xref: /openbmc/linux/tools/perf/util/bpf_counter.c (revision 7fde9d6e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2019 Facebook */
4 
5 #include <assert.h>
6 #include <limits.h>
7 #include <unistd.h>
8 #include <sys/file.h>
9 #include <sys/time.h>
10 #include <sys/resource.h>
11 #include <linux/err.h>
12 #include <linux/zalloc.h>
13 #include <bpf/bpf.h>
14 #include <bpf/btf.h>
15 #include <bpf/libbpf.h>
16 #include <api/fs/fs.h>
17 #include <perf/bpf_perf.h>
18 
19 #include "bpf_counter.h"
20 #include "counts.h"
21 #include "debug.h"
22 #include "evsel.h"
23 #include "evlist.h"
24 #include "target.h"
25 #include "cpumap.h"
26 #include "thread_map.h"
27 
28 #include "bpf_skel/bpf_prog_profiler.skel.h"
29 #include "bpf_skel/bperf_u.h"
30 #include "bpf_skel/bperf_leader.skel.h"
31 #include "bpf_skel/bperf_follower.skel.h"
32 
33 #define ATTR_MAP_SIZE 16
34 
35 static inline void *u64_to_ptr(__u64 ptr)
36 {
37 	return (void *)(unsigned long)ptr;
38 }
39 
40 static void set_max_rlimit(void)
41 {
42 	struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY };
43 
44 	setrlimit(RLIMIT_MEMLOCK, &rinf);
45 }
46 
47 static struct bpf_counter *bpf_counter_alloc(void)
48 {
49 	struct bpf_counter *counter;
50 
51 	counter = zalloc(sizeof(*counter));
52 	if (counter)
53 		INIT_LIST_HEAD(&counter->list);
54 	return counter;
55 }
56 
57 static int bpf_program_profiler__destroy(struct evsel *evsel)
58 {
59 	struct bpf_counter *counter, *tmp;
60 
61 	list_for_each_entry_safe(counter, tmp,
62 				 &evsel->bpf_counter_list, list) {
63 		list_del_init(&counter->list);
64 		bpf_prog_profiler_bpf__destroy(counter->skel);
65 		free(counter);
66 	}
67 	assert(list_empty(&evsel->bpf_counter_list));
68 
69 	return 0;
70 }
71 
72 static char *bpf_target_prog_name(int tgt_fd)
73 {
74 	struct bpf_prog_info_linear *info_linear;
75 	struct bpf_func_info *func_info;
76 	const struct btf_type *t;
77 	char *name = NULL;
78 	struct btf *btf;
79 
80 	info_linear = bpf_program__get_prog_info_linear(
81 		tgt_fd, 1UL << BPF_PROG_INFO_FUNC_INFO);
82 	if (IS_ERR_OR_NULL(info_linear)) {
83 		pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
84 		return NULL;
85 	}
86 
87 	if (info_linear->info.btf_id == 0 ||
88 	    btf__get_from_id(info_linear->info.btf_id, &btf)) {
89 		pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
90 		goto out;
91 	}
92 
93 	func_info = u64_to_ptr(info_linear->info.func_info);
94 	t = btf__type_by_id(btf, func_info[0].type_id);
95 	if (!t) {
96 		pr_debug("btf %d doesn't have type %d\n",
97 			 info_linear->info.btf_id, func_info[0].type_id);
98 		goto out;
99 	}
100 	name = strdup(btf__name_by_offset(btf, t->name_off));
101 out:
102 	free(info_linear);
103 	return name;
104 }
105 
106 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
107 {
108 	struct bpf_prog_profiler_bpf *skel;
109 	struct bpf_counter *counter;
110 	struct bpf_program *prog;
111 	char *prog_name;
112 	int prog_fd;
113 	int err;
114 
115 	prog_fd = bpf_prog_get_fd_by_id(prog_id);
116 	if (prog_fd < 0) {
117 		pr_err("Failed to open fd for bpf prog %u\n", prog_id);
118 		return -1;
119 	}
120 	counter = bpf_counter_alloc();
121 	if (!counter) {
122 		close(prog_fd);
123 		return -1;
124 	}
125 
126 	skel = bpf_prog_profiler_bpf__open();
127 	if (!skel) {
128 		pr_err("Failed to open bpf skeleton\n");
129 		goto err_out;
130 	}
131 
132 	skel->rodata->num_cpu = evsel__nr_cpus(evsel);
133 
134 	bpf_map__resize(skel->maps.events, evsel__nr_cpus(evsel));
135 	bpf_map__resize(skel->maps.fentry_readings, 1);
136 	bpf_map__resize(skel->maps.accum_readings, 1);
137 
138 	prog_name = bpf_target_prog_name(prog_fd);
139 	if (!prog_name) {
140 		pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
141 		goto err_out;
142 	}
143 
144 	bpf_object__for_each_program(prog, skel->obj) {
145 		err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
146 		if (err) {
147 			pr_err("bpf_program__set_attach_target failed.\n"
148 			       "Does bpf prog %u have BTF?\n", prog_id);
149 			goto err_out;
150 		}
151 	}
152 	set_max_rlimit();
153 	err = bpf_prog_profiler_bpf__load(skel);
154 	if (err) {
155 		pr_err("bpf_prog_profiler_bpf__load failed\n");
156 		goto err_out;
157 	}
158 
159 	assert(skel != NULL);
160 	counter->skel = skel;
161 	list_add(&counter->list, &evsel->bpf_counter_list);
162 	close(prog_fd);
163 	return 0;
164 err_out:
165 	bpf_prog_profiler_bpf__destroy(skel);
166 	free(counter);
167 	close(prog_fd);
168 	return -1;
169 }
170 
171 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
172 {
173 	char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
174 	u32 prog_id;
175 	int ret;
176 
177 	bpf_str_ = bpf_str = strdup(target->bpf_str);
178 	if (!bpf_str)
179 		return -1;
180 
181 	while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
182 		prog_id = strtoul(tok, &p, 10);
183 		if (prog_id == 0 || prog_id == UINT_MAX ||
184 		    (*p != '\0' && *p != ',')) {
185 			pr_err("Failed to parse bpf prog ids %s\n",
186 			       target->bpf_str);
187 			return -1;
188 		}
189 
190 		ret = bpf_program_profiler_load_one(evsel, prog_id);
191 		if (ret) {
192 			bpf_program_profiler__destroy(evsel);
193 			free(bpf_str_);
194 			return -1;
195 		}
196 		bpf_str = NULL;
197 	}
198 	free(bpf_str_);
199 	return 0;
200 }
201 
202 static int bpf_program_profiler__enable(struct evsel *evsel)
203 {
204 	struct bpf_counter *counter;
205 	int ret;
206 
207 	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
208 		assert(counter->skel != NULL);
209 		ret = bpf_prog_profiler_bpf__attach(counter->skel);
210 		if (ret) {
211 			bpf_program_profiler__destroy(evsel);
212 			return ret;
213 		}
214 	}
215 	return 0;
216 }
217 
218 static int bpf_program_profiler__disable(struct evsel *evsel)
219 {
220 	struct bpf_counter *counter;
221 
222 	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
223 		assert(counter->skel != NULL);
224 		bpf_prog_profiler_bpf__detach(counter->skel);
225 	}
226 	return 0;
227 }
228 
229 static int bpf_program_profiler__read(struct evsel *evsel)
230 {
231 	// perf_cpu_map uses /sys/devices/system/cpu/online
232 	int num_cpu = evsel__nr_cpus(evsel);
233 	// BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
234 	// Sometimes possible > online, like on a Ryzen 3900X that has 24
235 	// threads but its possible showed 0-31 -acme
236 	int num_cpu_bpf = libbpf_num_possible_cpus();
237 	struct bpf_perf_event_value values[num_cpu_bpf];
238 	struct bpf_counter *counter;
239 	int reading_map_fd;
240 	__u32 key = 0;
241 	int err, cpu;
242 
243 	if (list_empty(&evsel->bpf_counter_list))
244 		return -EAGAIN;
245 
246 	for (cpu = 0; cpu < num_cpu; cpu++) {
247 		perf_counts(evsel->counts, cpu, 0)->val = 0;
248 		perf_counts(evsel->counts, cpu, 0)->ena = 0;
249 		perf_counts(evsel->counts, cpu, 0)->run = 0;
250 	}
251 	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
252 		struct bpf_prog_profiler_bpf *skel = counter->skel;
253 
254 		assert(skel != NULL);
255 		reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
256 
257 		err = bpf_map_lookup_elem(reading_map_fd, &key, values);
258 		if (err) {
259 			pr_err("failed to read value\n");
260 			return err;
261 		}
262 
263 		for (cpu = 0; cpu < num_cpu; cpu++) {
264 			perf_counts(evsel->counts, cpu, 0)->val += values[cpu].counter;
265 			perf_counts(evsel->counts, cpu, 0)->ena += values[cpu].enabled;
266 			perf_counts(evsel->counts, cpu, 0)->run += values[cpu].running;
267 		}
268 	}
269 	return 0;
270 }
271 
272 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu,
273 					    int fd)
274 {
275 	struct bpf_prog_profiler_bpf *skel;
276 	struct bpf_counter *counter;
277 	int ret;
278 
279 	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
280 		skel = counter->skel;
281 		assert(skel != NULL);
282 
283 		ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
284 					  &cpu, &fd, BPF_ANY);
285 		if (ret)
286 			return ret;
287 	}
288 	return 0;
289 }
290 
291 struct bpf_counter_ops bpf_program_profiler_ops = {
292 	.load       = bpf_program_profiler__load,
293 	.enable	    = bpf_program_profiler__enable,
294 	.disable    = bpf_program_profiler__disable,
295 	.read       = bpf_program_profiler__read,
296 	.destroy    = bpf_program_profiler__destroy,
297 	.install_pe = bpf_program_profiler__install_pe,
298 };
299 
300 static __u32 bpf_link_get_id(int fd)
301 {
302 	struct bpf_link_info link_info = {0};
303 	__u32 link_info_len = sizeof(link_info);
304 
305 	bpf_obj_get_info_by_fd(fd, &link_info, &link_info_len);
306 	return link_info.id;
307 }
308 
309 static __u32 bpf_link_get_prog_id(int fd)
310 {
311 	struct bpf_link_info link_info = {0};
312 	__u32 link_info_len = sizeof(link_info);
313 
314 	bpf_obj_get_info_by_fd(fd, &link_info, &link_info_len);
315 	return link_info.prog_id;
316 }
317 
318 static __u32 bpf_map_get_id(int fd)
319 {
320 	struct bpf_map_info map_info = {0};
321 	__u32 map_info_len = sizeof(map_info);
322 
323 	bpf_obj_get_info_by_fd(fd, &map_info, &map_info_len);
324 	return map_info.id;
325 }
326 
327 static bool bperf_attr_map_compatible(int attr_map_fd)
328 {
329 	struct bpf_map_info map_info = {0};
330 	__u32 map_info_len = sizeof(map_info);
331 	int err;
332 
333 	err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
334 
335 	if (err)
336 		return false;
337 	return (map_info.key_size == sizeof(struct perf_event_attr)) &&
338 		(map_info.value_size == sizeof(struct perf_event_attr_map_entry));
339 }
340 
341 static int bperf_lock_attr_map(struct target *target)
342 {
343 	char path[PATH_MAX];
344 	int map_fd, err;
345 
346 	if (target->attr_map) {
347 		scnprintf(path, PATH_MAX, "%s", target->attr_map);
348 	} else {
349 		scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
350 			  BPF_PERF_DEFAULT_ATTR_MAP_PATH);
351 	}
352 
353 	if (access(path, F_OK)) {
354 		map_fd = bpf_create_map(BPF_MAP_TYPE_HASH,
355 					sizeof(struct perf_event_attr),
356 					sizeof(struct perf_event_attr_map_entry),
357 					ATTR_MAP_SIZE, 0);
358 		if (map_fd < 0)
359 			return -1;
360 
361 		err = bpf_obj_pin(map_fd, path);
362 		if (err) {
363 			/* someone pinned the map in parallel? */
364 			close(map_fd);
365 			map_fd = bpf_obj_get(path);
366 			if (map_fd < 0)
367 				return -1;
368 		}
369 	} else {
370 		map_fd = bpf_obj_get(path);
371 		if (map_fd < 0)
372 			return -1;
373 	}
374 
375 	if (!bperf_attr_map_compatible(map_fd)) {
376 		close(map_fd);
377 		return -1;
378 
379 	}
380 	err = flock(map_fd, LOCK_EX);
381 	if (err) {
382 		close(map_fd);
383 		return -1;
384 	}
385 	return map_fd;
386 }
387 
388 /* trigger the leader program on a cpu */
389 static int bperf_trigger_reading(int prog_fd, int cpu)
390 {
391 	DECLARE_LIBBPF_OPTS(bpf_test_run_opts, opts,
392 			    .ctx_in = NULL,
393 			    .ctx_size_in = 0,
394 			    .flags = BPF_F_TEST_RUN_ON_CPU,
395 			    .cpu = cpu,
396 			    .retval = 0,
397 		);
398 
399 	return bpf_prog_test_run_opts(prog_fd, &opts);
400 }
401 
402 static int bperf_check_target(struct evsel *evsel,
403 			      struct target *target,
404 			      enum bperf_filter_type *filter_type,
405 			      __u32 *filter_entry_cnt)
406 {
407 	if (evsel->leader->core.nr_members > 1) {
408 		pr_err("bpf managed perf events do not yet support groups.\n");
409 		return -1;
410 	}
411 
412 	/* determine filter type based on target */
413 	if (target->system_wide) {
414 		*filter_type = BPERF_FILTER_GLOBAL;
415 		*filter_entry_cnt = 1;
416 	} else if (target->cpu_list) {
417 		*filter_type = BPERF_FILTER_CPU;
418 		*filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
419 	} else if (target->tid) {
420 		*filter_type = BPERF_FILTER_PID;
421 		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
422 	} else if (target->pid || evsel->evlist->workload.pid != -1) {
423 		*filter_type = BPERF_FILTER_TGID;
424 		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
425 	} else {
426 		pr_err("bpf managed perf events do not yet support these targets.\n");
427 		return -1;
428 	}
429 
430 	return 0;
431 }
432 
433 static	struct perf_cpu_map *all_cpu_map;
434 
435 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
436 				       struct perf_event_attr_map_entry *entry)
437 {
438 	struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
439 	int link_fd, diff_map_fd, err;
440 	struct bpf_link *link = NULL;
441 
442 	if (!skel) {
443 		pr_err("Failed to open leader skeleton\n");
444 		return -1;
445 	}
446 
447 	bpf_map__resize(skel->maps.events, libbpf_num_possible_cpus());
448 	err = bperf_leader_bpf__load(skel);
449 	if (err) {
450 		pr_err("Failed to load leader skeleton\n");
451 		goto out;
452 	}
453 
454 	link = bpf_program__attach(skel->progs.on_switch);
455 	if (IS_ERR(link)) {
456 		pr_err("Failed to attach leader program\n");
457 		err = PTR_ERR(link);
458 		goto out;
459 	}
460 
461 	link_fd = bpf_link__fd(link);
462 	diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
463 	entry->link_id = bpf_link_get_id(link_fd);
464 	entry->diff_map_id = bpf_map_get_id(diff_map_fd);
465 	err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
466 	assert(err == 0);
467 
468 	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
469 	assert(evsel->bperf_leader_link_fd >= 0);
470 
471 	/*
472 	 * save leader_skel for install_pe, which is called within
473 	 * following evsel__open_per_cpu call
474 	 */
475 	evsel->leader_skel = skel;
476 	evsel__open_per_cpu(evsel, all_cpu_map, -1);
477 
478 out:
479 	bperf_leader_bpf__destroy(skel);
480 	bpf_link__destroy(link);
481 	return err;
482 }
483 
484 static int bperf__load(struct evsel *evsel, struct target *target)
485 {
486 	struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
487 	int attr_map_fd, diff_map_fd = -1, err;
488 	enum bperf_filter_type filter_type;
489 	__u32 filter_entry_cnt, i;
490 
491 	if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
492 		return -1;
493 
494 	if (!all_cpu_map) {
495 		all_cpu_map = perf_cpu_map__new(NULL);
496 		if (!all_cpu_map)
497 			return -1;
498 	}
499 
500 	evsel->bperf_leader_prog_fd = -1;
501 	evsel->bperf_leader_link_fd = -1;
502 
503 	/*
504 	 * Step 1: hold a fd on the leader program and the bpf_link, if
505 	 * the program is not already gone, reload the program.
506 	 * Use flock() to ensure exclusive access to the perf_event_attr
507 	 * map.
508 	 */
509 	attr_map_fd = bperf_lock_attr_map(target);
510 	if (attr_map_fd < 0) {
511 		pr_err("Failed to lock perf_event_attr map\n");
512 		return -1;
513 	}
514 
515 	err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
516 	if (err) {
517 		err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
518 		if (err)
519 			goto out;
520 	}
521 
522 	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
523 	if (evsel->bperf_leader_link_fd < 0 &&
524 	    bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
525 		err = -1;
526 		goto out;
527 	}
528 	/*
529 	 * The bpf_link holds reference to the leader program, and the
530 	 * leader program holds reference to the maps. Therefore, if
531 	 * link_id is valid, diff_map_id should also be valid.
532 	 */
533 	evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
534 		bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
535 	assert(evsel->bperf_leader_prog_fd >= 0);
536 
537 	diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
538 	assert(diff_map_fd >= 0);
539 
540 	/*
541 	 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
542 	 * whether the kernel support it
543 	 */
544 	err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
545 	if (err) {
546 		pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
547 		       "Therefore, --use-bpf might show inaccurate readings\n");
548 		goto out;
549 	}
550 
551 	/* Step 2: load the follower skeleton */
552 	evsel->follower_skel = bperf_follower_bpf__open();
553 	if (!evsel->follower_skel) {
554 		err = -1;
555 		pr_err("Failed to open follower skeleton\n");
556 		goto out;
557 	}
558 
559 	/* attach fexit program to the leader program */
560 	bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
561 				       evsel->bperf_leader_prog_fd, "on_switch");
562 
563 	/* connect to leader diff_reading map */
564 	bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
565 
566 	/* set up reading map */
567 	bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
568 				 filter_entry_cnt);
569 	/* set up follower filter based on target */
570 	bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
571 				 filter_entry_cnt);
572 	err = bperf_follower_bpf__load(evsel->follower_skel);
573 	if (err) {
574 		pr_err("Failed to load follower skeleton\n");
575 		bperf_follower_bpf__destroy(evsel->follower_skel);
576 		evsel->follower_skel = NULL;
577 		goto out;
578 	}
579 
580 	for (i = 0; i < filter_entry_cnt; i++) {
581 		int filter_map_fd;
582 		__u32 key;
583 
584 		if (filter_type == BPERF_FILTER_PID ||
585 		    filter_type == BPERF_FILTER_TGID)
586 			key = evsel->core.threads->map[i].pid;
587 		else if (filter_type == BPERF_FILTER_CPU)
588 			key = evsel->core.cpus->map[i];
589 		else
590 			break;
591 
592 		filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
593 		bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
594 	}
595 
596 	evsel->follower_skel->bss->type = filter_type;
597 
598 	err = bperf_follower_bpf__attach(evsel->follower_skel);
599 
600 out:
601 	if (err && evsel->bperf_leader_link_fd >= 0)
602 		close(evsel->bperf_leader_link_fd);
603 	if (err && evsel->bperf_leader_prog_fd >= 0)
604 		close(evsel->bperf_leader_prog_fd);
605 	if (diff_map_fd >= 0)
606 		close(diff_map_fd);
607 
608 	flock(attr_map_fd, LOCK_UN);
609 	close(attr_map_fd);
610 
611 	return err;
612 }
613 
614 static int bperf__install_pe(struct evsel *evsel, int cpu, int fd)
615 {
616 	struct bperf_leader_bpf *skel = evsel->leader_skel;
617 
618 	return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
619 				   &cpu, &fd, BPF_ANY);
620 }
621 
622 /*
623  * trigger the leader prog on each cpu, so the accum_reading map could get
624  * the latest readings.
625  */
626 static int bperf_sync_counters(struct evsel *evsel)
627 {
628 	int num_cpu, i, cpu;
629 
630 	num_cpu = all_cpu_map->nr;
631 	for (i = 0; i < num_cpu; i++) {
632 		cpu = all_cpu_map->map[i];
633 		bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
634 	}
635 	return 0;
636 }
637 
638 static int bperf__enable(struct evsel *evsel)
639 {
640 	evsel->follower_skel->bss->enabled = 1;
641 	return 0;
642 }
643 
644 static int bperf__disable(struct evsel *evsel)
645 {
646 	evsel->follower_skel->bss->enabled = 0;
647 	return 0;
648 }
649 
650 static int bperf__read(struct evsel *evsel)
651 {
652 	struct bperf_follower_bpf *skel = evsel->follower_skel;
653 	__u32 num_cpu_bpf = cpu__max_cpu();
654 	struct bpf_perf_event_value values[num_cpu_bpf];
655 	int reading_map_fd, err = 0;
656 	__u32 i, j, num_cpu;
657 
658 	bperf_sync_counters(evsel);
659 	reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
660 
661 	for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
662 		__u32 cpu;
663 
664 		err = bpf_map_lookup_elem(reading_map_fd, &i, values);
665 		if (err)
666 			goto out;
667 		switch (evsel->follower_skel->bss->type) {
668 		case BPERF_FILTER_GLOBAL:
669 			assert(i == 0);
670 
671 			num_cpu = all_cpu_map->nr;
672 			for (j = 0; j < num_cpu; j++) {
673 				cpu = all_cpu_map->map[j];
674 				perf_counts(evsel->counts, cpu, 0)->val = values[cpu].counter;
675 				perf_counts(evsel->counts, cpu, 0)->ena = values[cpu].enabled;
676 				perf_counts(evsel->counts, cpu, 0)->run = values[cpu].running;
677 			}
678 			break;
679 		case BPERF_FILTER_CPU:
680 			cpu = evsel->core.cpus->map[i];
681 			perf_counts(evsel->counts, i, 0)->val = values[cpu].counter;
682 			perf_counts(evsel->counts, i, 0)->ena = values[cpu].enabled;
683 			perf_counts(evsel->counts, i, 0)->run = values[cpu].running;
684 			break;
685 		case BPERF_FILTER_PID:
686 		case BPERF_FILTER_TGID:
687 			perf_counts(evsel->counts, 0, i)->val = 0;
688 			perf_counts(evsel->counts, 0, i)->ena = 0;
689 			perf_counts(evsel->counts, 0, i)->run = 0;
690 
691 			for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
692 				perf_counts(evsel->counts, 0, i)->val += values[cpu].counter;
693 				perf_counts(evsel->counts, 0, i)->ena += values[cpu].enabled;
694 				perf_counts(evsel->counts, 0, i)->run += values[cpu].running;
695 			}
696 			break;
697 		default:
698 			break;
699 		}
700 	}
701 out:
702 	return err;
703 }
704 
705 static int bperf__destroy(struct evsel *evsel)
706 {
707 	bperf_follower_bpf__destroy(evsel->follower_skel);
708 	close(evsel->bperf_leader_prog_fd);
709 	close(evsel->bperf_leader_link_fd);
710 	return 0;
711 }
712 
713 /*
714  * bperf: share hardware PMCs with BPF
715  *
716  * perf uses performance monitoring counters (PMC) to monitor system
717  * performance. The PMCs are limited hardware resources. For example,
718  * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
719  *
720  * Modern data center systems use these PMCs in many different ways:
721  * system level monitoring, (maybe nested) container level monitoring, per
722  * process monitoring, profiling (in sample mode), etc. In some cases,
723  * there are more active perf_events than available hardware PMCs. To allow
724  * all perf_events to have a chance to run, it is necessary to do expensive
725  * time multiplexing of events.
726  *
727  * On the other hand, many monitoring tools count the common metrics
728  * (cycles, instructions). It is a waste to have multiple tools create
729  * multiple perf_events of "cycles" and occupy multiple PMCs.
730  *
731  * bperf tries to reduce such wastes by allowing multiple perf_events of
732  * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
733  * of having each perf-stat session to read its own perf_events, bperf uses
734  * BPF programs to read the perf_events and aggregate readings to BPF maps.
735  * Then, the perf-stat session(s) reads the values from these BPF maps.
736  *
737  *                                ||
738  *       shared progs and maps <- || -> per session progs and maps
739  *                                ||
740  *   ---------------              ||
741  *   | perf_events |              ||
742  *   ---------------       fexit  ||      -----------------
743  *          |             --------||----> | follower prog |
744  *       --------------- /        || ---  -----------------
745  * cs -> | leader prog |/         ||/        |         |
746  *   --> ---------------         /||  --------------  ------------------
747  *  /       |         |         / ||  | filter map |  | accum_readings |
748  * /  ------------  ------------  ||  --------------  ------------------
749  * |  | prev map |  | diff map |  ||                        |
750  * |  ------------  ------------  ||                        |
751  *  \                             ||                        |
752  * = \ ==================================================== | ============
753  *    \                                                    /   user space
754  *     \                                                  /
755  *      \                                                /
756  *    BPF_PROG_TEST_RUN                    BPF_MAP_LOOKUP_ELEM
757  *        \                                            /
758  *         \                                          /
759  *          \------  perf-stat ----------------------/
760  *
761  * The figure above shows the architecture of bperf. Note that the figure
762  * is divided into 3 regions: shared progs and maps (top left), per session
763  * progs and maps (top right), and user space (bottom).
764  *
765  * The leader prog is triggered on each context switch (cs). The leader
766  * prog reads perf_events and stores the difference (current_reading -
767  * previous_reading) to the diff map. For the same metric, e.g. "cycles",
768  * multiple perf-stat sessions share the same leader prog.
769  *
770  * Each perf-stat session creates a follower prog as fexit program to the
771  * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
772  * follower progs to the same leader prog. The follower prog checks current
773  * task and processor ID to decide whether to add the value from the diff
774  * map to its accumulated reading map (accum_readings).
775  *
776  * Finally, perf-stat user space reads the value from accum_reading map.
777  *
778  * Besides context switch, it is also necessary to trigger the leader prog
779  * before perf-stat reads the value. Otherwise, the accum_reading map may
780  * not have the latest reading from the perf_events. This is achieved by
781  * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
782  *
783  * Comment before the definition of struct perf_event_attr_map_entry
784  * describes how different sessions of perf-stat share information about
785  * the leader prog.
786  */
787 
788 struct bpf_counter_ops bperf_ops = {
789 	.load       = bperf__load,
790 	.enable     = bperf__enable,
791 	.disable    = bperf__disable,
792 	.read       = bperf__read,
793 	.install_pe = bperf__install_pe,
794 	.destroy    = bperf__destroy,
795 };
796 
797 static inline bool bpf_counter_skip(struct evsel *evsel)
798 {
799 	return list_empty(&evsel->bpf_counter_list) &&
800 		evsel->follower_skel == NULL;
801 }
802 
803 int bpf_counter__install_pe(struct evsel *evsel, int cpu, int fd)
804 {
805 	if (bpf_counter_skip(evsel))
806 		return 0;
807 	return evsel->bpf_counter_ops->install_pe(evsel, cpu, fd);
808 }
809 
810 int bpf_counter__load(struct evsel *evsel, struct target *target)
811 {
812 	if (target->bpf_str)
813 		evsel->bpf_counter_ops = &bpf_program_profiler_ops;
814 	else if (target->use_bpf || evsel->bpf_counter ||
815 		 evsel__match_bpf_counter_events(evsel->name))
816 		evsel->bpf_counter_ops = &bperf_ops;
817 
818 	if (evsel->bpf_counter_ops)
819 		return evsel->bpf_counter_ops->load(evsel, target);
820 	return 0;
821 }
822 
823 int bpf_counter__enable(struct evsel *evsel)
824 {
825 	if (bpf_counter_skip(evsel))
826 		return 0;
827 	return evsel->bpf_counter_ops->enable(evsel);
828 }
829 
830 int bpf_counter__disable(struct evsel *evsel)
831 {
832 	if (bpf_counter_skip(evsel))
833 		return 0;
834 	return evsel->bpf_counter_ops->disable(evsel);
835 }
836 
837 int bpf_counter__read(struct evsel *evsel)
838 {
839 	if (bpf_counter_skip(evsel))
840 		return -EAGAIN;
841 	return evsel->bpf_counter_ops->read(evsel);
842 }
843 
844 void bpf_counter__destroy(struct evsel *evsel)
845 {
846 	if (bpf_counter_skip(evsel))
847 		return;
848 	evsel->bpf_counter_ops->destroy(evsel);
849 	evsel->bpf_counter_ops = NULL;
850 }
851