1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2015-2018 Linaro Limited. 4 * 5 * Author: Tor Jeremiassen <tor@ti.com> 6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org> 7 */ 8 9 #include <asm/bug.h> 10 #include <linux/coresight-pmu.h> 11 #include <linux/err.h> 12 #include <linux/list.h> 13 #include <linux/zalloc.h> 14 #include <stdlib.h> 15 #include <opencsd/c_api/opencsd_c_api.h> 16 17 #include "cs-etm.h" 18 #include "cs-etm-decoder.h" 19 #include "debug.h" 20 #include "intlist.h" 21 22 /* use raw logging */ 23 #ifdef CS_DEBUG_RAW 24 #define CS_LOG_RAW_FRAMES 25 #ifdef CS_RAW_PACKED 26 #define CS_RAW_DEBUG_FLAGS (OCSD_DFRMTR_UNPACKED_RAW_OUT | \ 27 OCSD_DFRMTR_PACKED_RAW_OUT) 28 #else 29 #define CS_RAW_DEBUG_FLAGS (OCSD_DFRMTR_UNPACKED_RAW_OUT) 30 #endif 31 #endif 32 33 /* 34 * Assume a maximum of 0.1ns elapsed per instruction. This would be the 35 * case with a theoretical 10GHz core executing 1 instruction per cycle. 36 * Used to estimate the sample time for synthesized instructions because 37 * Coresight only emits a timestamp for a range of instructions rather 38 * than per instruction. 39 */ 40 const u32 INSTR_PER_NS = 10; 41 42 struct cs_etm_decoder { 43 void *data; 44 void (*packet_printer)(const char *msg); 45 bool suppress_printing; 46 dcd_tree_handle_t dcd_tree; 47 cs_etm_mem_cb_type mem_access; 48 ocsd_datapath_resp_t prev_return; 49 const char *decoder_name; 50 }; 51 52 static u32 53 cs_etm_decoder__mem_access(const void *context, 54 const ocsd_vaddr_t address, 55 const ocsd_mem_space_acc_t mem_space, 56 const u8 trace_chan_id, 57 const u32 req_size, 58 u8 *buffer) 59 { 60 struct cs_etm_decoder *decoder = (struct cs_etm_decoder *) context; 61 62 return decoder->mem_access(decoder->data, trace_chan_id, address, 63 req_size, buffer, mem_space); 64 } 65 66 int cs_etm_decoder__add_mem_access_cb(struct cs_etm_decoder *decoder, 67 u64 start, u64 end, 68 cs_etm_mem_cb_type cb_func) 69 { 70 decoder->mem_access = cb_func; 71 72 if (ocsd_dt_add_callback_trcid_mem_acc(decoder->dcd_tree, start, end, 73 OCSD_MEM_SPACE_ANY, 74 cs_etm_decoder__mem_access, 75 decoder)) 76 return -1; 77 78 return 0; 79 } 80 81 int cs_etm_decoder__reset(struct cs_etm_decoder *decoder) 82 { 83 ocsd_datapath_resp_t dp_ret; 84 85 decoder->prev_return = OCSD_RESP_CONT; 86 decoder->suppress_printing = true; 87 dp_ret = ocsd_dt_process_data(decoder->dcd_tree, OCSD_OP_RESET, 88 0, 0, NULL, NULL); 89 decoder->suppress_printing = false; 90 if (OCSD_DATA_RESP_IS_FATAL(dp_ret)) 91 return -1; 92 93 return 0; 94 } 95 96 int cs_etm_decoder__get_packet(struct cs_etm_packet_queue *packet_queue, 97 struct cs_etm_packet *packet) 98 { 99 if (!packet_queue || !packet) 100 return -EINVAL; 101 102 /* Nothing to do, might as well just return */ 103 if (packet_queue->packet_count == 0) 104 return 0; 105 /* 106 * The queueing process in function cs_etm_decoder__buffer_packet() 107 * increments the tail *before* using it. This is somewhat counter 108 * intuitive but it has the advantage of centralizing tail management 109 * at a single location. Because of that we need to follow the same 110 * heuristic with the head, i.e we increment it before using its 111 * value. Otherwise the first element of the packet queue is not 112 * used. 113 */ 114 packet_queue->head = (packet_queue->head + 1) & 115 (CS_ETM_PACKET_MAX_BUFFER - 1); 116 117 *packet = packet_queue->packet_buffer[packet_queue->head]; 118 119 packet_queue->packet_count--; 120 121 return 1; 122 } 123 124 /* 125 * Calculate the number of nanoseconds elapsed. 126 * 127 * instr_count is updated in place with the remainder of the instructions 128 * which didn't make up a whole nanosecond. 129 */ 130 static u32 cs_etm_decoder__dec_instr_count_to_ns(u32 *instr_count) 131 { 132 const u32 instr_copy = *instr_count; 133 134 *instr_count %= INSTR_PER_NS; 135 return instr_copy / INSTR_PER_NS; 136 } 137 138 static int cs_etm_decoder__gen_etmv3_config(struct cs_etm_trace_params *params, 139 ocsd_etmv3_cfg *config) 140 { 141 config->reg_idr = params->etmv3.reg_idr; 142 config->reg_ctrl = params->etmv3.reg_ctrl; 143 config->reg_ccer = params->etmv3.reg_ccer; 144 config->reg_trc_id = params->etmv3.reg_trc_id; 145 config->arch_ver = ARCH_V7; 146 config->core_prof = profile_CortexA; 147 148 return 0; 149 } 150 151 #define TRCIDR1_TRCARCHMIN_SHIFT 4 152 #define TRCIDR1_TRCARCHMIN_MASK GENMASK(7, 4) 153 #define TRCIDR1_TRCARCHMIN(x) (((x) & TRCIDR1_TRCARCHMIN_MASK) >> TRCIDR1_TRCARCHMIN_SHIFT) 154 155 static enum _ocsd_arch_version cs_etm_decoder__get_etmv4_arch_ver(u32 reg_idr1) 156 { 157 /* 158 * For ETMv4 if the trace minor version is 4 or more then we can assume 159 * the architecture is ARCH_AA64 rather than just V8. 160 * ARCH_V8 = V8 architecture 161 * ARCH_AA64 = Min v8r3 plus additional AA64 PE features 162 */ 163 return TRCIDR1_TRCARCHMIN(reg_idr1) >= 4 ? ARCH_AA64 : ARCH_V8; 164 } 165 166 static void cs_etm_decoder__gen_etmv4_config(struct cs_etm_trace_params *params, 167 ocsd_etmv4_cfg *config) 168 { 169 config->reg_configr = params->etmv4.reg_configr; 170 config->reg_traceidr = params->etmv4.reg_traceidr; 171 config->reg_idr0 = params->etmv4.reg_idr0; 172 config->reg_idr1 = params->etmv4.reg_idr1; 173 config->reg_idr2 = params->etmv4.reg_idr2; 174 config->reg_idr8 = params->etmv4.reg_idr8; 175 config->reg_idr9 = 0; 176 config->reg_idr10 = 0; 177 config->reg_idr11 = 0; 178 config->reg_idr12 = 0; 179 config->reg_idr13 = 0; 180 config->arch_ver = cs_etm_decoder__get_etmv4_arch_ver(params->etmv4.reg_idr1); 181 config->core_prof = profile_CortexA; 182 } 183 184 static void cs_etm_decoder__gen_ete_config(struct cs_etm_trace_params *params, 185 ocsd_ete_cfg *config) 186 { 187 config->reg_configr = params->ete.reg_configr; 188 config->reg_traceidr = params->ete.reg_traceidr; 189 config->reg_idr0 = params->ete.reg_idr0; 190 config->reg_idr1 = params->ete.reg_idr1; 191 config->reg_idr2 = params->ete.reg_idr2; 192 config->reg_idr8 = params->ete.reg_idr8; 193 config->reg_devarch = params->ete.reg_devarch; 194 config->arch_ver = ARCH_AA64; 195 config->core_prof = profile_CortexA; 196 } 197 198 static void cs_etm_decoder__print_str_cb(const void *p_context, 199 const char *msg, 200 const int str_len) 201 { 202 const struct cs_etm_decoder *decoder = p_context; 203 204 if (p_context && str_len && !decoder->suppress_printing) 205 decoder->packet_printer(msg); 206 } 207 208 static int 209 cs_etm_decoder__init_def_logger_printing(struct cs_etm_decoder_params *d_params, 210 struct cs_etm_decoder *decoder) 211 { 212 int ret = 0; 213 214 if (d_params->packet_printer == NULL) 215 return -1; 216 217 decoder->packet_printer = d_params->packet_printer; 218 219 /* 220 * Set up a library default logger to process any printers 221 * (packet/raw frame) we add later. 222 */ 223 ret = ocsd_def_errlog_init(OCSD_ERR_SEV_ERROR, 1); 224 if (ret != 0) 225 return -1; 226 227 /* no stdout / err / file output */ 228 ret = ocsd_def_errlog_config_output(C_API_MSGLOGOUT_FLG_NONE, NULL); 229 if (ret != 0) 230 return -1; 231 232 /* 233 * Set the string CB for the default logger, passes strings to 234 * perf print logger. 235 */ 236 ret = ocsd_def_errlog_set_strprint_cb(decoder->dcd_tree, 237 (void *)decoder, 238 cs_etm_decoder__print_str_cb); 239 if (ret != 0) 240 ret = -1; 241 242 return 0; 243 } 244 245 #ifdef CS_LOG_RAW_FRAMES 246 static void 247 cs_etm_decoder__init_raw_frame_logging(struct cs_etm_decoder_params *d_params, 248 struct cs_etm_decoder *decoder) 249 { 250 /* Only log these during a --dump operation */ 251 if (d_params->operation == CS_ETM_OPERATION_PRINT) { 252 /* set up a library default logger to process the 253 * raw frame printer we add later 254 */ 255 ocsd_def_errlog_init(OCSD_ERR_SEV_ERROR, 1); 256 257 /* no stdout / err / file output */ 258 ocsd_def_errlog_config_output(C_API_MSGLOGOUT_FLG_NONE, NULL); 259 260 /* set the string CB for the default logger, 261 * passes strings to perf print logger. 262 */ 263 ocsd_def_errlog_set_strprint_cb(decoder->dcd_tree, 264 (void *)decoder, 265 cs_etm_decoder__print_str_cb); 266 267 /* use the built in library printer for the raw frames */ 268 ocsd_dt_set_raw_frame_printer(decoder->dcd_tree, 269 CS_RAW_DEBUG_FLAGS); 270 } 271 } 272 #else 273 static void 274 cs_etm_decoder__init_raw_frame_logging( 275 struct cs_etm_decoder_params *d_params __maybe_unused, 276 struct cs_etm_decoder *decoder __maybe_unused) 277 { 278 } 279 #endif 280 281 static ocsd_datapath_resp_t 282 cs_etm_decoder__do_soft_timestamp(struct cs_etm_queue *etmq, 283 struct cs_etm_packet_queue *packet_queue, 284 const uint8_t trace_chan_id) 285 { 286 u64 estimated_ts; 287 288 /* No timestamp packet has been received, nothing to do */ 289 if (!packet_queue->next_cs_timestamp) 290 return OCSD_RESP_CONT; 291 292 estimated_ts = packet_queue->cs_timestamp + 293 cs_etm_decoder__dec_instr_count_to_ns(&packet_queue->instr_count); 294 295 /* Estimated TS can never be higher than the next real one in the trace */ 296 packet_queue->cs_timestamp = min(packet_queue->next_cs_timestamp, estimated_ts); 297 298 /* Tell the front end which traceid_queue needs attention */ 299 cs_etm__etmq_set_traceid_queue_timestamp(etmq, trace_chan_id); 300 301 return OCSD_RESP_WAIT; 302 } 303 304 static ocsd_datapath_resp_t 305 cs_etm_decoder__do_hard_timestamp(struct cs_etm_queue *etmq, 306 const ocsd_generic_trace_elem *elem, 307 const uint8_t trace_chan_id, 308 const ocsd_trc_index_t indx) 309 { 310 struct cs_etm_packet_queue *packet_queue; 311 u64 converted_timestamp; 312 u64 estimated_first_ts; 313 314 /* First get the packet queue for this traceID */ 315 packet_queue = cs_etm__etmq_get_packet_queue(etmq, trace_chan_id); 316 if (!packet_queue) 317 return OCSD_RESP_FATAL_SYS_ERR; 318 319 /* 320 * Coresight timestamps are raw timer values which need to be scaled to ns. Assume 321 * 0 is a bad value so don't try to convert it. 322 */ 323 converted_timestamp = elem->timestamp ? 324 cs_etm__convert_sample_time(etmq, elem->timestamp) : 0; 325 326 /* 327 * We've seen a timestamp packet before - simply record the new value. 328 * Function do_soft_timestamp() will report the value to the front end, 329 * hence asking the decoder to keep decoding rather than stopping. 330 */ 331 if (packet_queue->next_cs_timestamp) { 332 /* 333 * What was next is now where new ranges start from, overwriting 334 * any previous estimate in cs_timestamp 335 */ 336 packet_queue->cs_timestamp = packet_queue->next_cs_timestamp; 337 packet_queue->next_cs_timestamp = converted_timestamp; 338 return OCSD_RESP_CONT; 339 } 340 341 if (!converted_timestamp) { 342 /* 343 * Zero timestamps can be seen due to misconfiguration or hardware bugs. 344 * Warn once, and don't try to subtract instr_count as it would result in an 345 * underflow. 346 */ 347 packet_queue->cs_timestamp = 0; 348 if (!cs_etm__etmq_is_timeless(etmq)) 349 pr_warning_once("Zero Coresight timestamp found at Idx:%" OCSD_TRC_IDX_STR 350 ". Decoding may be improved by prepending 'Z' to your current --itrace arguments.\n", 351 indx); 352 353 } else if (packet_queue->instr_count / INSTR_PER_NS > converted_timestamp) { 354 /* 355 * Sanity check that the elem->timestamp - packet_queue->instr_count would not 356 * result in an underflow. Warn and clamp at 0 if it would. 357 */ 358 packet_queue->cs_timestamp = 0; 359 pr_err("Timestamp calculation underflow at Idx:%" OCSD_TRC_IDX_STR "\n", indx); 360 } else { 361 /* 362 * This is the first timestamp we've seen since the beginning of traces 363 * or a discontinuity. Since timestamps packets are generated *after* 364 * range packets have been generated, we need to estimate the time at 365 * which instructions started by subtracting the number of instructions 366 * executed to the timestamp. Don't estimate earlier than the last used 367 * timestamp though. 368 */ 369 estimated_first_ts = converted_timestamp - 370 (packet_queue->instr_count / INSTR_PER_NS); 371 packet_queue->cs_timestamp = max(packet_queue->cs_timestamp, estimated_first_ts); 372 } 373 packet_queue->next_cs_timestamp = converted_timestamp; 374 packet_queue->instr_count = 0; 375 376 /* Tell the front end which traceid_queue needs attention */ 377 cs_etm__etmq_set_traceid_queue_timestamp(etmq, trace_chan_id); 378 379 /* Halt processing until we are being told to proceed */ 380 return OCSD_RESP_WAIT; 381 } 382 383 static void 384 cs_etm_decoder__reset_timestamp(struct cs_etm_packet_queue *packet_queue) 385 { 386 packet_queue->next_cs_timestamp = 0; 387 packet_queue->instr_count = 0; 388 } 389 390 static ocsd_datapath_resp_t 391 cs_etm_decoder__buffer_packet(struct cs_etm_packet_queue *packet_queue, 392 const u8 trace_chan_id, 393 enum cs_etm_sample_type sample_type) 394 { 395 u32 et = 0; 396 int cpu; 397 398 if (packet_queue->packet_count >= CS_ETM_PACKET_MAX_BUFFER - 1) 399 return OCSD_RESP_FATAL_SYS_ERR; 400 401 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) 402 return OCSD_RESP_FATAL_SYS_ERR; 403 404 et = packet_queue->tail; 405 et = (et + 1) & (CS_ETM_PACKET_MAX_BUFFER - 1); 406 packet_queue->tail = et; 407 packet_queue->packet_count++; 408 409 packet_queue->packet_buffer[et].sample_type = sample_type; 410 packet_queue->packet_buffer[et].isa = CS_ETM_ISA_UNKNOWN; 411 packet_queue->packet_buffer[et].cpu = cpu; 412 packet_queue->packet_buffer[et].start_addr = CS_ETM_INVAL_ADDR; 413 packet_queue->packet_buffer[et].end_addr = CS_ETM_INVAL_ADDR; 414 packet_queue->packet_buffer[et].instr_count = 0; 415 packet_queue->packet_buffer[et].last_instr_taken_branch = false; 416 packet_queue->packet_buffer[et].last_instr_size = 0; 417 packet_queue->packet_buffer[et].last_instr_type = 0; 418 packet_queue->packet_buffer[et].last_instr_subtype = 0; 419 packet_queue->packet_buffer[et].last_instr_cond = 0; 420 packet_queue->packet_buffer[et].flags = 0; 421 packet_queue->packet_buffer[et].exception_number = UINT32_MAX; 422 packet_queue->packet_buffer[et].trace_chan_id = trace_chan_id; 423 424 if (packet_queue->packet_count == CS_ETM_PACKET_MAX_BUFFER - 1) 425 return OCSD_RESP_WAIT; 426 427 return OCSD_RESP_CONT; 428 } 429 430 static ocsd_datapath_resp_t 431 cs_etm_decoder__buffer_range(struct cs_etm_queue *etmq, 432 struct cs_etm_packet_queue *packet_queue, 433 const ocsd_generic_trace_elem *elem, 434 const uint8_t trace_chan_id) 435 { 436 int ret = 0; 437 struct cs_etm_packet *packet; 438 439 ret = cs_etm_decoder__buffer_packet(packet_queue, trace_chan_id, 440 CS_ETM_RANGE); 441 if (ret != OCSD_RESP_CONT && ret != OCSD_RESP_WAIT) 442 return ret; 443 444 packet = &packet_queue->packet_buffer[packet_queue->tail]; 445 446 switch (elem->isa) { 447 case ocsd_isa_aarch64: 448 packet->isa = CS_ETM_ISA_A64; 449 break; 450 case ocsd_isa_arm: 451 packet->isa = CS_ETM_ISA_A32; 452 break; 453 case ocsd_isa_thumb2: 454 packet->isa = CS_ETM_ISA_T32; 455 break; 456 case ocsd_isa_tee: 457 case ocsd_isa_jazelle: 458 case ocsd_isa_custom: 459 case ocsd_isa_unknown: 460 default: 461 packet->isa = CS_ETM_ISA_UNKNOWN; 462 } 463 464 packet->start_addr = elem->st_addr; 465 packet->end_addr = elem->en_addr; 466 packet->instr_count = elem->num_instr_range; 467 packet->last_instr_type = elem->last_i_type; 468 packet->last_instr_subtype = elem->last_i_subtype; 469 packet->last_instr_cond = elem->last_instr_cond; 470 471 if (elem->last_i_type == OCSD_INSTR_BR || elem->last_i_type == OCSD_INSTR_BR_INDIRECT) 472 packet->last_instr_taken_branch = elem->last_instr_exec; 473 else 474 packet->last_instr_taken_branch = false; 475 476 packet->last_instr_size = elem->last_instr_sz; 477 478 /* per-thread scenario, no need to generate a timestamp */ 479 if (cs_etm__etmq_is_timeless(etmq)) 480 goto out; 481 482 /* 483 * The packet queue is full and we haven't seen a timestamp (had we 484 * seen one the packet queue wouldn't be full). Let the front end 485 * deal with it. 486 */ 487 if (ret == OCSD_RESP_WAIT) 488 goto out; 489 490 packet_queue->instr_count += elem->num_instr_range; 491 /* Tell the front end we have a new timestamp to process */ 492 ret = cs_etm_decoder__do_soft_timestamp(etmq, packet_queue, 493 trace_chan_id); 494 out: 495 return ret; 496 } 497 498 static ocsd_datapath_resp_t 499 cs_etm_decoder__buffer_discontinuity(struct cs_etm_packet_queue *queue, 500 const uint8_t trace_chan_id) 501 { 502 /* 503 * Something happened and who knows when we'll get new traces so 504 * reset time statistics. 505 */ 506 cs_etm_decoder__reset_timestamp(queue); 507 return cs_etm_decoder__buffer_packet(queue, trace_chan_id, 508 CS_ETM_DISCONTINUITY); 509 } 510 511 static ocsd_datapath_resp_t 512 cs_etm_decoder__buffer_exception(struct cs_etm_packet_queue *queue, 513 const ocsd_generic_trace_elem *elem, 514 const uint8_t trace_chan_id) 515 { int ret = 0; 516 struct cs_etm_packet *packet; 517 518 ret = cs_etm_decoder__buffer_packet(queue, trace_chan_id, 519 CS_ETM_EXCEPTION); 520 if (ret != OCSD_RESP_CONT && ret != OCSD_RESP_WAIT) 521 return ret; 522 523 packet = &queue->packet_buffer[queue->tail]; 524 packet->exception_number = elem->exception_number; 525 526 return ret; 527 } 528 529 static ocsd_datapath_resp_t 530 cs_etm_decoder__buffer_exception_ret(struct cs_etm_packet_queue *queue, 531 const uint8_t trace_chan_id) 532 { 533 return cs_etm_decoder__buffer_packet(queue, trace_chan_id, 534 CS_ETM_EXCEPTION_RET); 535 } 536 537 static ocsd_datapath_resp_t 538 cs_etm_decoder__set_tid(struct cs_etm_queue *etmq, 539 struct cs_etm_packet_queue *packet_queue, 540 const ocsd_generic_trace_elem *elem, 541 const uint8_t trace_chan_id) 542 { 543 pid_t tid = -1; 544 545 /* 546 * Process the PE_CONTEXT packets if we have a valid contextID or VMID. 547 * If the kernel is running at EL2, the PID is traced in CONTEXTIDR_EL2 548 * as VMID, Bit ETM_OPT_CTXTID2 is set in this case. 549 */ 550 switch (cs_etm__get_pid_fmt(etmq)) { 551 case CS_ETM_PIDFMT_CTXTID: 552 if (elem->context.ctxt_id_valid) 553 tid = elem->context.context_id; 554 break; 555 case CS_ETM_PIDFMT_CTXTID2: 556 if (elem->context.vmid_valid) 557 tid = elem->context.vmid; 558 break; 559 case CS_ETM_PIDFMT_NONE: 560 default: 561 break; 562 } 563 564 if (cs_etm__etmq_set_tid_el(etmq, tid, trace_chan_id, 565 elem->context.exception_level)) 566 return OCSD_RESP_FATAL_SYS_ERR; 567 568 if (tid == -1) 569 return OCSD_RESP_CONT; 570 571 /* 572 * A timestamp is generated after a PE_CONTEXT element so make sure 573 * to rely on that coming one. 574 */ 575 cs_etm_decoder__reset_timestamp(packet_queue); 576 577 return OCSD_RESP_CONT; 578 } 579 580 static ocsd_datapath_resp_t cs_etm_decoder__gen_trace_elem_printer( 581 const void *context, 582 const ocsd_trc_index_t indx, 583 const u8 trace_chan_id __maybe_unused, 584 const ocsd_generic_trace_elem *elem) 585 { 586 ocsd_datapath_resp_t resp = OCSD_RESP_CONT; 587 struct cs_etm_decoder *decoder = (struct cs_etm_decoder *) context; 588 struct cs_etm_queue *etmq = decoder->data; 589 struct cs_etm_packet_queue *packet_queue; 590 591 /* First get the packet queue for this traceID */ 592 packet_queue = cs_etm__etmq_get_packet_queue(etmq, trace_chan_id); 593 if (!packet_queue) 594 return OCSD_RESP_FATAL_SYS_ERR; 595 596 switch (elem->elem_type) { 597 case OCSD_GEN_TRC_ELEM_UNKNOWN: 598 break; 599 case OCSD_GEN_TRC_ELEM_EO_TRACE: 600 case OCSD_GEN_TRC_ELEM_NO_SYNC: 601 case OCSD_GEN_TRC_ELEM_TRACE_ON: 602 resp = cs_etm_decoder__buffer_discontinuity(packet_queue, 603 trace_chan_id); 604 break; 605 case OCSD_GEN_TRC_ELEM_INSTR_RANGE: 606 resp = cs_etm_decoder__buffer_range(etmq, packet_queue, elem, 607 trace_chan_id); 608 break; 609 case OCSD_GEN_TRC_ELEM_EXCEPTION: 610 resp = cs_etm_decoder__buffer_exception(packet_queue, elem, 611 trace_chan_id); 612 break; 613 case OCSD_GEN_TRC_ELEM_EXCEPTION_RET: 614 resp = cs_etm_decoder__buffer_exception_ret(packet_queue, 615 trace_chan_id); 616 break; 617 case OCSD_GEN_TRC_ELEM_TIMESTAMP: 618 resp = cs_etm_decoder__do_hard_timestamp(etmq, elem, 619 trace_chan_id, 620 indx); 621 break; 622 case OCSD_GEN_TRC_ELEM_PE_CONTEXT: 623 resp = cs_etm_decoder__set_tid(etmq, packet_queue, 624 elem, trace_chan_id); 625 break; 626 /* Unused packet types */ 627 case OCSD_GEN_TRC_ELEM_I_RANGE_NOPATH: 628 case OCSD_GEN_TRC_ELEM_ADDR_NACC: 629 case OCSD_GEN_TRC_ELEM_CYCLE_COUNT: 630 case OCSD_GEN_TRC_ELEM_ADDR_UNKNOWN: 631 case OCSD_GEN_TRC_ELEM_EVENT: 632 case OCSD_GEN_TRC_ELEM_SWTRACE: 633 case OCSD_GEN_TRC_ELEM_CUSTOM: 634 case OCSD_GEN_TRC_ELEM_SYNC_MARKER: 635 case OCSD_GEN_TRC_ELEM_MEMTRANS: 636 #if (OCSD_VER_NUM >= 0x010400) 637 case OCSD_GEN_TRC_ELEM_INSTRUMENTATION: 638 #endif 639 default: 640 break; 641 } 642 643 return resp; 644 } 645 646 static int 647 cs_etm_decoder__create_etm_decoder(struct cs_etm_decoder_params *d_params, 648 struct cs_etm_trace_params *t_params, 649 struct cs_etm_decoder *decoder) 650 { 651 ocsd_etmv3_cfg config_etmv3; 652 ocsd_etmv4_cfg trace_config_etmv4; 653 ocsd_ete_cfg trace_config_ete; 654 void *trace_config; 655 u8 csid; 656 657 switch (t_params->protocol) { 658 case CS_ETM_PROTO_ETMV3: 659 case CS_ETM_PROTO_PTM: 660 csid = (t_params->etmv3.reg_idr & CORESIGHT_TRACE_ID_VAL_MASK); 661 cs_etm_decoder__gen_etmv3_config(t_params, &config_etmv3); 662 decoder->decoder_name = (t_params->protocol == CS_ETM_PROTO_ETMV3) ? 663 OCSD_BUILTIN_DCD_ETMV3 : 664 OCSD_BUILTIN_DCD_PTM; 665 trace_config = &config_etmv3; 666 break; 667 case CS_ETM_PROTO_ETMV4i: 668 csid = (t_params->etmv4.reg_traceidr & CORESIGHT_TRACE_ID_VAL_MASK); 669 cs_etm_decoder__gen_etmv4_config(t_params, &trace_config_etmv4); 670 decoder->decoder_name = OCSD_BUILTIN_DCD_ETMV4I; 671 trace_config = &trace_config_etmv4; 672 break; 673 case CS_ETM_PROTO_ETE: 674 csid = (t_params->ete.reg_traceidr & CORESIGHT_TRACE_ID_VAL_MASK); 675 cs_etm_decoder__gen_ete_config(t_params, &trace_config_ete); 676 decoder->decoder_name = OCSD_BUILTIN_DCD_ETE; 677 trace_config = &trace_config_ete; 678 break; 679 default: 680 return -1; 681 } 682 683 /* if the CPU has no trace ID associated, no decoder needed */ 684 if (csid == CORESIGHT_TRACE_ID_UNUSED_VAL) 685 return 0; 686 687 if (d_params->operation == CS_ETM_OPERATION_DECODE) { 688 if (ocsd_dt_create_decoder(decoder->dcd_tree, 689 decoder->decoder_name, 690 OCSD_CREATE_FLG_FULL_DECODER, 691 trace_config, &csid)) 692 return -1; 693 694 if (ocsd_dt_set_gen_elem_outfn(decoder->dcd_tree, 695 cs_etm_decoder__gen_trace_elem_printer, 696 decoder)) 697 return -1; 698 699 return 0; 700 } else if (d_params->operation == CS_ETM_OPERATION_PRINT) { 701 if (ocsd_dt_create_decoder(decoder->dcd_tree, decoder->decoder_name, 702 OCSD_CREATE_FLG_PACKET_PROC, 703 trace_config, &csid)) 704 return -1; 705 706 if (ocsd_dt_set_pkt_protocol_printer(decoder->dcd_tree, csid, 0)) 707 return -1; 708 709 return 0; 710 } 711 712 return -1; 713 } 714 715 struct cs_etm_decoder * 716 cs_etm_decoder__new(int decoders, struct cs_etm_decoder_params *d_params, 717 struct cs_etm_trace_params t_params[]) 718 { 719 struct cs_etm_decoder *decoder; 720 ocsd_dcd_tree_src_t format; 721 u32 flags; 722 int i, ret; 723 724 if ((!t_params) || (!d_params)) 725 return NULL; 726 727 decoder = zalloc(sizeof(*decoder)); 728 729 if (!decoder) 730 return NULL; 731 732 decoder->data = d_params->data; 733 decoder->prev_return = OCSD_RESP_CONT; 734 format = (d_params->formatted ? OCSD_TRC_SRC_FRAME_FORMATTED : 735 OCSD_TRC_SRC_SINGLE); 736 flags = 0; 737 flags |= (d_params->fsyncs ? OCSD_DFRMTR_HAS_FSYNCS : 0); 738 flags |= (d_params->hsyncs ? OCSD_DFRMTR_HAS_HSYNCS : 0); 739 flags |= (d_params->frame_aligned ? OCSD_DFRMTR_FRAME_MEM_ALIGN : 0); 740 741 /* 742 * Drivers may add barrier frames when used with perf, set up to 743 * handle this. Barriers const of FSYNC packet repeated 4 times. 744 */ 745 flags |= OCSD_DFRMTR_RESET_ON_4X_FSYNC; 746 747 /* Create decode tree for the data source */ 748 decoder->dcd_tree = ocsd_create_dcd_tree(format, flags); 749 750 if (decoder->dcd_tree == 0) 751 goto err_free_decoder; 752 753 /* init library print logging support */ 754 ret = cs_etm_decoder__init_def_logger_printing(d_params, decoder); 755 if (ret != 0) 756 goto err_free_decoder; 757 758 /* init raw frame logging if required */ 759 cs_etm_decoder__init_raw_frame_logging(d_params, decoder); 760 761 for (i = 0; i < decoders; i++) { 762 ret = cs_etm_decoder__create_etm_decoder(d_params, 763 &t_params[i], 764 decoder); 765 if (ret != 0) 766 goto err_free_decoder; 767 } 768 769 return decoder; 770 771 err_free_decoder: 772 cs_etm_decoder__free(decoder); 773 return NULL; 774 } 775 776 int cs_etm_decoder__process_data_block(struct cs_etm_decoder *decoder, 777 u64 indx, const u8 *buf, 778 size_t len, size_t *consumed) 779 { 780 int ret = 0; 781 ocsd_datapath_resp_t cur = OCSD_RESP_CONT; 782 ocsd_datapath_resp_t prev_return = decoder->prev_return; 783 size_t processed = 0; 784 u32 count; 785 786 while (processed < len) { 787 if (OCSD_DATA_RESP_IS_WAIT(prev_return)) { 788 cur = ocsd_dt_process_data(decoder->dcd_tree, 789 OCSD_OP_FLUSH, 790 0, 791 0, 792 NULL, 793 NULL); 794 } else if (OCSD_DATA_RESP_IS_CONT(prev_return)) { 795 cur = ocsd_dt_process_data(decoder->dcd_tree, 796 OCSD_OP_DATA, 797 indx + processed, 798 len - processed, 799 &buf[processed], 800 &count); 801 processed += count; 802 } else { 803 ret = -EINVAL; 804 break; 805 } 806 807 /* 808 * Return to the input code if the packet buffer is full. 809 * Flushing will get done once the packet buffer has been 810 * processed. 811 */ 812 if (OCSD_DATA_RESP_IS_WAIT(cur)) 813 break; 814 815 prev_return = cur; 816 } 817 818 decoder->prev_return = cur; 819 *consumed = processed; 820 821 return ret; 822 } 823 824 void cs_etm_decoder__free(struct cs_etm_decoder *decoder) 825 { 826 if (!decoder) 827 return; 828 829 ocsd_destroy_dcd_tree(decoder->dcd_tree); 830 decoder->dcd_tree = NULL; 831 free(decoder); 832 } 833 834 const char *cs_etm_decoder__get_name(struct cs_etm_decoder *decoder) 835 { 836 return decoder->decoder_name; 837 } 838