf_tool *tool) 562 { 563 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 564 struct cs_etm_auxtrace, 565 auxtrace); 566 if (dump_trace) 567 return 0; 568 569 if (!tool->ordered_events) 570 return -EINVAL; 571 572 if (etm->timeless_decoding) 573 return cs_etm__process_timeless_queues(etm, -1); 574 575 return cs_etm__process_queues(etm); 576 } 577 578 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) 579 { 580 int idx; 581 uintptr_t priv; 582 struct int_node *inode, *tmp; 583 struct cs_etm_traceid_queue *tidq; 584 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 585 586 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { 587 priv = (uintptr_t)inode->priv; 588 idx = priv; 589 590 /* Free this traceid_queue from the array */ 591 tidq = etmq->traceid_queues[idx]; 592 thread__zput(tidq->thread); 593 zfree(&tidq->event_buf); 594 zfree(&tidq->last_branch); 595 zfree(&tidq->last_branch_rb); 596 zfree(&tidq->prev_packet); 597 zfree(&tidq->packet); 598 zfree(&tidq); 599 600 /* 601 * Function intlist__remove() removes the inode from the list 602 * and delete the memory associated to it. 603 */ 604 intlist__remove(traceid_queues_list, inode); 605 } 606 607 /* Then the RB tree itself */ 608 intlist__delete(traceid_queues_list); 609 etmq->traceid_queues_list = NULL; 610 611 /* finally free the traceid_queues array */ 612 zfree(&etmq->traceid_queues); 613 } 614 615 static void cs_etm__free_queue(void *priv) 616 { 617 struct cs_etm_queue *etmq = priv; 618 619 if (!etmq) 620 return; 621 622 cs_etm_decoder__free(etmq->decoder); 623 cs_etm__free_traceid_queues(etmq); 624 free(etmq); 625 } 626 627 static void cs_etm__free_events(struct perf_session *session) 628 { 629 unsigned int i; 630 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 631 struct cs_etm_auxtrace, 632 auxtrace); 633 struct auxtrace_queues *queues = &aux->queues; 634 635 for (i = 0; i < queues->nr_queues; i++) { 636 cs_etm__free_queue(queues->queue_array[i].priv); 637 queues->queue_array[i].priv = NULL; 638 } 639 640 auxtrace_queues__free(queues); 641 } 642 643 static void cs_etm__free(struct perf_session *session) 644 { 645 int i; 646 struct int_node *inode, *tmp; 647 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 648 struct cs_etm_auxtrace, 649 auxtrace); 650 cs_etm__free_events(session); 651 session->auxtrace = NULL; 652 653 /* First remove all traceID/metadata nodes for the RB tree */ 654 intlist__for_each_entry_safe(inode, tmp, traceid_list) 655 intlist__remove(traceid_list, inode); 656 /* Then the RB tree itself */ 657 intlist__delete(traceid_list); 658 659 for (i = 0; i < aux->num_cpu; i++) 660 zfree(&aux->metadata[i]); 661 662 thread__zput(aux->unknown_thread); 663 zfree(&aux->metadata); 664 zfree(&aux); 665 } 666 667 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, 668 struct evsel *evsel) 669 { 670 struct cs_etm_auxtrace *aux = container_of(session->auxtrace, 671 struct cs_etm_auxtrace, 672 auxtrace); 673 674 return evsel->core.attr.type == aux->pmu_type; 675 } 676 677 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address) 678 { 679 struct machine *machine; 680 681 machine = etmq->etm->machine; 682 683 if (address >= machine__kernel_start(machine)) { 684 if (machine__is_host(machine)) 685 return PERF_RECORD_MISC_KERNEL; 686 else 687 return PERF_RECORD_MISC_GUEST_KERNEL; 688 } else { 689 if (machine__is_host(machine)) 690 return PERF_RECORD_MISC_USER; 691 else if (perf_guest) 692 return PERF_RECORD_MISC_GUEST_USER; 693 else 694 return PERF_RECORD_MISC_HYPERVISOR; 695 } 696 } 697 698 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, 699 u64 address, size_t size, u8 *buffer) 700 { 701 u8 cpumode; 702 u64 offset; 703 int len; 704 struct thread *thread; 705 struct machine *machine; 706 struct addr_location al; 707 struct cs_etm_traceid_queue *tidq; 708 709 if (!etmq) 710 return 0; 711 712 machine = etmq->etm->machine; 713 cpumode = cs_etm__cpu_mode(etmq, address); 714 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 715 if (!tidq) 716 return 0; 717 718 thread = tidq->thread; 719 if (!thread) { 720 if (cpumode != PERF_RECORD_MISC_KERNEL) 721 return 0; 722 thread = etmq->etm->unknown_thread; 723 } 724 725 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso) 726 return 0; 727 728 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 729 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) 730 return 0; 731 732 offset = al.map->map_ip(al.map, address); 733 734 map__load(al.map); 735 736 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size); 737 738 if (len <= 0) { 739 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n" 740 " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n"); 741 if (!al.map->dso->auxtrace_warned) { 742 pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n", 743 address, 744 al.map->dso->long_name ? al.map->dso->long_name : "Unknown"); 745 al.map->dso->auxtrace_warned = true; 746 } 747 return 0; 748 } 749 750 return len; 751 } 752 753 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, 754 bool formatted) 755 { 756 struct cs_etm_decoder_params d_params; 757 struct cs_etm_trace_params *t_params = NULL; 758 struct cs_etm_queue *etmq; 759 /* 760 * Each queue can only contain data from one CPU when unformatted, so only one decoder is 761 * needed. 762 */ 763 int decoders = formatted ? etm->num_cpu : 1; 764 765 etmq = zalloc(sizeof(*etmq)); 766 if (!etmq) 767 return NULL; 768 769 etmq->traceid_queues_list = intlist__new(NULL); 770 if (!etmq->traceid_queues_list) 771 goto out_free; 772 773 /* Use metadata to fill in trace parameters for trace decoder */ 774 t_params = zalloc(sizeof(*t_params) * decoders); 775 776 if (!t_params) 777 goto out_free; 778 779 if (cs_etm__init_trace_params(t_params, etm, decoders)) 780 goto out_free; 781 782 /* Set decoder parameters to decode trace packets */ 783 if (cs_etm__init_decoder_params(&d_params, etmq, 784 dump_trace ? CS_ETM_OPERATION_PRINT : 785 CS_ETM_OPERATION_DECODE, 786 formatted)) 787 goto out_free; 788 789 etmq->decoder = cs_etm_decoder__new(decoders, &d_params, 790 t_params); 791 792 if (!etmq->decoder) 793 goto out_free; 794 795 /* 796 * Register a function to handle all memory accesses required by 797 * the trace decoder library. 798 */ 799 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 800 0x0L, ((u64) -1L), 801 cs_etm__mem_access)) 802 goto out_free_decoder; 803 804 zfree(&t_params); 805 return etmq; 806 807 out_free_decoder: 808 cs_etm_decoder__free(etmq->decoder); 809 out_free: 810 intlist__delete(etmq->traceid_queues_list); 811 free(etmq); 812 813 return NULL; 814 } 815 816 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, 817 struct auxtrace_queue *queue, 818 unsigned int queue_nr, 819 bool formatted) 820 { 821 struct cs_etm_queue *etmq = queue->priv; 822 823 if (list_empty(&queue->head) || etmq) 824 return 0; 825 826 etmq = cs_etm__alloc_queue(etm, formatted); 827 828 if (!etmq) 829 return -ENOMEM; 830 831 queue->priv = etmq; 832 etmq->etm = etm; 833 etmq->queue_nr = queue_nr; 834 etmq->offset = 0; 835 836 return 0; 837 } 838 839 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm, 840 struct cs_etm_queue *etmq, 841 unsigned int queue_nr) 842 { 843 int ret = 0; 844 unsigned int cs_queue_nr; 845 u8 trace_chan_id; 846 u64 cs_timestamp; 847 848 /* 849 * We are under a CPU-wide trace scenario. As such we need to know 850 * when the code that generated the traces started to execute so that 851 * it can be correlated with execution on other CPUs. So we get a 852 * handle on the beginning of traces and decode until we find a 853 * timestamp. The timestamp is then added to the auxtrace min heap 854 * in order to know what nibble (of all the etmqs) to decode first. 855 */ 856 while (1) { 857 /* 858 * Fetch an aux_buffer from this etmq. Bail if no more 859 * blocks or an error has been encountered. 860 */ 861 ret = cs_etm__get_data_block(etmq); 862 if (ret <= 0) 863 goto out; 864 865 /* 866 * Run decoder on the trace block. The decoder will stop when 867 * encountering a CS timestamp, a full packet queue or the end of 868 * trace for that block. 869 */ 870 ret = cs_etm__decode_data_block(etmq); 871 if (ret) 872 goto out; 873 874 /* 875 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all 876 * the timestamp calculation for us. 877 */ 878 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 879 880 /* We found a timestamp, no need to continue. */ 881 if (cs_timestamp) 882 break; 883 884 /* 885 * We didn't find a timestamp so empty all the traceid packet 886 * queues before looking for another timestamp packet, either 887 * in the current data block or a new one. Packets that were 888 * just decoded are useless since no timestamp has been 889 * associated with them. As such simply discard them. 890 */ 891 cs_etm__clear_all_packet_queues(etmq); 892 } 893 894 /* 895 * We have a timestamp. Add it to the min heap to reflect when 896 * instructions conveyed by the range packets of this traceID queue 897 * started to execute. Once the same has been done for all the traceID 898 * queues of each etmq, redenring and decoding can start in 899 * chronological order. 900 * 901 * Note that packets decoded above are still in the traceID's packet 902 * queue and will be processed in cs_etm__process_queues(). 903 */ 904 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 905 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 906 out: 907 return ret; 908 } 909 910 static inline 911 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, 912 struct cs_etm_traceid_queue *tidq) 913 { 914 struct branch_stack *bs_src = tidq->last_branch_rb; 915 struct branch_stack *bs_dst = tidq->last_branch; 916 size_t nr = 0; 917 918 /* 919 * Set the number of records before early exit: ->nr is used to 920 * determine how many branches to copy from ->entries. 921 */ 922 bs_dst->nr = bs_src->nr; 923 924 /* 925 * Early exit when there is nothing to copy. 926 */ 927 if (!bs_src->nr) 928 return; 929 930 /* 931 * As bs_src->entries is a circular buffer, we need to copy from it in 932 * two steps. First, copy the branches from the most recently inserted 933 * branch ->last_branch_pos until the end of bs_src->entries buffer. 934 */ 935 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; 936 memcpy(&bs_dst->entries[0], 937 &bs_src->entries[tidq->last_branch_pos], 938 sizeof(struct branch_entry) * nr); 939 940 /* 941 * If we wrapped around at least once, the branches from the beginning 942 * of the bs_src->entries buffer and until the ->last_branch_pos element 943 * are older valid branches: copy them over. The total number of 944 * branches copied over will be equal to the number of branches asked by 945 * the user in last_branch_sz. 946 */ 947 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { 948 memcpy(&bs_dst->entries[nr], 949 &bs_src->entries[0], 950 sizeof(struct branch_entry) * tidq->last_branch_pos); 951 } 952 } 953 954 static inline 955 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) 956 { 957 tidq->last_branch_pos = 0; 958 tidq->last_branch_rb->nr = 0; 959 } 960 961 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, 962 u8 trace_chan_id, u64 addr) 963 { 964 u8 instrBytes[2]; 965 966 cs_etm__mem_access(etmq, trace_chan_id, addr, 967 ARRAY_SIZE(instrBytes), instrBytes); 968 /* 969 * T32 instruction size is indicated by bits[15:11] of the first 970 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 971 * denote a 32-bit instruction. 972 */ 973 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; 974 } 975 976 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) 977 { 978 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 979 if (packet->sample_type == CS_ETM_DISCONTINUITY) 980 return 0; 981 982 return packet->start_addr; 983 } 984 985 static inline 986 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) 987 { 988 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ 989 if (packet->sample_type == CS_ETM_DISCONTINUITY) 990 return 0; 991 992 return packet->end_addr - packet->last_instr_size; 993 } 994 995 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, 996 u64 trace_chan_id, 997 const struct cs_etm_packet *packet, 998 u64 offset) 999 { 1000 if (packet->isa == CS_ETM_ISA_T32) { 1001 u64 addr = packet->start_addr; 1002 1003 while (offset) { 1004 addr += cs_etm__t32_instr_size(etmq, 1005 trace_chan_id, addr); 1006 offset--; 1007 } 1008 return addr; 1009 } 1010 1011 /* Assume a 4 byte instruction size (A32/A64) */ 1012 return packet->start_addr + offset * 4; 1013 } 1014 1015 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, 1016 struct cs_etm_traceid_queue *tidq) 1017 { 1018 struct branch_stack *bs = tidq->last_branch_rb; 1019 struct branch_entry *be; 1020 1021 /* 1022 * The branches are recorded in a circular buffer in reverse 1023 * chronological order: we start recording from the last element of the 1024 * buffer down. After writing the first element of the stack, move the 1025 * insert position back to the end of the buffer. 1026 */ 1027 if (!tidq->last_branch_pos) 1028 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; 1029 1030 tidq->last_branch_pos -= 1; 1031 1032 be = &bs->entries[tidq->last_branch_pos]; 1033 be->from = cs_etm__last_executed_instr(tidq->prev_packet); 1034 be->to = cs_etm__first_executed_instr(tidq->packet); 1035 /* No support for mispredict */ 1036 be->flags.mispred = 0; 1037 be->flags.predicted = 1; 1038 1039 /* 1040 * Increment bs->nr until reaching the number of last branches asked by 1041 * the user on the command line. 1042 */ 1043 if (bs->nr < etmq->etm->synth_opts.last_branch_sz) 1044 bs->nr += 1; 1045 } 1046 1047 static int cs_etm__inject_event(union perf_event *event, 1048 struct perf_sample *sample, u64 type) 1049 { 1050 event->header.size = perf_event__sample_event_size(sample, type, 0); 1051 return perf_event__synthesize_sample(event, type, 0, sample); 1052 } 1053 1054 1055 static int 1056 cs_etm__get_trace(struct cs_etm_queue *etmq) 1057 { 1058 struct auxtrace_buffer *aux_buffer = etmq->buffer; 1059 struct auxtrace_buffer *old_buffer = aux_buffer; 1060 struct auxtrace_queue *queue; 1061 1062 queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; 1063 1064 aux_buffer = auxtrace_buffer__next(queue, aux_buffer); 1065 1066 /* If no more data, drop the previous auxtrace_buffer and return */ 1067 if (!aux_buffer) { 1068 if (old_buffer) 1069 auxtrace_buffer__drop_data(old_buffer); 1070 etmq->buf_len = 0; 1071 return 0; 1072 } 1073 1074 etmq->buffer = aux_buffer; 1075 1076 /* If the aux_buffer doesn't have data associated, try to load it */ 1077 if (!aux_buffer->data) { 1078 /* get the file desc associated with the perf data file */ 1079 int fd = perf_data__fd(etmq->etm->session->data); 1080 1081 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); 1082 if (!aux_buffer->data) 1083 return -ENOMEM; 1084 } 1085 1086 /* If valid, drop the previous buffer */ 1087 if (old_buffer) 1088 auxtrace_buffer__drop_data(old_buffer); 1089 1090 etmq->buf_used = 0; 1091 etmq->buf_len = aux_buffer->size; 1092 etmq->buf = aux_buffer->data; 1093 1094 return etmq->buf_len; 1095 } 1096 1097 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, 1098 struct cs_etm_traceid_queue *tidq) 1099 { 1100 if ((!tidq->thread) && (tidq->tid != -1)) 1101 tidq->thread = machine__find_thread(etm->machine, -1, 1102 tidq->tid); 1103 1104 if (tidq->thread) 1105 tidq->pid = tidq->thread->pid_; 1106 } 1107 1108 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq, 1109 pid_t tid, u8 trace_chan_id) 1110 { 1111 int cpu, err = -EINVAL; 1112 struct cs_etm_auxtrace *etm = etmq->etm; 1113 struct cs_etm_traceid_queue *tidq; 1114 1115 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 1116 if (!tidq) 1117 return err; 1118 1119 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) 1120 return err; 1121 1122 err = machine__set_current_tid(etm->machine, cpu, tid, tid); 1123 if (err) 1124 return err; 1125 1126 tidq->tid = tid; 1127 thread__zput(tidq->thread); 1128 1129 cs_etm__set_pid_tid_cpu(etm, tidq); 1130 return 0; 1131 } 1132 1133 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) 1134 { 1135 return !!etmq->etm->timeless_decoding; 1136 } 1137 1138 static void cs_etm__copy_insn(struct cs_etm_queue *etmq, 1139 u64 trace_chan_id, 1140 const struct cs_etm_packet *packet, 1141 struct perf_sample *sample) 1142 { 1143 /* 1144 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY 1145 * packet, so directly bail out with 'insn_len' = 0. 1146 */ 1147 if (packet->sample_type == CS_ETM_DISCONTINUITY) { 1148 sample->insn_len = 0; 1149 return; 1150 } 1151 1152 /* 1153 * T32 instruction size might be 32-bit or 16-bit, decide by calling 1154 * cs_etm__t32_instr_size(). 1155 */ 1156 if (packet->isa == CS_ETM_ISA_T32) 1157 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, 1158 sample->ip); 1159 /* Otherwise, A64 and A32 instruction size are always 32-bit. */ 1160 else 1161 sample->insn_len = 4; 1162 1163 cs_etm__mem_access(etmq, trace_chan_id, sample->ip, 1164 sample->insn_len, (void *)sample->insn); 1165 } 1166 1167 u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp) 1168 { 1169 struct cs_etm_auxtrace *etm = etmq->etm; 1170 1171 if (etm->has_virtual_ts) 1172 return tsc_to_perf_time(cs_timestamp, &etm->tc); 1173 else 1174 return cs_timestamp; 1175 } 1176 1177 static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq, 1178 struct cs_etm_traceid_queue *tidq) 1179 { 1180 struct cs_etm_auxtrace *etm = etmq->etm; 1181 struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue; 1182 1183 if (etm->timeless_decoding) 1184 return 0; 1185 else if (etm->has_virtual_ts) 1186 return packet_queue->cs_timestamp; 1187 else 1188 return etm->latest_kernel_timestamp; 1189 } 1190 1191 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, 1192 struct cs_etm_traceid_queue *tidq, 1193 u64 addr, u64 period) 1194 { 1195 int ret = 0; 1196 struct cs_etm_auxtrace *etm = etmq->etm; 1197 union perf_event *event = tidq->event_buf; 1198 struct perf_sample sample = {.ip = 0,}; 1199 1200 event->sample.header.type = PERF_RECORD_SAMPLE; 1201 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr); 1202 event->sample.header.size = sizeof(struct perf_event_header); 1203 1204 /* Set time field based on etm auxtrace config. */ 1205 sample.time = cs_etm__resolve_sample_time(etmq, tidq); 1206 1207 sample.ip = addr; 1208 sample.pid = tidq->pid; 1209 sample.tid = tidq->tid; 1210 sample.id = etmq->etm->instructions_id; 1211 sample.stream_id = etmq->etm->instructions_id; 1212 sample.period = period; 1213 sample.cpu = tidq->packet->cpu; 1214 sample.flags = tidq->prev_packet->flags; 1215 sample.cpumode = event->sample.header.misc; 1216 1217 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); 1218 1219 if (etm->synth_opts.last_branch) 1220 sample.branch_stack = tidq->last_branch; 1221 1222 if (etm->synth_opts.inject) { 1223 ret = cs_etm__inject_event(event, &sample, 1224 etm->instructions_sample_type); 1225 if (ret) 1226 return ret; 1227 } 1228 1229 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1230 1231 if (ret) 1232 pr_err( 1233 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1234 ret); 1235 1236 return ret; 1237 } 1238 1239 /* 1240 * The cs etm packet encodes an instruction range between a branch target 1241 * and the next taken branch. Generate sample accordingly. 1242 */ 1243 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, 1244 struct cs_etm_traceid_queue *tidq) 1245 { 1246 int ret = 0; 1247 struct cs_etm_auxtrace *etm = etmq->etm; 1248 struct perf_sample sample = {.ip = 0,}; 1249 union perf_event *event = tidq->event_buf; 1250 struct dummy_branch_stack { 1251 u64 nr; 1252 u64 hw_idx; 1253 struct branch_entry entries; 1254 } dummy_bs; 1255 u64 ip; 1256 1257 ip = cs_etm__last_executed_instr(tidq->prev_packet); 1258 1259 event->sample.header.type = PERF_RECORD_SAMPLE; 1260 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip); 1261 event->sample.header.size = sizeof(struct perf_event_header); 1262 1263 /* Set time field based on etm auxtrace config. */ 1264 sample.time = cs_etm__resolve_sample_time(etmq, tidq); 1265 1266 sample.ip = ip; 1267 sample.pid = tidq->pid; 1268 sample.tid = tidq->tid; 1269 sample.addr = cs_etm__first_executed_instr(tidq->packet); 1270 sample.id = etmq->etm->branches_id; 1271 sample.stream_id = etmq->etm->branches_id; 1272 sample.period = 1; 1273 sample.cpu = tidq->packet->cpu; 1274 sample.flags = tidq->prev_packet->flags; 1275 sample.cpumode = event->sample.header.misc; 1276 1277 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, 1278 &sample); 1279 1280 /* 1281 * perf report cannot handle events without a branch stack 1282 */ 1283 if (etm->synth_opts.last_branch) { 1284 dummy_bs = (struct dummy_branch_stack){ 1285 .nr = 1, 1286 .hw_idx = -1ULL, 1287 .entries = { 1288 .from = sample.ip, 1289 .to = sample.addr, 1290 }, 1291 }; 1292 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1293 } 1294 1295 if (etm->synth_opts.inject) { 1296 ret = cs_etm__inject_event(event, &sample, 1297 etm->branches_sample_type); 1298 if (ret) 1299 return ret; 1300 } 1301 1302 ret = perf_session__deliver_synth_event(etm->session, event, &sample); 1303 1304 if (ret) 1305 pr_err( 1306 "CS ETM Trace: failed to deliver instruction event, error %d\n", 1307 ret); 1308 1309 return ret; 1310 } 1311 1312 struct cs_etm_synth { 1313 struct perf_tool dummy_tool; 1314 struct perf_session *session; 1315 }; 1316 1317 static int cs_etm__event_synth(struct perf_tool *tool, 1318 union perf_event *event, 1319 struct perf_sample *sample __maybe_unused, 1320 struct machine *machine __maybe_unused) 1321 { 1322 struct cs_etm_synth *cs_etm_synth = 1323 container_of(tool, struct cs_etm_synth, dummy_tool); 1324 1325 return perf_session__deliver_synth_event(cs_etm_synth->session, 1326 event, NULL); 1327 } 1328 1329 static int cs_etm__synth_event(struct perf_session *session, 1330 struct perf_event_attr *attr, u64 id) 1331 { 1332 struct cs_etm_synth cs_etm_synth; 1333 1334 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); 1335 cs_etm_synth.session = session; 1336 1337 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, 1338 &id, cs_etm__event_synth); 1339 } 1340 1341 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, 1342 struct perf_session *session) 1343 { 1344 struct evlist *evlist = session->evlist; 1345 struct evsel *evsel; 1346 struct perf_event_attr attr; 1347 bool found = false; 1348 u64 id; 1349 int err; 1350 1351 evlist__for_each_entry(evlist, evsel) { 1352 if (evsel->core.attr.type == etm->pmu_type) { 1353 found = true; 1354 break; 1355 } 1356 } 1357 1358 if (!found) { 1359 pr_debug("No selected events with CoreSight Trace data\n"); 1360 return 0; 1361 } 1362 1363 memset(&attr, 0, sizeof(struct perf_event_attr)); 1364 attr.size = sizeof(struct perf_event_attr); 1365 attr.type = PERF_TYPE_HARDWARE; 1366 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 1367 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 1368 PERF_SAMPLE_PERIOD; 1369 if (etm->timeless_decoding) 1370 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 1371 else 1372 attr.sample_type |= PERF_SAMPLE_TIME; 1373 1374 attr.exclude_user = evsel->core.attr.exclude_user; 1375 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 1376 attr.exclude_hv = evsel->core.attr.exclude_hv; 1377 attr.exclude_host = evsel->core.attr.exclude_host; 1378 attr.exclude_guest = evsel->core.attr.exclude_guest; 1379 attr.sample_id_all = evsel->core.attr.sample_id_all; 1380 attr.read_format = evsel->core.attr.read_format; 1381 1382 /* create new id val to be a fixed offset from evsel id */ 1383 id = evsel->core.id[0] + 1000000000; 1384 1385 if (!id) 1386 id = 1; 1387 1388 if (etm->synth_opts.branches) { 1389 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 1390 attr.sample_period = 1; 1391 attr.sample_type |= PERF_SAMPLE_ADDR; 1392 err = cs_etm__synth_event(session, &attr, id); 1393 if (err) 1394 return err; 1395 etm->branches_sample_type = attr.sample_type; 1396 etm->branches_id = id; 1397 id += 1; 1398 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 1399 } 1400 1401 if (etm->synth_opts.last_branch) { 1402 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 1403 /* 1404 * We don't use the hardware index, but the sample generation 1405 * code uses the new format branch_stack with this field, 1406 * so the event attributes must indicate that it's present. 1407 */ 1408 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 1409 } 1410 1411 if (etm->synth_opts.instructions) { 1412 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 1413 attr.sample_period = etm->synth_opts.period; 1414 etm->instructions_sample_period = attr.sample_period; 1415 err = cs_etm__synth_event(session, &attr, id); 1416 if (err) 1417 return err; 1418 etm->instructions_sample_type = attr.sample_type; 1419 etm->instructions_id = id; 1420 id += 1; 1421 } 1422 1423 return 0; 1424 } 1425 1426 static int cs_etm__sample(struct cs_etm_queue *etmq, 1427 struct cs_etm_traceid_queue *tidq) 1428 { 1429 struct cs_etm_auxtrace *etm = etmq->etm; 1430 int ret; 1431 u8 trace_chan_id = tidq->trace_chan_id; 1432 u64 instrs_prev; 1433 1434 /* Get instructions remainder from previous packet */ 1435 instrs_prev = tidq->period_instructions; 1436 1437 tidq->period_instructions += tidq->packet->instr_count; 1438 1439 /* 1440 * Record a branch when the last instruction in 1441 * PREV_PACKET is a branch. 1442 */ 1443 if (etm->synth_opts.last_branch && 1444 tidq->prev_packet->sample_type == CS_ETM_RANGE && 1445 tidq->prev_packet->last_instr_taken_branch) 1446 cs_etm__update_last_branch_rb(etmq, tidq); 1447 1448 if (etm->synth_opts.instructions && 1449 tidq->period_instructions >= etm->instructions_sample_period) { 1450 /* 1451 * Emit instruction sample periodically 1452 * TODO: allow period to be defined in cycles and clock time 1453 */ 1454 1455 /* 1456 * Below diagram demonstrates the instruction samples 1457 * generation flows: 1458 * 1459 * Instrs Instrs Instrs Instrs 1460 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) 1461 * | | | | 1462 * V V V V 1463 * -------------------------------------------------- 1464 * ^ ^ 1465 * | | 1466 * Period Period 1467 * instructions(Pi) instructions(Pi') 1468 * 1469 * | | 1470 * \---------------- -----------------/ 1471 * V 1472 * tidq->packet->instr_count 1473 * 1474 * Instrs Sample(n...) are the synthesised samples occurring 1475 * every etm->instructions_sample_period instructions - as 1476 * defined on the perf command line. Sample(n) is being the 1477 * last sample before the current etm packet, n+1 to n+3 1478 * samples are generated from the current etm packet. 1479 * 1480 * tidq->packet->instr_count represents the number of 1481 * instructions in the current etm packet. 1482 * 1483 * Period instructions (Pi) contains the number of 1484 * instructions executed after the sample point(n) from the 1485 * previous etm packet. This will always be less than 1486 * etm->instructions_sample_period. 1487 * 1488 * When generate new samples, it combines with two parts 1489 * instructions, one is the tail of the old packet and another 1490 * is the head of the new coming packet, to generate 1491 * sample(n+1); sample(n+2) and sample(n+3) consume the 1492 * instructions with sample period. After sample(n+3), the rest 1493 * instructions will be used by later packet and it is assigned 1494 * to tidq->period_instructions for next round calculation. 1495 */ 1496 1497 /* 1498 * Get the initial offset into the current packet instructions; 1499 * entry conditions ensure that instrs_prev is less than 1500 * etm->instructions_sample_period. 1501 */ 1502 u64 offset = etm->instructions_sample_period - instrs_prev; 1503 u64 addr; 1504 1505 /* Prepare last branches for instruction sample */ 1506 if (etm->synth_opts.last_branch) 1507 cs_etm__copy_last_branch_rb(etmq, tidq); 1508 1509 while (tidq->period_instructions >= 1510 etm->instructions_sample_period) { 1511 /* 1512 * Calculate the address of the sampled instruction (-1 1513 * as sample is reported as though instruction has just 1514 * been executed, but PC has not advanced to next 1515 * instruction) 1516 */ 1517 addr = cs_etm__instr_addr(etmq, trace_chan_id, 1518 tidq->packet, offset - 1); 1519 ret = cs_etm__synth_instruction_sample( 1520 etmq, tidq, addr, 1521 etm->instructions_sample_period); 1522 if (ret) 1523 return ret; 1524 1525 offset += etm->instructions_sample_period; 1526 tidq->period_instructions -= 1527 etm->instructions_sample_period; 1528 } 1529 } 1530 1531 if (etm->synth_opts.branches) { 1532 bool generate_sample = false; 1533 1534 /* Generate sample for tracing on packet */ 1535 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1536 generate_sample = true; 1537 1538 /* Generate sample for branch taken packet */ 1539 if (tidq->prev_packet->sample_type == CS_ETM_RANGE && 1540 tidq->prev_packet->last_instr_taken_branch) 1541 generate_sample = true; 1542 1543 if (generate_sample) { 1544 ret = cs_etm__synth_branch_sample(etmq, tidq); 1545 if (ret) 1546 return ret; 1547 } 1548 } 1549 1550 cs_etm__packet_swap(etm, tidq); 1551 1552 return 0; 1553 } 1554 1555 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) 1556 { 1557 /* 1558 * When the exception packet is inserted, whether the last instruction 1559 * in previous range packet is taken branch or not, we need to force 1560 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures 1561 * to generate branch sample for the instruction range before the 1562 * exception is trapped to kernel or before the exception returning. 1563 * 1564 * The exception packet includes the dummy address values, so don't 1565 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful 1566 * for generating instruction and branch samples. 1567 */ 1568 if (tidq->prev_packet->sample_type == CS_ETM_RANGE) 1569 tidq->prev_packet->last_instr_taken_branch = true; 1570 1571 return 0; 1572 } 1573 1574 static int cs_etm__flush(struct cs_etm_queue *etmq, 1575 struct cs_etm_traceid_queue *tidq) 1576 { 1577 int err = 0; 1578 struct cs_etm_auxtrace *etm = etmq->etm; 1579 1580 /* Handle start tracing packet */ 1581 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) 1582 goto swap_packet; 1583 1584 if (etmq->etm->synth_opts.last_branch && 1585 etmq->etm->synth_opts.instructions && 1586 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1587 u64 addr; 1588 1589 /* Prepare last branches for instruction sample */ 1590 cs_etm__copy_last_branch_rb(etmq, tidq); 1591 1592 /* 1593 * Generate a last branch event for the branches left in the 1594 * circular buffer at the end of the trace. 1595 * 1596 * Use the address of the end of the last reported execution 1597 * range 1598 */ 1599 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1600 1601 err = cs_etm__synth_instruction_sample( 1602 etmq, tidq, addr, 1603 tidq->period_instructions); 1604 if (err) 1605 return err; 1606 1607 tidq->period_instructions = 0; 1608 1609 } 1610 1611 if (etm->synth_opts.branches && 1612 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1613 err = cs_etm__synth_branch_sample(etmq, tidq); 1614 if (err) 1615 return err; 1616 } 1617 1618 swap_packet: 1619 cs_etm__packet_swap(etm, tidq); 1620 1621 /* Reset last branches after flush the trace */ 1622 if (etm->synth_opts.last_branch) 1623 cs_etm__reset_last_branch_rb(tidq); 1624 1625 return err; 1626 } 1627 1628 static int cs_etm__end_block(struct cs_etm_queue *etmq, 1629 struct cs_etm_traceid_queue *tidq) 1630 { 1631 int err; 1632 1633 /* 1634 * It has no new packet coming and 'etmq->packet' contains the stale 1635 * packet which was set at the previous time with packets swapping; 1636 * so skip to generate branch sample to avoid stale packet. 1637 * 1638 * For this case only flush branch stack and generate a last branch 1639 * event for the branches left in the circular buffer at the end of 1640 * the trace. 1641 */ 1642 if (etmq->etm->synth_opts.last_branch && 1643 etmq->etm->synth_opts.instructions && 1644 tidq->prev_packet->sample_type == CS_ETM_RANGE) { 1645 u64 addr; 1646 1647 /* Prepare last branches for instruction sample */ 1648 cs_etm__copy_last_branch_rb(etmq, tidq); 1649 1650 /* 1651 * Use the address of the end of the last reported execution 1652 * range. 1653 */ 1654 addr = cs_etm__last_executed_instr(tidq->prev_packet); 1655 1656 err = cs_etm__synth_instruction_sample( 1657 etmq, tidq, addr, 1658 tidq->period_instructions); 1659 if (err) 1660 return err; 1661 1662 tidq->period_instructions = 0; 1663 } 1664 1665 return 0; 1666 } 1667 /* 1668 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue 1669 * if need be. 1670 * Returns: < 0 if error 1671 * = 0 if no more auxtrace_buffer to read 1672 * > 0 if the current buffer isn't empty yet 1673 */ 1674 static int cs_etm__get_data_block(struct cs_etm_queue *etmq) 1675 { 1676 int ret; 1677 1678 if (!etmq->buf_len) { 1679 ret = cs_etm__get_trace(etmq); 1680 if (ret <= 0) 1681 return ret; 1682 /* 1683 * We cannot assume consecutive blocks in the data file 1684 * are contiguous, reset the decoder to force re-sync. 1685 */ 1686 ret = cs_etm_decoder__reset(etmq->decoder); 1687 if (ret) 1688 return ret; 1689 } 1690 1691 return etmq->buf_len; 1692 } 1693 1694 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, 1695 struct cs_etm_packet *packet, 1696 u64 end_addr) 1697 { 1698 /* Initialise to keep compiler happy */ 1699 u16 instr16 = 0; 1700 u32 instr32 = 0; 1701 u64 addr; 1702 1703 switch (packet->isa) { 1704 case CS_ETM_ISA_T32: 1705 /* 1706 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: 1707 * 1708 * b'15 b'8 1709 * +-----------------+--------+ 1710 * | 1 1 0 1 1 1 1 1 | imm8 | 1711 * +-----------------+--------+ 1712 * 1713 * According to the specification, it only defines SVC for T32 1714 * with 16 bits instruction and has no definition for 32bits; 1715 * so below only read 2 bytes as instruction size for T32. 1716 */ 1717 addr = end_addr - 2; 1718 cs_etm__mem_access(etmq, trace_chan_id, addr, 1719 sizeof(instr16), (u8 *)&instr16); 1720 if ((instr16 & 0xFF00) == 0xDF00) 1721 return true; 1722 1723 break; 1724 case CS_ETM_ISA_A32: 1725 /* 1726 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: 1727 * 1728 * b'31 b'28 b'27 b'24 1729 * +---------+---------+-------------------------+ 1730 * | !1111 | 1 1 1 1 | imm24 | 1731 * +---------+---------+-------------------------+ 1732 */ 1733 addr = end_addr - 4; 1734 cs_etm__mem_access(etmq, trace_chan_id, addr, 1735 sizeof(instr32), (u8 *)&instr32); 1736 if ((instr32 & 0x0F000000) == 0x0F000000 && 1737 (instr32 & 0xF0000000) != 0xF0000000) 1738 return true; 1739 1740 break; 1741 case CS_ETM_ISA_A64: 1742 /* 1743 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: 1744 * 1745 * b'31 b'21 b'4 b'0 1746 * +-----------------------+---------+-----------+ 1747 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | 1748 * +-----------------------+---------+-----------+ 1749 */ 1750 addr = end_addr - 4; 1751 cs_etm__mem_access(etmq, trace_chan_id, addr, 1752 sizeof(instr32), (u8 *)&instr32); 1753 if ((instr32 & 0xFFE0001F) == 0xd4000001) 1754 return true; 1755 1756 break; 1757 case CS_ETM_ISA_UNKNOWN: 1758 default: 1759 break; 1760 } 1761 1762 return false; 1763 } 1764 1765 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, 1766 struct cs_etm_traceid_queue *tidq, u64 magic) 1767 { 1768 u8 trace_chan_id = tidq->trace_chan_id; 1769 struct cs_etm_packet *packet = tidq->packet; 1770 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1771 1772 if (magic == __perf_cs_etmv3_magic) 1773 if (packet->exception_number == CS_ETMV3_EXC_SVC) 1774 return true; 1775 1776 /* 1777 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and 1778 * HVC cases; need to check if it's SVC instruction based on 1779 * packet address. 1780 */ 1781 if (magic == __perf_cs_etmv4_magic) { 1782 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1783 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1784 prev_packet->end_addr)) 1785 return true; 1786 } 1787 1788 return false; 1789 } 1790 1791 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, 1792 u64 magic) 1793 { 1794 struct cs_etm_packet *packet = tidq->packet; 1795 1796 if (magic == __perf_cs_etmv3_magic) 1797 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || 1798 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || 1799 packet->exception_number == CS_ETMV3_EXC_PE_RESET || 1800 packet->exception_number == CS_ETMV3_EXC_IRQ || 1801 packet->exception_number == CS_ETMV3_EXC_FIQ) 1802 return true; 1803 1804 if (magic == __perf_cs_etmv4_magic) 1805 if (packet->exception_number == CS_ETMV4_EXC_RESET || 1806 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || 1807 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || 1808 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || 1809 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || 1810 packet->exception_number == CS_ETMV4_EXC_IRQ || 1811 packet->exception_number == CS_ETMV4_EXC_FIQ) 1812 return true; 1813 1814 return false; 1815 } 1816 1817 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, 1818 struct cs_etm_traceid_queue *tidq, 1819 u64 magic) 1820 { 1821 u8 trace_chan_id = tidq->trace_chan_id; 1822 struct cs_etm_packet *packet = tidq->packet; 1823 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1824 1825 if (magic == __perf_cs_etmv3_magic) 1826 if (packet->exception_number == CS_ETMV3_EXC_SMC || 1827 packet->exception_number == CS_ETMV3_EXC_HYP || 1828 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || 1829 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || 1830 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || 1831 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || 1832 packet->exception_number == CS_ETMV3_EXC_GENERIC) 1833 return true; 1834 1835 if (magic == __perf_cs_etmv4_magic) { 1836 if (packet->exception_number == CS_ETMV4_EXC_TRAP || 1837 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || 1838 packet->exception_number == CS_ETMV4_EXC_INST_FAULT || 1839 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) 1840 return true; 1841 1842 /* 1843 * For CS_ETMV4_EXC_CALL, except SVC other instructions 1844 * (SMC, HVC) are taken as sync exceptions. 1845 */ 1846 if (packet->exception_number == CS_ETMV4_EXC_CALL && 1847 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, 1848 prev_packet->end_addr)) 1849 return true; 1850 1851 /* 1852 * ETMv4 has 5 bits for exception number; if the numbers 1853 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] 1854 * they are implementation defined exceptions. 1855 * 1856 * For this case, simply take it as sync exception. 1857 */ 1858 if (packet->exception_number > CS_ETMV4_EXC_FIQ && 1859 packet->exception_number <= CS_ETMV4_EXC_END) 1860 return true; 1861 } 1862 1863 return false; 1864 } 1865 1866 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, 1867 struct cs_etm_traceid_queue *tidq) 1868 { 1869 struct cs_etm_packet *packet = tidq->packet; 1870 struct cs_etm_packet *prev_packet = tidq->prev_packet; 1871 u8 trace_chan_id = tidq->trace_chan_id; 1872 u64 magic; 1873 int ret; 1874 1875 switch (packet->sample_type) { 1876 case CS_ETM_RANGE: 1877 /* 1878 * Immediate branch instruction without neither link nor 1879 * return flag, it's normal branch instruction within 1880 * the function. 1881 */ 1882 if (packet->last_instr_type == OCSD_INSTR_BR && 1883 packet->last_instr_subtype == OCSD_S_INSTR_NONE) { 1884 packet->flags = PERF_IP_FLAG_BRANCH; 1885 1886 if (packet->last_instr_cond) 1887 packet->flags |= PERF_IP_FLAG_CONDITIONAL; 1888 } 1889 1890 /* 1891 * Immediate branch instruction with link (e.g. BL), this is 1892 * branch instruction for function call. 1893 */ 1894 if (packet->last_instr_type == OCSD_INSTR_BR && 1895 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 1896 packet->flags = PERF_IP_FLAG_BRANCH | 1897 PERF_IP_FLAG_CALL; 1898 1899 /* 1900 * Indirect branch instruction with link (e.g. BLR), this is 1901 * branch instruction for function call. 1902 */ 1903 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1904 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) 1905 packet->flags = PERF_IP_FLAG_BRANCH | 1906 PERF_IP_FLAG_CALL; 1907 1908 /* 1909 * Indirect branch instruction with subtype of 1910 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for 1911 * function return for A32/T32. 1912 */ 1913 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1914 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) 1915 packet->flags = PERF_IP_FLAG_BRANCH | 1916 PERF_IP_FLAG_RETURN; 1917 1918 /* 1919 * Indirect branch instruction without link (e.g. BR), usually 1920 * this is used for function return, especially for functions 1921 * within dynamic link lib. 1922 */ 1923 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1924 packet->last_instr_subtype == OCSD_S_INSTR_NONE) 1925 packet->flags = PERF_IP_FLAG_BRANCH | 1926 PERF_IP_FLAG_RETURN; 1927 1928 /* Return instruction for function return. */ 1929 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && 1930 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) 1931 packet->flags = PERF_IP_FLAG_BRANCH | 1932 PERF_IP_FLAG_RETURN; 1933 1934 /* 1935 * Decoder might insert a discontinuity in the middle of 1936 * instruction packets, fixup prev_packet with flag 1937 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. 1938 */ 1939 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) 1940 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 1941 PERF_IP_FLAG_TRACE_BEGIN; 1942 1943 /* 1944 * If the previous packet is an exception return packet 1945 * and the return address just follows SVC instruction, 1946 * it needs to calibrate the previous packet sample flags 1947 * as PERF_IP_FLAG_SYSCALLRET. 1948 */ 1949 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | 1950 PERF_IP_FLAG_RETURN | 1951 PERF_IP_FLAG_INTERRUPT) && 1952 cs_etm__is_svc_instr(etmq, trace_chan_id, 1953 packet, packet->start_addr)) 1954 prev_packet->flags = PERF_IP_FLAG_BRANCH | 1955 PERF_IP_FLAG_RETURN | 1956 PERF_IP_FLAG_SYSCALLRET; 1957 break; 1958 case CS_ETM_DISCONTINUITY: 1959 /* 1960 * The trace is discontinuous, if the previous packet is 1961 * instruction packet, set flag PERF_IP_FLAG_TRACE_END 1962 * for previous packet. 1963 */ 1964 if (prev_packet->sample_type == CS_ETM_RANGE) 1965 prev_packet->flags |= PERF_IP_FLAG_BRANCH | 1966 PERF_IP_FLAG_TRACE_END; 1967 break; 1968 case CS_ETM_EXCEPTION: 1969 ret = cs_etm__get_magic(packet->trace_chan_id, &magic); 1970 if (ret) 1971 return ret; 1972 1973 /* The exception is for system call. */ 1974 if (cs_etm__is_syscall(etmq, tidq, magic)) 1975 packet->flags = PERF_IP_FLAG_BRANCH | 1976 PERF_IP_FLAG_CALL | 1977 PERF_IP_FLAG_SYSCALLRET; 1978 /* 1979 * The exceptions are triggered by external signals from bus, 1980 * interrupt controller, debug module, PE reset or halt. 1981 */ 1982 else if (cs_etm__is_async_exception(tidq, magic)) 1983 packet->flags = PERF_IP_FLAG_BRANCH | 1984 PERF_IP_FLAG_CALL | 1985 PERF_IP_FLAG_ASYNC | 1986 PERF_IP_FLAG_INTERRUPT; 1987 /* 1988 * Otherwise, exception is caused by trap, instruction & 1989 * data fault, or alignment errors. 1990 */ 1991 else if (cs_etm__is_sync_exception(etmq, tidq, magic)) 1992 packet->flags = PERF_IP_FLAG_BRANCH | 1993 PERF_IP_FLAG_CALL | 1994 PERF_IP_FLAG_INTERRUPT; 1995 1996 /* 1997 * When the exception packet is inserted, since exception 1998 * packet is not used standalone for generating samples 1999 * and it's affiliation to the previous instruction range 2000 * packet; so set previous range packet flags to tell perf 2001 * it is an exception taken branch. 2002 */ 2003 if (prev_packet->sample_type == CS_ETM_RANGE) 2004 prev_packet->flags = packet->flags; 2005 break; 2006 case CS_ETM_EXCEPTION_RET: 2007 /* 2008 * When the exception return packet is inserted, since 2009 * exception return packet is not used standalone for 2010 * generating samples and it's affiliation to the previous 2011 * instruction range packet; so set previous range packet 2012 * flags to tell perf it is an exception return branch. 2013 * 2014 * The exception return can be for either system call or 2015 * other exception types; unfortunately the packet doesn't 2016 * contain exception type related info so we cannot decide 2017 * the exception type purely based on exception return packet. 2018 * If we record the exception number from exception packet and 2019 * reuse it for exception return packet, this is not reliable 2020 * due the trace can be discontinuity or the interrupt can 2021 * be nested, thus the recorded exception number cannot be 2022 * used for exception return packet for these two cases. 2023 * 2024 * For exception return packet, we only need to distinguish the 2025 * packet is for system call or for other types. Thus the 2026 * decision can be deferred when receive the next packet which 2027 * contains the return address, based on the return address we 2028 * can read out the previous instruction and check if it's a 2029 * system call instruction and then calibrate the sample flag 2030 * as needed. 2031 */ 2032 if (prev_packet->sample_type == CS_ETM_RANGE) 2033 prev_packet->flags = PERF_IP_FLAG_BRANCH | 2034 PERF_IP_FLAG_RETURN | 2035 PERF_IP_FLAG_INTERRUPT; 2036 break; 2037 case CS_ETM_EMPTY: 2038 default: 2039 break; 2040 } 2041 2042 return 0; 2043 } 2044 2045 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) 2046 { 2047 int ret = 0; 2048 size_t processed = 0; 2049 2050 /* 2051 * Packets are decoded and added to the decoder's packet queue 2052 * until the decoder packet processing callback has requested that 2053 * processing stops or there is nothing left in the buffer. Normal 2054 * operations that stop processing are a timestamp packet or a full 2055 * decoder buffer queue. 2056 */ 2057 ret = cs_etm_decoder__process_data_block(etmq->decoder, 2058 etmq->offset, 2059 &etmq->buf[etmq->buf_used], 2060 etmq->buf_len, 2061 &processed); 2062 if (ret) 2063 goto out; 2064 2065 etmq->offset += processed; 2066 etmq->buf_used += processed; 2067 etmq->buf_len -= processed; 2068 2069 out: 2070 return ret; 2071 } 2072 2073 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, 2074 struct cs_etm_traceid_queue *tidq) 2075 { 2076 int ret; 2077 struct cs_etm_packet_queue *packet_queue; 2078 2079 packet_queue = &tidq->packet_queue; 2080 2081 /* Process each packet in this chunk */ 2082 while (1) { 2083 ret = cs_etm_decoder__get_packet(packet_queue, 2084 tidq->packet); 2085 if (ret <= 0) 2086 /* 2087 * Stop processing this chunk on 2088 * end of data or error 2089 */ 2090 break; 2091 2092 /* 2093 * Since packet addresses are swapped in packet 2094 * handling within below switch() statements, 2095 * thus setting sample flags must be called 2096 * prior to switch() statement to use address 2097 * information before packets swapping. 2098 */ 2099 ret = cs_etm__set_sample_flags(etmq, tidq); 2100 if (ret < 0) 2101 break; 2102 2103 switch (tidq->packet->sample_type) { 2104 case CS_ETM_RANGE: 2105 /* 2106 * If the packet contains an instruction 2107 * range, generate instruction sequence 2108 * events. 2109 */ 2110 cs_etm__sample(etmq, tidq); 2111 break; 2112 case CS_ETM_EXCEPTION: 2113 case CS_ETM_EXCEPTION_RET: 2114 /* 2115 * If the exception packet is coming, 2116 * make sure the previous instruction 2117 * range packet to be handled properly. 2118 */ 2119 cs_etm__exception(tidq); 2120 break; 2121 case CS_ETM_DISCONTINUITY: 2122 /* 2123 * Discontinuity in trace, flush 2124 * previous branch stack 2125 */ 2126 cs_etm__flush(etmq, tidq); 2127 break; 2128 case CS_ETM_EMPTY: 2129 /* 2130 * Should not receive empty packet, 2131 * report error. 2132 */ 2133 pr_err("CS ETM Trace: empty packet\n"); 2134 return -EINVAL; 2135 default: 2136 break; 2137 } 2138 } 2139 2140 return ret; 2141 } 2142 2143 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) 2144 { 2145 int idx; 2146 struct int_node *inode; 2147 struct cs_etm_traceid_queue *tidq; 2148 struct intlist *traceid_queues_list = etmq->traceid_queues_list; 2149 2150 intlist__for_each_entry(inode, traceid_queues_list) { 2151 idx = (int)(intptr_t)inode->priv; 2152 tidq = etmq->traceid_queues[idx]; 2153 2154 /* Ignore return value */ 2155 cs_etm__process_traceid_queue(etmq, tidq); 2156 2157 /* 2158 * Generate an instruction sample with the remaining 2159 * branchstack entries. 2160 */ 2161 cs_etm__flush(etmq, tidq); 2162 } 2163 } 2164 2165 static int cs_etm__run_decoder(struct cs_etm_queue *etmq) 2166 { 2167 int err = 0; 2168 struct cs_etm_traceid_queue *tidq; 2169 2170 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); 2171 if (!tidq) 2172 return -EINVAL; 2173 2174 /* Go through each buffer in the queue and decode them one by one */ 2175 while (1) { 2176 err = cs_etm__get_data_block(etmq); 2177 if (err <= 0) 2178 return err; 2179 2180 /* Run trace decoder until buffer consumed or end of trace */ 2181 do { 2182 err = cs_etm__decode_data_block(etmq); 2183 if (err) 2184 return err; 2185 2186 /* 2187 * Process each packet in this chunk, nothing to do if 2188 * an error occurs other than hoping the next one will 2189 * be better. 2190 */ 2191 err = cs_etm__process_traceid_queue(etmq, tidq); 2192 2193 } while (etmq->buf_len); 2194 2195 if (err == 0) 2196 /* Flush any remaining branch stack entries */ 2197 err = cs_etm__end_block(etmq, tidq); 2198 } 2199 2200 return err; 2201 } 2202 2203 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, 2204 pid_t tid) 2205 { 2206 unsigned int i; 2207 struct auxtrace_queues *queues = &etm->queues; 2208 2209 for (i = 0; i < queues->nr_queues; i++) { 2210 struct auxtrace_queue *queue = &etm->queues.queue_array[i]; 2211 struct cs_etm_queue *etmq = queue->priv; 2212 struct cs_etm_traceid_queue *tidq; 2213 2214 if (!etmq) 2215 continue; 2216 2217 tidq = cs_etm__etmq_get_traceid_queue(etmq, 2218 CS_ETM_PER_THREAD_TRACEID); 2219 2220 if (!tidq) 2221 continue; 2222 2223 if ((tid == -1) || (tidq->tid == tid)) { 2224 cs_etm__set_pid_tid_cpu(etm, tidq); 2225 cs_etm__run_decoder(etmq); 2226 } 2227 } 2228 2229 return 0; 2230 } 2231 2232 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm) 2233 { 2234 int ret = 0; 2235 unsigned int cs_queue_nr, queue_nr, i; 2236 u8 trace_chan_id; 2237 u64 cs_timestamp; 2238 struct auxtrace_queue *queue; 2239 struct cs_etm_queue *etmq; 2240 struct cs_etm_traceid_queue *tidq; 2241 2242 /* 2243 * Pre-populate the heap with one entry from each queue so that we can 2244 * start processing in time order across all queues. 2245 */ 2246 for (i = 0; i < etm->queues.nr_queues; i++) { 2247 etmq = etm->queues.queue_array[i].priv; 2248 if (!etmq) 2249 continue; 2250 2251 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i); 2252 if (ret) 2253 return ret; 2254 } 2255 2256 while (1) { 2257 if (!etm->heap.heap_cnt) 2258 goto out; 2259 2260 /* Take the entry at the top of the min heap */ 2261 cs_queue_nr = etm->heap.heap_array[0].queue_nr; 2262 queue_nr = TO_QUEUE_NR(cs_queue_nr); 2263 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); 2264 queue = &etm->queues.queue_array[queue_nr]; 2265 etmq = queue->priv; 2266 2267 /* 2268 * Remove the top entry from the heap since we are about 2269 * to process it. 2270 */ 2271 auxtrace_heap__pop(&etm->heap); 2272 2273 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); 2274 if (!tidq) { 2275 /* 2276 * No traceID queue has been allocated for this traceID, 2277 * which means something somewhere went very wrong. No 2278 * other choice than simply exit. 2279 */ 2280 ret = -EINVAL; 2281 goto out; 2282 } 2283 2284 /* 2285 * Packets associated with this timestamp are already in 2286 * the etmq's traceID queue, so process them. 2287 */ 2288 ret = cs_etm__process_traceid_queue(etmq, tidq); 2289 if (ret < 0) 2290 goto out; 2291 2292 /* 2293 * Packets for this timestamp have been processed, time to 2294 * move on to the next timestamp, fetching a new auxtrace_buffer 2295 * if need be. 2296 */ 2297 refetch: 2298 ret = cs_etm__get_data_block(etmq); 2299 if (ret < 0) 2300 goto out; 2301 2302 /* 2303 * No more auxtrace_buffers to process in this etmq, simply 2304 * move on to another entry in the auxtrace_heap. 2305 */ 2306 if (!ret) 2307 continue; 2308 2309 ret = cs_etm__decode_data_block(etmq); 2310 if (ret) 2311 goto out; 2312 2313 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); 2314 2315 if (!cs_timestamp) { 2316 /* 2317 * Function cs_etm__decode_data_block() returns when 2318 * there is no more traces to decode in the current 2319 * auxtrace_buffer OR when a timestamp has been 2320 * encountered on any of the traceID queues. Since we 2321 * did not get a timestamp, there is no more traces to 2322 * process in this auxtrace_buffer. As such empty and 2323 * flush all traceID queues. 2324 */ 2325 cs_etm__clear_all_traceid_queues(etmq); 2326 2327 /* Fetch another auxtrace_buffer for this etmq */ 2328 goto refetch; 2329 } 2330 2331 /* 2332 * Add to the min heap the timestamp for packets that have 2333 * just been decoded. They will be processed and synthesized 2334 * during the next call to cs_etm__process_traceid_queue() for 2335 * this queue/traceID. 2336 */ 2337 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); 2338 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); 2339 } 2340 2341 out: 2342 return ret; 2343 } 2344 2345 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, 2346 union perf_event *event) 2347 { 2348 struct thread *th; 2349 2350 if (etm->timeless_decoding) 2351 return 0; 2352 2353 /* 2354 * Add the tid/pid to the log so that we can get a match when 2355 * we get a contextID from the decoder. 2356 */ 2357 th = machine__findnew_thread(etm->machine, 2358 event->itrace_start.pid, 2359 event->itrace_start.tid); 2360 if (!th) 2361 return -ENOMEM; 2362 2363 thread__put(th); 2364 2365 return 0; 2366 } 2367 2368 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, 2369 union perf_event *event) 2370 { 2371 struct thread *th; 2372 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2373 2374 /* 2375 * Context switch in per-thread mode are irrelevant since perf 2376 * will start/stop tracing as the process is scheduled. 2377 */ 2378 if (etm->timeless_decoding) 2379 return 0; 2380 2381 /* 2382 * SWITCH_IN events carry the next process to be switched out while 2383 * SWITCH_OUT events carry the process to be switched in. As such 2384 * we don't care about IN events. 2385 */ 2386 if (!out) 2387 return 0; 2388 2389 /* 2390 * Add the tid/pid to the log so that we can get a match when 2391 * we get a contextID from the decoder. 2392 */ 2393 th = machine__findnew_thread(etm->machine, 2394 event->context_switch.next_prev_pid, 2395 event->context_switch.next_prev_tid); 2396 if (!th) 2397 return -ENOMEM; 2398 2399 thread__put(th); 2400 2401 return 0; 2402 } 2403 2404 static int cs_etm__process_event(struct perf_session *session, 2405 union perf_event *event, 2406 struct perf_sample *sample, 2407 struct perf_tool *tool) 2408 { 2409 u64 sample_kernel_timestamp; 2410 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2411 struct cs_etm_auxtrace, 2412 auxtrace); 2413 2414 if (dump_trace) 2415 return 0; 2416 2417 if (!tool->ordered_events) { 2418 pr_err("CoreSight ETM Trace requires ordered events\n"); 2419 return -EINVAL; 2420 } 2421 2422 if (sample->time && (sample->time != (u64) -1)) 2423 sample_kernel_timestamp = sample->time; 2424 else 2425 sample_kernel_timestamp = 0; 2426 2427 /* 2428 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We 2429 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because 2430 * ETM_OPT_CTXTID is not enabled. 2431 */ 2432 if (etm->timeless_decoding && 2433 event->header.type == PERF_RECORD_EXIT) 2434 return cs_etm__process_timeless_queues(etm, 2435 event->fork.tid); 2436 2437 if (event->header.type == PERF_RECORD_ITRACE_START) 2438 return cs_etm__process_itrace_start(etm, event); 2439 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2440 return cs_etm__process_switch_cpu_wide(etm, event); 2441 2442 if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) { 2443 /* 2444 * Record the latest kernel timestamp available in the header 2445 * for samples so that synthesised samples occur from this point 2446 * onwards. 2447 */ 2448 etm->latest_kernel_timestamp = sample_kernel_timestamp; 2449 } 2450 2451 return 0; 2452 } 2453 2454 static void dump_queued_data(struct cs_etm_auxtrace *etm, 2455 struct perf_record_auxtrace *event) 2456 { 2457 struct auxtrace_buffer *buf; 2458 unsigned int i; 2459 /* 2460 * Find all buffers with same reference in the queues and dump them. 2461 * This is because the queues can contain multiple entries of the same 2462 * buffer that were split on aux records. 2463 */ 2464 for (i = 0; i < etm->queues.nr_queues; ++i) 2465 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list) 2466 if (buf->reference == event->reference) 2467 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf); 2468 } 2469 2470 static int cs_etm__process_auxtrace_event(struct perf_session *session, 2471 union perf_event *event, 2472 struct perf_tool *tool __maybe_unused) 2473 { 2474 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2475 struct cs_etm_auxtrace, 2476 auxtrace); 2477 if (!etm->data_queued) { 2478 struct auxtrace_buffer *buffer; 2479 off_t data_offset; 2480 int fd = perf_data__fd(session->data); 2481 bool is_pipe = perf_data__is_pipe(session->data); 2482 int err; 2483 int idx = event->auxtrace.idx; 2484 2485 if (is_pipe) 2486 data_offset = 0; 2487 else { 2488 data_offset = lseek(fd, 0, SEEK_CUR); 2489 if (data_offset == -1) 2490 return -errno; 2491 } 2492 2493 err = auxtrace_queues__add_event(&etm->queues, session, 2494 event, data_offset, &buffer); 2495 if (err) 2496 return err; 2497 2498 /* 2499 * Knowing if the trace is formatted or not requires a lookup of 2500 * the aux record so only works in non-piped mode where data is 2501 * queued in cs_etm__queue_aux_records(). Always assume 2502 * formatted in piped mode (true). 2503 */ 2504 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2505 idx, true); 2506 if (err) 2507 return err; 2508 2509 if (dump_trace) 2510 if (auxtrace_buffer__get_data(buffer, fd)) { 2511 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer); 2512 auxtrace_buffer__put_data(buffer); 2513 } 2514 } else if (dump_trace) 2515 dump_queued_data(etm, &event->auxtrace); 2516 2517 return 0; 2518 } 2519 2520 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) 2521 { 2522 struct evsel *evsel; 2523 struct evlist *evlist = etm->session->evlist; 2524 bool timeless_decoding = true; 2525 2526 /* Override timeless mode with user input from --itrace=Z */ 2527 if (etm->synth_opts.timeless_decoding) 2528 return true; 2529 2530 /* 2531 * Circle through the list of event and complain if we find one 2532 * with the time bit set. 2533 */ 2534 evlist__for_each_entry(evlist, evsel) { 2535 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 2536 timeless_decoding = false; 2537 } 2538 2539 return timeless_decoding; 2540 } 2541 2542 /* 2543 * Read a single cpu parameter block from the auxtrace_info priv block. 2544 * 2545 * For version 1 there is a per cpu nr_params entry. If we are handling 2546 * version 1 file, then there may be less, the same, or more params 2547 * indicated by this value than the compile time number we understand. 2548 * 2549 * For a version 0 info block, there are a fixed number, and we need to 2550 * fill out the nr_param value in the metadata we create. 2551 */ 2552 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset, 2553 int out_blk_size, int nr_params_v0) 2554 { 2555 u64 *metadata = NULL; 2556 int hdr_version; 2557 int nr_in_params, nr_out_params, nr_cmn_params; 2558 int i, k; 2559 2560 metadata = zalloc(sizeof(*metadata) * out_blk_size); 2561 if (!metadata) 2562 return NULL; 2563 2564 /* read block current index & version */ 2565 i = *buff_in_offset; 2566 hdr_version = buff_in[CS_HEADER_VERSION]; 2567 2568 if (!hdr_version) { 2569 /* read version 0 info block into a version 1 metadata block */ 2570 nr_in_params = nr_params_v0; 2571 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC]; 2572 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU]; 2573 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params; 2574 /* remaining block params at offset +1 from source */ 2575 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++) 2576 metadata[k + 1] = buff_in[i + k]; 2577 /* version 0 has 2 common params */ 2578 nr_cmn_params = 2; 2579 } else { 2580 /* read version 1 info block - input and output nr_params may differ */ 2581 /* version 1 has 3 common params */ 2582 nr_cmn_params = 3; 2583 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS]; 2584 2585 /* if input has more params than output - skip excess */ 2586 nr_out_params = nr_in_params + nr_cmn_params; 2587 if (nr_out_params > out_blk_size) 2588 nr_out_params = out_blk_size; 2589 2590 for (k = CS_ETM_MAGIC; k < nr_out_params; k++) 2591 metadata[k] = buff_in[i + k]; 2592 2593 /* record the actual nr params we copied */ 2594 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params; 2595 } 2596 2597 /* adjust in offset by number of in params used */ 2598 i += nr_in_params + nr_cmn_params; 2599 *buff_in_offset = i; 2600 return metadata; 2601 } 2602 2603 /** 2604 * Puts a fragment of an auxtrace buffer into the auxtrace queues based 2605 * on the bounds of aux_event, if it matches with the buffer that's at 2606 * file_offset. 2607 * 2608 * Normally, whole auxtrace buffers would be added to the queue. But we 2609 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder 2610 * is reset across each buffer, so splitting the buffers up in advance has 2611 * the same effect. 2612 */ 2613 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz, 2614 struct perf_record_aux *aux_event, struct perf_sample *sample) 2615 { 2616 int err; 2617 char buf[PERF_SAMPLE_MAX_SIZE]; 2618 union perf_event *auxtrace_event_union; 2619 struct perf_record_auxtrace *auxtrace_event; 2620 union perf_event auxtrace_fragment; 2621 __u64 aux_offset, aux_size; 2622 __u32 idx; 2623 bool formatted; 2624 2625 struct cs_etm_auxtrace *etm = container_of(session->auxtrace, 2626 struct cs_etm_auxtrace, 2627 auxtrace); 2628 2629 /* 2630 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got 2631 * from looping through the auxtrace index. 2632 */ 2633 err = perf_session__peek_event(session, file_offset, buf, 2634 PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL); 2635 if (err) 2636 return err; 2637 auxtrace_event = &auxtrace_event_union->auxtrace; 2638 if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE) 2639 return -EINVAL; 2640 2641 if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) || 2642 auxtrace_event->header.size != sz) { 2643 return -EINVAL; 2644 } 2645 2646 /* 2647 * In per-thread mode, CPU is set to -1, but TID will be set instead. See 2648 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match. 2649 */ 2650 if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) || 2651 auxtrace_event->cpu != sample->cpu) 2652 return 1; 2653 2654 if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) { 2655 /* 2656 * Clamp size in snapshot mode. The buffer size is clamped in 2657 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect 2658 * the buffer size. 2659 */ 2660 aux_size = min(aux_event->aux_size, auxtrace_event->size); 2661 2662 /* 2663 * In this mode, the head also points to the end of the buffer so aux_offset 2664 * needs to have the size subtracted so it points to the beginning as in normal mode 2665 */ 2666 aux_offset = aux_event->aux_offset - aux_size; 2667 } else { 2668 aux_size = aux_event->aux_size; 2669 aux_offset = aux_event->aux_offset; 2670 } 2671 2672 if (aux_offset >= auxtrace_event->offset && 2673 aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) { 2674 /* 2675 * If this AUX event was inside this buffer somewhere, create a new auxtrace event 2676 * based on the sizes of the aux event, and queue that fragment. 2677 */ 2678 auxtrace_fragment.auxtrace = *auxtrace_event; 2679 auxtrace_fragment.auxtrace.size = aux_size; 2680 auxtrace_fragment.auxtrace.offset = aux_offset; 2681 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size; 2682 2683 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64 2684 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu); 2685 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment, 2686 file_offset, NULL); 2687 if (err) 2688 return err; 2689 2690 idx = auxtrace_event->idx; 2691 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW); 2692 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], 2693 idx, formatted); 2694 } 2695 2696 /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */ 2697 return 1; 2698 } 2699 2700 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event, 2701 u64 offset __maybe_unused, void *data __maybe_unused) 2702 { 2703 struct perf_sample sample; 2704 int ret; 2705 struct auxtrace_index_entry *ent; 2706 struct auxtrace_index *auxtrace_index; 2707 struct evsel *evsel; 2708 size_t i; 2709 2710 /* Don't care about any other events, we're only queuing buffers for AUX events */ 2711 if (event->header.type != PERF_RECORD_AUX) 2712 return 0; 2713 2714 if (event->header.size < sizeof(struct perf_record_aux)) 2715 return -EINVAL; 2716 2717 /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */ 2718 if (!event->aux.aux_size) 2719 return 0; 2720 2721 /* 2722 * Parse the sample, we need the sample_id_all data that comes after the event so that the 2723 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID. 2724 */ 2725 evsel = evlist__event2evsel(session->evlist, event); 2726 if (!evsel) 2727 return -EINVAL; 2728 ret = evsel__parse_sample(evsel, event, &sample); 2729 if (ret) 2730 return ret; 2731 2732 /* 2733 * Loop through the auxtrace index to find the buffer that matches up with this aux event. 2734 */ 2735 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 2736 for (i = 0; i < auxtrace_index->nr; i++) { 2737 ent = &auxtrace_index->entries[i]; 2738 ret = cs_etm__queue_aux_fragment(session, ent->file_offset, 2739 ent->sz, &event->aux, &sample); 2740 /* 2741 * Stop search on error or successful values. Continue search on 2742 * 1 ('not found') 2743 */ 2744 if (ret != 1) 2745 return ret; 2746 } 2747 } 2748 2749 /* 2750 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but 2751 * don't exit with an error because it will still be possible to decode other aux records. 2752 */ 2753 pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64 2754 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu); 2755 return 0; 2756 } 2757 2758 static int cs_etm__queue_aux_records(struct perf_session *session) 2759 { 2760 struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index, 2761 struct auxtrace_index, list); 2762 if (index && index->nr > 0) 2763 return perf_session__peek_events(session, session->header.data_offset, 2764 session->header.data_size, 2765 cs_etm__queue_aux_records_cb, NULL); 2766 2767 /* 2768 * We would get here if there are no entries in the index (either no auxtrace 2769 * buffers or no index at all). Fail silently as there is the possibility of 2770 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still 2771 * false. 2772 * 2773 * In that scenario, buffers will not be split by AUX records. 2774 */ 2775 return 0; 2776 } 2777 2778 #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \ 2779 (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1)) 2780 2781 /* 2782 * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual 2783 * timestamps). 2784 */ 2785 static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu) 2786 { 2787 int j; 2788 2789 for (j = 0; j < num_cpu; j++) { 2790 switch (metadata[j][CS_ETM_MAGIC]) { 2791 case __perf_cs_etmv4_magic: 2792 if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1) 2793 return false; 2794 break; 2795 case __perf_cs_ete_magic: 2796 if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1) 2797 return false; 2798 break; 2799 default: 2800 /* Unknown / unsupported magic number. */ 2801 return false; 2802 } 2803 } 2804 return true; 2805 } 2806 2807 int cs_etm__process_auxtrace_info_full(union perf_event *event, 2808 struct perf_session *session) 2809 { 2810 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 2811 struct cs_etm_auxtrace *etm = NULL; 2812 struct int_node *inode; 2813 struct perf_record_time_conv *tc = &session->time_conv; 2814 int event_header_size = sizeof(struct perf_event_header); 2815 int total_size = auxtrace_info->header.size; 2816 int priv_size = 0; 2817 int num_cpu, trcidr_idx; 2818 int err = 0; 2819 int i, j; 2820 u64 *ptr = NULL; 2821 u64 **metadata = NULL; 2822 2823 /* 2824 * Create an RB tree for traceID-metadata tuple. Since the conversion 2825 * has to be made for each packet that gets decoded, optimizing access 2826 * in anything other than a sequential array is worth doing. 2827 */ 2828 traceid_list = intlist__new(NULL); 2829 if (!traceid_list) 2830 return -ENOMEM; 2831 2832 /* First the global part */ 2833 ptr = (u64 *) auxtrace_info->priv; 2834 num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff; 2835 metadata = zalloc(sizeof(*metadata) * num_cpu); 2836 if (!metadata) { 2837 err = -ENOMEM; 2838 goto err_free_traceid_list; 2839 } 2840 2841 /* Start parsing after the common part of the header */ 2842 i = CS_HEADER_VERSION_MAX; 2843 2844 /* 2845 * The metadata is stored in the auxtrace_info section and encodes 2846 * the configuration of the ARM embedded trace macrocell which is 2847 * required by the trace decoder to properly decode the trace due 2848 * to its highly compressed nature. 2849 */ 2850 for (j = 0; j < num_cpu; j++) { 2851 if (ptr[i] == __perf_cs_etmv3_magic) { 2852 metadata[j] = 2853 cs_etm__create_meta_blk(ptr, &i, 2854 CS_ETM_PRIV_MAX, 2855 CS_ETM_NR_TRC_PARAMS_V0); 2856 2857 /* The traceID is our handle */ 2858 trcidr_idx = CS_ETM_ETMTRACEIDR; 2859 2860 } else if (ptr[i] == __perf_cs_etmv4_magic) { 2861 metadata[j] = 2862 cs_etm__create_meta_blk(ptr, &i, 2863 CS_ETMV4_PRIV_MAX, 2864 CS_ETMV4_NR_TRC_PARAMS_V0); 2865 2866 /* The traceID is our handle */ 2867 trcidr_idx = CS_ETMV4_TRCTRACEIDR; 2868 } else if (ptr[i] == __perf_cs_ete_magic) { 2869 metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1); 2870 2871 /* ETE shares first part of metadata with ETMv4 */ 2872 trcidr_idx = CS_ETMV4_TRCTRACEIDR; 2873 } else { 2874 ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n", 2875 ptr[i]); 2876 err = -EINVAL; 2877 goto err_free_metadata; 2878 } 2879 2880 if (!metadata[j]) { 2881 err = -ENOMEM; 2882 goto err_free_metadata; 2883 } 2884 2885 /* Get an RB node for this CPU */ 2886 inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]); 2887 2888 /* Something went wrong, no need to continue */ 2889 if (!inode) { 2890 err = -ENOMEM; 2891 goto err_free_metadata; 2892 } 2893 2894 /* 2895 * The node for that CPU should not be taken. 2896 * Back out if that's the case. 2897 */ 2898 if (inode->priv) { 2899 err = -EINVAL; 2900 goto err_free_metadata; 2901 } 2902 /* All good, associate the traceID with the metadata pointer */ 2903 inode->priv = metadata[j]; 2904 } 2905 2906 /* 2907 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and 2908 * CS_ETMV4_PRIV_MAX mark how many double words are in the 2909 * global metadata, and each cpu's metadata respectively. 2910 * The following tests if the correct number of double words was 2911 * present in the auxtrace info section. 2912 */ 2913 priv_size = total_size - event_header_size - INFO_HEADER_SIZE; 2914 if (i * 8 != priv_size) { 2915 err = -EINVAL; 2916 goto err_free_metadata; 2917 } 2918 2919 etm = zalloc(sizeof(*etm)); 2920 2921 if (!etm) { 2922 err = -ENOMEM; 2923 goto err_free_metadata; 2924 } 2925 2926 err = auxtrace_queues__init(&etm->queues); 2927 if (err) 2928 goto err_free_etm; 2929 2930 if (session->itrace_synth_opts->set) { 2931 etm->synth_opts = *session->itrace_synth_opts; 2932 } else { 2933 itrace_synth_opts__set_default(&etm->synth_opts, 2934 session->itrace_synth_opts->default_no_sample); 2935 etm->synth_opts.callchain = false; 2936 } 2937 2938 etm->session = session; 2939 etm->machine = &session->machines.host; 2940 2941 etm->num_cpu = num_cpu; 2942 etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff); 2943 etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0); 2944 etm->metadata = metadata; 2945 etm->auxtrace_type = auxtrace_info->type; 2946 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); 2947 2948 /* Use virtual timestamps if all ETMs report ts_source = 1 */ 2949 etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu); 2950 2951 if (!etm->has_virtual_ts) 2952 ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n" 2953 "The time field of the samples will not be set accurately.\n\n"); 2954 2955 etm->auxtrace.process_event = cs_etm__process_event; 2956 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; 2957 etm->auxtrace.flush_events = cs_etm__flush_events; 2958 etm->auxtrace.free_events = cs_etm__free_events; 2959 etm->auxtrace.free = cs_etm__free; 2960 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; 2961 session->auxtrace = &etm->auxtrace; 2962 2963 etm->unknown_thread = thread__new(999999999, 999999999); 2964 if (!etm->unknown_thread) { 2965 err = -ENOMEM; 2966 goto err_free_queues; 2967 } 2968 2969 /* 2970 * Initialize list node so that at thread__zput() we can avoid 2971 * segmentation fault at list_del_init(). 2972 */ 2973 INIT_LIST_HEAD(&etm->unknown_thread->node); 2974 2975 err = thread__set_comm(etm->unknown_thread, "unknown", 0); 2976 if (err) 2977 goto err_delete_thread; 2978 2979 if (thread__init_maps(etm->unknown_thread, etm->machine)) { 2980 err = -ENOMEM; 2981 goto err_delete_thread; 2982 } 2983 2984 etm->tc.time_shift = tc->time_shift; 2985 etm->tc.time_mult = tc->time_mult; 2986 etm->tc.time_zero = tc->time_zero; 2987 if (event_contains(*tc, time_cycles)) { 2988 etm->tc.time_cycles = tc->time_cycles; 2989 etm->tc.time_mask = tc->time_mask; 2990 etm->tc.cap_user_time_zero = tc->cap_user_time_zero; 2991 etm->tc.cap_user_time_short = tc->cap_user_time_short; 2992 } 2993 err = cs_etm__synth_events(etm, session); 2994 if (err) 2995 goto err_delete_thread; 2996 2997 err = cs_etm__queue_aux_records(session); 2998 if (err) 2999 goto err_delete_thread; 3000 3001 etm->data_queued = etm->queues.populated; 3002 /* 3003 * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and 3004 * cs_etm__queue_aux_fragment() for details relating to limitations. 3005 */ 3006 if (!etm->data_queued) 3007 pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n" 3008 "Continuing with best effort decoding in piped mode.\n\n"); 3009 3010 return 0; 3011 3012 err_delete_thread: 3013 thread__zput(etm->unknown_thread); 3014 err_free_queues: 3015 auxtrace_queues__free(&etm->queues); 3016 session->auxtrace = NULL; 3017 err_free_etm: 3018 zfree(&etm); 3019 err_free_metadata: 3020 /* No need to check @metadata[j], free(NULL) is supported */ 3021 for (j = 0; j < num_cpu; j++) 3022 zfree(&metadata[j]); 3023 zfree(&metadata); 3024 err_free_traceid_list: 3025 intlist__delete(traceid_list); 3026 return err; 3027 } 3028