xref: /openbmc/linux/tools/perf/util/auxtrace.c (revision efe4a1ac)
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30 
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <errno.h>
37 #include <linux/list.h>
38 
39 #include "../perf.h"
40 #include "util.h"
41 #include "evlist.h"
42 #include "dso.h"
43 #include "map.h"
44 #include "pmu.h"
45 #include "evsel.h"
46 #include "cpumap.h"
47 #include "thread_map.h"
48 #include "asm/bug.h"
49 #include "auxtrace.h"
50 
51 #include <linux/hash.h>
52 
53 #include "event.h"
54 #include "session.h"
55 #include "debug.h"
56 #include <subcmd/parse-options.h>
57 
58 #include "intel-pt.h"
59 #include "intel-bts.h"
60 
61 #include "sane_ctype.h"
62 #include "symbol/kallsyms.h"
63 
64 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
65 			struct auxtrace_mmap_params *mp,
66 			void *userpg, int fd)
67 {
68 	struct perf_event_mmap_page *pc = userpg;
69 
70 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
71 
72 	mm->userpg = userpg;
73 	mm->mask = mp->mask;
74 	mm->len = mp->len;
75 	mm->prev = 0;
76 	mm->idx = mp->idx;
77 	mm->tid = mp->tid;
78 	mm->cpu = mp->cpu;
79 
80 	if (!mp->len) {
81 		mm->base = NULL;
82 		return 0;
83 	}
84 
85 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
86 	pr_err("Cannot use AUX area tracing mmaps\n");
87 	return -1;
88 #endif
89 
90 	pc->aux_offset = mp->offset;
91 	pc->aux_size = mp->len;
92 
93 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
94 	if (mm->base == MAP_FAILED) {
95 		pr_debug2("failed to mmap AUX area\n");
96 		mm->base = NULL;
97 		return -1;
98 	}
99 
100 	return 0;
101 }
102 
103 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
104 {
105 	if (mm->base) {
106 		munmap(mm->base, mm->len);
107 		mm->base = NULL;
108 	}
109 }
110 
111 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
112 				off_t auxtrace_offset,
113 				unsigned int auxtrace_pages,
114 				bool auxtrace_overwrite)
115 {
116 	if (auxtrace_pages) {
117 		mp->offset = auxtrace_offset;
118 		mp->len = auxtrace_pages * (size_t)page_size;
119 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
120 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
121 		pr_debug2("AUX area mmap length %zu\n", mp->len);
122 	} else {
123 		mp->len = 0;
124 	}
125 }
126 
127 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
128 				   struct perf_evlist *evlist, int idx,
129 				   bool per_cpu)
130 {
131 	mp->idx = idx;
132 
133 	if (per_cpu) {
134 		mp->cpu = evlist->cpus->map[idx];
135 		if (evlist->threads)
136 			mp->tid = thread_map__pid(evlist->threads, 0);
137 		else
138 			mp->tid = -1;
139 	} else {
140 		mp->cpu = -1;
141 		mp->tid = thread_map__pid(evlist->threads, idx);
142 	}
143 }
144 
145 #define AUXTRACE_INIT_NR_QUEUES	32
146 
147 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
148 {
149 	struct auxtrace_queue *queue_array;
150 	unsigned int max_nr_queues, i;
151 
152 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
153 	if (nr_queues > max_nr_queues)
154 		return NULL;
155 
156 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
157 	if (!queue_array)
158 		return NULL;
159 
160 	for (i = 0; i < nr_queues; i++) {
161 		INIT_LIST_HEAD(&queue_array[i].head);
162 		queue_array[i].priv = NULL;
163 	}
164 
165 	return queue_array;
166 }
167 
168 int auxtrace_queues__init(struct auxtrace_queues *queues)
169 {
170 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
171 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
172 	if (!queues->queue_array)
173 		return -ENOMEM;
174 	return 0;
175 }
176 
177 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
178 				 unsigned int new_nr_queues)
179 {
180 	unsigned int nr_queues = queues->nr_queues;
181 	struct auxtrace_queue *queue_array;
182 	unsigned int i;
183 
184 	if (!nr_queues)
185 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
186 
187 	while (nr_queues && nr_queues < new_nr_queues)
188 		nr_queues <<= 1;
189 
190 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
191 		return -EINVAL;
192 
193 	queue_array = auxtrace_alloc_queue_array(nr_queues);
194 	if (!queue_array)
195 		return -ENOMEM;
196 
197 	for (i = 0; i < queues->nr_queues; i++) {
198 		list_splice_tail(&queues->queue_array[i].head,
199 				 &queue_array[i].head);
200 		queue_array[i].priv = queues->queue_array[i].priv;
201 	}
202 
203 	queues->nr_queues = nr_queues;
204 	queues->queue_array = queue_array;
205 
206 	return 0;
207 }
208 
209 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
210 {
211 	int fd = perf_data_file__fd(session->file);
212 	void *p;
213 	ssize_t ret;
214 
215 	if (size > SSIZE_MAX)
216 		return NULL;
217 
218 	p = malloc(size);
219 	if (!p)
220 		return NULL;
221 
222 	ret = readn(fd, p, size);
223 	if (ret != (ssize_t)size) {
224 		free(p);
225 		return NULL;
226 	}
227 
228 	return p;
229 }
230 
231 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
232 				       unsigned int idx,
233 				       struct auxtrace_buffer *buffer)
234 {
235 	struct auxtrace_queue *queue;
236 	int err;
237 
238 	if (idx >= queues->nr_queues) {
239 		err = auxtrace_queues__grow(queues, idx + 1);
240 		if (err)
241 			return err;
242 	}
243 
244 	queue = &queues->queue_array[idx];
245 
246 	if (!queue->set) {
247 		queue->set = true;
248 		queue->tid = buffer->tid;
249 		queue->cpu = buffer->cpu;
250 	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
251 		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
252 		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
253 		return -EINVAL;
254 	}
255 
256 	buffer->buffer_nr = queues->next_buffer_nr++;
257 
258 	list_add_tail(&buffer->list, &queue->head);
259 
260 	queues->new_data = true;
261 	queues->populated = true;
262 
263 	return 0;
264 }
265 
266 /* Limit buffers to 32MiB on 32-bit */
267 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
268 
269 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
270 					 unsigned int idx,
271 					 struct auxtrace_buffer *buffer)
272 {
273 	u64 sz = buffer->size;
274 	bool consecutive = false;
275 	struct auxtrace_buffer *b;
276 	int err;
277 
278 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
279 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
280 		if (!b)
281 			return -ENOMEM;
282 		b->size = BUFFER_LIMIT_FOR_32_BIT;
283 		b->consecutive = consecutive;
284 		err = auxtrace_queues__add_buffer(queues, idx, b);
285 		if (err) {
286 			auxtrace_buffer__free(b);
287 			return err;
288 		}
289 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
290 		sz -= BUFFER_LIMIT_FOR_32_BIT;
291 		consecutive = true;
292 	}
293 
294 	buffer->size = sz;
295 	buffer->consecutive = consecutive;
296 
297 	return 0;
298 }
299 
300 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
301 					     struct perf_session *session,
302 					     unsigned int idx,
303 					     struct auxtrace_buffer *buffer)
304 {
305 	if (session->one_mmap) {
306 		buffer->data = buffer->data_offset - session->one_mmap_offset +
307 			       session->one_mmap_addr;
308 	} else if (perf_data_file__is_pipe(session->file)) {
309 		buffer->data = auxtrace_copy_data(buffer->size, session);
310 		if (!buffer->data)
311 			return -ENOMEM;
312 		buffer->data_needs_freeing = true;
313 	} else if (BITS_PER_LONG == 32 &&
314 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
315 		int err;
316 
317 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
318 		if (err)
319 			return err;
320 	}
321 
322 	return auxtrace_queues__add_buffer(queues, idx, buffer);
323 }
324 
325 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
326 			       struct perf_session *session,
327 			       union perf_event *event, off_t data_offset,
328 			       struct auxtrace_buffer **buffer_ptr)
329 {
330 	struct auxtrace_buffer *buffer;
331 	unsigned int idx;
332 	int err;
333 
334 	buffer = zalloc(sizeof(struct auxtrace_buffer));
335 	if (!buffer)
336 		return -ENOMEM;
337 
338 	buffer->pid = -1;
339 	buffer->tid = event->auxtrace.tid;
340 	buffer->cpu = event->auxtrace.cpu;
341 	buffer->data_offset = data_offset;
342 	buffer->offset = event->auxtrace.offset;
343 	buffer->reference = event->auxtrace.reference;
344 	buffer->size = event->auxtrace.size;
345 	idx = event->auxtrace.idx;
346 
347 	err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
348 	if (err)
349 		goto out_err;
350 
351 	if (buffer_ptr)
352 		*buffer_ptr = buffer;
353 
354 	return 0;
355 
356 out_err:
357 	auxtrace_buffer__free(buffer);
358 	return err;
359 }
360 
361 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
362 					      struct perf_session *session,
363 					      off_t file_offset, size_t sz)
364 {
365 	union perf_event *event;
366 	int err;
367 	char buf[PERF_SAMPLE_MAX_SIZE];
368 
369 	err = perf_session__peek_event(session, file_offset, buf,
370 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
371 	if (err)
372 		return err;
373 
374 	if (event->header.type == PERF_RECORD_AUXTRACE) {
375 		if (event->header.size < sizeof(struct auxtrace_event) ||
376 		    event->header.size != sz) {
377 			err = -EINVAL;
378 			goto out;
379 		}
380 		file_offset += event->header.size;
381 		err = auxtrace_queues__add_event(queues, session, event,
382 						 file_offset, NULL);
383 	}
384 out:
385 	return err;
386 }
387 
388 void auxtrace_queues__free(struct auxtrace_queues *queues)
389 {
390 	unsigned int i;
391 
392 	for (i = 0; i < queues->nr_queues; i++) {
393 		while (!list_empty(&queues->queue_array[i].head)) {
394 			struct auxtrace_buffer *buffer;
395 
396 			buffer = list_entry(queues->queue_array[i].head.next,
397 					    struct auxtrace_buffer, list);
398 			list_del(&buffer->list);
399 			auxtrace_buffer__free(buffer);
400 		}
401 	}
402 
403 	zfree(&queues->queue_array);
404 	queues->nr_queues = 0;
405 }
406 
407 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
408 			     unsigned int pos, unsigned int queue_nr,
409 			     u64 ordinal)
410 {
411 	unsigned int parent;
412 
413 	while (pos) {
414 		parent = (pos - 1) >> 1;
415 		if (heap_array[parent].ordinal <= ordinal)
416 			break;
417 		heap_array[pos] = heap_array[parent];
418 		pos = parent;
419 	}
420 	heap_array[pos].queue_nr = queue_nr;
421 	heap_array[pos].ordinal = ordinal;
422 }
423 
424 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
425 		       u64 ordinal)
426 {
427 	struct auxtrace_heap_item *heap_array;
428 
429 	if (queue_nr >= heap->heap_sz) {
430 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
431 
432 		while (heap_sz <= queue_nr)
433 			heap_sz <<= 1;
434 		heap_array = realloc(heap->heap_array,
435 				     heap_sz * sizeof(struct auxtrace_heap_item));
436 		if (!heap_array)
437 			return -ENOMEM;
438 		heap->heap_array = heap_array;
439 		heap->heap_sz = heap_sz;
440 	}
441 
442 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
443 
444 	return 0;
445 }
446 
447 void auxtrace_heap__free(struct auxtrace_heap *heap)
448 {
449 	zfree(&heap->heap_array);
450 	heap->heap_cnt = 0;
451 	heap->heap_sz = 0;
452 }
453 
454 void auxtrace_heap__pop(struct auxtrace_heap *heap)
455 {
456 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
457 	struct auxtrace_heap_item *heap_array;
458 
459 	if (!heap_cnt)
460 		return;
461 
462 	heap->heap_cnt -= 1;
463 
464 	heap_array = heap->heap_array;
465 
466 	pos = 0;
467 	while (1) {
468 		unsigned int left, right;
469 
470 		left = (pos << 1) + 1;
471 		if (left >= heap_cnt)
472 			break;
473 		right = left + 1;
474 		if (right >= heap_cnt) {
475 			heap_array[pos] = heap_array[left];
476 			return;
477 		}
478 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
479 			heap_array[pos] = heap_array[left];
480 			pos = left;
481 		} else {
482 			heap_array[pos] = heap_array[right];
483 			pos = right;
484 		}
485 	}
486 
487 	last = heap_cnt - 1;
488 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
489 			 heap_array[last].ordinal);
490 }
491 
492 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
493 				       struct perf_evlist *evlist)
494 {
495 	if (itr)
496 		return itr->info_priv_size(itr, evlist);
497 	return 0;
498 }
499 
500 static int auxtrace_not_supported(void)
501 {
502 	pr_err("AUX area tracing is not supported on this architecture\n");
503 	return -EINVAL;
504 }
505 
506 int auxtrace_record__info_fill(struct auxtrace_record *itr,
507 			       struct perf_session *session,
508 			       struct auxtrace_info_event *auxtrace_info,
509 			       size_t priv_size)
510 {
511 	if (itr)
512 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
513 	return auxtrace_not_supported();
514 }
515 
516 void auxtrace_record__free(struct auxtrace_record *itr)
517 {
518 	if (itr)
519 		itr->free(itr);
520 }
521 
522 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
523 {
524 	if (itr && itr->snapshot_start)
525 		return itr->snapshot_start(itr);
526 	return 0;
527 }
528 
529 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
530 {
531 	if (itr && itr->snapshot_finish)
532 		return itr->snapshot_finish(itr);
533 	return 0;
534 }
535 
536 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
537 				   struct auxtrace_mmap *mm,
538 				   unsigned char *data, u64 *head, u64 *old)
539 {
540 	if (itr && itr->find_snapshot)
541 		return itr->find_snapshot(itr, idx, mm, data, head, old);
542 	return 0;
543 }
544 
545 int auxtrace_record__options(struct auxtrace_record *itr,
546 			     struct perf_evlist *evlist,
547 			     struct record_opts *opts)
548 {
549 	if (itr)
550 		return itr->recording_options(itr, evlist, opts);
551 	return 0;
552 }
553 
554 u64 auxtrace_record__reference(struct auxtrace_record *itr)
555 {
556 	if (itr)
557 		return itr->reference(itr);
558 	return 0;
559 }
560 
561 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
562 				    struct record_opts *opts, const char *str)
563 {
564 	if (!str)
565 		return 0;
566 
567 	if (itr)
568 		return itr->parse_snapshot_options(itr, opts, str);
569 
570 	pr_err("No AUX area tracing to snapshot\n");
571 	return -EINVAL;
572 }
573 
574 struct auxtrace_record *__weak
575 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
576 {
577 	*err = 0;
578 	return NULL;
579 }
580 
581 static int auxtrace_index__alloc(struct list_head *head)
582 {
583 	struct auxtrace_index *auxtrace_index;
584 
585 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
586 	if (!auxtrace_index)
587 		return -ENOMEM;
588 
589 	auxtrace_index->nr = 0;
590 	INIT_LIST_HEAD(&auxtrace_index->list);
591 
592 	list_add_tail(&auxtrace_index->list, head);
593 
594 	return 0;
595 }
596 
597 void auxtrace_index__free(struct list_head *head)
598 {
599 	struct auxtrace_index *auxtrace_index, *n;
600 
601 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
602 		list_del(&auxtrace_index->list);
603 		free(auxtrace_index);
604 	}
605 }
606 
607 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
608 {
609 	struct auxtrace_index *auxtrace_index;
610 	int err;
611 
612 	if (list_empty(head)) {
613 		err = auxtrace_index__alloc(head);
614 		if (err)
615 			return NULL;
616 	}
617 
618 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
619 
620 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
621 		err = auxtrace_index__alloc(head);
622 		if (err)
623 			return NULL;
624 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
625 					    list);
626 	}
627 
628 	return auxtrace_index;
629 }
630 
631 int auxtrace_index__auxtrace_event(struct list_head *head,
632 				   union perf_event *event, off_t file_offset)
633 {
634 	struct auxtrace_index *auxtrace_index;
635 	size_t nr;
636 
637 	auxtrace_index = auxtrace_index__last(head);
638 	if (!auxtrace_index)
639 		return -ENOMEM;
640 
641 	nr = auxtrace_index->nr;
642 	auxtrace_index->entries[nr].file_offset = file_offset;
643 	auxtrace_index->entries[nr].sz = event->header.size;
644 	auxtrace_index->nr += 1;
645 
646 	return 0;
647 }
648 
649 static int auxtrace_index__do_write(int fd,
650 				    struct auxtrace_index *auxtrace_index)
651 {
652 	struct auxtrace_index_entry ent;
653 	size_t i;
654 
655 	for (i = 0; i < auxtrace_index->nr; i++) {
656 		ent.file_offset = auxtrace_index->entries[i].file_offset;
657 		ent.sz = auxtrace_index->entries[i].sz;
658 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
659 			return -errno;
660 	}
661 	return 0;
662 }
663 
664 int auxtrace_index__write(int fd, struct list_head *head)
665 {
666 	struct auxtrace_index *auxtrace_index;
667 	u64 total = 0;
668 	int err;
669 
670 	list_for_each_entry(auxtrace_index, head, list)
671 		total += auxtrace_index->nr;
672 
673 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
674 		return -errno;
675 
676 	list_for_each_entry(auxtrace_index, head, list) {
677 		err = auxtrace_index__do_write(fd, auxtrace_index);
678 		if (err)
679 			return err;
680 	}
681 
682 	return 0;
683 }
684 
685 static int auxtrace_index__process_entry(int fd, struct list_head *head,
686 					 bool needs_swap)
687 {
688 	struct auxtrace_index *auxtrace_index;
689 	struct auxtrace_index_entry ent;
690 	size_t nr;
691 
692 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
693 		return -1;
694 
695 	auxtrace_index = auxtrace_index__last(head);
696 	if (!auxtrace_index)
697 		return -1;
698 
699 	nr = auxtrace_index->nr;
700 	if (needs_swap) {
701 		auxtrace_index->entries[nr].file_offset =
702 						bswap_64(ent.file_offset);
703 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
704 	} else {
705 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
706 		auxtrace_index->entries[nr].sz = ent.sz;
707 	}
708 
709 	auxtrace_index->nr = nr + 1;
710 
711 	return 0;
712 }
713 
714 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
715 			    bool needs_swap)
716 {
717 	struct list_head *head = &session->auxtrace_index;
718 	u64 nr;
719 
720 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
721 		return -1;
722 
723 	if (needs_swap)
724 		nr = bswap_64(nr);
725 
726 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
727 		return -1;
728 
729 	while (nr--) {
730 		int err;
731 
732 		err = auxtrace_index__process_entry(fd, head, needs_swap);
733 		if (err)
734 			return -1;
735 	}
736 
737 	return 0;
738 }
739 
740 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
741 						struct perf_session *session,
742 						struct auxtrace_index_entry *ent)
743 {
744 	return auxtrace_queues__add_indexed_event(queues, session,
745 						  ent->file_offset, ent->sz);
746 }
747 
748 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
749 				   struct perf_session *session)
750 {
751 	struct auxtrace_index *auxtrace_index;
752 	struct auxtrace_index_entry *ent;
753 	size_t i;
754 	int err;
755 
756 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
757 		for (i = 0; i < auxtrace_index->nr; i++) {
758 			ent = &auxtrace_index->entries[i];
759 			err = auxtrace_queues__process_index_entry(queues,
760 								   session,
761 								   ent);
762 			if (err)
763 				return err;
764 		}
765 	}
766 	return 0;
767 }
768 
769 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
770 					      struct auxtrace_buffer *buffer)
771 {
772 	if (buffer) {
773 		if (list_is_last(&buffer->list, &queue->head))
774 			return NULL;
775 		return list_entry(buffer->list.next, struct auxtrace_buffer,
776 				  list);
777 	} else {
778 		if (list_empty(&queue->head))
779 			return NULL;
780 		return list_entry(queue->head.next, struct auxtrace_buffer,
781 				  list);
782 	}
783 }
784 
785 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
786 {
787 	size_t adj = buffer->data_offset & (page_size - 1);
788 	size_t size = buffer->size + adj;
789 	off_t file_offset = buffer->data_offset - adj;
790 	void *addr;
791 
792 	if (buffer->data)
793 		return buffer->data;
794 
795 	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
796 	if (addr == MAP_FAILED)
797 		return NULL;
798 
799 	buffer->mmap_addr = addr;
800 	buffer->mmap_size = size;
801 
802 	buffer->data = addr + adj;
803 
804 	return buffer->data;
805 }
806 
807 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
808 {
809 	if (!buffer->data || !buffer->mmap_addr)
810 		return;
811 	munmap(buffer->mmap_addr, buffer->mmap_size);
812 	buffer->mmap_addr = NULL;
813 	buffer->mmap_size = 0;
814 	buffer->data = NULL;
815 	buffer->use_data = NULL;
816 }
817 
818 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
819 {
820 	auxtrace_buffer__put_data(buffer);
821 	if (buffer->data_needs_freeing) {
822 		buffer->data_needs_freeing = false;
823 		zfree(&buffer->data);
824 		buffer->use_data = NULL;
825 		buffer->size = 0;
826 	}
827 }
828 
829 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
830 {
831 	auxtrace_buffer__drop_data(buffer);
832 	free(buffer);
833 }
834 
835 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
836 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
837 			  const char *msg)
838 {
839 	size_t size;
840 
841 	memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
842 
843 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
844 	auxtrace_error->type = type;
845 	auxtrace_error->code = code;
846 	auxtrace_error->cpu = cpu;
847 	auxtrace_error->pid = pid;
848 	auxtrace_error->tid = tid;
849 	auxtrace_error->ip = ip;
850 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
851 
852 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
853 	       strlen(auxtrace_error->msg) + 1;
854 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
855 }
856 
857 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
858 					 struct perf_tool *tool,
859 					 struct perf_session *session,
860 					 perf_event__handler_t process)
861 {
862 	union perf_event *ev;
863 	size_t priv_size;
864 	int err;
865 
866 	pr_debug2("Synthesizing auxtrace information\n");
867 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
868 	ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
869 	if (!ev)
870 		return -ENOMEM;
871 
872 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
873 	ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
874 					priv_size;
875 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
876 					 priv_size);
877 	if (err)
878 		goto out_free;
879 
880 	err = process(tool, ev, NULL, NULL);
881 out_free:
882 	free(ev);
883 	return err;
884 }
885 
886 static bool auxtrace__dont_decode(struct perf_session *session)
887 {
888 	return !session->itrace_synth_opts ||
889 	       session->itrace_synth_opts->dont_decode;
890 }
891 
892 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
893 				      union perf_event *event,
894 				      struct perf_session *session)
895 {
896 	enum auxtrace_type type = event->auxtrace_info.type;
897 
898 	if (dump_trace)
899 		fprintf(stdout, " type: %u\n", type);
900 
901 	switch (type) {
902 	case PERF_AUXTRACE_INTEL_PT:
903 		return intel_pt_process_auxtrace_info(event, session);
904 	case PERF_AUXTRACE_INTEL_BTS:
905 		return intel_bts_process_auxtrace_info(event, session);
906 	case PERF_AUXTRACE_CS_ETM:
907 	case PERF_AUXTRACE_UNKNOWN:
908 	default:
909 		return -EINVAL;
910 	}
911 }
912 
913 s64 perf_event__process_auxtrace(struct perf_tool *tool,
914 				 union perf_event *event,
915 				 struct perf_session *session)
916 {
917 	s64 err;
918 
919 	if (dump_trace)
920 		fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
921 			event->auxtrace.size, event->auxtrace.offset,
922 			event->auxtrace.reference, event->auxtrace.idx,
923 			event->auxtrace.tid, event->auxtrace.cpu);
924 
925 	if (auxtrace__dont_decode(session))
926 		return event->auxtrace.size;
927 
928 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
929 		return -EINVAL;
930 
931 	err = session->auxtrace->process_auxtrace_event(session, event, tool);
932 	if (err < 0)
933 		return err;
934 
935 	return event->auxtrace.size;
936 }
937 
938 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
939 #define PERF_ITRACE_DEFAULT_PERIOD		100000
940 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
941 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
942 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
943 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
944 
945 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
946 {
947 	synth_opts->instructions = true;
948 	synth_opts->branches = true;
949 	synth_opts->transactions = true;
950 	synth_opts->errors = true;
951 	synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
952 	synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
953 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
954 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
955 	synth_opts->initial_skip = 0;
956 }
957 
958 /*
959  * Please check tools/perf/Documentation/perf-script.txt for information
960  * about the options parsed here, which is introduced after this cset,
961  * when support in 'perf script' for these options is introduced.
962  */
963 int itrace_parse_synth_opts(const struct option *opt, const char *str,
964 			    int unset)
965 {
966 	struct itrace_synth_opts *synth_opts = opt->value;
967 	const char *p;
968 	char *endptr;
969 	bool period_type_set = false;
970 	bool period_set = false;
971 
972 	synth_opts->set = true;
973 
974 	if (unset) {
975 		synth_opts->dont_decode = true;
976 		return 0;
977 	}
978 
979 	if (!str) {
980 		itrace_synth_opts__set_default(synth_opts);
981 		return 0;
982 	}
983 
984 	for (p = str; *p;) {
985 		switch (*p++) {
986 		case 'i':
987 			synth_opts->instructions = true;
988 			while (*p == ' ' || *p == ',')
989 				p += 1;
990 			if (isdigit(*p)) {
991 				synth_opts->period = strtoull(p, &endptr, 10);
992 				period_set = true;
993 				p = endptr;
994 				while (*p == ' ' || *p == ',')
995 					p += 1;
996 				switch (*p++) {
997 				case 'i':
998 					synth_opts->period_type =
999 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1000 					period_type_set = true;
1001 					break;
1002 				case 't':
1003 					synth_opts->period_type =
1004 						PERF_ITRACE_PERIOD_TICKS;
1005 					period_type_set = true;
1006 					break;
1007 				case 'm':
1008 					synth_opts->period *= 1000;
1009 					/* Fall through */
1010 				case 'u':
1011 					synth_opts->period *= 1000;
1012 					/* Fall through */
1013 				case 'n':
1014 					if (*p++ != 's')
1015 						goto out_err;
1016 					synth_opts->period_type =
1017 						PERF_ITRACE_PERIOD_NANOSECS;
1018 					period_type_set = true;
1019 					break;
1020 				case '\0':
1021 					goto out;
1022 				default:
1023 					goto out_err;
1024 				}
1025 			}
1026 			break;
1027 		case 'b':
1028 			synth_opts->branches = true;
1029 			break;
1030 		case 'x':
1031 			synth_opts->transactions = true;
1032 			break;
1033 		case 'e':
1034 			synth_opts->errors = true;
1035 			break;
1036 		case 'd':
1037 			synth_opts->log = true;
1038 			break;
1039 		case 'c':
1040 			synth_opts->branches = true;
1041 			synth_opts->calls = true;
1042 			break;
1043 		case 'r':
1044 			synth_opts->branches = true;
1045 			synth_opts->returns = true;
1046 			break;
1047 		case 'g':
1048 			synth_opts->callchain = true;
1049 			synth_opts->callchain_sz =
1050 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1051 			while (*p == ' ' || *p == ',')
1052 				p += 1;
1053 			if (isdigit(*p)) {
1054 				unsigned int val;
1055 
1056 				val = strtoul(p, &endptr, 10);
1057 				p = endptr;
1058 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1059 					goto out_err;
1060 				synth_opts->callchain_sz = val;
1061 			}
1062 			break;
1063 		case 'l':
1064 			synth_opts->last_branch = true;
1065 			synth_opts->last_branch_sz =
1066 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1067 			while (*p == ' ' || *p == ',')
1068 				p += 1;
1069 			if (isdigit(*p)) {
1070 				unsigned int val;
1071 
1072 				val = strtoul(p, &endptr, 10);
1073 				p = endptr;
1074 				if (!val ||
1075 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1076 					goto out_err;
1077 				synth_opts->last_branch_sz = val;
1078 			}
1079 			break;
1080 		case 's':
1081 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1082 			if (p == endptr)
1083 				goto out_err;
1084 			p = endptr;
1085 			break;
1086 		case ' ':
1087 		case ',':
1088 			break;
1089 		default:
1090 			goto out_err;
1091 		}
1092 	}
1093 out:
1094 	if (synth_opts->instructions) {
1095 		if (!period_type_set)
1096 			synth_opts->period_type =
1097 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1098 		if (!period_set)
1099 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1100 	}
1101 
1102 	return 0;
1103 
1104 out_err:
1105 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1106 	return -EINVAL;
1107 }
1108 
1109 static const char * const auxtrace_error_type_name[] = {
1110 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1111 };
1112 
1113 static const char *auxtrace_error_name(int type)
1114 {
1115 	const char *error_type_name = NULL;
1116 
1117 	if (type < PERF_AUXTRACE_ERROR_MAX)
1118 		error_type_name = auxtrace_error_type_name[type];
1119 	if (!error_type_name)
1120 		error_type_name = "unknown AUX";
1121 	return error_type_name;
1122 }
1123 
1124 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1125 {
1126 	struct auxtrace_error_event *e = &event->auxtrace_error;
1127 	int ret;
1128 
1129 	ret = fprintf(fp, " %s error type %u",
1130 		      auxtrace_error_name(e->type), e->type);
1131 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1132 		       e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1133 	return ret;
1134 }
1135 
1136 void perf_session__auxtrace_error_inc(struct perf_session *session,
1137 				      union perf_event *event)
1138 {
1139 	struct auxtrace_error_event *e = &event->auxtrace_error;
1140 
1141 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1142 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1143 }
1144 
1145 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1146 {
1147 	int i;
1148 
1149 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1150 		if (!stats->nr_auxtrace_errors[i])
1151 			continue;
1152 		ui__warning("%u %s errors\n",
1153 			    stats->nr_auxtrace_errors[i],
1154 			    auxtrace_error_name(i));
1155 	}
1156 }
1157 
1158 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1159 				       union perf_event *event,
1160 				       struct perf_session *session)
1161 {
1162 	if (auxtrace__dont_decode(session))
1163 		return 0;
1164 
1165 	perf_event__fprintf_auxtrace_error(event, stdout);
1166 	return 0;
1167 }
1168 
1169 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1170 				 struct auxtrace_record *itr,
1171 				 struct perf_tool *tool, process_auxtrace_t fn,
1172 				 bool snapshot, size_t snapshot_size)
1173 {
1174 	u64 head, old = mm->prev, offset, ref;
1175 	unsigned char *data = mm->base;
1176 	size_t size, head_off, old_off, len1, len2, padding;
1177 	union perf_event ev;
1178 	void *data1, *data2;
1179 
1180 	if (snapshot) {
1181 		head = auxtrace_mmap__read_snapshot_head(mm);
1182 		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1183 						   &head, &old))
1184 			return -1;
1185 	} else {
1186 		head = auxtrace_mmap__read_head(mm);
1187 	}
1188 
1189 	if (old == head)
1190 		return 0;
1191 
1192 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1193 		  mm->idx, old, head, head - old);
1194 
1195 	if (mm->mask) {
1196 		head_off = head & mm->mask;
1197 		old_off = old & mm->mask;
1198 	} else {
1199 		head_off = head % mm->len;
1200 		old_off = old % mm->len;
1201 	}
1202 
1203 	if (head_off > old_off)
1204 		size = head_off - old_off;
1205 	else
1206 		size = mm->len - (old_off - head_off);
1207 
1208 	if (snapshot && size > snapshot_size)
1209 		size = snapshot_size;
1210 
1211 	ref = auxtrace_record__reference(itr);
1212 
1213 	if (head > old || size <= head || mm->mask) {
1214 		offset = head - size;
1215 	} else {
1216 		/*
1217 		 * When the buffer size is not a power of 2, 'head' wraps at the
1218 		 * highest multiple of the buffer size, so we have to subtract
1219 		 * the remainder here.
1220 		 */
1221 		u64 rem = (0ULL - mm->len) % mm->len;
1222 
1223 		offset = head - size - rem;
1224 	}
1225 
1226 	if (size > head_off) {
1227 		len1 = size - head_off;
1228 		data1 = &data[mm->len - len1];
1229 		len2 = head_off;
1230 		data2 = &data[0];
1231 	} else {
1232 		len1 = size;
1233 		data1 = &data[head_off - len1];
1234 		len2 = 0;
1235 		data2 = NULL;
1236 	}
1237 
1238 	if (itr->alignment) {
1239 		unsigned int unwanted = len1 % itr->alignment;
1240 
1241 		len1 -= unwanted;
1242 		size -= unwanted;
1243 	}
1244 
1245 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1246 	padding = size & 7;
1247 	if (padding)
1248 		padding = 8 - padding;
1249 
1250 	memset(&ev, 0, sizeof(ev));
1251 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1252 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1253 	ev.auxtrace.size = size + padding;
1254 	ev.auxtrace.offset = offset;
1255 	ev.auxtrace.reference = ref;
1256 	ev.auxtrace.idx = mm->idx;
1257 	ev.auxtrace.tid = mm->tid;
1258 	ev.auxtrace.cpu = mm->cpu;
1259 
1260 	if (fn(tool, &ev, data1, len1, data2, len2))
1261 		return -1;
1262 
1263 	mm->prev = head;
1264 
1265 	if (!snapshot) {
1266 		auxtrace_mmap__write_tail(mm, head);
1267 		if (itr->read_finish) {
1268 			int err;
1269 
1270 			err = itr->read_finish(itr, mm->idx);
1271 			if (err < 0)
1272 				return err;
1273 		}
1274 	}
1275 
1276 	return 1;
1277 }
1278 
1279 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1280 			struct perf_tool *tool, process_auxtrace_t fn)
1281 {
1282 	return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1283 }
1284 
1285 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1286 				 struct auxtrace_record *itr,
1287 				 struct perf_tool *tool, process_auxtrace_t fn,
1288 				 size_t snapshot_size)
1289 {
1290 	return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1291 }
1292 
1293 /**
1294  * struct auxtrace_cache - hash table to implement a cache
1295  * @hashtable: the hashtable
1296  * @sz: hashtable size (number of hlists)
1297  * @entry_size: size of an entry
1298  * @limit: limit the number of entries to this maximum, when reached the cache
1299  *         is dropped and caching begins again with an empty cache
1300  * @cnt: current number of entries
1301  * @bits: hashtable size (@sz = 2^@bits)
1302  */
1303 struct auxtrace_cache {
1304 	struct hlist_head *hashtable;
1305 	size_t sz;
1306 	size_t entry_size;
1307 	size_t limit;
1308 	size_t cnt;
1309 	unsigned int bits;
1310 };
1311 
1312 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1313 					   unsigned int limit_percent)
1314 {
1315 	struct auxtrace_cache *c;
1316 	struct hlist_head *ht;
1317 	size_t sz, i;
1318 
1319 	c = zalloc(sizeof(struct auxtrace_cache));
1320 	if (!c)
1321 		return NULL;
1322 
1323 	sz = 1UL << bits;
1324 
1325 	ht = calloc(sz, sizeof(struct hlist_head));
1326 	if (!ht)
1327 		goto out_free;
1328 
1329 	for (i = 0; i < sz; i++)
1330 		INIT_HLIST_HEAD(&ht[i]);
1331 
1332 	c->hashtable = ht;
1333 	c->sz = sz;
1334 	c->entry_size = entry_size;
1335 	c->limit = (c->sz * limit_percent) / 100;
1336 	c->bits = bits;
1337 
1338 	return c;
1339 
1340 out_free:
1341 	free(c);
1342 	return NULL;
1343 }
1344 
1345 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1346 {
1347 	struct auxtrace_cache_entry *entry;
1348 	struct hlist_node *tmp;
1349 	size_t i;
1350 
1351 	if (!c)
1352 		return;
1353 
1354 	for (i = 0; i < c->sz; i++) {
1355 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1356 			hlist_del(&entry->hash);
1357 			auxtrace_cache__free_entry(c, entry);
1358 		}
1359 	}
1360 
1361 	c->cnt = 0;
1362 }
1363 
1364 void auxtrace_cache__free(struct auxtrace_cache *c)
1365 {
1366 	if (!c)
1367 		return;
1368 
1369 	auxtrace_cache__drop(c);
1370 	free(c->hashtable);
1371 	free(c);
1372 }
1373 
1374 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1375 {
1376 	return malloc(c->entry_size);
1377 }
1378 
1379 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1380 				void *entry)
1381 {
1382 	free(entry);
1383 }
1384 
1385 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1386 			struct auxtrace_cache_entry *entry)
1387 {
1388 	if (c->limit && ++c->cnt > c->limit)
1389 		auxtrace_cache__drop(c);
1390 
1391 	entry->key = key;
1392 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1393 
1394 	return 0;
1395 }
1396 
1397 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1398 {
1399 	struct auxtrace_cache_entry *entry;
1400 	struct hlist_head *hlist;
1401 
1402 	if (!c)
1403 		return NULL;
1404 
1405 	hlist = &c->hashtable[hash_32(key, c->bits)];
1406 	hlist_for_each_entry(entry, hlist, hash) {
1407 		if (entry->key == key)
1408 			return entry;
1409 	}
1410 
1411 	return NULL;
1412 }
1413 
1414 static void addr_filter__free_str(struct addr_filter *filt)
1415 {
1416 	free(filt->str);
1417 	filt->action   = NULL;
1418 	filt->sym_from = NULL;
1419 	filt->sym_to   = NULL;
1420 	filt->filename = NULL;
1421 	filt->str      = NULL;
1422 }
1423 
1424 static struct addr_filter *addr_filter__new(void)
1425 {
1426 	struct addr_filter *filt = zalloc(sizeof(*filt));
1427 
1428 	if (filt)
1429 		INIT_LIST_HEAD(&filt->list);
1430 
1431 	return filt;
1432 }
1433 
1434 static void addr_filter__free(struct addr_filter *filt)
1435 {
1436 	if (filt)
1437 		addr_filter__free_str(filt);
1438 	free(filt);
1439 }
1440 
1441 static void addr_filters__add(struct addr_filters *filts,
1442 			      struct addr_filter *filt)
1443 {
1444 	list_add_tail(&filt->list, &filts->head);
1445 	filts->cnt += 1;
1446 }
1447 
1448 static void addr_filters__del(struct addr_filters *filts,
1449 			      struct addr_filter *filt)
1450 {
1451 	list_del_init(&filt->list);
1452 	filts->cnt -= 1;
1453 }
1454 
1455 void addr_filters__init(struct addr_filters *filts)
1456 {
1457 	INIT_LIST_HEAD(&filts->head);
1458 	filts->cnt = 0;
1459 }
1460 
1461 void addr_filters__exit(struct addr_filters *filts)
1462 {
1463 	struct addr_filter *filt, *n;
1464 
1465 	list_for_each_entry_safe(filt, n, &filts->head, list) {
1466 		addr_filters__del(filts, filt);
1467 		addr_filter__free(filt);
1468 	}
1469 }
1470 
1471 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1472 			    const char *str_delim)
1473 {
1474 	*inp += strspn(*inp, " ");
1475 
1476 	if (isdigit(**inp)) {
1477 		char *endptr;
1478 
1479 		if (!num)
1480 			return -EINVAL;
1481 		errno = 0;
1482 		*num = strtoull(*inp, &endptr, 0);
1483 		if (errno)
1484 			return -errno;
1485 		if (endptr == *inp)
1486 			return -EINVAL;
1487 		*inp = endptr;
1488 	} else {
1489 		size_t n;
1490 
1491 		if (!str)
1492 			return -EINVAL;
1493 		*inp += strspn(*inp, " ");
1494 		*str = *inp;
1495 		n = strcspn(*inp, str_delim);
1496 		if (!n)
1497 			return -EINVAL;
1498 		*inp += n;
1499 		if (**inp) {
1500 			**inp = '\0';
1501 			*inp += 1;
1502 		}
1503 	}
1504 	return 0;
1505 }
1506 
1507 static int parse_action(struct addr_filter *filt)
1508 {
1509 	if (!strcmp(filt->action, "filter")) {
1510 		filt->start = true;
1511 		filt->range = true;
1512 	} else if (!strcmp(filt->action, "start")) {
1513 		filt->start = true;
1514 	} else if (!strcmp(filt->action, "stop")) {
1515 		filt->start = false;
1516 	} else if (!strcmp(filt->action, "tracestop")) {
1517 		filt->start = false;
1518 		filt->range = true;
1519 		filt->action += 5; /* Change 'tracestop' to 'stop' */
1520 	} else {
1521 		return -EINVAL;
1522 	}
1523 	return 0;
1524 }
1525 
1526 static int parse_sym_idx(char **inp, int *idx)
1527 {
1528 	*idx = -1;
1529 
1530 	*inp += strspn(*inp, " ");
1531 
1532 	if (**inp != '#')
1533 		return 0;
1534 
1535 	*inp += 1;
1536 
1537 	if (**inp == 'g' || **inp == 'G') {
1538 		*inp += 1;
1539 		*idx = 0;
1540 	} else {
1541 		unsigned long num;
1542 		char *endptr;
1543 
1544 		errno = 0;
1545 		num = strtoul(*inp, &endptr, 0);
1546 		if (errno)
1547 			return -errno;
1548 		if (endptr == *inp || num > INT_MAX)
1549 			return -EINVAL;
1550 		*inp = endptr;
1551 		*idx = num;
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1558 {
1559 	int err = parse_num_or_str(inp, num, str, " ");
1560 
1561 	if (!err && *str)
1562 		err = parse_sym_idx(inp, idx);
1563 
1564 	return err;
1565 }
1566 
1567 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1568 {
1569 	char *fstr;
1570 	int err;
1571 
1572 	filt->str = fstr = strdup(*filter_inp);
1573 	if (!fstr)
1574 		return -ENOMEM;
1575 
1576 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1577 	if (err)
1578 		goto out_err;
1579 
1580 	err = parse_action(filt);
1581 	if (err)
1582 		goto out_err;
1583 
1584 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1585 			      &filt->sym_from_idx);
1586 	if (err)
1587 		goto out_err;
1588 
1589 	fstr += strspn(fstr, " ");
1590 
1591 	if (*fstr == '/') {
1592 		fstr += 1;
1593 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1594 				      &filt->sym_to_idx);
1595 		if (err)
1596 			goto out_err;
1597 		filt->range = true;
1598 	}
1599 
1600 	fstr += strspn(fstr, " ");
1601 
1602 	if (*fstr == '@') {
1603 		fstr += 1;
1604 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1605 		if (err)
1606 			goto out_err;
1607 	}
1608 
1609 	fstr += strspn(fstr, " ,");
1610 
1611 	*filter_inp += fstr - filt->str;
1612 
1613 	return 0;
1614 
1615 out_err:
1616 	addr_filter__free_str(filt);
1617 
1618 	return err;
1619 }
1620 
1621 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1622 				    const char *filter)
1623 {
1624 	struct addr_filter *filt;
1625 	const char *fstr = filter;
1626 	int err;
1627 
1628 	while (*fstr) {
1629 		filt = addr_filter__new();
1630 		err = parse_one_filter(filt, &fstr);
1631 		if (err) {
1632 			addr_filter__free(filt);
1633 			addr_filters__exit(filts);
1634 			return err;
1635 		}
1636 		addr_filters__add(filts, filt);
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 struct sym_args {
1643 	const char	*name;
1644 	u64		start;
1645 	u64		size;
1646 	int		idx;
1647 	int		cnt;
1648 	bool		started;
1649 	bool		global;
1650 	bool		selected;
1651 	bool		duplicate;
1652 	bool		near;
1653 };
1654 
1655 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1656 {
1657 	/* A function with the same name, and global or the n'th found or any */
1658 	return symbol_type__is_a(type, MAP__FUNCTION) &&
1659 	       !strcmp(name, args->name) &&
1660 	       ((args->global && isupper(type)) ||
1661 		(args->selected && ++(args->cnt) == args->idx) ||
1662 		(!args->global && !args->selected));
1663 }
1664 
1665 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1666 {
1667 	struct sym_args *args = arg;
1668 
1669 	if (args->started) {
1670 		if (!args->size)
1671 			args->size = start - args->start;
1672 		if (args->selected) {
1673 			if (args->size)
1674 				return 1;
1675 		} else if (kern_sym_match(args, name, type)) {
1676 			args->duplicate = true;
1677 			return 1;
1678 		}
1679 	} else if (kern_sym_match(args, name, type)) {
1680 		args->started = true;
1681 		args->start = start;
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1688 {
1689 	struct sym_args *args = arg;
1690 
1691 	if (kern_sym_match(args, name, type)) {
1692 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1693 		       ++args->cnt, start, type, name);
1694 		args->near = true;
1695 	} else if (args->near) {
1696 		args->near = false;
1697 		pr_err("\t\twhich is near\t\t%s\n", name);
1698 	}
1699 
1700 	return 0;
1701 }
1702 
1703 static int sym_not_found_error(const char *sym_name, int idx)
1704 {
1705 	if (idx > 0) {
1706 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1707 		       idx, sym_name);
1708 	} else if (!idx) {
1709 		pr_err("Global symbol '%s' not found.\n", sym_name);
1710 	} else {
1711 		pr_err("Symbol '%s' not found.\n", sym_name);
1712 	}
1713 	pr_err("Note that symbols must be functions.\n");
1714 
1715 	return -EINVAL;
1716 }
1717 
1718 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1719 {
1720 	struct sym_args args = {
1721 		.name = sym_name,
1722 		.idx = idx,
1723 		.global = !idx,
1724 		.selected = idx > 0,
1725 	};
1726 	int err;
1727 
1728 	*start = 0;
1729 	*size = 0;
1730 
1731 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1732 	if (err < 0) {
1733 		pr_err("Failed to parse /proc/kallsyms\n");
1734 		return err;
1735 	}
1736 
1737 	if (args.duplicate) {
1738 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1739 		args.cnt = 0;
1740 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1741 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1742 		       sym_name);
1743 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1744 		return -EINVAL;
1745 	}
1746 
1747 	if (!args.started) {
1748 		pr_err("Kernel symbol lookup: ");
1749 		return sym_not_found_error(sym_name, idx);
1750 	}
1751 
1752 	*start = args.start;
1753 	*size = args.size;
1754 
1755 	return 0;
1756 }
1757 
1758 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1759 			       char type, u64 start)
1760 {
1761 	struct sym_args *args = arg;
1762 
1763 	if (!symbol_type__is_a(type, MAP__FUNCTION))
1764 		return 0;
1765 
1766 	if (!args->started) {
1767 		args->started = true;
1768 		args->start = start;
1769 	}
1770 	/* Don't know exactly where the kernel ends, so we add a page */
1771 	args->size = round_up(start, page_size) + page_size - args->start;
1772 
1773 	return 0;
1774 }
1775 
1776 static int addr_filter__entire_kernel(struct addr_filter *filt)
1777 {
1778 	struct sym_args args = { .started = false };
1779 	int err;
1780 
1781 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1782 	if (err < 0 || !args.started) {
1783 		pr_err("Failed to parse /proc/kallsyms\n");
1784 		return err;
1785 	}
1786 
1787 	filt->addr = args.start;
1788 	filt->size = args.size;
1789 
1790 	return 0;
1791 }
1792 
1793 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1794 {
1795 	if (start + size >= filt->addr)
1796 		return 0;
1797 
1798 	if (filt->sym_from) {
1799 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1800 		       filt->sym_to, start, filt->sym_from, filt->addr);
1801 	} else {
1802 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1803 		       filt->sym_to, start, filt->addr);
1804 	}
1805 
1806 	return -EINVAL;
1807 }
1808 
1809 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1810 {
1811 	bool no_size = false;
1812 	u64 start, size;
1813 	int err;
1814 
1815 	if (symbol_conf.kptr_restrict) {
1816 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1817 		return -EINVAL;
1818 	}
1819 
1820 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1821 		return addr_filter__entire_kernel(filt);
1822 
1823 	if (filt->sym_from) {
1824 		err = find_kern_sym(filt->sym_from, &start, &size,
1825 				    filt->sym_from_idx);
1826 		if (err)
1827 			return err;
1828 		filt->addr = start;
1829 		if (filt->range && !filt->size && !filt->sym_to) {
1830 			filt->size = size;
1831 			no_size = !size;
1832 		}
1833 	}
1834 
1835 	if (filt->sym_to) {
1836 		err = find_kern_sym(filt->sym_to, &start, &size,
1837 				    filt->sym_to_idx);
1838 		if (err)
1839 			return err;
1840 
1841 		err = check_end_after_start(filt, start, size);
1842 		if (err)
1843 			return err;
1844 		filt->size = start + size - filt->addr;
1845 		no_size = !size;
1846 	}
1847 
1848 	/* The very last symbol in kallsyms does not imply a particular size */
1849 	if (no_size) {
1850 		pr_err("Cannot determine size of symbol '%s'\n",
1851 		       filt->sym_to ? filt->sym_to : filt->sym_from);
1852 		return -EINVAL;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static struct dso *load_dso(const char *name)
1859 {
1860 	struct map *map;
1861 	struct dso *dso;
1862 
1863 	map = dso__new_map(name);
1864 	if (!map)
1865 		return NULL;
1866 
1867 	map__load(map);
1868 
1869 	dso = dso__get(map->dso);
1870 
1871 	map__put(map);
1872 
1873 	return dso;
1874 }
1875 
1876 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1877 			  int idx)
1878 {
1879 	/* Same name, and global or the n'th found or any */
1880 	return !arch__compare_symbol_names(name, sym->name) &&
1881 	       ((!idx && sym->binding == STB_GLOBAL) ||
1882 		(idx > 0 && ++*cnt == idx) ||
1883 		idx < 0);
1884 }
1885 
1886 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1887 {
1888 	struct symbol *sym;
1889 	bool near = false;
1890 	int cnt = 0;
1891 
1892 	pr_err("Multiple symbols with name '%s'\n", sym_name);
1893 
1894 	sym = dso__first_symbol(dso, MAP__FUNCTION);
1895 	while (sym) {
1896 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1897 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1898 			       ++cnt, sym->start,
1899 			       sym->binding == STB_GLOBAL ? 'g' :
1900 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
1901 			       sym->name);
1902 			near = true;
1903 		} else if (near) {
1904 			near = false;
1905 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
1906 		}
1907 		sym = dso__next_symbol(sym);
1908 	}
1909 
1910 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1911 	       sym_name);
1912 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1913 }
1914 
1915 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1916 			u64 *size, int idx)
1917 {
1918 	struct symbol *sym;
1919 	int cnt = 0;
1920 
1921 	*start = 0;
1922 	*size = 0;
1923 
1924 	sym = dso__first_symbol(dso, MAP__FUNCTION);
1925 	while (sym) {
1926 		if (*start) {
1927 			if (!*size)
1928 				*size = sym->start - *start;
1929 			if (idx > 0) {
1930 				if (*size)
1931 					return 1;
1932 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1933 				print_duplicate_syms(dso, sym_name);
1934 				return -EINVAL;
1935 			}
1936 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1937 			*start = sym->start;
1938 			*size = sym->end - sym->start;
1939 		}
1940 		sym = dso__next_symbol(sym);
1941 	}
1942 
1943 	if (!*start)
1944 		return sym_not_found_error(sym_name, idx);
1945 
1946 	return 0;
1947 }
1948 
1949 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1950 {
1951 	struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1952 	struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1953 
1954 	if (!first_sym || !last_sym) {
1955 		pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1956 		       filt->filename);
1957 		return -EINVAL;
1958 	}
1959 
1960 	filt->addr = first_sym->start;
1961 	filt->size = last_sym->end - first_sym->start;
1962 
1963 	return 0;
1964 }
1965 
1966 static int addr_filter__resolve_syms(struct addr_filter *filt)
1967 {
1968 	u64 start, size;
1969 	struct dso *dso;
1970 	int err = 0;
1971 
1972 	if (!filt->sym_from && !filt->sym_to)
1973 		return 0;
1974 
1975 	if (!filt->filename)
1976 		return addr_filter__resolve_kernel_syms(filt);
1977 
1978 	dso = load_dso(filt->filename);
1979 	if (!dso) {
1980 		pr_err("Failed to load symbols from: %s\n", filt->filename);
1981 		return -EINVAL;
1982 	}
1983 
1984 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
1985 		err = addr_filter__entire_dso(filt, dso);
1986 		goto put_dso;
1987 	}
1988 
1989 	if (filt->sym_from) {
1990 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
1991 				   filt->sym_from_idx);
1992 		if (err)
1993 			goto put_dso;
1994 		filt->addr = start;
1995 		if (filt->range && !filt->size && !filt->sym_to)
1996 			filt->size = size;
1997 	}
1998 
1999 	if (filt->sym_to) {
2000 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2001 				   filt->sym_to_idx);
2002 		if (err)
2003 			goto put_dso;
2004 
2005 		err = check_end_after_start(filt, start, size);
2006 		if (err)
2007 			return err;
2008 
2009 		filt->size = start + size - filt->addr;
2010 	}
2011 
2012 put_dso:
2013 	dso__put(dso);
2014 
2015 	return err;
2016 }
2017 
2018 static char *addr_filter__to_str(struct addr_filter *filt)
2019 {
2020 	char filename_buf[PATH_MAX];
2021 	const char *at = "";
2022 	const char *fn = "";
2023 	char *filter;
2024 	int err;
2025 
2026 	if (filt->filename) {
2027 		at = "@";
2028 		fn = realpath(filt->filename, filename_buf);
2029 		if (!fn)
2030 			return NULL;
2031 	}
2032 
2033 	if (filt->range) {
2034 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2035 			       filt->action, filt->addr, filt->size, at, fn);
2036 	} else {
2037 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2038 			       filt->action, filt->addr, at, fn);
2039 	}
2040 
2041 	return err < 0 ? NULL : filter;
2042 }
2043 
2044 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2045 			     int max_nr)
2046 {
2047 	struct addr_filters filts;
2048 	struct addr_filter *filt;
2049 	int err;
2050 
2051 	addr_filters__init(&filts);
2052 
2053 	err = addr_filters__parse_bare_filter(&filts, filter);
2054 	if (err)
2055 		goto out_exit;
2056 
2057 	if (filts.cnt > max_nr) {
2058 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2059 		       filts.cnt, max_nr);
2060 		err = -EINVAL;
2061 		goto out_exit;
2062 	}
2063 
2064 	list_for_each_entry(filt, &filts.head, list) {
2065 		char *new_filter;
2066 
2067 		err = addr_filter__resolve_syms(filt);
2068 		if (err)
2069 			goto out_exit;
2070 
2071 		new_filter = addr_filter__to_str(filt);
2072 		if (!new_filter) {
2073 			err = -ENOMEM;
2074 			goto out_exit;
2075 		}
2076 
2077 		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2078 			err = -ENOMEM;
2079 			goto out_exit;
2080 		}
2081 	}
2082 
2083 out_exit:
2084 	addr_filters__exit(&filts);
2085 
2086 	if (err) {
2087 		pr_err("Failed to parse address filter: '%s'\n", filter);
2088 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2089 		pr_err("Where multiple filters are separated by space or comma.\n");
2090 	}
2091 
2092 	return err;
2093 }
2094 
2095 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2096 {
2097 	struct perf_pmu *pmu = NULL;
2098 
2099 	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2100 		if (pmu->type == evsel->attr.type)
2101 			break;
2102 	}
2103 
2104 	return pmu;
2105 }
2106 
2107 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2108 {
2109 	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2110 	int nr_addr_filters = 0;
2111 
2112 	if (!pmu)
2113 		return 0;
2114 
2115 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2116 
2117 	return nr_addr_filters;
2118 }
2119 
2120 int auxtrace_parse_filters(struct perf_evlist *evlist)
2121 {
2122 	struct perf_evsel *evsel;
2123 	char *filter;
2124 	int err, max_nr;
2125 
2126 	evlist__for_each_entry(evlist, evsel) {
2127 		filter = evsel->filter;
2128 		max_nr = perf_evsel__nr_addr_filter(evsel);
2129 		if (!filter || !max_nr)
2130 			continue;
2131 		evsel->filter = NULL;
2132 		err = parse_addr_filter(evsel, filter, max_nr);
2133 		free(filter);
2134 		if (err)
2135 			return err;
2136 		pr_debug("Address filter: %s\n", evsel->filter);
2137 	}
2138 
2139 	return 0;
2140 }
2141