1 // SPDX-License-Identifier: GPL-2.0 2 #include <api/fs/fs.h> 3 #include "cpumap.h" 4 #include "debug.h" 5 #include "event.h" 6 #include <assert.h> 7 #include <dirent.h> 8 #include <stdio.h> 9 #include <stdlib.h> 10 #include <linux/bitmap.h> 11 #include "asm/bug.h" 12 13 #include <linux/ctype.h> 14 #include <linux/zalloc.h> 15 16 static int max_cpu_num; 17 static int max_present_cpu_num; 18 static int max_node_num; 19 /** 20 * The numa node X as read from /sys/devices/system/node/nodeX indexed by the 21 * CPU number. 22 */ 23 static int *cpunode_map; 24 25 static struct perf_cpu_map *cpu_map__from_entries(struct cpu_map_entries *cpus) 26 { 27 struct perf_cpu_map *map; 28 29 map = perf_cpu_map__empty_new(cpus->nr); 30 if (map) { 31 unsigned i; 32 33 for (i = 0; i < cpus->nr; i++) { 34 /* 35 * Special treatment for -1, which is not real cpu number, 36 * and we need to use (int) -1 to initialize map[i], 37 * otherwise it would become 65535. 38 */ 39 if (cpus->cpu[i] == (u16) -1) 40 map->map[i] = -1; 41 else 42 map->map[i] = (int) cpus->cpu[i]; 43 } 44 } 45 46 return map; 47 } 48 49 static struct perf_cpu_map *cpu_map__from_mask(struct perf_record_record_cpu_map *mask) 50 { 51 struct perf_cpu_map *map; 52 int nr, nbits = mask->nr * mask->long_size * BITS_PER_BYTE; 53 54 nr = bitmap_weight(mask->mask, nbits); 55 56 map = perf_cpu_map__empty_new(nr); 57 if (map) { 58 int cpu, i = 0; 59 60 for_each_set_bit(cpu, mask->mask, nbits) 61 map->map[i++] = cpu; 62 } 63 return map; 64 65 } 66 67 struct perf_cpu_map *cpu_map__new_data(struct perf_record_cpu_map_data *data) 68 { 69 if (data->type == PERF_CPU_MAP__CPUS) 70 return cpu_map__from_entries((struct cpu_map_entries *)data->data); 71 else 72 return cpu_map__from_mask((struct perf_record_record_cpu_map *)data->data); 73 } 74 75 size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp) 76 { 77 #define BUFSIZE 1024 78 char buf[BUFSIZE]; 79 80 cpu_map__snprint(map, buf, sizeof(buf)); 81 return fprintf(fp, "%s\n", buf); 82 #undef BUFSIZE 83 } 84 85 struct perf_cpu_map *perf_cpu_map__empty_new(int nr) 86 { 87 struct perf_cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int) * nr); 88 89 if (cpus != NULL) { 90 int i; 91 92 cpus->nr = nr; 93 for (i = 0; i < nr; i++) 94 cpus->map[i] = -1; 95 96 refcount_set(&cpus->refcnt, 1); 97 } 98 99 return cpus; 100 } 101 102 struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr) 103 { 104 struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr); 105 106 if (cpus != NULL) { 107 int i; 108 109 cpus->nr = nr; 110 for (i = 0; i < nr; i++) 111 cpus->map[i] = aggr_cpu_id__empty(); 112 113 refcount_set(&cpus->refcnt, 1); 114 } 115 116 return cpus; 117 } 118 119 static int cpu__get_topology_int(int cpu, const char *name, int *value) 120 { 121 char path[PATH_MAX]; 122 123 snprintf(path, PATH_MAX, 124 "devices/system/cpu/cpu%d/topology/%s", cpu, name); 125 126 return sysfs__read_int(path, value); 127 } 128 129 int cpu__get_socket_id(int cpu) 130 { 131 int value, ret = cpu__get_topology_int(cpu, "physical_package_id", &value); 132 return ret ?: value; 133 } 134 135 struct aggr_cpu_id aggr_cpu_id__socket(int cpu, void *data __maybe_unused) 136 { 137 struct aggr_cpu_id id = aggr_cpu_id__empty(); 138 139 id.socket = cpu__get_socket_id(cpu); 140 return id; 141 } 142 143 static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer) 144 { 145 struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer; 146 struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer; 147 148 if (a->node != b->node) 149 return a->node - b->node; 150 else if (a->socket != b->socket) 151 return a->socket - b->socket; 152 else if (a->die != b->die) 153 return a->die - b->die; 154 else if (a->core != b->core) 155 return a->core - b->core; 156 else 157 return a->thread - b->thread; 158 } 159 160 struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus, 161 aggr_cpu_id_get_t get_id, 162 void *data) 163 { 164 int cpu, idx; 165 struct cpu_aggr_map *c = cpu_aggr_map__empty_new(cpus->nr); 166 167 if (!c) 168 return NULL; 169 170 /* Reset size as it may only be partially filled */ 171 c->nr = 0; 172 173 perf_cpu_map__for_each_cpu(cpu, idx, cpus) { 174 bool duplicate = false; 175 struct aggr_cpu_id cpu_id = get_id(cpu, data); 176 177 for (int j = 0; j < c->nr; j++) { 178 if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) { 179 duplicate = true; 180 break; 181 } 182 } 183 if (!duplicate) { 184 c->map[c->nr] = cpu_id; 185 c->nr++; 186 } 187 } 188 189 /* ensure we process id in increasing order */ 190 qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp); 191 192 return c; 193 194 } 195 196 int cpu__get_die_id(int cpu) 197 { 198 int value, ret = cpu__get_topology_int(cpu, "die_id", &value); 199 200 return ret ?: value; 201 } 202 203 struct aggr_cpu_id aggr_cpu_id__die(int cpu, void *data) 204 { 205 struct aggr_cpu_id id; 206 int die; 207 208 die = cpu__get_die_id(cpu); 209 /* There is no die_id on legacy system. */ 210 if (die == -1) 211 die = 0; 212 213 /* 214 * die_id is relative to socket, so start 215 * with the socket ID and then add die to 216 * make a unique ID. 217 */ 218 id = aggr_cpu_id__socket(cpu, data); 219 if (aggr_cpu_id__is_empty(&id)) 220 return id; 221 222 id.die = die; 223 return id; 224 } 225 226 int cpu__get_core_id(int cpu) 227 { 228 int value, ret = cpu__get_topology_int(cpu, "core_id", &value); 229 return ret ?: value; 230 } 231 232 struct aggr_cpu_id aggr_cpu_id__core(int cpu, void *data) 233 { 234 struct aggr_cpu_id id; 235 int core = cpu__get_core_id(cpu); 236 237 /* aggr_cpu_id__die returns a struct with socket and die set*/ 238 id = aggr_cpu_id__die(cpu, data); 239 if (aggr_cpu_id__is_empty(&id)) 240 return id; 241 242 /* 243 * core_id is relative to socket and die, we need a global id. 244 * So we combine the result from cpu_map__get_die with the core id 245 */ 246 id.core = core; 247 return id; 248 249 } 250 251 struct aggr_cpu_id aggr_cpu_id__node(int cpu, void *data __maybe_unused) 252 { 253 struct aggr_cpu_id id = aggr_cpu_id__empty(); 254 255 id.node = cpu__get_node(cpu); 256 return id; 257 } 258 259 /* setup simple routines to easily access node numbers given a cpu number */ 260 static int get_max_num(char *path, int *max) 261 { 262 size_t num; 263 char *buf; 264 int err = 0; 265 266 if (filename__read_str(path, &buf, &num)) 267 return -1; 268 269 buf[num] = '\0'; 270 271 /* start on the right, to find highest node num */ 272 while (--num) { 273 if ((buf[num] == ',') || (buf[num] == '-')) { 274 num++; 275 break; 276 } 277 } 278 if (sscanf(&buf[num], "%d", max) < 1) { 279 err = -1; 280 goto out; 281 } 282 283 /* convert from 0-based to 1-based */ 284 (*max)++; 285 286 out: 287 free(buf); 288 return err; 289 } 290 291 /* Determine highest possible cpu in the system for sparse allocation */ 292 static void set_max_cpu_num(void) 293 { 294 const char *mnt; 295 char path[PATH_MAX]; 296 int ret = -1; 297 298 /* set up default */ 299 max_cpu_num = 4096; 300 max_present_cpu_num = 4096; 301 302 mnt = sysfs__mountpoint(); 303 if (!mnt) 304 goto out; 305 306 /* get the highest possible cpu number for a sparse allocation */ 307 ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt); 308 if (ret >= PATH_MAX) { 309 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); 310 goto out; 311 } 312 313 ret = get_max_num(path, &max_cpu_num); 314 if (ret) 315 goto out; 316 317 /* get the highest present cpu number for a sparse allocation */ 318 ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt); 319 if (ret >= PATH_MAX) { 320 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); 321 goto out; 322 } 323 324 ret = get_max_num(path, &max_present_cpu_num); 325 326 out: 327 if (ret) 328 pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num); 329 } 330 331 /* Determine highest possible node in the system for sparse allocation */ 332 static void set_max_node_num(void) 333 { 334 const char *mnt; 335 char path[PATH_MAX]; 336 int ret = -1; 337 338 /* set up default */ 339 max_node_num = 8; 340 341 mnt = sysfs__mountpoint(); 342 if (!mnt) 343 goto out; 344 345 /* get the highest possible cpu number for a sparse allocation */ 346 ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt); 347 if (ret >= PATH_MAX) { 348 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); 349 goto out; 350 } 351 352 ret = get_max_num(path, &max_node_num); 353 354 out: 355 if (ret) 356 pr_err("Failed to read max nodes, using default of %d\n", max_node_num); 357 } 358 359 int cpu__max_node(void) 360 { 361 if (unlikely(!max_node_num)) 362 set_max_node_num(); 363 364 return max_node_num; 365 } 366 367 int cpu__max_cpu(void) 368 { 369 if (unlikely(!max_cpu_num)) 370 set_max_cpu_num(); 371 372 return max_cpu_num; 373 } 374 375 int cpu__max_present_cpu(void) 376 { 377 if (unlikely(!max_present_cpu_num)) 378 set_max_cpu_num(); 379 380 return max_present_cpu_num; 381 } 382 383 384 int cpu__get_node(int cpu) 385 { 386 if (unlikely(cpunode_map == NULL)) { 387 pr_debug("cpu_map not initialized\n"); 388 return -1; 389 } 390 391 return cpunode_map[cpu]; 392 } 393 394 static int init_cpunode_map(void) 395 { 396 int i; 397 398 set_max_cpu_num(); 399 set_max_node_num(); 400 401 cpunode_map = calloc(max_cpu_num, sizeof(int)); 402 if (!cpunode_map) { 403 pr_err("%s: calloc failed\n", __func__); 404 return -1; 405 } 406 407 for (i = 0; i < max_cpu_num; i++) 408 cpunode_map[i] = -1; 409 410 return 0; 411 } 412 413 int cpu__setup_cpunode_map(void) 414 { 415 struct dirent *dent1, *dent2; 416 DIR *dir1, *dir2; 417 unsigned int cpu, mem; 418 char buf[PATH_MAX]; 419 char path[PATH_MAX]; 420 const char *mnt; 421 int n; 422 423 /* initialize globals */ 424 if (init_cpunode_map()) 425 return -1; 426 427 mnt = sysfs__mountpoint(); 428 if (!mnt) 429 return 0; 430 431 n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt); 432 if (n >= PATH_MAX) { 433 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); 434 return -1; 435 } 436 437 dir1 = opendir(path); 438 if (!dir1) 439 return 0; 440 441 /* walk tree and setup map */ 442 while ((dent1 = readdir(dir1)) != NULL) { 443 if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1) 444 continue; 445 446 n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name); 447 if (n >= PATH_MAX) { 448 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); 449 continue; 450 } 451 452 dir2 = opendir(buf); 453 if (!dir2) 454 continue; 455 while ((dent2 = readdir(dir2)) != NULL) { 456 if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1) 457 continue; 458 cpunode_map[cpu] = mem; 459 } 460 closedir(dir2); 461 } 462 closedir(dir1); 463 return 0; 464 } 465 466 size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size) 467 { 468 int i, cpu, start = -1; 469 bool first = true; 470 size_t ret = 0; 471 472 #define COMMA first ? "" : "," 473 474 for (i = 0; i < map->nr + 1; i++) { 475 bool last = i == map->nr; 476 477 cpu = last ? INT_MAX : map->map[i]; 478 479 if (start == -1) { 480 start = i; 481 if (last) { 482 ret += snprintf(buf + ret, size - ret, 483 "%s%d", COMMA, 484 map->map[i]); 485 } 486 } else if (((i - start) != (cpu - map->map[start])) || last) { 487 int end = i - 1; 488 489 if (start == end) { 490 ret += snprintf(buf + ret, size - ret, 491 "%s%d", COMMA, 492 map->map[start]); 493 } else { 494 ret += snprintf(buf + ret, size - ret, 495 "%s%d-%d", COMMA, 496 map->map[start], map->map[end]); 497 } 498 first = false; 499 start = i; 500 } 501 } 502 503 #undef COMMA 504 505 pr_debug2("cpumask list: %s\n", buf); 506 return ret; 507 } 508 509 static char hex_char(unsigned char val) 510 { 511 if (val < 10) 512 return val + '0'; 513 if (val < 16) 514 return val - 10 + 'a'; 515 return '?'; 516 } 517 518 size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size) 519 { 520 int i, cpu; 521 char *ptr = buf; 522 unsigned char *bitmap; 523 int last_cpu = perf_cpu_map__cpu(map, map->nr - 1); 524 525 if (buf == NULL) 526 return 0; 527 528 bitmap = zalloc(last_cpu / 8 + 1); 529 if (bitmap == NULL) { 530 buf[0] = '\0'; 531 return 0; 532 } 533 534 for (i = 0; i < map->nr; i++) { 535 cpu = perf_cpu_map__cpu(map, i); 536 bitmap[cpu / 8] |= 1 << (cpu % 8); 537 } 538 539 for (cpu = last_cpu / 4 * 4; cpu >= 0; cpu -= 4) { 540 unsigned char bits = bitmap[cpu / 8]; 541 542 if (cpu % 8) 543 bits >>= 4; 544 else 545 bits &= 0xf; 546 547 *ptr++ = hex_char(bits); 548 if ((cpu % 32) == 0 && cpu > 0) 549 *ptr++ = ','; 550 } 551 *ptr = '\0'; 552 free(bitmap); 553 554 buf[size - 1] = '\0'; 555 return ptr - buf; 556 } 557 558 const struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */ 559 { 560 static const struct perf_cpu_map *online = NULL; 561 562 if (!online) 563 online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */ 564 565 return online; 566 } 567 568 bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b) 569 { 570 return a->thread == b->thread && 571 a->node == b->node && 572 a->socket == b->socket && 573 a->die == b->die && 574 a->core == b->core; 575 } 576 577 bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a) 578 { 579 return a->thread == -1 && 580 a->node == -1 && 581 a->socket == -1 && 582 a->die == -1 && 583 a->core == -1; 584 } 585 586 struct aggr_cpu_id aggr_cpu_id__empty(void) 587 { 588 struct aggr_cpu_id ret = { 589 .thread = -1, 590 .node = -1, 591 .socket = -1, 592 .die = -1, 593 .core = -1 594 }; 595 return ret; 596 } 597