1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2019 Facebook */ 4 5 #include <assert.h> 6 #include <limits.h> 7 #include <unistd.h> 8 #include <sys/file.h> 9 #include <sys/time.h> 10 #include <linux/err.h> 11 #include <linux/zalloc.h> 12 #include <api/fs/fs.h> 13 #include <perf/bpf_perf.h> 14 15 #include "bpf_counter.h" 16 #include "bpf-utils.h" 17 #include "counts.h" 18 #include "debug.h" 19 #include "evsel.h" 20 #include "evlist.h" 21 #include "target.h" 22 #include "cgroup.h" 23 #include "cpumap.h" 24 #include "thread_map.h" 25 26 #include "bpf_skel/bpf_prog_profiler.skel.h" 27 #include "bpf_skel/bperf_u.h" 28 #include "bpf_skel/bperf_leader.skel.h" 29 #include "bpf_skel/bperf_follower.skel.h" 30 31 #define ATTR_MAP_SIZE 16 32 33 static inline void *u64_to_ptr(__u64 ptr) 34 { 35 return (void *)(unsigned long)ptr; 36 } 37 38 static struct bpf_counter *bpf_counter_alloc(void) 39 { 40 struct bpf_counter *counter; 41 42 counter = zalloc(sizeof(*counter)); 43 if (counter) 44 INIT_LIST_HEAD(&counter->list); 45 return counter; 46 } 47 48 static int bpf_program_profiler__destroy(struct evsel *evsel) 49 { 50 struct bpf_counter *counter, *tmp; 51 52 list_for_each_entry_safe(counter, tmp, 53 &evsel->bpf_counter_list, list) { 54 list_del_init(&counter->list); 55 bpf_prog_profiler_bpf__destroy(counter->skel); 56 free(counter); 57 } 58 assert(list_empty(&evsel->bpf_counter_list)); 59 60 return 0; 61 } 62 63 static char *bpf_target_prog_name(int tgt_fd) 64 { 65 struct bpf_func_info *func_info; 66 struct perf_bpil *info_linear; 67 const struct btf_type *t; 68 struct btf *btf = NULL; 69 char *name = NULL; 70 71 info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO); 72 if (IS_ERR_OR_NULL(info_linear)) { 73 pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd); 74 return NULL; 75 } 76 77 if (info_linear->info.btf_id == 0) { 78 pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd); 79 goto out; 80 } 81 82 btf = btf__load_from_kernel_by_id(info_linear->info.btf_id); 83 if (libbpf_get_error(btf)) { 84 pr_debug("failed to load btf for prog FD %d\n", tgt_fd); 85 goto out; 86 } 87 88 func_info = u64_to_ptr(info_linear->info.func_info); 89 t = btf__type_by_id(btf, func_info[0].type_id); 90 if (!t) { 91 pr_debug("btf %d doesn't have type %d\n", 92 info_linear->info.btf_id, func_info[0].type_id); 93 goto out; 94 } 95 name = strdup(btf__name_by_offset(btf, t->name_off)); 96 out: 97 btf__free(btf); 98 free(info_linear); 99 return name; 100 } 101 102 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id) 103 { 104 struct bpf_prog_profiler_bpf *skel; 105 struct bpf_counter *counter; 106 struct bpf_program *prog; 107 char *prog_name; 108 int prog_fd; 109 int err; 110 111 prog_fd = bpf_prog_get_fd_by_id(prog_id); 112 if (prog_fd < 0) { 113 pr_err("Failed to open fd for bpf prog %u\n", prog_id); 114 return -1; 115 } 116 counter = bpf_counter_alloc(); 117 if (!counter) { 118 close(prog_fd); 119 return -1; 120 } 121 122 skel = bpf_prog_profiler_bpf__open(); 123 if (!skel) { 124 pr_err("Failed to open bpf skeleton\n"); 125 goto err_out; 126 } 127 128 skel->rodata->num_cpu = evsel__nr_cpus(evsel); 129 130 bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel)); 131 bpf_map__set_max_entries(skel->maps.fentry_readings, 1); 132 bpf_map__set_max_entries(skel->maps.accum_readings, 1); 133 134 prog_name = bpf_target_prog_name(prog_fd); 135 if (!prog_name) { 136 pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id); 137 goto err_out; 138 } 139 140 bpf_object__for_each_program(prog, skel->obj) { 141 err = bpf_program__set_attach_target(prog, prog_fd, prog_name); 142 if (err) { 143 pr_err("bpf_program__set_attach_target failed.\n" 144 "Does bpf prog %u have BTF?\n", prog_id); 145 goto err_out; 146 } 147 } 148 set_max_rlimit(); 149 err = bpf_prog_profiler_bpf__load(skel); 150 if (err) { 151 pr_err("bpf_prog_profiler_bpf__load failed\n"); 152 goto err_out; 153 } 154 155 assert(skel != NULL); 156 counter->skel = skel; 157 list_add(&counter->list, &evsel->bpf_counter_list); 158 close(prog_fd); 159 return 0; 160 err_out: 161 bpf_prog_profiler_bpf__destroy(skel); 162 free(counter); 163 close(prog_fd); 164 return -1; 165 } 166 167 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target) 168 { 169 char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p; 170 u32 prog_id; 171 int ret; 172 173 bpf_str_ = bpf_str = strdup(target->bpf_str); 174 if (!bpf_str) 175 return -1; 176 177 while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) { 178 prog_id = strtoul(tok, &p, 10); 179 if (prog_id == 0 || prog_id == UINT_MAX || 180 (*p != '\0' && *p != ',')) { 181 pr_err("Failed to parse bpf prog ids %s\n", 182 target->bpf_str); 183 return -1; 184 } 185 186 ret = bpf_program_profiler_load_one(evsel, prog_id); 187 if (ret) { 188 bpf_program_profiler__destroy(evsel); 189 free(bpf_str_); 190 return -1; 191 } 192 bpf_str = NULL; 193 } 194 free(bpf_str_); 195 return 0; 196 } 197 198 static int bpf_program_profiler__enable(struct evsel *evsel) 199 { 200 struct bpf_counter *counter; 201 int ret; 202 203 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 204 assert(counter->skel != NULL); 205 ret = bpf_prog_profiler_bpf__attach(counter->skel); 206 if (ret) { 207 bpf_program_profiler__destroy(evsel); 208 return ret; 209 } 210 } 211 return 0; 212 } 213 214 static int bpf_program_profiler__disable(struct evsel *evsel) 215 { 216 struct bpf_counter *counter; 217 218 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 219 assert(counter->skel != NULL); 220 bpf_prog_profiler_bpf__detach(counter->skel); 221 } 222 return 0; 223 } 224 225 static int bpf_program_profiler__read(struct evsel *evsel) 226 { 227 // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible 228 // Sometimes possible > online, like on a Ryzen 3900X that has 24 229 // threads but its possible showed 0-31 -acme 230 int num_cpu_bpf = libbpf_num_possible_cpus(); 231 struct bpf_perf_event_value values[num_cpu_bpf]; 232 struct bpf_counter *counter; 233 struct perf_counts_values *counts; 234 int reading_map_fd; 235 __u32 key = 0; 236 int err, idx, bpf_cpu; 237 238 if (list_empty(&evsel->bpf_counter_list)) 239 return -EAGAIN; 240 241 perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) { 242 counts = perf_counts(evsel->counts, idx, 0); 243 counts->val = 0; 244 counts->ena = 0; 245 counts->run = 0; 246 } 247 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 248 struct bpf_prog_profiler_bpf *skel = counter->skel; 249 250 assert(skel != NULL); 251 reading_map_fd = bpf_map__fd(skel->maps.accum_readings); 252 253 err = bpf_map_lookup_elem(reading_map_fd, &key, values); 254 if (err) { 255 pr_err("failed to read value\n"); 256 return err; 257 } 258 259 for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) { 260 idx = perf_cpu_map__idx(evsel__cpus(evsel), 261 (struct perf_cpu){.cpu = bpf_cpu}); 262 if (idx == -1) 263 continue; 264 counts = perf_counts(evsel->counts, idx, 0); 265 counts->val += values[bpf_cpu].counter; 266 counts->ena += values[bpf_cpu].enabled; 267 counts->run += values[bpf_cpu].running; 268 } 269 } 270 return 0; 271 } 272 273 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx, 274 int fd) 275 { 276 struct bpf_prog_profiler_bpf *skel; 277 struct bpf_counter *counter; 278 int ret; 279 280 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 281 skel = counter->skel; 282 assert(skel != NULL); 283 284 ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events), 285 &cpu_map_idx, &fd, BPF_ANY); 286 if (ret) 287 return ret; 288 } 289 return 0; 290 } 291 292 struct bpf_counter_ops bpf_program_profiler_ops = { 293 .load = bpf_program_profiler__load, 294 .enable = bpf_program_profiler__enable, 295 .disable = bpf_program_profiler__disable, 296 .read = bpf_program_profiler__read, 297 .destroy = bpf_program_profiler__destroy, 298 .install_pe = bpf_program_profiler__install_pe, 299 }; 300 301 static bool bperf_attr_map_compatible(int attr_map_fd) 302 { 303 struct bpf_map_info map_info = {0}; 304 __u32 map_info_len = sizeof(map_info); 305 int err; 306 307 err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len); 308 309 if (err) 310 return false; 311 return (map_info.key_size == sizeof(struct perf_event_attr)) && 312 (map_info.value_size == sizeof(struct perf_event_attr_map_entry)); 313 } 314 315 #ifndef HAVE_LIBBPF_BPF_MAP_CREATE 316 LIBBPF_API int bpf_create_map(enum bpf_map_type map_type, int key_size, 317 int value_size, int max_entries, __u32 map_flags); 318 int 319 bpf_map_create(enum bpf_map_type map_type, 320 const char *map_name __maybe_unused, 321 __u32 key_size, 322 __u32 value_size, 323 __u32 max_entries, 324 const struct bpf_map_create_opts *opts __maybe_unused) 325 { 326 #pragma GCC diagnostic push 327 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 328 return bpf_create_map(map_type, key_size, value_size, max_entries, 0); 329 #pragma GCC diagnostic pop 330 } 331 #endif 332 333 static int bperf_lock_attr_map(struct target *target) 334 { 335 char path[PATH_MAX]; 336 int map_fd, err; 337 338 if (target->attr_map) { 339 scnprintf(path, PATH_MAX, "%s", target->attr_map); 340 } else { 341 scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(), 342 BPF_PERF_DEFAULT_ATTR_MAP_PATH); 343 } 344 345 if (access(path, F_OK)) { 346 map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL, 347 sizeof(struct perf_event_attr), 348 sizeof(struct perf_event_attr_map_entry), 349 ATTR_MAP_SIZE, NULL); 350 if (map_fd < 0) 351 return -1; 352 353 err = bpf_obj_pin(map_fd, path); 354 if (err) { 355 /* someone pinned the map in parallel? */ 356 close(map_fd); 357 map_fd = bpf_obj_get(path); 358 if (map_fd < 0) 359 return -1; 360 } 361 } else { 362 map_fd = bpf_obj_get(path); 363 if (map_fd < 0) 364 return -1; 365 } 366 367 if (!bperf_attr_map_compatible(map_fd)) { 368 close(map_fd); 369 return -1; 370 371 } 372 err = flock(map_fd, LOCK_EX); 373 if (err) { 374 close(map_fd); 375 return -1; 376 } 377 return map_fd; 378 } 379 380 static int bperf_check_target(struct evsel *evsel, 381 struct target *target, 382 enum bperf_filter_type *filter_type, 383 __u32 *filter_entry_cnt) 384 { 385 if (evsel->core.leader->nr_members > 1) { 386 pr_err("bpf managed perf events do not yet support groups.\n"); 387 return -1; 388 } 389 390 /* determine filter type based on target */ 391 if (target->system_wide) { 392 *filter_type = BPERF_FILTER_GLOBAL; 393 *filter_entry_cnt = 1; 394 } else if (target->cpu_list) { 395 *filter_type = BPERF_FILTER_CPU; 396 *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel)); 397 } else if (target->tid) { 398 *filter_type = BPERF_FILTER_PID; 399 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads); 400 } else if (target->pid || evsel->evlist->workload.pid != -1) { 401 *filter_type = BPERF_FILTER_TGID; 402 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads); 403 } else { 404 pr_err("bpf managed perf events do not yet support these targets.\n"); 405 return -1; 406 } 407 408 return 0; 409 } 410 411 static struct perf_cpu_map *all_cpu_map; 412 413 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd, 414 struct perf_event_attr_map_entry *entry) 415 { 416 struct bperf_leader_bpf *skel = bperf_leader_bpf__open(); 417 int link_fd, diff_map_fd, err; 418 struct bpf_link *link = NULL; 419 420 if (!skel) { 421 pr_err("Failed to open leader skeleton\n"); 422 return -1; 423 } 424 425 bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus()); 426 err = bperf_leader_bpf__load(skel); 427 if (err) { 428 pr_err("Failed to load leader skeleton\n"); 429 goto out; 430 } 431 432 link = bpf_program__attach(skel->progs.on_switch); 433 if (IS_ERR(link)) { 434 pr_err("Failed to attach leader program\n"); 435 err = PTR_ERR(link); 436 goto out; 437 } 438 439 link_fd = bpf_link__fd(link); 440 diff_map_fd = bpf_map__fd(skel->maps.diff_readings); 441 entry->link_id = bpf_link_get_id(link_fd); 442 entry->diff_map_id = bpf_map_get_id(diff_map_fd); 443 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY); 444 assert(err == 0); 445 446 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id); 447 assert(evsel->bperf_leader_link_fd >= 0); 448 449 /* 450 * save leader_skel for install_pe, which is called within 451 * following evsel__open_per_cpu call 452 */ 453 evsel->leader_skel = skel; 454 evsel__open_per_cpu(evsel, all_cpu_map, -1); 455 456 out: 457 bperf_leader_bpf__destroy(skel); 458 bpf_link__destroy(link); 459 return err; 460 } 461 462 static int bperf__load(struct evsel *evsel, struct target *target) 463 { 464 struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff}; 465 int attr_map_fd, diff_map_fd = -1, err; 466 enum bperf_filter_type filter_type; 467 __u32 filter_entry_cnt, i; 468 469 if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt)) 470 return -1; 471 472 if (!all_cpu_map) { 473 all_cpu_map = perf_cpu_map__new(NULL); 474 if (!all_cpu_map) 475 return -1; 476 } 477 478 evsel->bperf_leader_prog_fd = -1; 479 evsel->bperf_leader_link_fd = -1; 480 481 /* 482 * Step 1: hold a fd on the leader program and the bpf_link, if 483 * the program is not already gone, reload the program. 484 * Use flock() to ensure exclusive access to the perf_event_attr 485 * map. 486 */ 487 attr_map_fd = bperf_lock_attr_map(target); 488 if (attr_map_fd < 0) { 489 pr_err("Failed to lock perf_event_attr map\n"); 490 return -1; 491 } 492 493 err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry); 494 if (err) { 495 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY); 496 if (err) 497 goto out; 498 } 499 500 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id); 501 if (evsel->bperf_leader_link_fd < 0 && 502 bperf_reload_leader_program(evsel, attr_map_fd, &entry)) { 503 err = -1; 504 goto out; 505 } 506 /* 507 * The bpf_link holds reference to the leader program, and the 508 * leader program holds reference to the maps. Therefore, if 509 * link_id is valid, diff_map_id should also be valid. 510 */ 511 evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id( 512 bpf_link_get_prog_id(evsel->bperf_leader_link_fd)); 513 assert(evsel->bperf_leader_prog_fd >= 0); 514 515 diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id); 516 assert(diff_map_fd >= 0); 517 518 /* 519 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check 520 * whether the kernel support it 521 */ 522 err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0); 523 if (err) { 524 pr_err("The kernel does not support test_run for raw_tp BPF programs.\n" 525 "Therefore, --use-bpf might show inaccurate readings\n"); 526 goto out; 527 } 528 529 /* Step 2: load the follower skeleton */ 530 evsel->follower_skel = bperf_follower_bpf__open(); 531 if (!evsel->follower_skel) { 532 err = -1; 533 pr_err("Failed to open follower skeleton\n"); 534 goto out; 535 } 536 537 /* attach fexit program to the leader program */ 538 bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX, 539 evsel->bperf_leader_prog_fd, "on_switch"); 540 541 /* connect to leader diff_reading map */ 542 bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd); 543 544 /* set up reading map */ 545 bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings, 546 filter_entry_cnt); 547 /* set up follower filter based on target */ 548 bpf_map__set_max_entries(evsel->follower_skel->maps.filter, 549 filter_entry_cnt); 550 err = bperf_follower_bpf__load(evsel->follower_skel); 551 if (err) { 552 pr_err("Failed to load follower skeleton\n"); 553 bperf_follower_bpf__destroy(evsel->follower_skel); 554 evsel->follower_skel = NULL; 555 goto out; 556 } 557 558 for (i = 0; i < filter_entry_cnt; i++) { 559 int filter_map_fd; 560 __u32 key; 561 562 if (filter_type == BPERF_FILTER_PID || 563 filter_type == BPERF_FILTER_TGID) 564 key = evsel->core.threads->map[i].pid; 565 else if (filter_type == BPERF_FILTER_CPU) 566 key = evsel->core.cpus->map[i].cpu; 567 else 568 break; 569 570 filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter); 571 bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY); 572 } 573 574 evsel->follower_skel->bss->type = filter_type; 575 576 err = bperf_follower_bpf__attach(evsel->follower_skel); 577 578 out: 579 if (err && evsel->bperf_leader_link_fd >= 0) 580 close(evsel->bperf_leader_link_fd); 581 if (err && evsel->bperf_leader_prog_fd >= 0) 582 close(evsel->bperf_leader_prog_fd); 583 if (diff_map_fd >= 0) 584 close(diff_map_fd); 585 586 flock(attr_map_fd, LOCK_UN); 587 close(attr_map_fd); 588 589 return err; 590 } 591 592 static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd) 593 { 594 struct bperf_leader_bpf *skel = evsel->leader_skel; 595 596 return bpf_map_update_elem(bpf_map__fd(skel->maps.events), 597 &cpu_map_idx, &fd, BPF_ANY); 598 } 599 600 /* 601 * trigger the leader prog on each cpu, so the accum_reading map could get 602 * the latest readings. 603 */ 604 static int bperf_sync_counters(struct evsel *evsel) 605 { 606 int num_cpu, i, cpu; 607 608 num_cpu = all_cpu_map->nr; 609 for (i = 0; i < num_cpu; i++) { 610 cpu = all_cpu_map->map[i].cpu; 611 bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu); 612 } 613 return 0; 614 } 615 616 static int bperf__enable(struct evsel *evsel) 617 { 618 evsel->follower_skel->bss->enabled = 1; 619 return 0; 620 } 621 622 static int bperf__disable(struct evsel *evsel) 623 { 624 evsel->follower_skel->bss->enabled = 0; 625 return 0; 626 } 627 628 static int bperf__read(struct evsel *evsel) 629 { 630 struct bperf_follower_bpf *skel = evsel->follower_skel; 631 __u32 num_cpu_bpf = cpu__max_cpu().cpu; 632 struct bpf_perf_event_value values[num_cpu_bpf]; 633 struct perf_counts_values *counts; 634 int reading_map_fd, err = 0; 635 __u32 i; 636 int j; 637 638 bperf_sync_counters(evsel); 639 reading_map_fd = bpf_map__fd(skel->maps.accum_readings); 640 641 for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) { 642 struct perf_cpu entry; 643 __u32 cpu; 644 645 err = bpf_map_lookup_elem(reading_map_fd, &i, values); 646 if (err) 647 goto out; 648 switch (evsel->follower_skel->bss->type) { 649 case BPERF_FILTER_GLOBAL: 650 assert(i == 0); 651 652 perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) { 653 counts = perf_counts(evsel->counts, j, 0); 654 counts->val = values[entry.cpu].counter; 655 counts->ena = values[entry.cpu].enabled; 656 counts->run = values[entry.cpu].running; 657 } 658 break; 659 case BPERF_FILTER_CPU: 660 cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu; 661 assert(cpu >= 0); 662 counts = perf_counts(evsel->counts, i, 0); 663 counts->val = values[cpu].counter; 664 counts->ena = values[cpu].enabled; 665 counts->run = values[cpu].running; 666 break; 667 case BPERF_FILTER_PID: 668 case BPERF_FILTER_TGID: 669 counts = perf_counts(evsel->counts, 0, i); 670 counts->val = 0; 671 counts->ena = 0; 672 counts->run = 0; 673 674 for (cpu = 0; cpu < num_cpu_bpf; cpu++) { 675 counts->val += values[cpu].counter; 676 counts->ena += values[cpu].enabled; 677 counts->run += values[cpu].running; 678 } 679 break; 680 default: 681 break; 682 } 683 } 684 out: 685 return err; 686 } 687 688 static int bperf__destroy(struct evsel *evsel) 689 { 690 bperf_follower_bpf__destroy(evsel->follower_skel); 691 close(evsel->bperf_leader_prog_fd); 692 close(evsel->bperf_leader_link_fd); 693 return 0; 694 } 695 696 /* 697 * bperf: share hardware PMCs with BPF 698 * 699 * perf uses performance monitoring counters (PMC) to monitor system 700 * performance. The PMCs are limited hardware resources. For example, 701 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu. 702 * 703 * Modern data center systems use these PMCs in many different ways: 704 * system level monitoring, (maybe nested) container level monitoring, per 705 * process monitoring, profiling (in sample mode), etc. In some cases, 706 * there are more active perf_events than available hardware PMCs. To allow 707 * all perf_events to have a chance to run, it is necessary to do expensive 708 * time multiplexing of events. 709 * 710 * On the other hand, many monitoring tools count the common metrics 711 * (cycles, instructions). It is a waste to have multiple tools create 712 * multiple perf_events of "cycles" and occupy multiple PMCs. 713 * 714 * bperf tries to reduce such wastes by allowing multiple perf_events of 715 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead 716 * of having each perf-stat session to read its own perf_events, bperf uses 717 * BPF programs to read the perf_events and aggregate readings to BPF maps. 718 * Then, the perf-stat session(s) reads the values from these BPF maps. 719 * 720 * || 721 * shared progs and maps <- || -> per session progs and maps 722 * || 723 * --------------- || 724 * | perf_events | || 725 * --------------- fexit || ----------------- 726 * | --------||----> | follower prog | 727 * --------------- / || --- ----------------- 728 * cs -> | leader prog |/ ||/ | | 729 * --> --------------- /|| -------------- ------------------ 730 * / | | / || | filter map | | accum_readings | 731 * / ------------ ------------ || -------------- ------------------ 732 * | | prev map | | diff map | || | 733 * | ------------ ------------ || | 734 * \ || | 735 * = \ ==================================================== | ============ 736 * \ / user space 737 * \ / 738 * \ / 739 * BPF_PROG_TEST_RUN BPF_MAP_LOOKUP_ELEM 740 * \ / 741 * \ / 742 * \------ perf-stat ----------------------/ 743 * 744 * The figure above shows the architecture of bperf. Note that the figure 745 * is divided into 3 regions: shared progs and maps (top left), per session 746 * progs and maps (top right), and user space (bottom). 747 * 748 * The leader prog is triggered on each context switch (cs). The leader 749 * prog reads perf_events and stores the difference (current_reading - 750 * previous_reading) to the diff map. For the same metric, e.g. "cycles", 751 * multiple perf-stat sessions share the same leader prog. 752 * 753 * Each perf-stat session creates a follower prog as fexit program to the 754 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38) 755 * follower progs to the same leader prog. The follower prog checks current 756 * task and processor ID to decide whether to add the value from the diff 757 * map to its accumulated reading map (accum_readings). 758 * 759 * Finally, perf-stat user space reads the value from accum_reading map. 760 * 761 * Besides context switch, it is also necessary to trigger the leader prog 762 * before perf-stat reads the value. Otherwise, the accum_reading map may 763 * not have the latest reading from the perf_events. This is achieved by 764 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU. 765 * 766 * Comment before the definition of struct perf_event_attr_map_entry 767 * describes how different sessions of perf-stat share information about 768 * the leader prog. 769 */ 770 771 struct bpf_counter_ops bperf_ops = { 772 .load = bperf__load, 773 .enable = bperf__enable, 774 .disable = bperf__disable, 775 .read = bperf__read, 776 .install_pe = bperf__install_pe, 777 .destroy = bperf__destroy, 778 }; 779 780 extern struct bpf_counter_ops bperf_cgrp_ops; 781 782 static inline bool bpf_counter_skip(struct evsel *evsel) 783 { 784 return list_empty(&evsel->bpf_counter_list) && 785 evsel->follower_skel == NULL; 786 } 787 788 int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd) 789 { 790 if (bpf_counter_skip(evsel)) 791 return 0; 792 return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd); 793 } 794 795 int bpf_counter__load(struct evsel *evsel, struct target *target) 796 { 797 if (target->bpf_str) 798 evsel->bpf_counter_ops = &bpf_program_profiler_ops; 799 else if (cgrp_event_expanded && target->use_bpf) 800 evsel->bpf_counter_ops = &bperf_cgrp_ops; 801 else if (target->use_bpf || evsel->bpf_counter || 802 evsel__match_bpf_counter_events(evsel->name)) 803 evsel->bpf_counter_ops = &bperf_ops; 804 805 if (evsel->bpf_counter_ops) 806 return evsel->bpf_counter_ops->load(evsel, target); 807 return 0; 808 } 809 810 int bpf_counter__enable(struct evsel *evsel) 811 { 812 if (bpf_counter_skip(evsel)) 813 return 0; 814 return evsel->bpf_counter_ops->enable(evsel); 815 } 816 817 int bpf_counter__disable(struct evsel *evsel) 818 { 819 if (bpf_counter_skip(evsel)) 820 return 0; 821 return evsel->bpf_counter_ops->disable(evsel); 822 } 823 824 int bpf_counter__read(struct evsel *evsel) 825 { 826 if (bpf_counter_skip(evsel)) 827 return -EAGAIN; 828 return evsel->bpf_counter_ops->read(evsel); 829 } 830 831 void bpf_counter__destroy(struct evsel *evsel) 832 { 833 if (bpf_counter_skip(evsel)) 834 return; 835 evsel->bpf_counter_ops->destroy(evsel); 836 evsel->bpf_counter_ops = NULL; 837 } 838