xref: /openbmc/linux/tools/perf/util/callchain.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009-2011, Frederic Weisbecker <fweisbec@gmail.com>
4  *
5  * Handle the callchains from the stream in an ad-hoc radix tree and then
6  * sort them in an rbtree.
7  *
8  * Using a radix for code path provides a fast retrieval and factorizes
9  * memory use. Also that lets us use the paths in a hierarchical graph view.
10  *
11  */
12 
13 #include <inttypes.h>
14 #include <stdlib.h>
15 #include <stdio.h>
16 #include <stdbool.h>
17 #include <errno.h>
18 #include <math.h>
19 #include <linux/string.h>
20 #include <linux/zalloc.h>
21 
22 #include "asm/bug.h"
23 
24 #include "debug.h"
25 #include "dso.h"
26 #include "event.h"
27 #include "hist.h"
28 #include "sort.h"
29 #include "machine.h"
30 #include "map.h"
31 #include "callchain.h"
32 #include "branch.h"
33 #include "symbol.h"
34 #include "util.h"
35 #include "../perf.h"
36 
37 #define CALLCHAIN_PARAM_DEFAULT			\
38 	.mode		= CHAIN_GRAPH_ABS,	\
39 	.min_percent	= 0.5,			\
40 	.order		= ORDER_CALLEE,		\
41 	.key		= CCKEY_FUNCTION,	\
42 	.value		= CCVAL_PERCENT,	\
43 
44 struct callchain_param callchain_param = {
45 	CALLCHAIN_PARAM_DEFAULT
46 };
47 
48 /*
49  * Are there any events usind DWARF callchains?
50  *
51  * I.e.
52  *
53  * -e cycles/call-graph=dwarf/
54  */
55 bool dwarf_callchain_users;
56 
57 struct callchain_param callchain_param_default = {
58 	CALLCHAIN_PARAM_DEFAULT
59 };
60 
61 /* Used for thread-local struct callchain_cursor. */
62 static pthread_key_t callchain_cursor;
63 
64 int parse_callchain_record_opt(const char *arg, struct callchain_param *param)
65 {
66 	return parse_callchain_record(arg, param);
67 }
68 
69 static int parse_callchain_mode(const char *value)
70 {
71 	if (!strncmp(value, "graph", strlen(value))) {
72 		callchain_param.mode = CHAIN_GRAPH_ABS;
73 		return 0;
74 	}
75 	if (!strncmp(value, "flat", strlen(value))) {
76 		callchain_param.mode = CHAIN_FLAT;
77 		return 0;
78 	}
79 	if (!strncmp(value, "fractal", strlen(value))) {
80 		callchain_param.mode = CHAIN_GRAPH_REL;
81 		return 0;
82 	}
83 	if (!strncmp(value, "folded", strlen(value))) {
84 		callchain_param.mode = CHAIN_FOLDED;
85 		return 0;
86 	}
87 	return -1;
88 }
89 
90 static int parse_callchain_order(const char *value)
91 {
92 	if (!strncmp(value, "caller", strlen(value))) {
93 		callchain_param.order = ORDER_CALLER;
94 		callchain_param.order_set = true;
95 		return 0;
96 	}
97 	if (!strncmp(value, "callee", strlen(value))) {
98 		callchain_param.order = ORDER_CALLEE;
99 		callchain_param.order_set = true;
100 		return 0;
101 	}
102 	return -1;
103 }
104 
105 static int parse_callchain_sort_key(const char *value)
106 {
107 	if (!strncmp(value, "function", strlen(value))) {
108 		callchain_param.key = CCKEY_FUNCTION;
109 		return 0;
110 	}
111 	if (!strncmp(value, "address", strlen(value))) {
112 		callchain_param.key = CCKEY_ADDRESS;
113 		return 0;
114 	}
115 	if (!strncmp(value, "srcline", strlen(value))) {
116 		callchain_param.key = CCKEY_SRCLINE;
117 		return 0;
118 	}
119 	if (!strncmp(value, "branch", strlen(value))) {
120 		callchain_param.branch_callstack = 1;
121 		return 0;
122 	}
123 	return -1;
124 }
125 
126 static int parse_callchain_value(const char *value)
127 {
128 	if (!strncmp(value, "percent", strlen(value))) {
129 		callchain_param.value = CCVAL_PERCENT;
130 		return 0;
131 	}
132 	if (!strncmp(value, "period", strlen(value))) {
133 		callchain_param.value = CCVAL_PERIOD;
134 		return 0;
135 	}
136 	if (!strncmp(value, "count", strlen(value))) {
137 		callchain_param.value = CCVAL_COUNT;
138 		return 0;
139 	}
140 	return -1;
141 }
142 
143 static int get_stack_size(const char *str, unsigned long *_size)
144 {
145 	char *endptr;
146 	unsigned long size;
147 	unsigned long max_size = round_down(USHRT_MAX, sizeof(u64));
148 
149 	size = strtoul(str, &endptr, 0);
150 
151 	do {
152 		if (*endptr)
153 			break;
154 
155 		size = round_up(size, sizeof(u64));
156 		if (!size || size > max_size)
157 			break;
158 
159 		*_size = size;
160 		return 0;
161 
162 	} while (0);
163 
164 	pr_err("callchain: Incorrect stack dump size (max %ld): %s\n",
165 	       max_size, str);
166 	return -1;
167 }
168 
169 static int
170 __parse_callchain_report_opt(const char *arg, bool allow_record_opt)
171 {
172 	char *tok;
173 	char *endptr, *saveptr = NULL;
174 	bool minpcnt_set = false;
175 	bool record_opt_set = false;
176 	bool try_stack_size = false;
177 
178 	callchain_param.enabled = true;
179 	symbol_conf.use_callchain = true;
180 
181 	if (!arg)
182 		return 0;
183 
184 	while ((tok = strtok_r((char *)arg, ",", &saveptr)) != NULL) {
185 		if (!strncmp(tok, "none", strlen(tok))) {
186 			callchain_param.mode = CHAIN_NONE;
187 			callchain_param.enabled = false;
188 			symbol_conf.use_callchain = false;
189 			return 0;
190 		}
191 
192 		if (!parse_callchain_mode(tok) ||
193 		    !parse_callchain_order(tok) ||
194 		    !parse_callchain_sort_key(tok) ||
195 		    !parse_callchain_value(tok)) {
196 			/* parsing ok - move on to the next */
197 			try_stack_size = false;
198 			goto next;
199 		} else if (allow_record_opt && !record_opt_set) {
200 			if (parse_callchain_record(tok, &callchain_param))
201 				goto try_numbers;
202 
203 			/* assume that number followed by 'dwarf' is stack size */
204 			if (callchain_param.record_mode == CALLCHAIN_DWARF)
205 				try_stack_size = true;
206 
207 			record_opt_set = true;
208 			goto next;
209 		}
210 
211 try_numbers:
212 		if (try_stack_size) {
213 			unsigned long size = 0;
214 
215 			if (get_stack_size(tok, &size) < 0)
216 				return -1;
217 			callchain_param.dump_size = size;
218 			try_stack_size = false;
219 		} else if (!minpcnt_set) {
220 			/* try to get the min percent */
221 			callchain_param.min_percent = strtod(tok, &endptr);
222 			if (tok == endptr)
223 				return -1;
224 			minpcnt_set = true;
225 		} else {
226 			/* try print limit at last */
227 			callchain_param.print_limit = strtoul(tok, &endptr, 0);
228 			if (tok == endptr)
229 				return -1;
230 		}
231 next:
232 		arg = NULL;
233 	}
234 
235 	if (callchain_register_param(&callchain_param) < 0) {
236 		pr_err("Can't register callchain params\n");
237 		return -1;
238 	}
239 	return 0;
240 }
241 
242 int parse_callchain_report_opt(const char *arg)
243 {
244 	return __parse_callchain_report_opt(arg, false);
245 }
246 
247 int parse_callchain_top_opt(const char *arg)
248 {
249 	return __parse_callchain_report_opt(arg, true);
250 }
251 
252 int parse_callchain_record(const char *arg, struct callchain_param *param)
253 {
254 	char *tok, *name, *saveptr = NULL;
255 	char *buf;
256 	int ret = -1;
257 
258 	/* We need buffer that we know we can write to. */
259 	buf = malloc(strlen(arg) + 1);
260 	if (!buf)
261 		return -ENOMEM;
262 
263 	strcpy(buf, arg);
264 
265 	tok = strtok_r((char *)buf, ",", &saveptr);
266 	name = tok ? : (char *)buf;
267 
268 	do {
269 		/* Framepointer style */
270 		if (!strncmp(name, "fp", sizeof("fp"))) {
271 			ret = 0;
272 			param->record_mode = CALLCHAIN_FP;
273 
274 			tok = strtok_r(NULL, ",", &saveptr);
275 			if (tok) {
276 				unsigned long size;
277 
278 				size = strtoul(tok, &name, 0);
279 				if (size < (unsigned) sysctl__max_stack())
280 					param->max_stack = size;
281 			}
282 			break;
283 
284 		/* Dwarf style */
285 		} else if (!strncmp(name, "dwarf", sizeof("dwarf"))) {
286 			const unsigned long default_stack_dump_size = 8192;
287 
288 			ret = 0;
289 			param->record_mode = CALLCHAIN_DWARF;
290 			param->dump_size = default_stack_dump_size;
291 			dwarf_callchain_users = true;
292 
293 			tok = strtok_r(NULL, ",", &saveptr);
294 			if (tok) {
295 				unsigned long size = 0;
296 
297 				ret = get_stack_size(tok, &size);
298 				param->dump_size = size;
299 			}
300 		} else if (!strncmp(name, "lbr", sizeof("lbr"))) {
301 			if (!strtok_r(NULL, ",", &saveptr)) {
302 				param->record_mode = CALLCHAIN_LBR;
303 				ret = 0;
304 			} else
305 				pr_err("callchain: No more arguments "
306 					"needed for --call-graph lbr\n");
307 			break;
308 		} else {
309 			pr_err("callchain: Unknown --call-graph option "
310 			       "value: %s\n", arg);
311 			break;
312 		}
313 
314 	} while (0);
315 
316 	free(buf);
317 	return ret;
318 }
319 
320 int perf_callchain_config(const char *var, const char *value)
321 {
322 	char *endptr;
323 
324 	if (!strstarts(var, "call-graph."))
325 		return 0;
326 	var += sizeof("call-graph.") - 1;
327 
328 	if (!strcmp(var, "record-mode"))
329 		return parse_callchain_record_opt(value, &callchain_param);
330 	if (!strcmp(var, "dump-size")) {
331 		unsigned long size = 0;
332 		int ret;
333 
334 		ret = get_stack_size(value, &size);
335 		callchain_param.dump_size = size;
336 
337 		return ret;
338 	}
339 	if (!strcmp(var, "print-type")){
340 		int ret;
341 		ret = parse_callchain_mode(value);
342 		if (ret == -1)
343 			pr_err("Invalid callchain mode: %s\n", value);
344 		return ret;
345 	}
346 	if (!strcmp(var, "order")){
347 		int ret;
348 		ret = parse_callchain_order(value);
349 		if (ret == -1)
350 			pr_err("Invalid callchain order: %s\n", value);
351 		return ret;
352 	}
353 	if (!strcmp(var, "sort-key")){
354 		int ret;
355 		ret = parse_callchain_sort_key(value);
356 		if (ret == -1)
357 			pr_err("Invalid callchain sort key: %s\n", value);
358 		return ret;
359 	}
360 	if (!strcmp(var, "threshold")) {
361 		callchain_param.min_percent = strtod(value, &endptr);
362 		if (value == endptr) {
363 			pr_err("Invalid callchain threshold: %s\n", value);
364 			return -1;
365 		}
366 	}
367 	if (!strcmp(var, "print-limit")) {
368 		callchain_param.print_limit = strtod(value, &endptr);
369 		if (value == endptr) {
370 			pr_err("Invalid callchain print limit: %s\n", value);
371 			return -1;
372 		}
373 	}
374 
375 	return 0;
376 }
377 
378 static void
379 rb_insert_callchain(struct rb_root *root, struct callchain_node *chain,
380 		    enum chain_mode mode)
381 {
382 	struct rb_node **p = &root->rb_node;
383 	struct rb_node *parent = NULL;
384 	struct callchain_node *rnode;
385 	u64 chain_cumul = callchain_cumul_hits(chain);
386 
387 	while (*p) {
388 		u64 rnode_cumul;
389 
390 		parent = *p;
391 		rnode = rb_entry(parent, struct callchain_node, rb_node);
392 		rnode_cumul = callchain_cumul_hits(rnode);
393 
394 		switch (mode) {
395 		case CHAIN_FLAT:
396 		case CHAIN_FOLDED:
397 			if (rnode->hit < chain->hit)
398 				p = &(*p)->rb_left;
399 			else
400 				p = &(*p)->rb_right;
401 			break;
402 		case CHAIN_GRAPH_ABS: /* Falldown */
403 		case CHAIN_GRAPH_REL:
404 			if (rnode_cumul < chain_cumul)
405 				p = &(*p)->rb_left;
406 			else
407 				p = &(*p)->rb_right;
408 			break;
409 		case CHAIN_NONE:
410 		default:
411 			break;
412 		}
413 	}
414 
415 	rb_link_node(&chain->rb_node, parent, p);
416 	rb_insert_color(&chain->rb_node, root);
417 }
418 
419 static void
420 __sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node,
421 		  u64 min_hit)
422 {
423 	struct rb_node *n;
424 	struct callchain_node *child;
425 
426 	n = rb_first(&node->rb_root_in);
427 	while (n) {
428 		child = rb_entry(n, struct callchain_node, rb_node_in);
429 		n = rb_next(n);
430 
431 		__sort_chain_flat(rb_root, child, min_hit);
432 	}
433 
434 	if (node->hit && node->hit >= min_hit)
435 		rb_insert_callchain(rb_root, node, CHAIN_FLAT);
436 }
437 
438 /*
439  * Once we get every callchains from the stream, we can now
440  * sort them by hit
441  */
442 static void
443 sort_chain_flat(struct rb_root *rb_root, struct callchain_root *root,
444 		u64 min_hit, struct callchain_param *param __maybe_unused)
445 {
446 	*rb_root = RB_ROOT;
447 	__sort_chain_flat(rb_root, &root->node, min_hit);
448 }
449 
450 static void __sort_chain_graph_abs(struct callchain_node *node,
451 				   u64 min_hit)
452 {
453 	struct rb_node *n;
454 	struct callchain_node *child;
455 
456 	node->rb_root = RB_ROOT;
457 	n = rb_first(&node->rb_root_in);
458 
459 	while (n) {
460 		child = rb_entry(n, struct callchain_node, rb_node_in);
461 		n = rb_next(n);
462 
463 		__sort_chain_graph_abs(child, min_hit);
464 		if (callchain_cumul_hits(child) >= min_hit)
465 			rb_insert_callchain(&node->rb_root, child,
466 					    CHAIN_GRAPH_ABS);
467 	}
468 }
469 
470 static void
471 sort_chain_graph_abs(struct rb_root *rb_root, struct callchain_root *chain_root,
472 		     u64 min_hit, struct callchain_param *param __maybe_unused)
473 {
474 	__sort_chain_graph_abs(&chain_root->node, min_hit);
475 	rb_root->rb_node = chain_root->node.rb_root.rb_node;
476 }
477 
478 static void __sort_chain_graph_rel(struct callchain_node *node,
479 				   double min_percent)
480 {
481 	struct rb_node *n;
482 	struct callchain_node *child;
483 	u64 min_hit;
484 
485 	node->rb_root = RB_ROOT;
486 	min_hit = ceil(node->children_hit * min_percent);
487 
488 	n = rb_first(&node->rb_root_in);
489 	while (n) {
490 		child = rb_entry(n, struct callchain_node, rb_node_in);
491 		n = rb_next(n);
492 
493 		__sort_chain_graph_rel(child, min_percent);
494 		if (callchain_cumul_hits(child) >= min_hit)
495 			rb_insert_callchain(&node->rb_root, child,
496 					    CHAIN_GRAPH_REL);
497 	}
498 }
499 
500 static void
501 sort_chain_graph_rel(struct rb_root *rb_root, struct callchain_root *chain_root,
502 		     u64 min_hit __maybe_unused, struct callchain_param *param)
503 {
504 	__sort_chain_graph_rel(&chain_root->node, param->min_percent / 100.0);
505 	rb_root->rb_node = chain_root->node.rb_root.rb_node;
506 }
507 
508 int callchain_register_param(struct callchain_param *param)
509 {
510 	switch (param->mode) {
511 	case CHAIN_GRAPH_ABS:
512 		param->sort = sort_chain_graph_abs;
513 		break;
514 	case CHAIN_GRAPH_REL:
515 		param->sort = sort_chain_graph_rel;
516 		break;
517 	case CHAIN_FLAT:
518 	case CHAIN_FOLDED:
519 		param->sort = sort_chain_flat;
520 		break;
521 	case CHAIN_NONE:
522 	default:
523 		return -1;
524 	}
525 	return 0;
526 }
527 
528 /*
529  * Create a child for a parent. If inherit_children, then the new child
530  * will become the new parent of it's parent children
531  */
532 static struct callchain_node *
533 create_child(struct callchain_node *parent, bool inherit_children)
534 {
535 	struct callchain_node *new;
536 
537 	new = zalloc(sizeof(*new));
538 	if (!new) {
539 		perror("not enough memory to create child for code path tree");
540 		return NULL;
541 	}
542 	new->parent = parent;
543 	INIT_LIST_HEAD(&new->val);
544 	INIT_LIST_HEAD(&new->parent_val);
545 
546 	if (inherit_children) {
547 		struct rb_node *n;
548 		struct callchain_node *child;
549 
550 		new->rb_root_in = parent->rb_root_in;
551 		parent->rb_root_in = RB_ROOT;
552 
553 		n = rb_first(&new->rb_root_in);
554 		while (n) {
555 			child = rb_entry(n, struct callchain_node, rb_node_in);
556 			child->parent = new;
557 			n = rb_next(n);
558 		}
559 
560 		/* make it the first child */
561 		rb_link_node(&new->rb_node_in, NULL, &parent->rb_root_in.rb_node);
562 		rb_insert_color(&new->rb_node_in, &parent->rb_root_in);
563 	}
564 
565 	return new;
566 }
567 
568 
569 /*
570  * Fill the node with callchain values
571  */
572 static int
573 fill_node(struct callchain_node *node, struct callchain_cursor *cursor)
574 {
575 	struct callchain_cursor_node *cursor_node;
576 
577 	node->val_nr = cursor->nr - cursor->pos;
578 	if (!node->val_nr)
579 		pr_warning("Warning: empty node in callchain tree\n");
580 
581 	cursor_node = callchain_cursor_current(cursor);
582 
583 	while (cursor_node) {
584 		struct callchain_list *call;
585 
586 		call = zalloc(sizeof(*call));
587 		if (!call) {
588 			perror("not enough memory for the code path tree");
589 			return -1;
590 		}
591 		call->ip = cursor_node->ip;
592 		call->ms = cursor_node->ms;
593 		call->ms.map = map__get(call->ms.map);
594 		call->ms.maps = maps__get(call->ms.maps);
595 		call->srcline = cursor_node->srcline;
596 
597 		if (cursor_node->branch) {
598 			call->branch_count = 1;
599 
600 			if (cursor_node->branch_from) {
601 				/*
602 				 * branch_from is set with value somewhere else
603 				 * to imply it's "to" of a branch.
604 				 */
605 				call->brtype_stat.branch_to = true;
606 
607 				if (cursor_node->branch_flags.predicted)
608 					call->predicted_count = 1;
609 
610 				if (cursor_node->branch_flags.abort)
611 					call->abort_count = 1;
612 
613 				branch_type_count(&call->brtype_stat,
614 						  &cursor_node->branch_flags,
615 						  cursor_node->branch_from,
616 						  cursor_node->ip);
617 			} else {
618 				/*
619 				 * It's "from" of a branch
620 				 */
621 				call->brtype_stat.branch_to = false;
622 				call->cycles_count =
623 					cursor_node->branch_flags.cycles;
624 				call->iter_count = cursor_node->nr_loop_iter;
625 				call->iter_cycles = cursor_node->iter_cycles;
626 			}
627 		}
628 
629 		list_add_tail(&call->list, &node->val);
630 
631 		callchain_cursor_advance(cursor);
632 		cursor_node = callchain_cursor_current(cursor);
633 	}
634 	return 0;
635 }
636 
637 static struct callchain_node *
638 add_child(struct callchain_node *parent,
639 	  struct callchain_cursor *cursor,
640 	  u64 period)
641 {
642 	struct callchain_node *new;
643 
644 	new = create_child(parent, false);
645 	if (new == NULL)
646 		return NULL;
647 
648 	if (fill_node(new, cursor) < 0) {
649 		struct callchain_list *call, *tmp;
650 
651 		list_for_each_entry_safe(call, tmp, &new->val, list) {
652 			list_del_init(&call->list);
653 			map__zput(call->ms.map);
654 			maps__zput(call->ms.maps);
655 			free(call);
656 		}
657 		free(new);
658 		return NULL;
659 	}
660 
661 	new->children_hit = 0;
662 	new->hit = period;
663 	new->children_count = 0;
664 	new->count = 1;
665 	return new;
666 }
667 
668 enum match_result {
669 	MATCH_ERROR  = -1,
670 	MATCH_EQ,
671 	MATCH_LT,
672 	MATCH_GT,
673 };
674 
675 static enum match_result match_chain_strings(const char *left,
676 					     const char *right)
677 {
678 	enum match_result ret = MATCH_EQ;
679 	int cmp;
680 
681 	if (left && right)
682 		cmp = strcmp(left, right);
683 	else if (!left && right)
684 		cmp = 1;
685 	else if (left && !right)
686 		cmp = -1;
687 	else
688 		return MATCH_ERROR;
689 
690 	if (cmp != 0)
691 		ret = cmp < 0 ? MATCH_LT : MATCH_GT;
692 
693 	return ret;
694 }
695 
696 /*
697  * We need to always use relative addresses because we're aggregating
698  * callchains from multiple threads, i.e. different address spaces, so
699  * comparing absolute addresses make no sense as a symbol in a DSO may end up
700  * in a different address when used in a different binary or even the same
701  * binary but with some sort of address randomization technique, thus we need
702  * to compare just relative addresses. -acme
703  */
704 static enum match_result match_chain_dso_addresses(struct map *left_map, u64 left_ip,
705 						   struct map *right_map, u64 right_ip)
706 {
707 	struct dso *left_dso = left_map ? map__dso(left_map) : NULL;
708 	struct dso *right_dso = right_map ? map__dso(right_map) : NULL;
709 
710 	if (left_dso != right_dso)
711 		return left_dso < right_dso ? MATCH_LT : MATCH_GT;
712 
713 	if (left_ip != right_ip)
714  		return left_ip < right_ip ? MATCH_LT : MATCH_GT;
715 
716 	return MATCH_EQ;
717 }
718 
719 static enum match_result match_chain(struct callchain_cursor_node *node,
720 				     struct callchain_list *cnode)
721 {
722 	enum match_result match = MATCH_ERROR;
723 
724 	switch (callchain_param.key) {
725 	case CCKEY_SRCLINE:
726 		match = match_chain_strings(cnode->srcline, node->srcline);
727 		if (match != MATCH_ERROR)
728 			break;
729 		/* otherwise fall-back to symbol-based comparison below */
730 		fallthrough;
731 	case CCKEY_FUNCTION:
732 		if (node->ms.sym && cnode->ms.sym) {
733 			/*
734 			 * Compare inlined frames based on their symbol name
735 			 * because different inlined frames will have the same
736 			 * symbol start. Otherwise do a faster comparison based
737 			 * on the symbol start address.
738 			 */
739 			if (cnode->ms.sym->inlined || node->ms.sym->inlined) {
740 				match = match_chain_strings(cnode->ms.sym->name,
741 							    node->ms.sym->name);
742 				if (match != MATCH_ERROR)
743 					break;
744 			} else {
745 				match = match_chain_dso_addresses(cnode->ms.map, cnode->ms.sym->start,
746 								  node->ms.map, node->ms.sym->start);
747 				break;
748 			}
749 		}
750 		/* otherwise fall-back to IP-based comparison below */
751 		fallthrough;
752 	case CCKEY_ADDRESS:
753 	default:
754 		match = match_chain_dso_addresses(cnode->ms.map, cnode->ip, node->ms.map, node->ip);
755 		break;
756 	}
757 
758 	if (match == MATCH_EQ && node->branch) {
759 		cnode->branch_count++;
760 
761 		if (node->branch_from) {
762 			/*
763 			 * It's "to" of a branch
764 			 */
765 			cnode->brtype_stat.branch_to = true;
766 
767 			if (node->branch_flags.predicted)
768 				cnode->predicted_count++;
769 
770 			if (node->branch_flags.abort)
771 				cnode->abort_count++;
772 
773 			branch_type_count(&cnode->brtype_stat,
774 					  &node->branch_flags,
775 					  node->branch_from,
776 					  node->ip);
777 		} else {
778 			/*
779 			 * It's "from" of a branch
780 			 */
781 			cnode->brtype_stat.branch_to = false;
782 			cnode->cycles_count += node->branch_flags.cycles;
783 			cnode->iter_count += node->nr_loop_iter;
784 			cnode->iter_cycles += node->iter_cycles;
785 			cnode->from_count++;
786 		}
787 	}
788 
789 	return match;
790 }
791 
792 /*
793  * Split the parent in two parts (a new child is created) and
794  * give a part of its callchain to the created child.
795  * Then create another child to host the given callchain of new branch
796  */
797 static int
798 split_add_child(struct callchain_node *parent,
799 		struct callchain_cursor *cursor,
800 		struct callchain_list *to_split,
801 		u64 idx_parents, u64 idx_local, u64 period)
802 {
803 	struct callchain_node *new;
804 	struct list_head *old_tail;
805 	unsigned int idx_total = idx_parents + idx_local;
806 
807 	/* split */
808 	new = create_child(parent, true);
809 	if (new == NULL)
810 		return -1;
811 
812 	/* split the callchain and move a part to the new child */
813 	old_tail = parent->val.prev;
814 	list_del_range(&to_split->list, old_tail);
815 	new->val.next = &to_split->list;
816 	new->val.prev = old_tail;
817 	to_split->list.prev = &new->val;
818 	old_tail->next = &new->val;
819 
820 	/* split the hits */
821 	new->hit = parent->hit;
822 	new->children_hit = parent->children_hit;
823 	parent->children_hit = callchain_cumul_hits(new);
824 	new->val_nr = parent->val_nr - idx_local;
825 	parent->val_nr = idx_local;
826 	new->count = parent->count;
827 	new->children_count = parent->children_count;
828 	parent->children_count = callchain_cumul_counts(new);
829 
830 	/* create a new child for the new branch if any */
831 	if (idx_total < cursor->nr) {
832 		struct callchain_node *first;
833 		struct callchain_list *cnode;
834 		struct callchain_cursor_node *node;
835 		struct rb_node *p, **pp;
836 
837 		parent->hit = 0;
838 		parent->children_hit += period;
839 		parent->count = 0;
840 		parent->children_count += 1;
841 
842 		node = callchain_cursor_current(cursor);
843 		new = add_child(parent, cursor, period);
844 		if (new == NULL)
845 			return -1;
846 
847 		/*
848 		 * This is second child since we moved parent's children
849 		 * to new (first) child above.
850 		 */
851 		p = parent->rb_root_in.rb_node;
852 		first = rb_entry(p, struct callchain_node, rb_node_in);
853 		cnode = list_first_entry(&first->val, struct callchain_list,
854 					 list);
855 
856 		if (match_chain(node, cnode) == MATCH_LT)
857 			pp = &p->rb_left;
858 		else
859 			pp = &p->rb_right;
860 
861 		rb_link_node(&new->rb_node_in, p, pp);
862 		rb_insert_color(&new->rb_node_in, &parent->rb_root_in);
863 	} else {
864 		parent->hit = period;
865 		parent->count = 1;
866 	}
867 	return 0;
868 }
869 
870 static enum match_result
871 append_chain(struct callchain_node *root,
872 	     struct callchain_cursor *cursor,
873 	     u64 period);
874 
875 static int
876 append_chain_children(struct callchain_node *root,
877 		      struct callchain_cursor *cursor,
878 		      u64 period)
879 {
880 	struct callchain_node *rnode;
881 	struct callchain_cursor_node *node;
882 	struct rb_node **p = &root->rb_root_in.rb_node;
883 	struct rb_node *parent = NULL;
884 
885 	node = callchain_cursor_current(cursor);
886 	if (!node)
887 		return -1;
888 
889 	/* lookup in children */
890 	while (*p) {
891 		enum match_result ret;
892 
893 		parent = *p;
894 		rnode = rb_entry(parent, struct callchain_node, rb_node_in);
895 
896 		/* If at least first entry matches, rely to children */
897 		ret = append_chain(rnode, cursor, period);
898 		if (ret == MATCH_EQ)
899 			goto inc_children_hit;
900 		if (ret == MATCH_ERROR)
901 			return -1;
902 
903 		if (ret == MATCH_LT)
904 			p = &parent->rb_left;
905 		else
906 			p = &parent->rb_right;
907 	}
908 	/* nothing in children, add to the current node */
909 	rnode = add_child(root, cursor, period);
910 	if (rnode == NULL)
911 		return -1;
912 
913 	rb_link_node(&rnode->rb_node_in, parent, p);
914 	rb_insert_color(&rnode->rb_node_in, &root->rb_root_in);
915 
916 inc_children_hit:
917 	root->children_hit += period;
918 	root->children_count++;
919 	return 0;
920 }
921 
922 static enum match_result
923 append_chain(struct callchain_node *root,
924 	     struct callchain_cursor *cursor,
925 	     u64 period)
926 {
927 	struct callchain_list *cnode;
928 	u64 start = cursor->pos;
929 	bool found = false;
930 	u64 matches;
931 	enum match_result cmp = MATCH_ERROR;
932 
933 	/*
934 	 * Lookup in the current node
935 	 * If we have a symbol, then compare the start to match
936 	 * anywhere inside a function, unless function
937 	 * mode is disabled.
938 	 */
939 	list_for_each_entry(cnode, &root->val, list) {
940 		struct callchain_cursor_node *node;
941 
942 		node = callchain_cursor_current(cursor);
943 		if (!node)
944 			break;
945 
946 		cmp = match_chain(node, cnode);
947 		if (cmp != MATCH_EQ)
948 			break;
949 
950 		found = true;
951 
952 		callchain_cursor_advance(cursor);
953 	}
954 
955 	/* matches not, relay no the parent */
956 	if (!found) {
957 		WARN_ONCE(cmp == MATCH_ERROR, "Chain comparison error\n");
958 		return cmp;
959 	}
960 
961 	matches = cursor->pos - start;
962 
963 	/* we match only a part of the node. Split it and add the new chain */
964 	if (matches < root->val_nr) {
965 		if (split_add_child(root, cursor, cnode, start, matches,
966 				    period) < 0)
967 			return MATCH_ERROR;
968 
969 		return MATCH_EQ;
970 	}
971 
972 	/* we match 100% of the path, increment the hit */
973 	if (matches == root->val_nr && cursor->pos == cursor->nr) {
974 		root->hit += period;
975 		root->count++;
976 		return MATCH_EQ;
977 	}
978 
979 	/* We match the node and still have a part remaining */
980 	if (append_chain_children(root, cursor, period) < 0)
981 		return MATCH_ERROR;
982 
983 	return MATCH_EQ;
984 }
985 
986 int callchain_append(struct callchain_root *root,
987 		     struct callchain_cursor *cursor,
988 		     u64 period)
989 {
990 	if (cursor == NULL)
991 		return -1;
992 
993 	if (!cursor->nr)
994 		return 0;
995 
996 	callchain_cursor_commit(cursor);
997 
998 	if (append_chain_children(&root->node, cursor, period) < 0)
999 		return -1;
1000 
1001 	if (cursor->nr > root->max_depth)
1002 		root->max_depth = cursor->nr;
1003 
1004 	return 0;
1005 }
1006 
1007 static int
1008 merge_chain_branch(struct callchain_cursor *cursor,
1009 		   struct callchain_node *dst, struct callchain_node *src)
1010 {
1011 	struct callchain_cursor_node **old_last = cursor->last;
1012 	struct callchain_node *child;
1013 	struct callchain_list *list, *next_list;
1014 	struct rb_node *n;
1015 	int old_pos = cursor->nr;
1016 	int err = 0;
1017 
1018 	list_for_each_entry_safe(list, next_list, &src->val, list) {
1019 		struct map_symbol ms = {
1020 			.maps = maps__get(list->ms.maps),
1021 			.map = map__get(list->ms.map),
1022 		};
1023 		callchain_cursor_append(cursor, list->ip, &ms, false, NULL, 0, 0, 0, list->srcline);
1024 		list_del_init(&list->list);
1025 		map__zput(ms.map);
1026 		maps__zput(ms.maps);
1027 		map__zput(list->ms.map);
1028 		maps__zput(list->ms.maps);
1029 		free(list);
1030 	}
1031 
1032 	if (src->hit) {
1033 		callchain_cursor_commit(cursor);
1034 		if (append_chain_children(dst, cursor, src->hit) < 0)
1035 			return -1;
1036 	}
1037 
1038 	n = rb_first(&src->rb_root_in);
1039 	while (n) {
1040 		child = container_of(n, struct callchain_node, rb_node_in);
1041 		n = rb_next(n);
1042 		rb_erase(&child->rb_node_in, &src->rb_root_in);
1043 
1044 		err = merge_chain_branch(cursor, dst, child);
1045 		if (err)
1046 			break;
1047 
1048 		free(child);
1049 	}
1050 
1051 	cursor->nr = old_pos;
1052 	cursor->last = old_last;
1053 
1054 	return err;
1055 }
1056 
1057 int callchain_merge(struct callchain_cursor *cursor,
1058 		    struct callchain_root *dst, struct callchain_root *src)
1059 {
1060 	return merge_chain_branch(cursor, &dst->node, &src->node);
1061 }
1062 
1063 int callchain_cursor_append(struct callchain_cursor *cursor,
1064 			    u64 ip, struct map_symbol *ms,
1065 			    bool branch, struct branch_flags *flags,
1066 			    int nr_loop_iter, u64 iter_cycles, u64 branch_from,
1067 			    const char *srcline)
1068 {
1069 	struct callchain_cursor_node *node = *cursor->last;
1070 
1071 	if (!node) {
1072 		node = calloc(1, sizeof(*node));
1073 		if (!node)
1074 			return -ENOMEM;
1075 
1076 		*cursor->last = node;
1077 	}
1078 
1079 	node->ip = ip;
1080 	maps__zput(node->ms.maps);
1081 	map__zput(node->ms.map);
1082 	node->ms = *ms;
1083 	node->ms.maps = maps__get(ms->maps);
1084 	node->ms.map = map__get(ms->map);
1085 	node->branch = branch;
1086 	node->nr_loop_iter = nr_loop_iter;
1087 	node->iter_cycles = iter_cycles;
1088 	node->srcline = srcline;
1089 
1090 	if (flags)
1091 		memcpy(&node->branch_flags, flags,
1092 			sizeof(struct branch_flags));
1093 
1094 	node->branch_from = branch_from;
1095 	cursor->nr++;
1096 
1097 	cursor->last = &node->next;
1098 
1099 	return 0;
1100 }
1101 
1102 int sample__resolve_callchain(struct perf_sample *sample,
1103 			      struct callchain_cursor *cursor, struct symbol **parent,
1104 			      struct evsel *evsel, struct addr_location *al,
1105 			      int max_stack)
1106 {
1107 	if (sample->callchain == NULL && !symbol_conf.show_branchflag_count)
1108 		return 0;
1109 
1110 	if (symbol_conf.use_callchain || symbol_conf.cumulate_callchain ||
1111 	    perf_hpp_list.parent || symbol_conf.show_branchflag_count) {
1112 		return thread__resolve_callchain(al->thread, cursor, evsel, sample,
1113 						 parent, al, max_stack);
1114 	}
1115 	return 0;
1116 }
1117 
1118 int hist_entry__append_callchain(struct hist_entry *he, struct perf_sample *sample)
1119 {
1120 	if ((!symbol_conf.use_callchain || sample->callchain == NULL) &&
1121 		!symbol_conf.show_branchflag_count)
1122 		return 0;
1123 	return callchain_append(he->callchain, get_tls_callchain_cursor(), sample->period);
1124 }
1125 
1126 int fill_callchain_info(struct addr_location *al, struct callchain_cursor_node *node,
1127 			bool hide_unresolved)
1128 {
1129 	struct machine *machine = maps__machine(node->ms.maps);
1130 
1131 	maps__put(al->maps);
1132 	al->maps = maps__get(node->ms.maps);
1133 	map__put(al->map);
1134 	al->map = map__get(node->ms.map);
1135 	al->sym = node->ms.sym;
1136 	al->srcline = node->srcline;
1137 	al->addr = node->ip;
1138 
1139 	if (al->sym == NULL) {
1140 		if (hide_unresolved)
1141 			return 0;
1142 		if (al->map == NULL)
1143 			goto out;
1144 	}
1145 	if (RC_CHK_ACCESS(al->maps) == RC_CHK_ACCESS(machine__kernel_maps(machine))) {
1146 		if (machine__is_host(machine)) {
1147 			al->cpumode = PERF_RECORD_MISC_KERNEL;
1148 			al->level = 'k';
1149 		} else {
1150 			al->cpumode = PERF_RECORD_MISC_GUEST_KERNEL;
1151 			al->level = 'g';
1152 		}
1153 	} else {
1154 		if (machine__is_host(machine)) {
1155 			al->cpumode = PERF_RECORD_MISC_USER;
1156 			al->level = '.';
1157 		} else if (perf_guest) {
1158 			al->cpumode = PERF_RECORD_MISC_GUEST_USER;
1159 			al->level = 'u';
1160 		} else {
1161 			al->cpumode = PERF_RECORD_MISC_HYPERVISOR;
1162 			al->level = 'H';
1163 		}
1164 	}
1165 
1166 out:
1167 	return 1;
1168 }
1169 
1170 char *callchain_list__sym_name(struct callchain_list *cl,
1171 			       char *bf, size_t bfsize, bool show_dso)
1172 {
1173 	bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1174 	bool show_srcline = show_addr || callchain_param.key == CCKEY_SRCLINE;
1175 	int printed;
1176 
1177 	if (cl->ms.sym) {
1178 		const char *inlined = cl->ms.sym->inlined ? " (inlined)" : "";
1179 
1180 		if (show_srcline && cl->srcline)
1181 			printed = scnprintf(bf, bfsize, "%s %s%s",
1182 					    cl->ms.sym->name, cl->srcline,
1183 					    inlined);
1184 		else
1185 			printed = scnprintf(bf, bfsize, "%s%s",
1186 					    cl->ms.sym->name, inlined);
1187 	} else
1188 		printed = scnprintf(bf, bfsize, "%#" PRIx64, cl->ip);
1189 
1190 	if (show_dso)
1191 		scnprintf(bf + printed, bfsize - printed, " %s",
1192 			  cl->ms.map ?
1193 			  map__dso(cl->ms.map)->short_name :
1194 			  "unknown");
1195 
1196 	return bf;
1197 }
1198 
1199 char *callchain_node__scnprintf_value(struct callchain_node *node,
1200 				      char *bf, size_t bfsize, u64 total)
1201 {
1202 	double percent = 0.0;
1203 	u64 period = callchain_cumul_hits(node);
1204 	unsigned count = callchain_cumul_counts(node);
1205 
1206 	if (callchain_param.mode == CHAIN_FOLDED) {
1207 		period = node->hit;
1208 		count = node->count;
1209 	}
1210 
1211 	switch (callchain_param.value) {
1212 	case CCVAL_PERIOD:
1213 		scnprintf(bf, bfsize, "%"PRIu64, period);
1214 		break;
1215 	case CCVAL_COUNT:
1216 		scnprintf(bf, bfsize, "%u", count);
1217 		break;
1218 	case CCVAL_PERCENT:
1219 	default:
1220 		if (total)
1221 			percent = period * 100.0 / total;
1222 		scnprintf(bf, bfsize, "%.2f%%", percent);
1223 		break;
1224 	}
1225 	return bf;
1226 }
1227 
1228 int callchain_node__fprintf_value(struct callchain_node *node,
1229 				 FILE *fp, u64 total)
1230 {
1231 	double percent = 0.0;
1232 	u64 period = callchain_cumul_hits(node);
1233 	unsigned count = callchain_cumul_counts(node);
1234 
1235 	if (callchain_param.mode == CHAIN_FOLDED) {
1236 		period = node->hit;
1237 		count = node->count;
1238 	}
1239 
1240 	switch (callchain_param.value) {
1241 	case CCVAL_PERIOD:
1242 		return fprintf(fp, "%"PRIu64, period);
1243 	case CCVAL_COUNT:
1244 		return fprintf(fp, "%u", count);
1245 	case CCVAL_PERCENT:
1246 	default:
1247 		if (total)
1248 			percent = period * 100.0 / total;
1249 		return percent_color_fprintf(fp, "%.2f%%", percent);
1250 	}
1251 	return 0;
1252 }
1253 
1254 static void callchain_counts_value(struct callchain_node *node,
1255 				   u64 *branch_count, u64 *predicted_count,
1256 				   u64 *abort_count, u64 *cycles_count)
1257 {
1258 	struct callchain_list *clist;
1259 
1260 	list_for_each_entry(clist, &node->val, list) {
1261 		if (branch_count)
1262 			*branch_count += clist->branch_count;
1263 
1264 		if (predicted_count)
1265 			*predicted_count += clist->predicted_count;
1266 
1267 		if (abort_count)
1268 			*abort_count += clist->abort_count;
1269 
1270 		if (cycles_count)
1271 			*cycles_count += clist->cycles_count;
1272 	}
1273 }
1274 
1275 static int callchain_node_branch_counts_cumul(struct callchain_node *node,
1276 					      u64 *branch_count,
1277 					      u64 *predicted_count,
1278 					      u64 *abort_count,
1279 					      u64 *cycles_count)
1280 {
1281 	struct callchain_node *child;
1282 	struct rb_node *n;
1283 
1284 	n = rb_first(&node->rb_root_in);
1285 	while (n) {
1286 		child = rb_entry(n, struct callchain_node, rb_node_in);
1287 		n = rb_next(n);
1288 
1289 		callchain_node_branch_counts_cumul(child, branch_count,
1290 						   predicted_count,
1291 						   abort_count,
1292 						   cycles_count);
1293 
1294 		callchain_counts_value(child, branch_count,
1295 				       predicted_count, abort_count,
1296 				       cycles_count);
1297 	}
1298 
1299 	return 0;
1300 }
1301 
1302 int callchain_branch_counts(struct callchain_root *root,
1303 			    u64 *branch_count, u64 *predicted_count,
1304 			    u64 *abort_count, u64 *cycles_count)
1305 {
1306 	if (branch_count)
1307 		*branch_count = 0;
1308 
1309 	if (predicted_count)
1310 		*predicted_count = 0;
1311 
1312 	if (abort_count)
1313 		*abort_count = 0;
1314 
1315 	if (cycles_count)
1316 		*cycles_count = 0;
1317 
1318 	return callchain_node_branch_counts_cumul(&root->node,
1319 						  branch_count,
1320 						  predicted_count,
1321 						  abort_count,
1322 						  cycles_count);
1323 }
1324 
1325 static int count_pri64_printf(int idx, const char *str, u64 value, char *bf, int bfsize)
1326 {
1327 	return scnprintf(bf, bfsize, "%s%s:%" PRId64 "", (idx) ? " " : " (", str, value);
1328 }
1329 
1330 static int count_float_printf(int idx, const char *str, float value,
1331 			      char *bf, int bfsize, float threshold)
1332 {
1333 	if (threshold != 0.0 && value < threshold)
1334 		return 0;
1335 
1336 	return scnprintf(bf, bfsize, "%s%s:%.1f%%", (idx) ? " " : " (", str, value);
1337 }
1338 
1339 static int branch_to_str(char *bf, int bfsize,
1340 			 u64 branch_count, u64 predicted_count,
1341 			 u64 abort_count,
1342 			 struct branch_type_stat *brtype_stat)
1343 {
1344 	int printed, i = 0;
1345 
1346 	printed = branch_type_str(brtype_stat, bf, bfsize);
1347 	if (printed)
1348 		i++;
1349 
1350 	if (predicted_count < branch_count) {
1351 		printed += count_float_printf(i++, "predicted",
1352 				predicted_count * 100.0 / branch_count,
1353 				bf + printed, bfsize - printed, 0.0);
1354 	}
1355 
1356 	if (abort_count) {
1357 		printed += count_float_printf(i++, "abort",
1358 				abort_count * 100.0 / branch_count,
1359 				bf + printed, bfsize - printed, 0.1);
1360 	}
1361 
1362 	if (i)
1363 		printed += scnprintf(bf + printed, bfsize - printed, ")");
1364 
1365 	return printed;
1366 }
1367 
1368 static int branch_from_str(char *bf, int bfsize,
1369 			   u64 branch_count,
1370 			   u64 cycles_count, u64 iter_count,
1371 			   u64 iter_cycles, u64 from_count)
1372 {
1373 	int printed = 0, i = 0;
1374 	u64 cycles, v = 0;
1375 
1376 	cycles = cycles_count / branch_count;
1377 	if (cycles) {
1378 		printed += count_pri64_printf(i++, "cycles",
1379 				cycles,
1380 				bf + printed, bfsize - printed);
1381 	}
1382 
1383 	if (iter_count && from_count) {
1384 		v = iter_count / from_count;
1385 		if (v) {
1386 			printed += count_pri64_printf(i++, "iter",
1387 					v, bf + printed, bfsize - printed);
1388 
1389 			printed += count_pri64_printf(i++, "avg_cycles",
1390 					iter_cycles / iter_count,
1391 					bf + printed, bfsize - printed);
1392 		}
1393 	}
1394 
1395 	if (i)
1396 		printed += scnprintf(bf + printed, bfsize - printed, ")");
1397 
1398 	return printed;
1399 }
1400 
1401 static int counts_str_build(char *bf, int bfsize,
1402 			     u64 branch_count, u64 predicted_count,
1403 			     u64 abort_count, u64 cycles_count,
1404 			     u64 iter_count, u64 iter_cycles,
1405 			     u64 from_count,
1406 			     struct branch_type_stat *brtype_stat)
1407 {
1408 	int printed;
1409 
1410 	if (branch_count == 0)
1411 		return scnprintf(bf, bfsize, " (calltrace)");
1412 
1413 	if (brtype_stat->branch_to) {
1414 		printed = branch_to_str(bf, bfsize, branch_count,
1415 				predicted_count, abort_count, brtype_stat);
1416 	} else {
1417 		printed = branch_from_str(bf, bfsize, branch_count,
1418 				cycles_count, iter_count, iter_cycles,
1419 				from_count);
1420 	}
1421 
1422 	if (!printed)
1423 		bf[0] = 0;
1424 
1425 	return printed;
1426 }
1427 
1428 static int callchain_counts_printf(FILE *fp, char *bf, int bfsize,
1429 				   u64 branch_count, u64 predicted_count,
1430 				   u64 abort_count, u64 cycles_count,
1431 				   u64 iter_count, u64 iter_cycles,
1432 				   u64 from_count,
1433 				   struct branch_type_stat *brtype_stat)
1434 {
1435 	char str[256];
1436 
1437 	counts_str_build(str, sizeof(str), branch_count,
1438 			 predicted_count, abort_count, cycles_count,
1439 			 iter_count, iter_cycles, from_count, brtype_stat);
1440 
1441 	if (fp)
1442 		return fprintf(fp, "%s", str);
1443 
1444 	return scnprintf(bf, bfsize, "%s", str);
1445 }
1446 
1447 int callchain_list_counts__printf_value(struct callchain_list *clist,
1448 					FILE *fp, char *bf, int bfsize)
1449 {
1450 	u64 branch_count, predicted_count;
1451 	u64 abort_count, cycles_count;
1452 	u64 iter_count, iter_cycles;
1453 	u64 from_count;
1454 
1455 	branch_count = clist->branch_count;
1456 	predicted_count = clist->predicted_count;
1457 	abort_count = clist->abort_count;
1458 	cycles_count = clist->cycles_count;
1459 	iter_count = clist->iter_count;
1460 	iter_cycles = clist->iter_cycles;
1461 	from_count = clist->from_count;
1462 
1463 	return callchain_counts_printf(fp, bf, bfsize, branch_count,
1464 				       predicted_count, abort_count,
1465 				       cycles_count, iter_count, iter_cycles,
1466 				       from_count, &clist->brtype_stat);
1467 }
1468 
1469 static void free_callchain_node(struct callchain_node *node)
1470 {
1471 	struct callchain_list *list, *tmp;
1472 	struct callchain_node *child;
1473 	struct rb_node *n;
1474 
1475 	list_for_each_entry_safe(list, tmp, &node->parent_val, list) {
1476 		list_del_init(&list->list);
1477 		map__zput(list->ms.map);
1478 		maps__zput(list->ms.maps);
1479 		free(list);
1480 	}
1481 
1482 	list_for_each_entry_safe(list, tmp, &node->val, list) {
1483 		list_del_init(&list->list);
1484 		map__zput(list->ms.map);
1485 		maps__zput(list->ms.maps);
1486 		free(list);
1487 	}
1488 
1489 	n = rb_first(&node->rb_root_in);
1490 	while (n) {
1491 		child = container_of(n, struct callchain_node, rb_node_in);
1492 		n = rb_next(n);
1493 		rb_erase(&child->rb_node_in, &node->rb_root_in);
1494 
1495 		free_callchain_node(child);
1496 		free(child);
1497 	}
1498 }
1499 
1500 void free_callchain(struct callchain_root *root)
1501 {
1502 	if (!symbol_conf.use_callchain)
1503 		return;
1504 
1505 	free_callchain_node(&root->node);
1506 }
1507 
1508 static u64 decay_callchain_node(struct callchain_node *node)
1509 {
1510 	struct callchain_node *child;
1511 	struct rb_node *n;
1512 	u64 child_hits = 0;
1513 
1514 	n = rb_first(&node->rb_root_in);
1515 	while (n) {
1516 		child = container_of(n, struct callchain_node, rb_node_in);
1517 
1518 		child_hits += decay_callchain_node(child);
1519 		n = rb_next(n);
1520 	}
1521 
1522 	node->hit = (node->hit * 7) / 8;
1523 	node->children_hit = child_hits;
1524 
1525 	return node->hit;
1526 }
1527 
1528 void decay_callchain(struct callchain_root *root)
1529 {
1530 	if (!symbol_conf.use_callchain)
1531 		return;
1532 
1533 	decay_callchain_node(&root->node);
1534 }
1535 
1536 int callchain_node__make_parent_list(struct callchain_node *node)
1537 {
1538 	struct callchain_node *parent = node->parent;
1539 	struct callchain_list *chain, *new;
1540 	LIST_HEAD(head);
1541 
1542 	while (parent) {
1543 		list_for_each_entry_reverse(chain, &parent->val, list) {
1544 			new = malloc(sizeof(*new));
1545 			if (new == NULL)
1546 				goto out;
1547 			*new = *chain;
1548 			new->has_children = false;
1549 			new->ms.map = map__get(new->ms.map);
1550 			list_add_tail(&new->list, &head);
1551 		}
1552 		parent = parent->parent;
1553 	}
1554 
1555 	list_for_each_entry_safe_reverse(chain, new, &head, list)
1556 		list_move_tail(&chain->list, &node->parent_val);
1557 
1558 	if (!list_empty(&node->parent_val)) {
1559 		chain = list_first_entry(&node->parent_val, struct callchain_list, list);
1560 		chain->has_children = rb_prev(&node->rb_node) || rb_next(&node->rb_node);
1561 
1562 		chain = list_first_entry(&node->val, struct callchain_list, list);
1563 		chain->has_children = false;
1564 	}
1565 	return 0;
1566 
1567 out:
1568 	list_for_each_entry_safe(chain, new, &head, list) {
1569 		list_del_init(&chain->list);
1570 		map__zput(chain->ms.map);
1571 		maps__zput(chain->ms.maps);
1572 		free(chain);
1573 	}
1574 	return -ENOMEM;
1575 }
1576 
1577 static void callchain_cursor__delete(void *vcursor)
1578 {
1579 	struct callchain_cursor *cursor = vcursor;
1580 	struct callchain_cursor_node *node, *next;
1581 
1582 	callchain_cursor_reset(cursor);
1583 	for (node = cursor->first; node != NULL; node = next) {
1584 		next = node->next;
1585 		free(node);
1586 	}
1587 	free(cursor);
1588 }
1589 
1590 static void init_callchain_cursor_key(void)
1591 {
1592 	if (pthread_key_create(&callchain_cursor, callchain_cursor__delete)) {
1593 		pr_err("callchain cursor creation failed");
1594 		abort();
1595 	}
1596 }
1597 
1598 struct callchain_cursor *get_tls_callchain_cursor(void)
1599 {
1600 	static pthread_once_t once_control = PTHREAD_ONCE_INIT;
1601 	struct callchain_cursor *cursor;
1602 
1603 	pthread_once(&once_control, init_callchain_cursor_key);
1604 	cursor = pthread_getspecific(callchain_cursor);
1605 	if (!cursor) {
1606 		cursor = zalloc(sizeof(*cursor));
1607 		if (!cursor)
1608 			pr_debug3("%s: not enough memory\n", __func__);
1609 		pthread_setspecific(callchain_cursor, cursor);
1610 	}
1611 	return cursor;
1612 }
1613 
1614 int callchain_cursor__copy(struct callchain_cursor *dst,
1615 			   struct callchain_cursor *src)
1616 {
1617 	int rc = 0;
1618 
1619 	callchain_cursor_reset(dst);
1620 	callchain_cursor_commit(src);
1621 
1622 	while (true) {
1623 		struct callchain_cursor_node *node;
1624 
1625 		node = callchain_cursor_current(src);
1626 		if (node == NULL)
1627 			break;
1628 
1629 		rc = callchain_cursor_append(dst, node->ip, &node->ms,
1630 					     node->branch, &node->branch_flags,
1631 					     node->nr_loop_iter,
1632 					     node->iter_cycles,
1633 					     node->branch_from, node->srcline);
1634 		if (rc)
1635 			break;
1636 
1637 		callchain_cursor_advance(src);
1638 	}
1639 
1640 	return rc;
1641 }
1642 
1643 /*
1644  * Initialize a cursor before adding entries inside, but keep
1645  * the previously allocated entries as a cache.
1646  */
1647 void callchain_cursor_reset(struct callchain_cursor *cursor)
1648 {
1649 	struct callchain_cursor_node *node;
1650 
1651 	cursor->nr = 0;
1652 	cursor->last = &cursor->first;
1653 
1654 	for (node = cursor->first; node != NULL; node = node->next) {
1655 		map__zput(node->ms.map);
1656 		maps__zput(node->ms.maps);
1657 	}
1658 }
1659 
1660 void callchain_param_setup(u64 sample_type, const char *arch)
1661 {
1662 	if (symbol_conf.use_callchain || symbol_conf.cumulate_callchain) {
1663 		if ((sample_type & PERF_SAMPLE_REGS_USER) &&
1664 		    (sample_type & PERF_SAMPLE_STACK_USER)) {
1665 			callchain_param.record_mode = CALLCHAIN_DWARF;
1666 			dwarf_callchain_users = true;
1667 		} else if (sample_type & PERF_SAMPLE_BRANCH_STACK)
1668 			callchain_param.record_mode = CALLCHAIN_LBR;
1669 		else
1670 			callchain_param.record_mode = CALLCHAIN_FP;
1671 	}
1672 
1673 	/*
1674 	 * It's necessary to use libunwind to reliably determine the caller of
1675 	 * a leaf function on aarch64, as otherwise we cannot know whether to
1676 	 * start from the LR or FP.
1677 	 *
1678 	 * Always starting from the LR can result in duplicate or entirely
1679 	 * erroneous entries. Always skipping the LR and starting from the FP
1680 	 * can result in missing entries.
1681 	 */
1682 	if (callchain_param.record_mode == CALLCHAIN_FP && !strcmp(arch, "arm64"))
1683 		dwarf_callchain_users = true;
1684 }
1685 
1686 static bool chain_match(struct callchain_list *base_chain,
1687 			struct callchain_list *pair_chain)
1688 {
1689 	enum match_result match;
1690 
1691 	match = match_chain_strings(base_chain->srcline,
1692 				    pair_chain->srcline);
1693 	if (match != MATCH_ERROR)
1694 		return match == MATCH_EQ;
1695 
1696 	match = match_chain_dso_addresses(base_chain->ms.map,
1697 					  base_chain->ip,
1698 					  pair_chain->ms.map,
1699 					  pair_chain->ip);
1700 
1701 	return match == MATCH_EQ;
1702 }
1703 
1704 bool callchain_cnode_matched(struct callchain_node *base_cnode,
1705 			     struct callchain_node *pair_cnode)
1706 {
1707 	struct callchain_list *base_chain, *pair_chain;
1708 	bool match = false;
1709 
1710 	pair_chain = list_first_entry(&pair_cnode->val,
1711 				      struct callchain_list,
1712 				      list);
1713 
1714 	list_for_each_entry(base_chain, &base_cnode->val, list) {
1715 		if (&pair_chain->list == &pair_cnode->val)
1716 			return false;
1717 
1718 		if (!base_chain->srcline || !pair_chain->srcline) {
1719 			pair_chain = list_next_entry(pair_chain, list);
1720 			continue;
1721 		}
1722 
1723 		match = chain_match(base_chain, pair_chain);
1724 		if (!match)
1725 			return false;
1726 
1727 		pair_chain = list_next_entry(pair_chain, list);
1728 	}
1729 
1730 	/*
1731 	 * Say chain1 is ABC, chain2 is ABCD, we consider they are
1732 	 * not fully matched.
1733 	 */
1734 	if (pair_chain && (&pair_chain->list != &pair_cnode->val))
1735 		return false;
1736 
1737 	return match;
1738 }
1739 
1740 static u64 count_callchain_hits(struct hist_entry *he)
1741 {
1742 	struct rb_root *root = &he->sorted_chain;
1743 	struct rb_node *rb_node = rb_first(root);
1744 	struct callchain_node *node;
1745 	u64 chain_hits = 0;
1746 
1747 	while (rb_node) {
1748 		node = rb_entry(rb_node, struct callchain_node, rb_node);
1749 		chain_hits += node->hit;
1750 		rb_node = rb_next(rb_node);
1751 	}
1752 
1753 	return chain_hits;
1754 }
1755 
1756 u64 callchain_total_hits(struct hists *hists)
1757 {
1758 	struct rb_node *next = rb_first_cached(&hists->entries);
1759 	u64 chain_hits = 0;
1760 
1761 	while (next) {
1762 		struct hist_entry *he = rb_entry(next, struct hist_entry,
1763 						 rb_node);
1764 
1765 		chain_hits += count_callchain_hits(he);
1766 		next = rb_next(&he->rb_node);
1767 	}
1768 
1769 	return chain_hits;
1770 }
1771 
1772 s64 callchain_avg_cycles(struct callchain_node *cnode)
1773 {
1774 	struct callchain_list *chain;
1775 	s64 cycles = 0;
1776 
1777 	list_for_each_entry(chain, &cnode->val, list) {
1778 		if (chain->srcline && chain->branch_count)
1779 			cycles += chain->cycles_count / chain->branch_count;
1780 	}
1781 
1782 	return cycles;
1783 }
1784