1 // SPDX-License-Identifier: GPL-2.0 2 3 /* Copyright (c) 2019 Facebook */ 4 5 #include <assert.h> 6 #include <limits.h> 7 #include <unistd.h> 8 #include <sys/file.h> 9 #include <sys/time.h> 10 #include <linux/err.h> 11 #include <linux/zalloc.h> 12 #include <api/fs/fs.h> 13 #include <perf/bpf_perf.h> 14 15 #include "bpf_counter.h" 16 #include "counts.h" 17 #include "debug.h" 18 #include "evsel.h" 19 #include "evlist.h" 20 #include "target.h" 21 #include "cgroup.h" 22 #include "cpumap.h" 23 #include "thread_map.h" 24 25 #include "bpf_skel/bpf_prog_profiler.skel.h" 26 #include "bpf_skel/bperf_u.h" 27 #include "bpf_skel/bperf_leader.skel.h" 28 #include "bpf_skel/bperf_follower.skel.h" 29 30 #define ATTR_MAP_SIZE 16 31 32 static inline void *u64_to_ptr(__u64 ptr) 33 { 34 return (void *)(unsigned long)ptr; 35 } 36 37 static struct bpf_counter *bpf_counter_alloc(void) 38 { 39 struct bpf_counter *counter; 40 41 counter = zalloc(sizeof(*counter)); 42 if (counter) 43 INIT_LIST_HEAD(&counter->list); 44 return counter; 45 } 46 47 static int bpf_program_profiler__destroy(struct evsel *evsel) 48 { 49 struct bpf_counter *counter, *tmp; 50 51 list_for_each_entry_safe(counter, tmp, 52 &evsel->bpf_counter_list, list) { 53 list_del_init(&counter->list); 54 bpf_prog_profiler_bpf__destroy(counter->skel); 55 free(counter); 56 } 57 assert(list_empty(&evsel->bpf_counter_list)); 58 59 return 0; 60 } 61 62 static char *bpf_target_prog_name(int tgt_fd) 63 { 64 struct bpf_prog_info_linear *info_linear; 65 struct bpf_func_info *func_info; 66 const struct btf_type *t; 67 struct btf *btf = NULL; 68 char *name = NULL; 69 70 info_linear = bpf_program__get_prog_info_linear( 71 tgt_fd, 1UL << BPF_PROG_INFO_FUNC_INFO); 72 if (IS_ERR_OR_NULL(info_linear)) { 73 pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd); 74 return NULL; 75 } 76 77 if (info_linear->info.btf_id == 0) { 78 pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd); 79 goto out; 80 } 81 82 btf = btf__load_from_kernel_by_id(info_linear->info.btf_id); 83 if (libbpf_get_error(btf)) { 84 pr_debug("failed to load btf for prog FD %d\n", tgt_fd); 85 goto out; 86 } 87 88 func_info = u64_to_ptr(info_linear->info.func_info); 89 t = btf__type_by_id(btf, func_info[0].type_id); 90 if (!t) { 91 pr_debug("btf %d doesn't have type %d\n", 92 info_linear->info.btf_id, func_info[0].type_id); 93 goto out; 94 } 95 name = strdup(btf__name_by_offset(btf, t->name_off)); 96 out: 97 btf__free(btf); 98 free(info_linear); 99 return name; 100 } 101 102 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id) 103 { 104 struct bpf_prog_profiler_bpf *skel; 105 struct bpf_counter *counter; 106 struct bpf_program *prog; 107 char *prog_name; 108 int prog_fd; 109 int err; 110 111 prog_fd = bpf_prog_get_fd_by_id(prog_id); 112 if (prog_fd < 0) { 113 pr_err("Failed to open fd for bpf prog %u\n", prog_id); 114 return -1; 115 } 116 counter = bpf_counter_alloc(); 117 if (!counter) { 118 close(prog_fd); 119 return -1; 120 } 121 122 skel = bpf_prog_profiler_bpf__open(); 123 if (!skel) { 124 pr_err("Failed to open bpf skeleton\n"); 125 goto err_out; 126 } 127 128 skel->rodata->num_cpu = evsel__nr_cpus(evsel); 129 130 bpf_map__resize(skel->maps.events, evsel__nr_cpus(evsel)); 131 bpf_map__resize(skel->maps.fentry_readings, 1); 132 bpf_map__resize(skel->maps.accum_readings, 1); 133 134 prog_name = bpf_target_prog_name(prog_fd); 135 if (!prog_name) { 136 pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id); 137 goto err_out; 138 } 139 140 bpf_object__for_each_program(prog, skel->obj) { 141 err = bpf_program__set_attach_target(prog, prog_fd, prog_name); 142 if (err) { 143 pr_err("bpf_program__set_attach_target failed.\n" 144 "Does bpf prog %u have BTF?\n", prog_id); 145 goto err_out; 146 } 147 } 148 set_max_rlimit(); 149 err = bpf_prog_profiler_bpf__load(skel); 150 if (err) { 151 pr_err("bpf_prog_profiler_bpf__load failed\n"); 152 goto err_out; 153 } 154 155 assert(skel != NULL); 156 counter->skel = skel; 157 list_add(&counter->list, &evsel->bpf_counter_list); 158 close(prog_fd); 159 return 0; 160 err_out: 161 bpf_prog_profiler_bpf__destroy(skel); 162 free(counter); 163 close(prog_fd); 164 return -1; 165 } 166 167 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target) 168 { 169 char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p; 170 u32 prog_id; 171 int ret; 172 173 bpf_str_ = bpf_str = strdup(target->bpf_str); 174 if (!bpf_str) 175 return -1; 176 177 while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) { 178 prog_id = strtoul(tok, &p, 10); 179 if (prog_id == 0 || prog_id == UINT_MAX || 180 (*p != '\0' && *p != ',')) { 181 pr_err("Failed to parse bpf prog ids %s\n", 182 target->bpf_str); 183 return -1; 184 } 185 186 ret = bpf_program_profiler_load_one(evsel, prog_id); 187 if (ret) { 188 bpf_program_profiler__destroy(evsel); 189 free(bpf_str_); 190 return -1; 191 } 192 bpf_str = NULL; 193 } 194 free(bpf_str_); 195 return 0; 196 } 197 198 static int bpf_program_profiler__enable(struct evsel *evsel) 199 { 200 struct bpf_counter *counter; 201 int ret; 202 203 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 204 assert(counter->skel != NULL); 205 ret = bpf_prog_profiler_bpf__attach(counter->skel); 206 if (ret) { 207 bpf_program_profiler__destroy(evsel); 208 return ret; 209 } 210 } 211 return 0; 212 } 213 214 static int bpf_program_profiler__disable(struct evsel *evsel) 215 { 216 struct bpf_counter *counter; 217 218 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 219 assert(counter->skel != NULL); 220 bpf_prog_profiler_bpf__detach(counter->skel); 221 } 222 return 0; 223 } 224 225 static int bpf_program_profiler__read(struct evsel *evsel) 226 { 227 // perf_cpu_map uses /sys/devices/system/cpu/online 228 int num_cpu = evsel__nr_cpus(evsel); 229 // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible 230 // Sometimes possible > online, like on a Ryzen 3900X that has 24 231 // threads but its possible showed 0-31 -acme 232 int num_cpu_bpf = libbpf_num_possible_cpus(); 233 struct bpf_perf_event_value values[num_cpu_bpf]; 234 struct bpf_counter *counter; 235 int reading_map_fd; 236 __u32 key = 0; 237 int err, cpu; 238 239 if (list_empty(&evsel->bpf_counter_list)) 240 return -EAGAIN; 241 242 for (cpu = 0; cpu < num_cpu; cpu++) { 243 perf_counts(evsel->counts, cpu, 0)->val = 0; 244 perf_counts(evsel->counts, cpu, 0)->ena = 0; 245 perf_counts(evsel->counts, cpu, 0)->run = 0; 246 } 247 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 248 struct bpf_prog_profiler_bpf *skel = counter->skel; 249 250 assert(skel != NULL); 251 reading_map_fd = bpf_map__fd(skel->maps.accum_readings); 252 253 err = bpf_map_lookup_elem(reading_map_fd, &key, values); 254 if (err) { 255 pr_err("failed to read value\n"); 256 return err; 257 } 258 259 for (cpu = 0; cpu < num_cpu; cpu++) { 260 perf_counts(evsel->counts, cpu, 0)->val += values[cpu].counter; 261 perf_counts(evsel->counts, cpu, 0)->ena += values[cpu].enabled; 262 perf_counts(evsel->counts, cpu, 0)->run += values[cpu].running; 263 } 264 } 265 return 0; 266 } 267 268 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu, 269 int fd) 270 { 271 struct bpf_prog_profiler_bpf *skel; 272 struct bpf_counter *counter; 273 int ret; 274 275 list_for_each_entry(counter, &evsel->bpf_counter_list, list) { 276 skel = counter->skel; 277 assert(skel != NULL); 278 279 ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events), 280 &cpu, &fd, BPF_ANY); 281 if (ret) 282 return ret; 283 } 284 return 0; 285 } 286 287 struct bpf_counter_ops bpf_program_profiler_ops = { 288 .load = bpf_program_profiler__load, 289 .enable = bpf_program_profiler__enable, 290 .disable = bpf_program_profiler__disable, 291 .read = bpf_program_profiler__read, 292 .destroy = bpf_program_profiler__destroy, 293 .install_pe = bpf_program_profiler__install_pe, 294 }; 295 296 static bool bperf_attr_map_compatible(int attr_map_fd) 297 { 298 struct bpf_map_info map_info = {0}; 299 __u32 map_info_len = sizeof(map_info); 300 int err; 301 302 err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len); 303 304 if (err) 305 return false; 306 return (map_info.key_size == sizeof(struct perf_event_attr)) && 307 (map_info.value_size == sizeof(struct perf_event_attr_map_entry)); 308 } 309 310 static int bperf_lock_attr_map(struct target *target) 311 { 312 char path[PATH_MAX]; 313 int map_fd, err; 314 315 if (target->attr_map) { 316 scnprintf(path, PATH_MAX, "%s", target->attr_map); 317 } else { 318 scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(), 319 BPF_PERF_DEFAULT_ATTR_MAP_PATH); 320 } 321 322 if (access(path, F_OK)) { 323 map_fd = bpf_create_map(BPF_MAP_TYPE_HASH, 324 sizeof(struct perf_event_attr), 325 sizeof(struct perf_event_attr_map_entry), 326 ATTR_MAP_SIZE, 0); 327 if (map_fd < 0) 328 return -1; 329 330 err = bpf_obj_pin(map_fd, path); 331 if (err) { 332 /* someone pinned the map in parallel? */ 333 close(map_fd); 334 map_fd = bpf_obj_get(path); 335 if (map_fd < 0) 336 return -1; 337 } 338 } else { 339 map_fd = bpf_obj_get(path); 340 if (map_fd < 0) 341 return -1; 342 } 343 344 if (!bperf_attr_map_compatible(map_fd)) { 345 close(map_fd); 346 return -1; 347 348 } 349 err = flock(map_fd, LOCK_EX); 350 if (err) { 351 close(map_fd); 352 return -1; 353 } 354 return map_fd; 355 } 356 357 static int bperf_check_target(struct evsel *evsel, 358 struct target *target, 359 enum bperf_filter_type *filter_type, 360 __u32 *filter_entry_cnt) 361 { 362 if (evsel->core.leader->nr_members > 1) { 363 pr_err("bpf managed perf events do not yet support groups.\n"); 364 return -1; 365 } 366 367 /* determine filter type based on target */ 368 if (target->system_wide) { 369 *filter_type = BPERF_FILTER_GLOBAL; 370 *filter_entry_cnt = 1; 371 } else if (target->cpu_list) { 372 *filter_type = BPERF_FILTER_CPU; 373 *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel)); 374 } else if (target->tid) { 375 *filter_type = BPERF_FILTER_PID; 376 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads); 377 } else if (target->pid || evsel->evlist->workload.pid != -1) { 378 *filter_type = BPERF_FILTER_TGID; 379 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads); 380 } else { 381 pr_err("bpf managed perf events do not yet support these targets.\n"); 382 return -1; 383 } 384 385 return 0; 386 } 387 388 static struct perf_cpu_map *all_cpu_map; 389 390 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd, 391 struct perf_event_attr_map_entry *entry) 392 { 393 struct bperf_leader_bpf *skel = bperf_leader_bpf__open(); 394 int link_fd, diff_map_fd, err; 395 struct bpf_link *link = NULL; 396 397 if (!skel) { 398 pr_err("Failed to open leader skeleton\n"); 399 return -1; 400 } 401 402 bpf_map__resize(skel->maps.events, libbpf_num_possible_cpus()); 403 err = bperf_leader_bpf__load(skel); 404 if (err) { 405 pr_err("Failed to load leader skeleton\n"); 406 goto out; 407 } 408 409 link = bpf_program__attach(skel->progs.on_switch); 410 if (IS_ERR(link)) { 411 pr_err("Failed to attach leader program\n"); 412 err = PTR_ERR(link); 413 goto out; 414 } 415 416 link_fd = bpf_link__fd(link); 417 diff_map_fd = bpf_map__fd(skel->maps.diff_readings); 418 entry->link_id = bpf_link_get_id(link_fd); 419 entry->diff_map_id = bpf_map_get_id(diff_map_fd); 420 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY); 421 assert(err == 0); 422 423 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id); 424 assert(evsel->bperf_leader_link_fd >= 0); 425 426 /* 427 * save leader_skel for install_pe, which is called within 428 * following evsel__open_per_cpu call 429 */ 430 evsel->leader_skel = skel; 431 evsel__open_per_cpu(evsel, all_cpu_map, -1); 432 433 out: 434 bperf_leader_bpf__destroy(skel); 435 bpf_link__destroy(link); 436 return err; 437 } 438 439 static int bperf__load(struct evsel *evsel, struct target *target) 440 { 441 struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff}; 442 int attr_map_fd, diff_map_fd = -1, err; 443 enum bperf_filter_type filter_type; 444 __u32 filter_entry_cnt, i; 445 446 if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt)) 447 return -1; 448 449 if (!all_cpu_map) { 450 all_cpu_map = perf_cpu_map__new(NULL); 451 if (!all_cpu_map) 452 return -1; 453 } 454 455 evsel->bperf_leader_prog_fd = -1; 456 evsel->bperf_leader_link_fd = -1; 457 458 /* 459 * Step 1: hold a fd on the leader program and the bpf_link, if 460 * the program is not already gone, reload the program. 461 * Use flock() to ensure exclusive access to the perf_event_attr 462 * map. 463 */ 464 attr_map_fd = bperf_lock_attr_map(target); 465 if (attr_map_fd < 0) { 466 pr_err("Failed to lock perf_event_attr map\n"); 467 return -1; 468 } 469 470 err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry); 471 if (err) { 472 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY); 473 if (err) 474 goto out; 475 } 476 477 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id); 478 if (evsel->bperf_leader_link_fd < 0 && 479 bperf_reload_leader_program(evsel, attr_map_fd, &entry)) { 480 err = -1; 481 goto out; 482 } 483 /* 484 * The bpf_link holds reference to the leader program, and the 485 * leader program holds reference to the maps. Therefore, if 486 * link_id is valid, diff_map_id should also be valid. 487 */ 488 evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id( 489 bpf_link_get_prog_id(evsel->bperf_leader_link_fd)); 490 assert(evsel->bperf_leader_prog_fd >= 0); 491 492 diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id); 493 assert(diff_map_fd >= 0); 494 495 /* 496 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check 497 * whether the kernel support it 498 */ 499 err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0); 500 if (err) { 501 pr_err("The kernel does not support test_run for raw_tp BPF programs.\n" 502 "Therefore, --use-bpf might show inaccurate readings\n"); 503 goto out; 504 } 505 506 /* Step 2: load the follower skeleton */ 507 evsel->follower_skel = bperf_follower_bpf__open(); 508 if (!evsel->follower_skel) { 509 err = -1; 510 pr_err("Failed to open follower skeleton\n"); 511 goto out; 512 } 513 514 /* attach fexit program to the leader program */ 515 bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX, 516 evsel->bperf_leader_prog_fd, "on_switch"); 517 518 /* connect to leader diff_reading map */ 519 bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd); 520 521 /* set up reading map */ 522 bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings, 523 filter_entry_cnt); 524 /* set up follower filter based on target */ 525 bpf_map__set_max_entries(evsel->follower_skel->maps.filter, 526 filter_entry_cnt); 527 err = bperf_follower_bpf__load(evsel->follower_skel); 528 if (err) { 529 pr_err("Failed to load follower skeleton\n"); 530 bperf_follower_bpf__destroy(evsel->follower_skel); 531 evsel->follower_skel = NULL; 532 goto out; 533 } 534 535 for (i = 0; i < filter_entry_cnt; i++) { 536 int filter_map_fd; 537 __u32 key; 538 539 if (filter_type == BPERF_FILTER_PID || 540 filter_type == BPERF_FILTER_TGID) 541 key = evsel->core.threads->map[i].pid; 542 else if (filter_type == BPERF_FILTER_CPU) 543 key = evsel->core.cpus->map[i]; 544 else 545 break; 546 547 filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter); 548 bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY); 549 } 550 551 evsel->follower_skel->bss->type = filter_type; 552 553 err = bperf_follower_bpf__attach(evsel->follower_skel); 554 555 out: 556 if (err && evsel->bperf_leader_link_fd >= 0) 557 close(evsel->bperf_leader_link_fd); 558 if (err && evsel->bperf_leader_prog_fd >= 0) 559 close(evsel->bperf_leader_prog_fd); 560 if (diff_map_fd >= 0) 561 close(diff_map_fd); 562 563 flock(attr_map_fd, LOCK_UN); 564 close(attr_map_fd); 565 566 return err; 567 } 568 569 static int bperf__install_pe(struct evsel *evsel, int cpu, int fd) 570 { 571 struct bperf_leader_bpf *skel = evsel->leader_skel; 572 573 return bpf_map_update_elem(bpf_map__fd(skel->maps.events), 574 &cpu, &fd, BPF_ANY); 575 } 576 577 /* 578 * trigger the leader prog on each cpu, so the accum_reading map could get 579 * the latest readings. 580 */ 581 static int bperf_sync_counters(struct evsel *evsel) 582 { 583 int num_cpu, i, cpu; 584 585 num_cpu = all_cpu_map->nr; 586 for (i = 0; i < num_cpu; i++) { 587 cpu = all_cpu_map->map[i]; 588 bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu); 589 } 590 return 0; 591 } 592 593 static int bperf__enable(struct evsel *evsel) 594 { 595 evsel->follower_skel->bss->enabled = 1; 596 return 0; 597 } 598 599 static int bperf__disable(struct evsel *evsel) 600 { 601 evsel->follower_skel->bss->enabled = 0; 602 return 0; 603 } 604 605 static int bperf__read(struct evsel *evsel) 606 { 607 struct bperf_follower_bpf *skel = evsel->follower_skel; 608 __u32 num_cpu_bpf = cpu__max_cpu(); 609 struct bpf_perf_event_value values[num_cpu_bpf]; 610 int reading_map_fd, err = 0; 611 __u32 i, j, num_cpu; 612 613 bperf_sync_counters(evsel); 614 reading_map_fd = bpf_map__fd(skel->maps.accum_readings); 615 616 for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) { 617 __u32 cpu; 618 619 err = bpf_map_lookup_elem(reading_map_fd, &i, values); 620 if (err) 621 goto out; 622 switch (evsel->follower_skel->bss->type) { 623 case BPERF_FILTER_GLOBAL: 624 assert(i == 0); 625 626 num_cpu = all_cpu_map->nr; 627 for (j = 0; j < num_cpu; j++) { 628 cpu = all_cpu_map->map[j]; 629 perf_counts(evsel->counts, cpu, 0)->val = values[cpu].counter; 630 perf_counts(evsel->counts, cpu, 0)->ena = values[cpu].enabled; 631 perf_counts(evsel->counts, cpu, 0)->run = values[cpu].running; 632 } 633 break; 634 case BPERF_FILTER_CPU: 635 cpu = evsel->core.cpus->map[i]; 636 perf_counts(evsel->counts, i, 0)->val = values[cpu].counter; 637 perf_counts(evsel->counts, i, 0)->ena = values[cpu].enabled; 638 perf_counts(evsel->counts, i, 0)->run = values[cpu].running; 639 break; 640 case BPERF_FILTER_PID: 641 case BPERF_FILTER_TGID: 642 perf_counts(evsel->counts, 0, i)->val = 0; 643 perf_counts(evsel->counts, 0, i)->ena = 0; 644 perf_counts(evsel->counts, 0, i)->run = 0; 645 646 for (cpu = 0; cpu < num_cpu_bpf; cpu++) { 647 perf_counts(evsel->counts, 0, i)->val += values[cpu].counter; 648 perf_counts(evsel->counts, 0, i)->ena += values[cpu].enabled; 649 perf_counts(evsel->counts, 0, i)->run += values[cpu].running; 650 } 651 break; 652 default: 653 break; 654 } 655 } 656 out: 657 return err; 658 } 659 660 static int bperf__destroy(struct evsel *evsel) 661 { 662 bperf_follower_bpf__destroy(evsel->follower_skel); 663 close(evsel->bperf_leader_prog_fd); 664 close(evsel->bperf_leader_link_fd); 665 return 0; 666 } 667 668 /* 669 * bperf: share hardware PMCs with BPF 670 * 671 * perf uses performance monitoring counters (PMC) to monitor system 672 * performance. The PMCs are limited hardware resources. For example, 673 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu. 674 * 675 * Modern data center systems use these PMCs in many different ways: 676 * system level monitoring, (maybe nested) container level monitoring, per 677 * process monitoring, profiling (in sample mode), etc. In some cases, 678 * there are more active perf_events than available hardware PMCs. To allow 679 * all perf_events to have a chance to run, it is necessary to do expensive 680 * time multiplexing of events. 681 * 682 * On the other hand, many monitoring tools count the common metrics 683 * (cycles, instructions). It is a waste to have multiple tools create 684 * multiple perf_events of "cycles" and occupy multiple PMCs. 685 * 686 * bperf tries to reduce such wastes by allowing multiple perf_events of 687 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead 688 * of having each perf-stat session to read its own perf_events, bperf uses 689 * BPF programs to read the perf_events and aggregate readings to BPF maps. 690 * Then, the perf-stat session(s) reads the values from these BPF maps. 691 * 692 * || 693 * shared progs and maps <- || -> per session progs and maps 694 * || 695 * --------------- || 696 * | perf_events | || 697 * --------------- fexit || ----------------- 698 * | --------||----> | follower prog | 699 * --------------- / || --- ----------------- 700 * cs -> | leader prog |/ ||/ | | 701 * --> --------------- /|| -------------- ------------------ 702 * / | | / || | filter map | | accum_readings | 703 * / ------------ ------------ || -------------- ------------------ 704 * | | prev map | | diff map | || | 705 * | ------------ ------------ || | 706 * \ || | 707 * = \ ==================================================== | ============ 708 * \ / user space 709 * \ / 710 * \ / 711 * BPF_PROG_TEST_RUN BPF_MAP_LOOKUP_ELEM 712 * \ / 713 * \ / 714 * \------ perf-stat ----------------------/ 715 * 716 * The figure above shows the architecture of bperf. Note that the figure 717 * is divided into 3 regions: shared progs and maps (top left), per session 718 * progs and maps (top right), and user space (bottom). 719 * 720 * The leader prog is triggered on each context switch (cs). The leader 721 * prog reads perf_events and stores the difference (current_reading - 722 * previous_reading) to the diff map. For the same metric, e.g. "cycles", 723 * multiple perf-stat sessions share the same leader prog. 724 * 725 * Each perf-stat session creates a follower prog as fexit program to the 726 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38) 727 * follower progs to the same leader prog. The follower prog checks current 728 * task and processor ID to decide whether to add the value from the diff 729 * map to its accumulated reading map (accum_readings). 730 * 731 * Finally, perf-stat user space reads the value from accum_reading map. 732 * 733 * Besides context switch, it is also necessary to trigger the leader prog 734 * before perf-stat reads the value. Otherwise, the accum_reading map may 735 * not have the latest reading from the perf_events. This is achieved by 736 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU. 737 * 738 * Comment before the definition of struct perf_event_attr_map_entry 739 * describes how different sessions of perf-stat share information about 740 * the leader prog. 741 */ 742 743 struct bpf_counter_ops bperf_ops = { 744 .load = bperf__load, 745 .enable = bperf__enable, 746 .disable = bperf__disable, 747 .read = bperf__read, 748 .install_pe = bperf__install_pe, 749 .destroy = bperf__destroy, 750 }; 751 752 extern struct bpf_counter_ops bperf_cgrp_ops; 753 754 static inline bool bpf_counter_skip(struct evsel *evsel) 755 { 756 return list_empty(&evsel->bpf_counter_list) && 757 evsel->follower_skel == NULL; 758 } 759 760 int bpf_counter__install_pe(struct evsel *evsel, int cpu, int fd) 761 { 762 if (bpf_counter_skip(evsel)) 763 return 0; 764 return evsel->bpf_counter_ops->install_pe(evsel, cpu, fd); 765 } 766 767 int bpf_counter__load(struct evsel *evsel, struct target *target) 768 { 769 if (target->bpf_str) 770 evsel->bpf_counter_ops = &bpf_program_profiler_ops; 771 else if (cgrp_event_expanded && target->use_bpf) 772 evsel->bpf_counter_ops = &bperf_cgrp_ops; 773 else if (target->use_bpf || evsel->bpf_counter || 774 evsel__match_bpf_counter_events(evsel->name)) 775 evsel->bpf_counter_ops = &bperf_ops; 776 777 if (evsel->bpf_counter_ops) 778 return evsel->bpf_counter_ops->load(evsel, target); 779 return 0; 780 } 781 782 int bpf_counter__enable(struct evsel *evsel) 783 { 784 if (bpf_counter_skip(evsel)) 785 return 0; 786 return evsel->bpf_counter_ops->enable(evsel); 787 } 788 789 int bpf_counter__disable(struct evsel *evsel) 790 { 791 if (bpf_counter_skip(evsel)) 792 return 0; 793 return evsel->bpf_counter_ops->disable(evsel); 794 } 795 796 int bpf_counter__read(struct evsel *evsel) 797 { 798 if (bpf_counter_skip(evsel)) 799 return -EAGAIN; 800 return evsel->bpf_counter_ops->read(evsel); 801 } 802 803 void bpf_counter__destroy(struct evsel *evsel) 804 { 805 if (bpf_counter_skip(evsel)) 806 return; 807 evsel->bpf_counter_ops->destroy(evsel); 808 evsel->bpf_counter_ops = NULL; 809 } 810