xref: /openbmc/linux/tools/perf/util/cpumap.c (revision 2a12187d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <api/fs/fs.h>
3 #include "cpumap.h"
4 #include "debug.h"
5 #include "event.h"
6 #include <assert.h>
7 #include <dirent.h>
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <linux/bitmap.h>
11 #include "asm/bug.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/zalloc.h>
15 #include <internal/cpumap.h>
16 
17 static struct perf_cpu max_cpu_num;
18 static struct perf_cpu max_present_cpu_num;
19 static int max_node_num;
20 /**
21  * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
22  * CPU number.
23  */
24 static int *cpunode_map;
25 
26 bool perf_record_cpu_map_data__test_bit(int i,
27 					const struct perf_record_cpu_map_data *data)
28 {
29 	int bit_word32 = i / 32;
30 	__u32 bit_mask32 = 1U << (i & 31);
31 	int bit_word64 = i / 64;
32 	__u64 bit_mask64 = ((__u64)1) << (i & 63);
33 
34 	return (data->mask32_data.long_size == 4)
35 		? (bit_word32 < data->mask32_data.nr) &&
36 		(data->mask32_data.mask[bit_word32] & bit_mask32) != 0
37 		: (bit_word64 < data->mask64_data.nr) &&
38 		(data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
39 }
40 
41 /* Read ith mask value from data into the given 64-bit sized bitmap */
42 static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
43 						    int i, unsigned long *bitmap)
44 {
45 #if __SIZEOF_LONG__ == 8
46 	if (data->mask32_data.long_size == 4)
47 		bitmap[0] = data->mask32_data.mask[i];
48 	else
49 		bitmap[0] = data->mask64_data.mask[i];
50 #else
51 	if (data->mask32_data.long_size == 4) {
52 		bitmap[0] = data->mask32_data.mask[i];
53 		bitmap[1] = 0;
54 	} else {
55 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
56 		bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
57 		bitmap[1] = (unsigned long)data->mask64_data.mask[i];
58 #else
59 		bitmap[0] = (unsigned long)data->mask64_data.mask[i];
60 		bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
61 #endif
62 	}
63 #endif
64 }
65 static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
66 {
67 	struct perf_cpu_map *map;
68 
69 	map = perf_cpu_map__empty_new(data->cpus_data.nr);
70 	if (map) {
71 		unsigned i;
72 
73 		for (i = 0; i < data->cpus_data.nr; i++) {
74 			/*
75 			 * Special treatment for -1, which is not real cpu number,
76 			 * and we need to use (int) -1 to initialize map[i],
77 			 * otherwise it would become 65535.
78 			 */
79 			if (data->cpus_data.cpu[i] == (u16) -1)
80 				map->map[i].cpu = -1;
81 			else
82 				map->map[i].cpu = (int) data->cpus_data.cpu[i];
83 		}
84 	}
85 
86 	return map;
87 }
88 
89 static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
90 {
91 	DECLARE_BITMAP(local_copy, 64);
92 	int weight = 0, mask_nr = data->mask32_data.nr;
93 	struct perf_cpu_map *map;
94 
95 	for (int i = 0; i < mask_nr; i++) {
96 		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
97 		weight += bitmap_weight(local_copy, 64);
98 	}
99 
100 	map = perf_cpu_map__empty_new(weight);
101 	if (!map)
102 		return NULL;
103 
104 	for (int i = 0, j = 0; i < mask_nr; i++) {
105 		int cpus_per_i = (i * data->mask32_data.long_size  * BITS_PER_BYTE);
106 		int cpu;
107 
108 		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
109 		for_each_set_bit(cpu, local_copy, 64)
110 			map->map[j++].cpu = cpu + cpus_per_i;
111 	}
112 	return map;
113 
114 }
115 
116 static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
117 {
118 	struct perf_cpu_map *map;
119 	unsigned int i = 0;
120 
121 	map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
122 				data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
123 	if (!map)
124 		return NULL;
125 
126 	if (data->range_cpu_data.any_cpu)
127 		map->map[i++].cpu = -1;
128 
129 	for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
130 	     i++, cpu++)
131 		map->map[i].cpu = cpu;
132 
133 	return map;
134 }
135 
136 struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
137 {
138 	switch (data->type) {
139 	case PERF_CPU_MAP__CPUS:
140 		return cpu_map__from_entries(data);
141 	case PERF_CPU_MAP__MASK:
142 		return cpu_map__from_mask(data);
143 	case PERF_CPU_MAP__RANGE_CPUS:
144 		return cpu_map__from_range(data);
145 	default:
146 		pr_err("cpu_map__new_data unknown type %d\n", data->type);
147 		return NULL;
148 	}
149 }
150 
151 size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
152 {
153 #define BUFSIZE 1024
154 	char buf[BUFSIZE];
155 
156 	cpu_map__snprint(map, buf, sizeof(buf));
157 	return fprintf(fp, "%s\n", buf);
158 #undef BUFSIZE
159 }
160 
161 struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
162 {
163 	struct perf_cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int) * nr);
164 
165 	if (cpus != NULL) {
166 		int i;
167 
168 		cpus->nr = nr;
169 		for (i = 0; i < nr; i++)
170 			cpus->map[i].cpu = -1;
171 
172 		refcount_set(&cpus->refcnt, 1);
173 	}
174 
175 	return cpus;
176 }
177 
178 struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
179 {
180 	struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
181 
182 	if (cpus != NULL) {
183 		int i;
184 
185 		cpus->nr = nr;
186 		for (i = 0; i < nr; i++)
187 			cpus->map[i] = aggr_cpu_id__empty();
188 
189 		refcount_set(&cpus->refcnt, 1);
190 	}
191 
192 	return cpus;
193 }
194 
195 static int cpu__get_topology_int(int cpu, const char *name, int *value)
196 {
197 	char path[PATH_MAX];
198 
199 	snprintf(path, PATH_MAX,
200 		"devices/system/cpu/cpu%d/topology/%s", cpu, name);
201 
202 	return sysfs__read_int(path, value);
203 }
204 
205 int cpu__get_socket_id(struct perf_cpu cpu)
206 {
207 	int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
208 	return ret ?: value;
209 }
210 
211 struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
212 {
213 	struct aggr_cpu_id id = aggr_cpu_id__empty();
214 
215 	id.socket = cpu__get_socket_id(cpu);
216 	return id;
217 }
218 
219 static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
220 {
221 	struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
222 	struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
223 
224 	if (a->node != b->node)
225 		return a->node - b->node;
226 	else if (a->socket != b->socket)
227 		return a->socket - b->socket;
228 	else if (a->die != b->die)
229 		return a->die - b->die;
230 	else if (a->core != b->core)
231 		return a->core - b->core;
232 	else
233 		return a->thread_idx - b->thread_idx;
234 }
235 
236 struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
237 				       aggr_cpu_id_get_t get_id,
238 				       void *data, bool needs_sort)
239 {
240 	int idx;
241 	struct perf_cpu cpu;
242 	struct cpu_aggr_map *c = cpu_aggr_map__empty_new(cpus->nr);
243 
244 	if (!c)
245 		return NULL;
246 
247 	/* Reset size as it may only be partially filled */
248 	c->nr = 0;
249 
250 	perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
251 		bool duplicate = false;
252 		struct aggr_cpu_id cpu_id = get_id(cpu, data);
253 
254 		for (int j = 0; j < c->nr; j++) {
255 			if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
256 				duplicate = true;
257 				break;
258 			}
259 		}
260 		if (!duplicate) {
261 			c->map[c->nr] = cpu_id;
262 			c->nr++;
263 		}
264 	}
265 	/* Trim. */
266 	if (c->nr != cpus->nr) {
267 		struct cpu_aggr_map *trimmed_c =
268 			realloc(c,
269 				sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
270 
271 		if (trimmed_c)
272 			c = trimmed_c;
273 	}
274 
275 	/* ensure we process id in increasing order */
276 	if (needs_sort)
277 		qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
278 
279 	return c;
280 
281 }
282 
283 int cpu__get_die_id(struct perf_cpu cpu)
284 {
285 	int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
286 
287 	return ret ?: value;
288 }
289 
290 struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
291 {
292 	struct aggr_cpu_id id;
293 	int die;
294 
295 	die = cpu__get_die_id(cpu);
296 	/* There is no die_id on legacy system. */
297 	if (die == -1)
298 		die = 0;
299 
300 	/*
301 	 * die_id is relative to socket, so start
302 	 * with the socket ID and then add die to
303 	 * make a unique ID.
304 	 */
305 	id = aggr_cpu_id__socket(cpu, data);
306 	if (aggr_cpu_id__is_empty(&id))
307 		return id;
308 
309 	id.die = die;
310 	return id;
311 }
312 
313 int cpu__get_core_id(struct perf_cpu cpu)
314 {
315 	int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
316 	return ret ?: value;
317 }
318 
319 struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
320 {
321 	struct aggr_cpu_id id;
322 	int core = cpu__get_core_id(cpu);
323 
324 	/* aggr_cpu_id__die returns a struct with socket and die set. */
325 	id = aggr_cpu_id__die(cpu, data);
326 	if (aggr_cpu_id__is_empty(&id))
327 		return id;
328 
329 	/*
330 	 * core_id is relative to socket and die, we need a global id.
331 	 * So we combine the result from cpu_map__get_die with the core id
332 	 */
333 	id.core = core;
334 	return id;
335 
336 }
337 
338 struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
339 {
340 	struct aggr_cpu_id id;
341 
342 	/* aggr_cpu_id__core returns a struct with socket, die and core set. */
343 	id = aggr_cpu_id__core(cpu, data);
344 	if (aggr_cpu_id__is_empty(&id))
345 		return id;
346 
347 	id.cpu = cpu;
348 	return id;
349 
350 }
351 
352 struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
353 {
354 	struct aggr_cpu_id id = aggr_cpu_id__empty();
355 
356 	id.node = cpu__get_node(cpu);
357 	return id;
358 }
359 
360 struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
361 {
362 	struct aggr_cpu_id id = aggr_cpu_id__empty();
363 
364 	/* it always aggregates to the cpu 0 */
365 	cpu.cpu = 0;
366 	id.cpu = cpu;
367 	return id;
368 }
369 
370 /* setup simple routines to easily access node numbers given a cpu number */
371 static int get_max_num(char *path, int *max)
372 {
373 	size_t num;
374 	char *buf;
375 	int err = 0;
376 
377 	if (filename__read_str(path, &buf, &num))
378 		return -1;
379 
380 	buf[num] = '\0';
381 
382 	/* start on the right, to find highest node num */
383 	while (--num) {
384 		if ((buf[num] == ',') || (buf[num] == '-')) {
385 			num++;
386 			break;
387 		}
388 	}
389 	if (sscanf(&buf[num], "%d", max) < 1) {
390 		err = -1;
391 		goto out;
392 	}
393 
394 	/* convert from 0-based to 1-based */
395 	(*max)++;
396 
397 out:
398 	free(buf);
399 	return err;
400 }
401 
402 /* Determine highest possible cpu in the system for sparse allocation */
403 static void set_max_cpu_num(void)
404 {
405 	const char *mnt;
406 	char path[PATH_MAX];
407 	int ret = -1;
408 
409 	/* set up default */
410 	max_cpu_num.cpu = 4096;
411 	max_present_cpu_num.cpu = 4096;
412 
413 	mnt = sysfs__mountpoint();
414 	if (!mnt)
415 		goto out;
416 
417 	/* get the highest possible cpu number for a sparse allocation */
418 	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
419 	if (ret >= PATH_MAX) {
420 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
421 		goto out;
422 	}
423 
424 	ret = get_max_num(path, &max_cpu_num.cpu);
425 	if (ret)
426 		goto out;
427 
428 	/* get the highest present cpu number for a sparse allocation */
429 	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
430 	if (ret >= PATH_MAX) {
431 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
432 		goto out;
433 	}
434 
435 	ret = get_max_num(path, &max_present_cpu_num.cpu);
436 
437 out:
438 	if (ret)
439 		pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
440 }
441 
442 /* Determine highest possible node in the system for sparse allocation */
443 static void set_max_node_num(void)
444 {
445 	const char *mnt;
446 	char path[PATH_MAX];
447 	int ret = -1;
448 
449 	/* set up default */
450 	max_node_num = 8;
451 
452 	mnt = sysfs__mountpoint();
453 	if (!mnt)
454 		goto out;
455 
456 	/* get the highest possible cpu number for a sparse allocation */
457 	ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
458 	if (ret >= PATH_MAX) {
459 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
460 		goto out;
461 	}
462 
463 	ret = get_max_num(path, &max_node_num);
464 
465 out:
466 	if (ret)
467 		pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
468 }
469 
470 int cpu__max_node(void)
471 {
472 	if (unlikely(!max_node_num))
473 		set_max_node_num();
474 
475 	return max_node_num;
476 }
477 
478 struct perf_cpu cpu__max_cpu(void)
479 {
480 	if (unlikely(!max_cpu_num.cpu))
481 		set_max_cpu_num();
482 
483 	return max_cpu_num;
484 }
485 
486 struct perf_cpu cpu__max_present_cpu(void)
487 {
488 	if (unlikely(!max_present_cpu_num.cpu))
489 		set_max_cpu_num();
490 
491 	return max_present_cpu_num;
492 }
493 
494 
495 int cpu__get_node(struct perf_cpu cpu)
496 {
497 	if (unlikely(cpunode_map == NULL)) {
498 		pr_debug("cpu_map not initialized\n");
499 		return -1;
500 	}
501 
502 	return cpunode_map[cpu.cpu];
503 }
504 
505 static int init_cpunode_map(void)
506 {
507 	int i;
508 
509 	set_max_cpu_num();
510 	set_max_node_num();
511 
512 	cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
513 	if (!cpunode_map) {
514 		pr_err("%s: calloc failed\n", __func__);
515 		return -1;
516 	}
517 
518 	for (i = 0; i < max_cpu_num.cpu; i++)
519 		cpunode_map[i] = -1;
520 
521 	return 0;
522 }
523 
524 int cpu__setup_cpunode_map(void)
525 {
526 	struct dirent *dent1, *dent2;
527 	DIR *dir1, *dir2;
528 	unsigned int cpu, mem;
529 	char buf[PATH_MAX];
530 	char path[PATH_MAX];
531 	const char *mnt;
532 	int n;
533 
534 	/* initialize globals */
535 	if (init_cpunode_map())
536 		return -1;
537 
538 	mnt = sysfs__mountpoint();
539 	if (!mnt)
540 		return 0;
541 
542 	n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
543 	if (n >= PATH_MAX) {
544 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
545 		return -1;
546 	}
547 
548 	dir1 = opendir(path);
549 	if (!dir1)
550 		return 0;
551 
552 	/* walk tree and setup map */
553 	while ((dent1 = readdir(dir1)) != NULL) {
554 		if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
555 			continue;
556 
557 		n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
558 		if (n >= PATH_MAX) {
559 			pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
560 			continue;
561 		}
562 
563 		dir2 = opendir(buf);
564 		if (!dir2)
565 			continue;
566 		while ((dent2 = readdir(dir2)) != NULL) {
567 			if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
568 				continue;
569 			cpunode_map[cpu] = mem;
570 		}
571 		closedir(dir2);
572 	}
573 	closedir(dir1);
574 	return 0;
575 }
576 
577 size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
578 {
579 	int i, start = -1;
580 	bool first = true;
581 	size_t ret = 0;
582 
583 #define COMMA first ? "" : ","
584 
585 	for (i = 0; i < map->nr + 1; i++) {
586 		struct perf_cpu cpu = { .cpu = INT_MAX };
587 		bool last = i == map->nr;
588 
589 		if (!last)
590 			cpu = map->map[i];
591 
592 		if (start == -1) {
593 			start = i;
594 			if (last) {
595 				ret += snprintf(buf + ret, size - ret,
596 						"%s%d", COMMA,
597 						map->map[i].cpu);
598 			}
599 		} else if (((i - start) != (cpu.cpu - map->map[start].cpu)) || last) {
600 			int end = i - 1;
601 
602 			if (start == end) {
603 				ret += snprintf(buf + ret, size - ret,
604 						"%s%d", COMMA,
605 						map->map[start].cpu);
606 			} else {
607 				ret += snprintf(buf + ret, size - ret,
608 						"%s%d-%d", COMMA,
609 						map->map[start].cpu, map->map[end].cpu);
610 			}
611 			first = false;
612 			start = i;
613 		}
614 	}
615 
616 #undef COMMA
617 
618 	pr_debug2("cpumask list: %s\n", buf);
619 	return ret;
620 }
621 
622 static char hex_char(unsigned char val)
623 {
624 	if (val < 10)
625 		return val + '0';
626 	if (val < 16)
627 		return val - 10 + 'a';
628 	return '?';
629 }
630 
631 size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
632 {
633 	int i, cpu;
634 	char *ptr = buf;
635 	unsigned char *bitmap;
636 	struct perf_cpu last_cpu = perf_cpu_map__cpu(map, map->nr - 1);
637 
638 	if (buf == NULL)
639 		return 0;
640 
641 	bitmap = zalloc(last_cpu.cpu / 8 + 1);
642 	if (bitmap == NULL) {
643 		buf[0] = '\0';
644 		return 0;
645 	}
646 
647 	for (i = 0; i < map->nr; i++) {
648 		cpu = perf_cpu_map__cpu(map, i).cpu;
649 		bitmap[cpu / 8] |= 1 << (cpu % 8);
650 	}
651 
652 	for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
653 		unsigned char bits = bitmap[cpu / 8];
654 
655 		if (cpu % 8)
656 			bits >>= 4;
657 		else
658 			bits &= 0xf;
659 
660 		*ptr++ = hex_char(bits);
661 		if ((cpu % 32) == 0 && cpu > 0)
662 			*ptr++ = ',';
663 	}
664 	*ptr = '\0';
665 	free(bitmap);
666 
667 	buf[size - 1] = '\0';
668 	return ptr - buf;
669 }
670 
671 const struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
672 {
673 	static const struct perf_cpu_map *online = NULL;
674 
675 	if (!online)
676 		online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */
677 
678 	return online;
679 }
680 
681 bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
682 {
683 	return a->thread_idx == b->thread_idx &&
684 		a->node == b->node &&
685 		a->socket == b->socket &&
686 		a->die == b->die &&
687 		a->core == b->core &&
688 		a->cpu.cpu == b->cpu.cpu;
689 }
690 
691 bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
692 {
693 	return a->thread_idx == -1 &&
694 		a->node == -1 &&
695 		a->socket == -1 &&
696 		a->die == -1 &&
697 		a->core == -1 &&
698 		a->cpu.cpu == -1;
699 }
700 
701 struct aggr_cpu_id aggr_cpu_id__empty(void)
702 {
703 	struct aggr_cpu_id ret = {
704 		.thread_idx = -1,
705 		.node = -1,
706 		.socket = -1,
707 		.die = -1,
708 		.core = -1,
709 		.cpu = (struct perf_cpu){ .cpu = -1 },
710 	};
711 	return ret;
712 }
713