xref: /openbmc/linux/tools/perf/util/auxtrace.c (revision caa80275)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41 
42 #include <linux/hash.h>
43 
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49 
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56 
57 #include <linux/ctype.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60 
61 /*
62  * Make a group from 'leader' to 'last', requiring that the events were not
63  * already grouped to a different leader.
64  */
65 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
66 {
67 	struct evsel *evsel;
68 	bool grp;
69 
70 	if (!evsel__is_group_leader(leader))
71 		return -EINVAL;
72 
73 	grp = false;
74 	evlist__for_each_entry(evlist, evsel) {
75 		if (grp) {
76 			if (!(evsel__leader(evsel) == leader ||
77 			     (evsel__leader(evsel) == evsel &&
78 			      evsel->core.nr_members <= 1)))
79 				return -EINVAL;
80 		} else if (evsel == leader) {
81 			grp = true;
82 		}
83 		if (evsel == last)
84 			break;
85 	}
86 
87 	grp = false;
88 	evlist__for_each_entry(evlist, evsel) {
89 		if (grp) {
90 			if (!evsel__has_leader(evsel, leader)) {
91 				evsel__set_leader(evsel, leader);
92 				if (leader->core.nr_members < 1)
93 					leader->core.nr_members = 1;
94 				leader->core.nr_members += 1;
95 			}
96 		} else if (evsel == leader) {
97 			grp = true;
98 		}
99 		if (evsel == last)
100 			break;
101 	}
102 
103 	return 0;
104 }
105 
106 static bool auxtrace__dont_decode(struct perf_session *session)
107 {
108 	return !session->itrace_synth_opts ||
109 	       session->itrace_synth_opts->dont_decode;
110 }
111 
112 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
113 			struct auxtrace_mmap_params *mp,
114 			void *userpg, int fd)
115 {
116 	struct perf_event_mmap_page *pc = userpg;
117 
118 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
119 
120 	mm->userpg = userpg;
121 	mm->mask = mp->mask;
122 	mm->len = mp->len;
123 	mm->prev = 0;
124 	mm->idx = mp->idx;
125 	mm->tid = mp->tid;
126 	mm->cpu = mp->cpu;
127 
128 	if (!mp->len) {
129 		mm->base = NULL;
130 		return 0;
131 	}
132 
133 	pc->aux_offset = mp->offset;
134 	pc->aux_size = mp->len;
135 
136 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
137 	if (mm->base == MAP_FAILED) {
138 		pr_debug2("failed to mmap AUX area\n");
139 		mm->base = NULL;
140 		return -1;
141 	}
142 
143 	return 0;
144 }
145 
146 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
147 {
148 	if (mm->base) {
149 		munmap(mm->base, mm->len);
150 		mm->base = NULL;
151 	}
152 }
153 
154 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
155 				off_t auxtrace_offset,
156 				unsigned int auxtrace_pages,
157 				bool auxtrace_overwrite)
158 {
159 	if (auxtrace_pages) {
160 		mp->offset = auxtrace_offset;
161 		mp->len = auxtrace_pages * (size_t)page_size;
162 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
163 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
164 		pr_debug2("AUX area mmap length %zu\n", mp->len);
165 	} else {
166 		mp->len = 0;
167 	}
168 }
169 
170 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
171 				   struct evlist *evlist, int idx,
172 				   bool per_cpu)
173 {
174 	mp->idx = idx;
175 
176 	if (per_cpu) {
177 		mp->cpu = evlist->core.cpus->map[idx];
178 		if (evlist->core.threads)
179 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
180 		else
181 			mp->tid = -1;
182 	} else {
183 		mp->cpu = -1;
184 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
185 	}
186 }
187 
188 #define AUXTRACE_INIT_NR_QUEUES	32
189 
190 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
191 {
192 	struct auxtrace_queue *queue_array;
193 	unsigned int max_nr_queues, i;
194 
195 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
196 	if (nr_queues > max_nr_queues)
197 		return NULL;
198 
199 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
200 	if (!queue_array)
201 		return NULL;
202 
203 	for (i = 0; i < nr_queues; i++) {
204 		INIT_LIST_HEAD(&queue_array[i].head);
205 		queue_array[i].priv = NULL;
206 	}
207 
208 	return queue_array;
209 }
210 
211 int auxtrace_queues__init(struct auxtrace_queues *queues)
212 {
213 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
214 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
215 	if (!queues->queue_array)
216 		return -ENOMEM;
217 	return 0;
218 }
219 
220 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
221 				 unsigned int new_nr_queues)
222 {
223 	unsigned int nr_queues = queues->nr_queues;
224 	struct auxtrace_queue *queue_array;
225 	unsigned int i;
226 
227 	if (!nr_queues)
228 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
229 
230 	while (nr_queues && nr_queues < new_nr_queues)
231 		nr_queues <<= 1;
232 
233 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
234 		return -EINVAL;
235 
236 	queue_array = auxtrace_alloc_queue_array(nr_queues);
237 	if (!queue_array)
238 		return -ENOMEM;
239 
240 	for (i = 0; i < queues->nr_queues; i++) {
241 		list_splice_tail(&queues->queue_array[i].head,
242 				 &queue_array[i].head);
243 		queue_array[i].tid = queues->queue_array[i].tid;
244 		queue_array[i].cpu = queues->queue_array[i].cpu;
245 		queue_array[i].set = queues->queue_array[i].set;
246 		queue_array[i].priv = queues->queue_array[i].priv;
247 	}
248 
249 	queues->nr_queues = nr_queues;
250 	queues->queue_array = queue_array;
251 
252 	return 0;
253 }
254 
255 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
256 {
257 	int fd = perf_data__fd(session->data);
258 	void *p;
259 	ssize_t ret;
260 
261 	if (size > SSIZE_MAX)
262 		return NULL;
263 
264 	p = malloc(size);
265 	if (!p)
266 		return NULL;
267 
268 	ret = readn(fd, p, size);
269 	if (ret != (ssize_t)size) {
270 		free(p);
271 		return NULL;
272 	}
273 
274 	return p;
275 }
276 
277 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
278 					 unsigned int idx,
279 					 struct auxtrace_buffer *buffer)
280 {
281 	struct auxtrace_queue *queue;
282 	int err;
283 
284 	if (idx >= queues->nr_queues) {
285 		err = auxtrace_queues__grow(queues, idx + 1);
286 		if (err)
287 			return err;
288 	}
289 
290 	queue = &queues->queue_array[idx];
291 
292 	if (!queue->set) {
293 		queue->set = true;
294 		queue->tid = buffer->tid;
295 		queue->cpu = buffer->cpu;
296 	}
297 
298 	buffer->buffer_nr = queues->next_buffer_nr++;
299 
300 	list_add_tail(&buffer->list, &queue->head);
301 
302 	queues->new_data = true;
303 	queues->populated = true;
304 
305 	return 0;
306 }
307 
308 /* Limit buffers to 32MiB on 32-bit */
309 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
310 
311 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
312 					 unsigned int idx,
313 					 struct auxtrace_buffer *buffer)
314 {
315 	u64 sz = buffer->size;
316 	bool consecutive = false;
317 	struct auxtrace_buffer *b;
318 	int err;
319 
320 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
321 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
322 		if (!b)
323 			return -ENOMEM;
324 		b->size = BUFFER_LIMIT_FOR_32_BIT;
325 		b->consecutive = consecutive;
326 		err = auxtrace_queues__queue_buffer(queues, idx, b);
327 		if (err) {
328 			auxtrace_buffer__free(b);
329 			return err;
330 		}
331 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
332 		sz -= BUFFER_LIMIT_FOR_32_BIT;
333 		consecutive = true;
334 	}
335 
336 	buffer->size = sz;
337 	buffer->consecutive = consecutive;
338 
339 	return 0;
340 }
341 
342 static bool filter_cpu(struct perf_session *session, int cpu)
343 {
344 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
345 
346 	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
347 }
348 
349 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
350 				       struct perf_session *session,
351 				       unsigned int idx,
352 				       struct auxtrace_buffer *buffer,
353 				       struct auxtrace_buffer **buffer_ptr)
354 {
355 	int err = -ENOMEM;
356 
357 	if (filter_cpu(session, buffer->cpu))
358 		return 0;
359 
360 	buffer = memdup(buffer, sizeof(*buffer));
361 	if (!buffer)
362 		return -ENOMEM;
363 
364 	if (session->one_mmap) {
365 		buffer->data = buffer->data_offset - session->one_mmap_offset +
366 			       session->one_mmap_addr;
367 	} else if (perf_data__is_pipe(session->data)) {
368 		buffer->data = auxtrace_copy_data(buffer->size, session);
369 		if (!buffer->data)
370 			goto out_free;
371 		buffer->data_needs_freeing = true;
372 	} else if (BITS_PER_LONG == 32 &&
373 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
374 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
375 		if (err)
376 			goto out_free;
377 	}
378 
379 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
380 	if (err)
381 		goto out_free;
382 
383 	/* FIXME: Doesn't work for split buffer */
384 	if (buffer_ptr)
385 		*buffer_ptr = buffer;
386 
387 	return 0;
388 
389 out_free:
390 	auxtrace_buffer__free(buffer);
391 	return err;
392 }
393 
394 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
395 			       struct perf_session *session,
396 			       union perf_event *event, off_t data_offset,
397 			       struct auxtrace_buffer **buffer_ptr)
398 {
399 	struct auxtrace_buffer buffer = {
400 		.pid = -1,
401 		.tid = event->auxtrace.tid,
402 		.cpu = event->auxtrace.cpu,
403 		.data_offset = data_offset,
404 		.offset = event->auxtrace.offset,
405 		.reference = event->auxtrace.reference,
406 		.size = event->auxtrace.size,
407 	};
408 	unsigned int idx = event->auxtrace.idx;
409 
410 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
411 					   buffer_ptr);
412 }
413 
414 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
415 					      struct perf_session *session,
416 					      off_t file_offset, size_t sz)
417 {
418 	union perf_event *event;
419 	int err;
420 	char buf[PERF_SAMPLE_MAX_SIZE];
421 
422 	err = perf_session__peek_event(session, file_offset, buf,
423 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
424 	if (err)
425 		return err;
426 
427 	if (event->header.type == PERF_RECORD_AUXTRACE) {
428 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
429 		    event->header.size != sz) {
430 			err = -EINVAL;
431 			goto out;
432 		}
433 		file_offset += event->header.size;
434 		err = auxtrace_queues__add_event(queues, session, event,
435 						 file_offset, NULL);
436 	}
437 out:
438 	return err;
439 }
440 
441 void auxtrace_queues__free(struct auxtrace_queues *queues)
442 {
443 	unsigned int i;
444 
445 	for (i = 0; i < queues->nr_queues; i++) {
446 		while (!list_empty(&queues->queue_array[i].head)) {
447 			struct auxtrace_buffer *buffer;
448 
449 			buffer = list_entry(queues->queue_array[i].head.next,
450 					    struct auxtrace_buffer, list);
451 			list_del_init(&buffer->list);
452 			auxtrace_buffer__free(buffer);
453 		}
454 	}
455 
456 	zfree(&queues->queue_array);
457 	queues->nr_queues = 0;
458 }
459 
460 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
461 			     unsigned int pos, unsigned int queue_nr,
462 			     u64 ordinal)
463 {
464 	unsigned int parent;
465 
466 	while (pos) {
467 		parent = (pos - 1) >> 1;
468 		if (heap_array[parent].ordinal <= ordinal)
469 			break;
470 		heap_array[pos] = heap_array[parent];
471 		pos = parent;
472 	}
473 	heap_array[pos].queue_nr = queue_nr;
474 	heap_array[pos].ordinal = ordinal;
475 }
476 
477 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
478 		       u64 ordinal)
479 {
480 	struct auxtrace_heap_item *heap_array;
481 
482 	if (queue_nr >= heap->heap_sz) {
483 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
484 
485 		while (heap_sz <= queue_nr)
486 			heap_sz <<= 1;
487 		heap_array = realloc(heap->heap_array,
488 				     heap_sz * sizeof(struct auxtrace_heap_item));
489 		if (!heap_array)
490 			return -ENOMEM;
491 		heap->heap_array = heap_array;
492 		heap->heap_sz = heap_sz;
493 	}
494 
495 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
496 
497 	return 0;
498 }
499 
500 void auxtrace_heap__free(struct auxtrace_heap *heap)
501 {
502 	zfree(&heap->heap_array);
503 	heap->heap_cnt = 0;
504 	heap->heap_sz = 0;
505 }
506 
507 void auxtrace_heap__pop(struct auxtrace_heap *heap)
508 {
509 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
510 	struct auxtrace_heap_item *heap_array;
511 
512 	if (!heap_cnt)
513 		return;
514 
515 	heap->heap_cnt -= 1;
516 
517 	heap_array = heap->heap_array;
518 
519 	pos = 0;
520 	while (1) {
521 		unsigned int left, right;
522 
523 		left = (pos << 1) + 1;
524 		if (left >= heap_cnt)
525 			break;
526 		right = left + 1;
527 		if (right >= heap_cnt) {
528 			heap_array[pos] = heap_array[left];
529 			return;
530 		}
531 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
532 			heap_array[pos] = heap_array[left];
533 			pos = left;
534 		} else {
535 			heap_array[pos] = heap_array[right];
536 			pos = right;
537 		}
538 	}
539 
540 	last = heap_cnt - 1;
541 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
542 			 heap_array[last].ordinal);
543 }
544 
545 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
546 				       struct evlist *evlist)
547 {
548 	if (itr)
549 		return itr->info_priv_size(itr, evlist);
550 	return 0;
551 }
552 
553 static int auxtrace_not_supported(void)
554 {
555 	pr_err("AUX area tracing is not supported on this architecture\n");
556 	return -EINVAL;
557 }
558 
559 int auxtrace_record__info_fill(struct auxtrace_record *itr,
560 			       struct perf_session *session,
561 			       struct perf_record_auxtrace_info *auxtrace_info,
562 			       size_t priv_size)
563 {
564 	if (itr)
565 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
566 	return auxtrace_not_supported();
567 }
568 
569 void auxtrace_record__free(struct auxtrace_record *itr)
570 {
571 	if (itr)
572 		itr->free(itr);
573 }
574 
575 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
576 {
577 	if (itr && itr->snapshot_start)
578 		return itr->snapshot_start(itr);
579 	return 0;
580 }
581 
582 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
583 {
584 	if (!on_exit && itr && itr->snapshot_finish)
585 		return itr->snapshot_finish(itr);
586 	return 0;
587 }
588 
589 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
590 				   struct auxtrace_mmap *mm,
591 				   unsigned char *data, u64 *head, u64 *old)
592 {
593 	if (itr && itr->find_snapshot)
594 		return itr->find_snapshot(itr, idx, mm, data, head, old);
595 	return 0;
596 }
597 
598 int auxtrace_record__options(struct auxtrace_record *itr,
599 			     struct evlist *evlist,
600 			     struct record_opts *opts)
601 {
602 	if (itr) {
603 		itr->evlist = evlist;
604 		return itr->recording_options(itr, evlist, opts);
605 	}
606 	return 0;
607 }
608 
609 u64 auxtrace_record__reference(struct auxtrace_record *itr)
610 {
611 	if (itr)
612 		return itr->reference(itr);
613 	return 0;
614 }
615 
616 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
617 				    struct record_opts *opts, const char *str)
618 {
619 	if (!str)
620 		return 0;
621 
622 	/* PMU-agnostic options */
623 	switch (*str) {
624 	case 'e':
625 		opts->auxtrace_snapshot_on_exit = true;
626 		str++;
627 		break;
628 	default:
629 		break;
630 	}
631 
632 	if (itr && itr->parse_snapshot_options)
633 		return itr->parse_snapshot_options(itr, opts, str);
634 
635 	pr_err("No AUX area tracing to snapshot\n");
636 	return -EINVAL;
637 }
638 
639 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
640 {
641 	struct evsel *evsel;
642 
643 	if (!itr->evlist || !itr->pmu)
644 		return -EINVAL;
645 
646 	evlist__for_each_entry(itr->evlist, evsel) {
647 		if (evsel->core.attr.type == itr->pmu->type) {
648 			if (evsel->disabled)
649 				return 0;
650 			return evlist__enable_event_idx(itr->evlist, evsel, idx);
651 		}
652 	}
653 	return -EINVAL;
654 }
655 
656 /*
657  * Event record size is 16-bit which results in a maximum size of about 64KiB.
658  * Allow about 4KiB for the rest of the sample record, to give a maximum
659  * AUX area sample size of 60KiB.
660  */
661 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
662 
663 /* Arbitrary default size if no other default provided */
664 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
665 
666 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
667 					     struct record_opts *opts)
668 {
669 	struct evsel *evsel;
670 	bool has_aux_leader = false;
671 	u32 sz;
672 
673 	evlist__for_each_entry(evlist, evsel) {
674 		sz = evsel->core.attr.aux_sample_size;
675 		if (evsel__is_group_leader(evsel)) {
676 			has_aux_leader = evsel__is_aux_event(evsel);
677 			if (sz) {
678 				if (has_aux_leader)
679 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
680 				else
681 					pr_err("Cannot add AUX area sampling to a group leader\n");
682 				return -EINVAL;
683 			}
684 		}
685 		if (sz > MAX_AUX_SAMPLE_SIZE) {
686 			pr_err("AUX area sample size %u too big, max. %d\n",
687 			       sz, MAX_AUX_SAMPLE_SIZE);
688 			return -EINVAL;
689 		}
690 		if (sz) {
691 			if (!has_aux_leader) {
692 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
693 				return -EINVAL;
694 			}
695 			evsel__set_sample_bit(evsel, AUX);
696 			opts->auxtrace_sample_mode = true;
697 		} else {
698 			evsel__reset_sample_bit(evsel, AUX);
699 		}
700 	}
701 
702 	if (!opts->auxtrace_sample_mode) {
703 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
704 		return -EINVAL;
705 	}
706 
707 	if (!perf_can_aux_sample()) {
708 		pr_err("AUX area sampling is not supported by kernel\n");
709 		return -EINVAL;
710 	}
711 
712 	return 0;
713 }
714 
715 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
716 				  struct evlist *evlist,
717 				  struct record_opts *opts, const char *str)
718 {
719 	struct evsel_config_term *term;
720 	struct evsel *aux_evsel;
721 	bool has_aux_sample_size = false;
722 	bool has_aux_leader = false;
723 	struct evsel *evsel;
724 	char *endptr;
725 	unsigned long sz;
726 
727 	if (!str)
728 		goto no_opt;
729 
730 	if (!itr) {
731 		pr_err("No AUX area event to sample\n");
732 		return -EINVAL;
733 	}
734 
735 	sz = strtoul(str, &endptr, 0);
736 	if (*endptr || sz > UINT_MAX) {
737 		pr_err("Bad AUX area sampling option: '%s'\n", str);
738 		return -EINVAL;
739 	}
740 
741 	if (!sz)
742 		sz = itr->default_aux_sample_size;
743 
744 	if (!sz)
745 		sz = DEFAULT_AUX_SAMPLE_SIZE;
746 
747 	/* Set aux_sample_size based on --aux-sample option */
748 	evlist__for_each_entry(evlist, evsel) {
749 		if (evsel__is_group_leader(evsel)) {
750 			has_aux_leader = evsel__is_aux_event(evsel);
751 		} else if (has_aux_leader) {
752 			evsel->core.attr.aux_sample_size = sz;
753 		}
754 	}
755 no_opt:
756 	aux_evsel = NULL;
757 	/* Override with aux_sample_size from config term */
758 	evlist__for_each_entry(evlist, evsel) {
759 		if (evsel__is_aux_event(evsel))
760 			aux_evsel = evsel;
761 		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
762 		if (term) {
763 			has_aux_sample_size = true;
764 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
765 			/* If possible, group with the AUX event */
766 			if (aux_evsel && evsel->core.attr.aux_sample_size)
767 				evlist__regroup(evlist, aux_evsel, evsel);
768 		}
769 	}
770 
771 	if (!str && !has_aux_sample_size)
772 		return 0;
773 
774 	if (!itr) {
775 		pr_err("No AUX area event to sample\n");
776 		return -EINVAL;
777 	}
778 
779 	return auxtrace_validate_aux_sample_size(evlist, opts);
780 }
781 
782 void auxtrace_regroup_aux_output(struct evlist *evlist)
783 {
784 	struct evsel *evsel, *aux_evsel = NULL;
785 	struct evsel_config_term *term;
786 
787 	evlist__for_each_entry(evlist, evsel) {
788 		if (evsel__is_aux_event(evsel))
789 			aux_evsel = evsel;
790 		term = evsel__get_config_term(evsel, AUX_OUTPUT);
791 		/* If possible, group with the AUX event */
792 		if (term && aux_evsel)
793 			evlist__regroup(evlist, aux_evsel, evsel);
794 	}
795 }
796 
797 struct auxtrace_record *__weak
798 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
799 {
800 	*err = 0;
801 	return NULL;
802 }
803 
804 static int auxtrace_index__alloc(struct list_head *head)
805 {
806 	struct auxtrace_index *auxtrace_index;
807 
808 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
809 	if (!auxtrace_index)
810 		return -ENOMEM;
811 
812 	auxtrace_index->nr = 0;
813 	INIT_LIST_HEAD(&auxtrace_index->list);
814 
815 	list_add_tail(&auxtrace_index->list, head);
816 
817 	return 0;
818 }
819 
820 void auxtrace_index__free(struct list_head *head)
821 {
822 	struct auxtrace_index *auxtrace_index, *n;
823 
824 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
825 		list_del_init(&auxtrace_index->list);
826 		free(auxtrace_index);
827 	}
828 }
829 
830 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
831 {
832 	struct auxtrace_index *auxtrace_index;
833 	int err;
834 
835 	if (list_empty(head)) {
836 		err = auxtrace_index__alloc(head);
837 		if (err)
838 			return NULL;
839 	}
840 
841 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
842 
843 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
844 		err = auxtrace_index__alloc(head);
845 		if (err)
846 			return NULL;
847 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
848 					    list);
849 	}
850 
851 	return auxtrace_index;
852 }
853 
854 int auxtrace_index__auxtrace_event(struct list_head *head,
855 				   union perf_event *event, off_t file_offset)
856 {
857 	struct auxtrace_index *auxtrace_index;
858 	size_t nr;
859 
860 	auxtrace_index = auxtrace_index__last(head);
861 	if (!auxtrace_index)
862 		return -ENOMEM;
863 
864 	nr = auxtrace_index->nr;
865 	auxtrace_index->entries[nr].file_offset = file_offset;
866 	auxtrace_index->entries[nr].sz = event->header.size;
867 	auxtrace_index->nr += 1;
868 
869 	return 0;
870 }
871 
872 static int auxtrace_index__do_write(int fd,
873 				    struct auxtrace_index *auxtrace_index)
874 {
875 	struct auxtrace_index_entry ent;
876 	size_t i;
877 
878 	for (i = 0; i < auxtrace_index->nr; i++) {
879 		ent.file_offset = auxtrace_index->entries[i].file_offset;
880 		ent.sz = auxtrace_index->entries[i].sz;
881 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
882 			return -errno;
883 	}
884 	return 0;
885 }
886 
887 int auxtrace_index__write(int fd, struct list_head *head)
888 {
889 	struct auxtrace_index *auxtrace_index;
890 	u64 total = 0;
891 	int err;
892 
893 	list_for_each_entry(auxtrace_index, head, list)
894 		total += auxtrace_index->nr;
895 
896 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
897 		return -errno;
898 
899 	list_for_each_entry(auxtrace_index, head, list) {
900 		err = auxtrace_index__do_write(fd, auxtrace_index);
901 		if (err)
902 			return err;
903 	}
904 
905 	return 0;
906 }
907 
908 static int auxtrace_index__process_entry(int fd, struct list_head *head,
909 					 bool needs_swap)
910 {
911 	struct auxtrace_index *auxtrace_index;
912 	struct auxtrace_index_entry ent;
913 	size_t nr;
914 
915 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
916 		return -1;
917 
918 	auxtrace_index = auxtrace_index__last(head);
919 	if (!auxtrace_index)
920 		return -1;
921 
922 	nr = auxtrace_index->nr;
923 	if (needs_swap) {
924 		auxtrace_index->entries[nr].file_offset =
925 						bswap_64(ent.file_offset);
926 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
927 	} else {
928 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
929 		auxtrace_index->entries[nr].sz = ent.sz;
930 	}
931 
932 	auxtrace_index->nr = nr + 1;
933 
934 	return 0;
935 }
936 
937 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
938 			    bool needs_swap)
939 {
940 	struct list_head *head = &session->auxtrace_index;
941 	u64 nr;
942 
943 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
944 		return -1;
945 
946 	if (needs_swap)
947 		nr = bswap_64(nr);
948 
949 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
950 		return -1;
951 
952 	while (nr--) {
953 		int err;
954 
955 		err = auxtrace_index__process_entry(fd, head, needs_swap);
956 		if (err)
957 			return -1;
958 	}
959 
960 	return 0;
961 }
962 
963 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
964 						struct perf_session *session,
965 						struct auxtrace_index_entry *ent)
966 {
967 	return auxtrace_queues__add_indexed_event(queues, session,
968 						  ent->file_offset, ent->sz);
969 }
970 
971 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
972 				   struct perf_session *session)
973 {
974 	struct auxtrace_index *auxtrace_index;
975 	struct auxtrace_index_entry *ent;
976 	size_t i;
977 	int err;
978 
979 	if (auxtrace__dont_decode(session))
980 		return 0;
981 
982 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
983 		for (i = 0; i < auxtrace_index->nr; i++) {
984 			ent = &auxtrace_index->entries[i];
985 			err = auxtrace_queues__process_index_entry(queues,
986 								   session,
987 								   ent);
988 			if (err)
989 				return err;
990 		}
991 	}
992 	return 0;
993 }
994 
995 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
996 					      struct auxtrace_buffer *buffer)
997 {
998 	if (buffer) {
999 		if (list_is_last(&buffer->list, &queue->head))
1000 			return NULL;
1001 		return list_entry(buffer->list.next, struct auxtrace_buffer,
1002 				  list);
1003 	} else {
1004 		if (list_empty(&queue->head))
1005 			return NULL;
1006 		return list_entry(queue->head.next, struct auxtrace_buffer,
1007 				  list);
1008 	}
1009 }
1010 
1011 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1012 						     struct perf_sample *sample,
1013 						     struct perf_session *session)
1014 {
1015 	struct perf_sample_id *sid;
1016 	unsigned int idx;
1017 	u64 id;
1018 
1019 	id = sample->id;
1020 	if (!id)
1021 		return NULL;
1022 
1023 	sid = evlist__id2sid(session->evlist, id);
1024 	if (!sid)
1025 		return NULL;
1026 
1027 	idx = sid->idx;
1028 
1029 	if (idx >= queues->nr_queues)
1030 		return NULL;
1031 
1032 	return &queues->queue_array[idx];
1033 }
1034 
1035 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1036 				struct perf_session *session,
1037 				struct perf_sample *sample, u64 data_offset,
1038 				u64 reference)
1039 {
1040 	struct auxtrace_buffer buffer = {
1041 		.pid = -1,
1042 		.data_offset = data_offset,
1043 		.reference = reference,
1044 		.size = sample->aux_sample.size,
1045 	};
1046 	struct perf_sample_id *sid;
1047 	u64 id = sample->id;
1048 	unsigned int idx;
1049 
1050 	if (!id)
1051 		return -EINVAL;
1052 
1053 	sid = evlist__id2sid(session->evlist, id);
1054 	if (!sid)
1055 		return -ENOENT;
1056 
1057 	idx = sid->idx;
1058 	buffer.tid = sid->tid;
1059 	buffer.cpu = sid->cpu;
1060 
1061 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1062 }
1063 
1064 struct queue_data {
1065 	bool samples;
1066 	bool events;
1067 };
1068 
1069 static int auxtrace_queue_data_cb(struct perf_session *session,
1070 				  union perf_event *event, u64 offset,
1071 				  void *data)
1072 {
1073 	struct queue_data *qd = data;
1074 	struct perf_sample sample;
1075 	int err;
1076 
1077 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1078 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1079 			return -EINVAL;
1080 		offset += event->header.size;
1081 		return session->auxtrace->queue_data(session, NULL, event,
1082 						     offset);
1083 	}
1084 
1085 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1086 		return 0;
1087 
1088 	err = evlist__parse_sample(session->evlist, event, &sample);
1089 	if (err)
1090 		return err;
1091 
1092 	if (!sample.aux_sample.size)
1093 		return 0;
1094 
1095 	offset += sample.aux_sample.data - (void *)event;
1096 
1097 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1098 }
1099 
1100 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1101 {
1102 	struct queue_data qd = {
1103 		.samples = samples,
1104 		.events = events,
1105 	};
1106 
1107 	if (auxtrace__dont_decode(session))
1108 		return 0;
1109 
1110 	if (!session->auxtrace || !session->auxtrace->queue_data)
1111 		return -EINVAL;
1112 
1113 	return perf_session__peek_events(session, session->header.data_offset,
1114 					 session->header.data_size,
1115 					 auxtrace_queue_data_cb, &qd);
1116 }
1117 
1118 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1119 {
1120 	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1121 	size_t adj = buffer->data_offset & (page_size - 1);
1122 	size_t size = buffer->size + adj;
1123 	off_t file_offset = buffer->data_offset - adj;
1124 	void *addr;
1125 
1126 	if (buffer->data)
1127 		return buffer->data;
1128 
1129 	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1130 	if (addr == MAP_FAILED)
1131 		return NULL;
1132 
1133 	buffer->mmap_addr = addr;
1134 	buffer->mmap_size = size;
1135 
1136 	buffer->data = addr + adj;
1137 
1138 	return buffer->data;
1139 }
1140 
1141 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1142 {
1143 	if (!buffer->data || !buffer->mmap_addr)
1144 		return;
1145 	munmap(buffer->mmap_addr, buffer->mmap_size);
1146 	buffer->mmap_addr = NULL;
1147 	buffer->mmap_size = 0;
1148 	buffer->data = NULL;
1149 	buffer->use_data = NULL;
1150 }
1151 
1152 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1153 {
1154 	auxtrace_buffer__put_data(buffer);
1155 	if (buffer->data_needs_freeing) {
1156 		buffer->data_needs_freeing = false;
1157 		zfree(&buffer->data);
1158 		buffer->use_data = NULL;
1159 		buffer->size = 0;
1160 	}
1161 }
1162 
1163 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1164 {
1165 	auxtrace_buffer__drop_data(buffer);
1166 	free(buffer);
1167 }
1168 
1169 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1170 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1171 			  const char *msg, u64 timestamp)
1172 {
1173 	size_t size;
1174 
1175 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1176 
1177 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1178 	auxtrace_error->type = type;
1179 	auxtrace_error->code = code;
1180 	auxtrace_error->cpu = cpu;
1181 	auxtrace_error->pid = pid;
1182 	auxtrace_error->tid = tid;
1183 	auxtrace_error->fmt = 1;
1184 	auxtrace_error->ip = ip;
1185 	auxtrace_error->time = timestamp;
1186 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1187 
1188 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1189 	       strlen(auxtrace_error->msg) + 1;
1190 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1191 }
1192 
1193 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1194 					 struct perf_tool *tool,
1195 					 struct perf_session *session,
1196 					 perf_event__handler_t process)
1197 {
1198 	union perf_event *ev;
1199 	size_t priv_size;
1200 	int err;
1201 
1202 	pr_debug2("Synthesizing auxtrace information\n");
1203 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1204 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1205 	if (!ev)
1206 		return -ENOMEM;
1207 
1208 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1209 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1210 					priv_size;
1211 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1212 					 priv_size);
1213 	if (err)
1214 		goto out_free;
1215 
1216 	err = process(tool, ev, NULL, NULL);
1217 out_free:
1218 	free(ev);
1219 	return err;
1220 }
1221 
1222 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1223 {
1224 	struct evsel *new_leader = NULL;
1225 	struct evsel *evsel;
1226 
1227 	/* Find new leader for the group */
1228 	evlist__for_each_entry(evlist, evsel) {
1229 		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1230 			continue;
1231 		if (!new_leader)
1232 			new_leader = evsel;
1233 		evsel__set_leader(evsel, new_leader);
1234 	}
1235 
1236 	/* Update group information */
1237 	if (new_leader) {
1238 		zfree(&new_leader->group_name);
1239 		new_leader->group_name = leader->group_name;
1240 		leader->group_name = NULL;
1241 
1242 		new_leader->core.nr_members = leader->core.nr_members - 1;
1243 		leader->core.nr_members = 1;
1244 	}
1245 }
1246 
1247 static void unleader_auxtrace(struct perf_session *session)
1248 {
1249 	struct evsel *evsel;
1250 
1251 	evlist__for_each_entry(session->evlist, evsel) {
1252 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1253 		    evsel__is_group_leader(evsel)) {
1254 			unleader_evsel(session->evlist, evsel);
1255 		}
1256 	}
1257 }
1258 
1259 int perf_event__process_auxtrace_info(struct perf_session *session,
1260 				      union perf_event *event)
1261 {
1262 	enum auxtrace_type type = event->auxtrace_info.type;
1263 	int err;
1264 
1265 	if (dump_trace)
1266 		fprintf(stdout, " type: %u\n", type);
1267 
1268 	switch (type) {
1269 	case PERF_AUXTRACE_INTEL_PT:
1270 		err = intel_pt_process_auxtrace_info(event, session);
1271 		break;
1272 	case PERF_AUXTRACE_INTEL_BTS:
1273 		err = intel_bts_process_auxtrace_info(event, session);
1274 		break;
1275 	case PERF_AUXTRACE_ARM_SPE:
1276 		err = arm_spe_process_auxtrace_info(event, session);
1277 		break;
1278 	case PERF_AUXTRACE_CS_ETM:
1279 		err = cs_etm__process_auxtrace_info(event, session);
1280 		break;
1281 	case PERF_AUXTRACE_S390_CPUMSF:
1282 		err = s390_cpumsf_process_auxtrace_info(event, session);
1283 		break;
1284 	case PERF_AUXTRACE_UNKNOWN:
1285 	default:
1286 		return -EINVAL;
1287 	}
1288 
1289 	if (err)
1290 		return err;
1291 
1292 	unleader_auxtrace(session);
1293 
1294 	return 0;
1295 }
1296 
1297 s64 perf_event__process_auxtrace(struct perf_session *session,
1298 				 union perf_event *event)
1299 {
1300 	s64 err;
1301 
1302 	if (dump_trace)
1303 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1304 			event->auxtrace.size, event->auxtrace.offset,
1305 			event->auxtrace.reference, event->auxtrace.idx,
1306 			event->auxtrace.tid, event->auxtrace.cpu);
1307 
1308 	if (auxtrace__dont_decode(session))
1309 		return event->auxtrace.size;
1310 
1311 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1312 		return -EINVAL;
1313 
1314 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1315 	if (err < 0)
1316 		return err;
1317 
1318 	return event->auxtrace.size;
1319 }
1320 
1321 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1322 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1323 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1324 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1325 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1326 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1327 
1328 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1329 				    bool no_sample)
1330 {
1331 	synth_opts->branches = true;
1332 	synth_opts->transactions = true;
1333 	synth_opts->ptwrites = true;
1334 	synth_opts->pwr_events = true;
1335 	synth_opts->other_events = true;
1336 	synth_opts->errors = true;
1337 	synth_opts->flc = true;
1338 	synth_opts->llc = true;
1339 	synth_opts->tlb = true;
1340 	synth_opts->mem = true;
1341 	synth_opts->remote_access = true;
1342 
1343 	if (no_sample) {
1344 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1345 		synth_opts->period = 1;
1346 		synth_opts->calls = true;
1347 	} else {
1348 		synth_opts->instructions = true;
1349 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1350 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1351 	}
1352 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1353 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1354 	synth_opts->initial_skip = 0;
1355 }
1356 
1357 static int get_flag(const char **ptr, unsigned int *flags)
1358 {
1359 	while (1) {
1360 		char c = **ptr;
1361 
1362 		if (c >= 'a' && c <= 'z') {
1363 			*flags |= 1 << (c - 'a');
1364 			++*ptr;
1365 			return 0;
1366 		} else if (c == ' ') {
1367 			++*ptr;
1368 			continue;
1369 		} else {
1370 			return -1;
1371 		}
1372 	}
1373 }
1374 
1375 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1376 {
1377 	while (1) {
1378 		switch (**ptr) {
1379 		case '+':
1380 			++*ptr;
1381 			if (get_flag(ptr, plus_flags))
1382 				return -1;
1383 			break;
1384 		case '-':
1385 			++*ptr;
1386 			if (get_flag(ptr, minus_flags))
1387 				return -1;
1388 			break;
1389 		case ' ':
1390 			++*ptr;
1391 			break;
1392 		default:
1393 			return 0;
1394 		}
1395 	}
1396 }
1397 
1398 /*
1399  * Please check tools/perf/Documentation/perf-script.txt for information
1400  * about the options parsed here, which is introduced after this cset,
1401  * when support in 'perf script' for these options is introduced.
1402  */
1403 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1404 			       const char *str, int unset)
1405 {
1406 	const char *p;
1407 	char *endptr;
1408 	bool period_type_set = false;
1409 	bool period_set = false;
1410 
1411 	synth_opts->set = true;
1412 
1413 	if (unset) {
1414 		synth_opts->dont_decode = true;
1415 		return 0;
1416 	}
1417 
1418 	if (!str) {
1419 		itrace_synth_opts__set_default(synth_opts,
1420 					       synth_opts->default_no_sample);
1421 		return 0;
1422 	}
1423 
1424 	for (p = str; *p;) {
1425 		switch (*p++) {
1426 		case 'i':
1427 			synth_opts->instructions = true;
1428 			while (*p == ' ' || *p == ',')
1429 				p += 1;
1430 			if (isdigit(*p)) {
1431 				synth_opts->period = strtoull(p, &endptr, 10);
1432 				period_set = true;
1433 				p = endptr;
1434 				while (*p == ' ' || *p == ',')
1435 					p += 1;
1436 				switch (*p++) {
1437 				case 'i':
1438 					synth_opts->period_type =
1439 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1440 					period_type_set = true;
1441 					break;
1442 				case 't':
1443 					synth_opts->period_type =
1444 						PERF_ITRACE_PERIOD_TICKS;
1445 					period_type_set = true;
1446 					break;
1447 				case 'm':
1448 					synth_opts->period *= 1000;
1449 					/* Fall through */
1450 				case 'u':
1451 					synth_opts->period *= 1000;
1452 					/* Fall through */
1453 				case 'n':
1454 					if (*p++ != 's')
1455 						goto out_err;
1456 					synth_opts->period_type =
1457 						PERF_ITRACE_PERIOD_NANOSECS;
1458 					period_type_set = true;
1459 					break;
1460 				case '\0':
1461 					goto out;
1462 				default:
1463 					goto out_err;
1464 				}
1465 			}
1466 			break;
1467 		case 'b':
1468 			synth_opts->branches = true;
1469 			break;
1470 		case 'x':
1471 			synth_opts->transactions = true;
1472 			break;
1473 		case 'w':
1474 			synth_opts->ptwrites = true;
1475 			break;
1476 		case 'p':
1477 			synth_opts->pwr_events = true;
1478 			break;
1479 		case 'o':
1480 			synth_opts->other_events = true;
1481 			break;
1482 		case 'e':
1483 			synth_opts->errors = true;
1484 			if (get_flags(&p, &synth_opts->error_plus_flags,
1485 				      &synth_opts->error_minus_flags))
1486 				goto out_err;
1487 			break;
1488 		case 'd':
1489 			synth_opts->log = true;
1490 			if (get_flags(&p, &synth_opts->log_plus_flags,
1491 				      &synth_opts->log_minus_flags))
1492 				goto out_err;
1493 			break;
1494 		case 'c':
1495 			synth_opts->branches = true;
1496 			synth_opts->calls = true;
1497 			break;
1498 		case 'r':
1499 			synth_opts->branches = true;
1500 			synth_opts->returns = true;
1501 			break;
1502 		case 'G':
1503 		case 'g':
1504 			if (p[-1] == 'G')
1505 				synth_opts->add_callchain = true;
1506 			else
1507 				synth_opts->callchain = true;
1508 			synth_opts->callchain_sz =
1509 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1510 			while (*p == ' ' || *p == ',')
1511 				p += 1;
1512 			if (isdigit(*p)) {
1513 				unsigned int val;
1514 
1515 				val = strtoul(p, &endptr, 10);
1516 				p = endptr;
1517 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1518 					goto out_err;
1519 				synth_opts->callchain_sz = val;
1520 			}
1521 			break;
1522 		case 'L':
1523 		case 'l':
1524 			if (p[-1] == 'L')
1525 				synth_opts->add_last_branch = true;
1526 			else
1527 				synth_opts->last_branch = true;
1528 			synth_opts->last_branch_sz =
1529 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1530 			while (*p == ' ' || *p == ',')
1531 				p += 1;
1532 			if (isdigit(*p)) {
1533 				unsigned int val;
1534 
1535 				val = strtoul(p, &endptr, 10);
1536 				p = endptr;
1537 				if (!val ||
1538 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1539 					goto out_err;
1540 				synth_opts->last_branch_sz = val;
1541 			}
1542 			break;
1543 		case 's':
1544 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1545 			if (p == endptr)
1546 				goto out_err;
1547 			p = endptr;
1548 			break;
1549 		case 'f':
1550 			synth_opts->flc = true;
1551 			break;
1552 		case 'm':
1553 			synth_opts->llc = true;
1554 			break;
1555 		case 't':
1556 			synth_opts->tlb = true;
1557 			break;
1558 		case 'a':
1559 			synth_opts->remote_access = true;
1560 			break;
1561 		case 'M':
1562 			synth_opts->mem = true;
1563 			break;
1564 		case 'q':
1565 			synth_opts->quick += 1;
1566 			break;
1567 		case 'Z':
1568 			synth_opts->timeless_decoding = true;
1569 			break;
1570 		case ' ':
1571 		case ',':
1572 			break;
1573 		default:
1574 			goto out_err;
1575 		}
1576 	}
1577 out:
1578 	if (synth_opts->instructions) {
1579 		if (!period_type_set)
1580 			synth_opts->period_type =
1581 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1582 		if (!period_set)
1583 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1584 	}
1585 
1586 	return 0;
1587 
1588 out_err:
1589 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1590 	return -EINVAL;
1591 }
1592 
1593 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1594 {
1595 	return itrace_do_parse_synth_opts(opt->value, str, unset);
1596 }
1597 
1598 static const char * const auxtrace_error_type_name[] = {
1599 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1600 };
1601 
1602 static const char *auxtrace_error_name(int type)
1603 {
1604 	const char *error_type_name = NULL;
1605 
1606 	if (type < PERF_AUXTRACE_ERROR_MAX)
1607 		error_type_name = auxtrace_error_type_name[type];
1608 	if (!error_type_name)
1609 		error_type_name = "unknown AUX";
1610 	return error_type_name;
1611 }
1612 
1613 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1614 {
1615 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1616 	unsigned long long nsecs = e->time;
1617 	const char *msg = e->msg;
1618 	int ret;
1619 
1620 	ret = fprintf(fp, " %s error type %u",
1621 		      auxtrace_error_name(e->type), e->type);
1622 
1623 	if (e->fmt && nsecs) {
1624 		unsigned long secs = nsecs / NSEC_PER_SEC;
1625 
1626 		nsecs -= secs * NSEC_PER_SEC;
1627 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1628 	} else {
1629 		ret += fprintf(fp, " time 0");
1630 	}
1631 
1632 	if (!e->fmt)
1633 		msg = (const char *)&e->time;
1634 
1635 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1636 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1637 	return ret;
1638 }
1639 
1640 void perf_session__auxtrace_error_inc(struct perf_session *session,
1641 				      union perf_event *event)
1642 {
1643 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1644 
1645 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1646 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1647 }
1648 
1649 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1650 {
1651 	int i;
1652 
1653 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1654 		if (!stats->nr_auxtrace_errors[i])
1655 			continue;
1656 		ui__warning("%u %s errors\n",
1657 			    stats->nr_auxtrace_errors[i],
1658 			    auxtrace_error_name(i));
1659 	}
1660 }
1661 
1662 int perf_event__process_auxtrace_error(struct perf_session *session,
1663 				       union perf_event *event)
1664 {
1665 	if (auxtrace__dont_decode(session))
1666 		return 0;
1667 
1668 	perf_event__fprintf_auxtrace_error(event, stdout);
1669 	return 0;
1670 }
1671 
1672 /*
1673  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1674  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1675  * the issues caused by the below sequence on multiple CPUs: when perf tool
1676  * accesses either the load operation or the store operation for 64-bit value,
1677  * on some architectures the operation is divided into two instructions, one
1678  * is for accessing the low 32-bit value and another is for the high 32-bit;
1679  * thus these two user operations can give the kernel chances to access the
1680  * 64-bit value, and thus leads to the unexpected load values.
1681  *
1682  *   kernel (64-bit)                        user (32-bit)
1683  *
1684  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1685  *       STORE $aux_data      |       ,--->
1686  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1687  *       STORE ->aux_head   --|-------`     smp_rmb()
1688  *   }                        |             LOAD $data
1689  *                            |             smp_mb()
1690  *                            |             STORE ->aux_tail_lo
1691  *                            `----------->
1692  *                                          STORE ->aux_tail_hi
1693  *
1694  * For this reason, it's impossible for the perf tool to work correctly when
1695  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1696  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1697  * the pointers can be increased monotonically, whatever the buffer size it is,
1698  * at the end the head and tail can be bigger than 4GB and carry out to the
1699  * high 32-bit.
1700  *
1701  * To mitigate the issues and improve the user experience, we can allow the
1702  * perf tool working in certain conditions and bail out with error if detect
1703  * any overflow cannot be handled.
1704  *
1705  * For reading the AUX head, it reads out the values for three times, and
1706  * compares the high 4 bytes of the values between the first time and the last
1707  * time, if there has no change for high 4 bytes injected by the kernel during
1708  * the user reading sequence, it's safe for use the second value.
1709  *
1710  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1711  * 32 bits, it means there have two store operations in user space and it cannot
1712  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1713  * the caller an overflow error has happened.
1714  */
1715 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1716 {
1717 	struct perf_event_mmap_page *pc = mm->userpg;
1718 	u64 first, second, last;
1719 	u64 mask = (u64)(UINT32_MAX) << 32;
1720 
1721 	do {
1722 		first = READ_ONCE(pc->aux_head);
1723 		/* Ensure all reads are done after we read the head */
1724 		smp_rmb();
1725 		second = READ_ONCE(pc->aux_head);
1726 		/* Ensure all reads are done after we read the head */
1727 		smp_rmb();
1728 		last = READ_ONCE(pc->aux_head);
1729 	} while ((first & mask) != (last & mask));
1730 
1731 	return second;
1732 }
1733 
1734 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1735 {
1736 	struct perf_event_mmap_page *pc = mm->userpg;
1737 	u64 mask = (u64)(UINT32_MAX) << 32;
1738 
1739 	if (tail & mask)
1740 		return -1;
1741 
1742 	/* Ensure all reads are done before we write the tail out */
1743 	smp_mb();
1744 	WRITE_ONCE(pc->aux_tail, tail);
1745 	return 0;
1746 }
1747 
1748 static int __auxtrace_mmap__read(struct mmap *map,
1749 				 struct auxtrace_record *itr,
1750 				 struct perf_tool *tool, process_auxtrace_t fn,
1751 				 bool snapshot, size_t snapshot_size)
1752 {
1753 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1754 	u64 head, old = mm->prev, offset, ref;
1755 	unsigned char *data = mm->base;
1756 	size_t size, head_off, old_off, len1, len2, padding;
1757 	union perf_event ev;
1758 	void *data1, *data2;
1759 	int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1760 
1761 	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1762 
1763 	if (snapshot &&
1764 	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1765 		return -1;
1766 
1767 	if (old == head)
1768 		return 0;
1769 
1770 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1771 		  mm->idx, old, head, head - old);
1772 
1773 	if (mm->mask) {
1774 		head_off = head & mm->mask;
1775 		old_off = old & mm->mask;
1776 	} else {
1777 		head_off = head % mm->len;
1778 		old_off = old % mm->len;
1779 	}
1780 
1781 	if (head_off > old_off)
1782 		size = head_off - old_off;
1783 	else
1784 		size = mm->len - (old_off - head_off);
1785 
1786 	if (snapshot && size > snapshot_size)
1787 		size = snapshot_size;
1788 
1789 	ref = auxtrace_record__reference(itr);
1790 
1791 	if (head > old || size <= head || mm->mask) {
1792 		offset = head - size;
1793 	} else {
1794 		/*
1795 		 * When the buffer size is not a power of 2, 'head' wraps at the
1796 		 * highest multiple of the buffer size, so we have to subtract
1797 		 * the remainder here.
1798 		 */
1799 		u64 rem = (0ULL - mm->len) % mm->len;
1800 
1801 		offset = head - size - rem;
1802 	}
1803 
1804 	if (size > head_off) {
1805 		len1 = size - head_off;
1806 		data1 = &data[mm->len - len1];
1807 		len2 = head_off;
1808 		data2 = &data[0];
1809 	} else {
1810 		len1 = size;
1811 		data1 = &data[head_off - len1];
1812 		len2 = 0;
1813 		data2 = NULL;
1814 	}
1815 
1816 	if (itr->alignment) {
1817 		unsigned int unwanted = len1 % itr->alignment;
1818 
1819 		len1 -= unwanted;
1820 		size -= unwanted;
1821 	}
1822 
1823 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1824 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1825 	if (padding)
1826 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1827 
1828 	memset(&ev, 0, sizeof(ev));
1829 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1830 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1831 	ev.auxtrace.size = size + padding;
1832 	ev.auxtrace.offset = offset;
1833 	ev.auxtrace.reference = ref;
1834 	ev.auxtrace.idx = mm->idx;
1835 	ev.auxtrace.tid = mm->tid;
1836 	ev.auxtrace.cpu = mm->cpu;
1837 
1838 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1839 		return -1;
1840 
1841 	mm->prev = head;
1842 
1843 	if (!snapshot) {
1844 		int err;
1845 
1846 		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1847 		if (err < 0)
1848 			return err;
1849 
1850 		if (itr->read_finish) {
1851 			err = itr->read_finish(itr, mm->idx);
1852 			if (err < 0)
1853 				return err;
1854 		}
1855 	}
1856 
1857 	return 1;
1858 }
1859 
1860 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1861 			struct perf_tool *tool, process_auxtrace_t fn)
1862 {
1863 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1864 }
1865 
1866 int auxtrace_mmap__read_snapshot(struct mmap *map,
1867 				 struct auxtrace_record *itr,
1868 				 struct perf_tool *tool, process_auxtrace_t fn,
1869 				 size_t snapshot_size)
1870 {
1871 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1872 }
1873 
1874 /**
1875  * struct auxtrace_cache - hash table to implement a cache
1876  * @hashtable: the hashtable
1877  * @sz: hashtable size (number of hlists)
1878  * @entry_size: size of an entry
1879  * @limit: limit the number of entries to this maximum, when reached the cache
1880  *         is dropped and caching begins again with an empty cache
1881  * @cnt: current number of entries
1882  * @bits: hashtable size (@sz = 2^@bits)
1883  */
1884 struct auxtrace_cache {
1885 	struct hlist_head *hashtable;
1886 	size_t sz;
1887 	size_t entry_size;
1888 	size_t limit;
1889 	size_t cnt;
1890 	unsigned int bits;
1891 };
1892 
1893 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1894 					   unsigned int limit_percent)
1895 {
1896 	struct auxtrace_cache *c;
1897 	struct hlist_head *ht;
1898 	size_t sz, i;
1899 
1900 	c = zalloc(sizeof(struct auxtrace_cache));
1901 	if (!c)
1902 		return NULL;
1903 
1904 	sz = 1UL << bits;
1905 
1906 	ht = calloc(sz, sizeof(struct hlist_head));
1907 	if (!ht)
1908 		goto out_free;
1909 
1910 	for (i = 0; i < sz; i++)
1911 		INIT_HLIST_HEAD(&ht[i]);
1912 
1913 	c->hashtable = ht;
1914 	c->sz = sz;
1915 	c->entry_size = entry_size;
1916 	c->limit = (c->sz * limit_percent) / 100;
1917 	c->bits = bits;
1918 
1919 	return c;
1920 
1921 out_free:
1922 	free(c);
1923 	return NULL;
1924 }
1925 
1926 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1927 {
1928 	struct auxtrace_cache_entry *entry;
1929 	struct hlist_node *tmp;
1930 	size_t i;
1931 
1932 	if (!c)
1933 		return;
1934 
1935 	for (i = 0; i < c->sz; i++) {
1936 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1937 			hlist_del(&entry->hash);
1938 			auxtrace_cache__free_entry(c, entry);
1939 		}
1940 	}
1941 
1942 	c->cnt = 0;
1943 }
1944 
1945 void auxtrace_cache__free(struct auxtrace_cache *c)
1946 {
1947 	if (!c)
1948 		return;
1949 
1950 	auxtrace_cache__drop(c);
1951 	zfree(&c->hashtable);
1952 	free(c);
1953 }
1954 
1955 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1956 {
1957 	return malloc(c->entry_size);
1958 }
1959 
1960 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1961 				void *entry)
1962 {
1963 	free(entry);
1964 }
1965 
1966 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1967 			struct auxtrace_cache_entry *entry)
1968 {
1969 	if (c->limit && ++c->cnt > c->limit)
1970 		auxtrace_cache__drop(c);
1971 
1972 	entry->key = key;
1973 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1974 
1975 	return 0;
1976 }
1977 
1978 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1979 						       u32 key)
1980 {
1981 	struct auxtrace_cache_entry *entry;
1982 	struct hlist_head *hlist;
1983 	struct hlist_node *n;
1984 
1985 	if (!c)
1986 		return NULL;
1987 
1988 	hlist = &c->hashtable[hash_32(key, c->bits)];
1989 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
1990 		if (entry->key == key) {
1991 			hlist_del(&entry->hash);
1992 			return entry;
1993 		}
1994 	}
1995 
1996 	return NULL;
1997 }
1998 
1999 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2000 {
2001 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2002 
2003 	auxtrace_cache__free_entry(c, entry);
2004 }
2005 
2006 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2007 {
2008 	struct auxtrace_cache_entry *entry;
2009 	struct hlist_head *hlist;
2010 
2011 	if (!c)
2012 		return NULL;
2013 
2014 	hlist = &c->hashtable[hash_32(key, c->bits)];
2015 	hlist_for_each_entry(entry, hlist, hash) {
2016 		if (entry->key == key)
2017 			return entry;
2018 	}
2019 
2020 	return NULL;
2021 }
2022 
2023 static void addr_filter__free_str(struct addr_filter *filt)
2024 {
2025 	zfree(&filt->str);
2026 	filt->action   = NULL;
2027 	filt->sym_from = NULL;
2028 	filt->sym_to   = NULL;
2029 	filt->filename = NULL;
2030 }
2031 
2032 static struct addr_filter *addr_filter__new(void)
2033 {
2034 	struct addr_filter *filt = zalloc(sizeof(*filt));
2035 
2036 	if (filt)
2037 		INIT_LIST_HEAD(&filt->list);
2038 
2039 	return filt;
2040 }
2041 
2042 static void addr_filter__free(struct addr_filter *filt)
2043 {
2044 	if (filt)
2045 		addr_filter__free_str(filt);
2046 	free(filt);
2047 }
2048 
2049 static void addr_filters__add(struct addr_filters *filts,
2050 			      struct addr_filter *filt)
2051 {
2052 	list_add_tail(&filt->list, &filts->head);
2053 	filts->cnt += 1;
2054 }
2055 
2056 static void addr_filters__del(struct addr_filters *filts,
2057 			      struct addr_filter *filt)
2058 {
2059 	list_del_init(&filt->list);
2060 	filts->cnt -= 1;
2061 }
2062 
2063 void addr_filters__init(struct addr_filters *filts)
2064 {
2065 	INIT_LIST_HEAD(&filts->head);
2066 	filts->cnt = 0;
2067 }
2068 
2069 void addr_filters__exit(struct addr_filters *filts)
2070 {
2071 	struct addr_filter *filt, *n;
2072 
2073 	list_for_each_entry_safe(filt, n, &filts->head, list) {
2074 		addr_filters__del(filts, filt);
2075 		addr_filter__free(filt);
2076 	}
2077 }
2078 
2079 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2080 			    const char *str_delim)
2081 {
2082 	*inp += strspn(*inp, " ");
2083 
2084 	if (isdigit(**inp)) {
2085 		char *endptr;
2086 
2087 		if (!num)
2088 			return -EINVAL;
2089 		errno = 0;
2090 		*num = strtoull(*inp, &endptr, 0);
2091 		if (errno)
2092 			return -errno;
2093 		if (endptr == *inp)
2094 			return -EINVAL;
2095 		*inp = endptr;
2096 	} else {
2097 		size_t n;
2098 
2099 		if (!str)
2100 			return -EINVAL;
2101 		*inp += strspn(*inp, " ");
2102 		*str = *inp;
2103 		n = strcspn(*inp, str_delim);
2104 		if (!n)
2105 			return -EINVAL;
2106 		*inp += n;
2107 		if (**inp) {
2108 			**inp = '\0';
2109 			*inp += 1;
2110 		}
2111 	}
2112 	return 0;
2113 }
2114 
2115 static int parse_action(struct addr_filter *filt)
2116 {
2117 	if (!strcmp(filt->action, "filter")) {
2118 		filt->start = true;
2119 		filt->range = true;
2120 	} else if (!strcmp(filt->action, "start")) {
2121 		filt->start = true;
2122 	} else if (!strcmp(filt->action, "stop")) {
2123 		filt->start = false;
2124 	} else if (!strcmp(filt->action, "tracestop")) {
2125 		filt->start = false;
2126 		filt->range = true;
2127 		filt->action += 5; /* Change 'tracestop' to 'stop' */
2128 	} else {
2129 		return -EINVAL;
2130 	}
2131 	return 0;
2132 }
2133 
2134 static int parse_sym_idx(char **inp, int *idx)
2135 {
2136 	*idx = -1;
2137 
2138 	*inp += strspn(*inp, " ");
2139 
2140 	if (**inp != '#')
2141 		return 0;
2142 
2143 	*inp += 1;
2144 
2145 	if (**inp == 'g' || **inp == 'G') {
2146 		*inp += 1;
2147 		*idx = 0;
2148 	} else {
2149 		unsigned long num;
2150 		char *endptr;
2151 
2152 		errno = 0;
2153 		num = strtoul(*inp, &endptr, 0);
2154 		if (errno)
2155 			return -errno;
2156 		if (endptr == *inp || num > INT_MAX)
2157 			return -EINVAL;
2158 		*inp = endptr;
2159 		*idx = num;
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2166 {
2167 	int err = parse_num_or_str(inp, num, str, " ");
2168 
2169 	if (!err && *str)
2170 		err = parse_sym_idx(inp, idx);
2171 
2172 	return err;
2173 }
2174 
2175 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2176 {
2177 	char *fstr;
2178 	int err;
2179 
2180 	filt->str = fstr = strdup(*filter_inp);
2181 	if (!fstr)
2182 		return -ENOMEM;
2183 
2184 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2185 	if (err)
2186 		goto out_err;
2187 
2188 	err = parse_action(filt);
2189 	if (err)
2190 		goto out_err;
2191 
2192 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2193 			      &filt->sym_from_idx);
2194 	if (err)
2195 		goto out_err;
2196 
2197 	fstr += strspn(fstr, " ");
2198 
2199 	if (*fstr == '/') {
2200 		fstr += 1;
2201 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2202 				      &filt->sym_to_idx);
2203 		if (err)
2204 			goto out_err;
2205 		filt->range = true;
2206 	}
2207 
2208 	fstr += strspn(fstr, " ");
2209 
2210 	if (*fstr == '@') {
2211 		fstr += 1;
2212 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2213 		if (err)
2214 			goto out_err;
2215 	}
2216 
2217 	fstr += strspn(fstr, " ,");
2218 
2219 	*filter_inp += fstr - filt->str;
2220 
2221 	return 0;
2222 
2223 out_err:
2224 	addr_filter__free_str(filt);
2225 
2226 	return err;
2227 }
2228 
2229 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2230 				    const char *filter)
2231 {
2232 	struct addr_filter *filt;
2233 	const char *fstr = filter;
2234 	int err;
2235 
2236 	while (*fstr) {
2237 		filt = addr_filter__new();
2238 		err = parse_one_filter(filt, &fstr);
2239 		if (err) {
2240 			addr_filter__free(filt);
2241 			addr_filters__exit(filts);
2242 			return err;
2243 		}
2244 		addr_filters__add(filts, filt);
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 struct sym_args {
2251 	const char	*name;
2252 	u64		start;
2253 	u64		size;
2254 	int		idx;
2255 	int		cnt;
2256 	bool		started;
2257 	bool		global;
2258 	bool		selected;
2259 	bool		duplicate;
2260 	bool		near;
2261 };
2262 
2263 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2264 {
2265 	/* A function with the same name, and global or the n'th found or any */
2266 	return kallsyms__is_function(type) &&
2267 	       !strcmp(name, args->name) &&
2268 	       ((args->global && isupper(type)) ||
2269 		(args->selected && ++(args->cnt) == args->idx) ||
2270 		(!args->global && !args->selected));
2271 }
2272 
2273 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2274 {
2275 	struct sym_args *args = arg;
2276 
2277 	if (args->started) {
2278 		if (!args->size)
2279 			args->size = start - args->start;
2280 		if (args->selected) {
2281 			if (args->size)
2282 				return 1;
2283 		} else if (kern_sym_match(args, name, type)) {
2284 			args->duplicate = true;
2285 			return 1;
2286 		}
2287 	} else if (kern_sym_match(args, name, type)) {
2288 		args->started = true;
2289 		args->start = start;
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2296 {
2297 	struct sym_args *args = arg;
2298 
2299 	if (kern_sym_match(args, name, type)) {
2300 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2301 		       ++args->cnt, start, type, name);
2302 		args->near = true;
2303 	} else if (args->near) {
2304 		args->near = false;
2305 		pr_err("\t\twhich is near\t\t%s\n", name);
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 static int sym_not_found_error(const char *sym_name, int idx)
2312 {
2313 	if (idx > 0) {
2314 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2315 		       idx, sym_name);
2316 	} else if (!idx) {
2317 		pr_err("Global symbol '%s' not found.\n", sym_name);
2318 	} else {
2319 		pr_err("Symbol '%s' not found.\n", sym_name);
2320 	}
2321 	pr_err("Note that symbols must be functions.\n");
2322 
2323 	return -EINVAL;
2324 }
2325 
2326 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2327 {
2328 	struct sym_args args = {
2329 		.name = sym_name,
2330 		.idx = idx,
2331 		.global = !idx,
2332 		.selected = idx > 0,
2333 	};
2334 	int err;
2335 
2336 	*start = 0;
2337 	*size = 0;
2338 
2339 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2340 	if (err < 0) {
2341 		pr_err("Failed to parse /proc/kallsyms\n");
2342 		return err;
2343 	}
2344 
2345 	if (args.duplicate) {
2346 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2347 		args.cnt = 0;
2348 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2349 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2350 		       sym_name);
2351 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2352 		return -EINVAL;
2353 	}
2354 
2355 	if (!args.started) {
2356 		pr_err("Kernel symbol lookup: ");
2357 		return sym_not_found_error(sym_name, idx);
2358 	}
2359 
2360 	*start = args.start;
2361 	*size = args.size;
2362 
2363 	return 0;
2364 }
2365 
2366 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2367 			       char type, u64 start)
2368 {
2369 	struct sym_args *args = arg;
2370 
2371 	if (!kallsyms__is_function(type))
2372 		return 0;
2373 
2374 	if (!args->started) {
2375 		args->started = true;
2376 		args->start = start;
2377 	}
2378 	/* Don't know exactly where the kernel ends, so we add a page */
2379 	args->size = round_up(start, page_size) + page_size - args->start;
2380 
2381 	return 0;
2382 }
2383 
2384 static int addr_filter__entire_kernel(struct addr_filter *filt)
2385 {
2386 	struct sym_args args = { .started = false };
2387 	int err;
2388 
2389 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2390 	if (err < 0 || !args.started) {
2391 		pr_err("Failed to parse /proc/kallsyms\n");
2392 		return err;
2393 	}
2394 
2395 	filt->addr = args.start;
2396 	filt->size = args.size;
2397 
2398 	return 0;
2399 }
2400 
2401 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2402 {
2403 	if (start + size >= filt->addr)
2404 		return 0;
2405 
2406 	if (filt->sym_from) {
2407 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2408 		       filt->sym_to, start, filt->sym_from, filt->addr);
2409 	} else {
2410 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2411 		       filt->sym_to, start, filt->addr);
2412 	}
2413 
2414 	return -EINVAL;
2415 }
2416 
2417 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2418 {
2419 	bool no_size = false;
2420 	u64 start, size;
2421 	int err;
2422 
2423 	if (symbol_conf.kptr_restrict) {
2424 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2425 		return -EINVAL;
2426 	}
2427 
2428 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2429 		return addr_filter__entire_kernel(filt);
2430 
2431 	if (filt->sym_from) {
2432 		err = find_kern_sym(filt->sym_from, &start, &size,
2433 				    filt->sym_from_idx);
2434 		if (err)
2435 			return err;
2436 		filt->addr = start;
2437 		if (filt->range && !filt->size && !filt->sym_to) {
2438 			filt->size = size;
2439 			no_size = !size;
2440 		}
2441 	}
2442 
2443 	if (filt->sym_to) {
2444 		err = find_kern_sym(filt->sym_to, &start, &size,
2445 				    filt->sym_to_idx);
2446 		if (err)
2447 			return err;
2448 
2449 		err = check_end_after_start(filt, start, size);
2450 		if (err)
2451 			return err;
2452 		filt->size = start + size - filt->addr;
2453 		no_size = !size;
2454 	}
2455 
2456 	/* The very last symbol in kallsyms does not imply a particular size */
2457 	if (no_size) {
2458 		pr_err("Cannot determine size of symbol '%s'\n",
2459 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2460 		return -EINVAL;
2461 	}
2462 
2463 	return 0;
2464 }
2465 
2466 static struct dso *load_dso(const char *name)
2467 {
2468 	struct map *map;
2469 	struct dso *dso;
2470 
2471 	map = dso__new_map(name);
2472 	if (!map)
2473 		return NULL;
2474 
2475 	if (map__load(map) < 0)
2476 		pr_err("File '%s' not found or has no symbols.\n", name);
2477 
2478 	dso = dso__get(map->dso);
2479 
2480 	map__put(map);
2481 
2482 	return dso;
2483 }
2484 
2485 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2486 			  int idx)
2487 {
2488 	/* Same name, and global or the n'th found or any */
2489 	return !arch__compare_symbol_names(name, sym->name) &&
2490 	       ((!idx && sym->binding == STB_GLOBAL) ||
2491 		(idx > 0 && ++*cnt == idx) ||
2492 		idx < 0);
2493 }
2494 
2495 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2496 {
2497 	struct symbol *sym;
2498 	bool near = false;
2499 	int cnt = 0;
2500 
2501 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2502 
2503 	sym = dso__first_symbol(dso);
2504 	while (sym) {
2505 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2506 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2507 			       ++cnt, sym->start,
2508 			       sym->binding == STB_GLOBAL ? 'g' :
2509 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2510 			       sym->name);
2511 			near = true;
2512 		} else if (near) {
2513 			near = false;
2514 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2515 		}
2516 		sym = dso__next_symbol(sym);
2517 	}
2518 
2519 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2520 	       sym_name);
2521 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2522 }
2523 
2524 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2525 			u64 *size, int idx)
2526 {
2527 	struct symbol *sym;
2528 	int cnt = 0;
2529 
2530 	*start = 0;
2531 	*size = 0;
2532 
2533 	sym = dso__first_symbol(dso);
2534 	while (sym) {
2535 		if (*start) {
2536 			if (!*size)
2537 				*size = sym->start - *start;
2538 			if (idx > 0) {
2539 				if (*size)
2540 					return 1;
2541 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2542 				print_duplicate_syms(dso, sym_name);
2543 				return -EINVAL;
2544 			}
2545 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2546 			*start = sym->start;
2547 			*size = sym->end - sym->start;
2548 		}
2549 		sym = dso__next_symbol(sym);
2550 	}
2551 
2552 	if (!*start)
2553 		return sym_not_found_error(sym_name, idx);
2554 
2555 	return 0;
2556 }
2557 
2558 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2559 {
2560 	if (dso__data_file_size(dso, NULL)) {
2561 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2562 		       filt->filename);
2563 		return -EINVAL;
2564 	}
2565 
2566 	filt->addr = 0;
2567 	filt->size = dso->data.file_size;
2568 
2569 	return 0;
2570 }
2571 
2572 static int addr_filter__resolve_syms(struct addr_filter *filt)
2573 {
2574 	u64 start, size;
2575 	struct dso *dso;
2576 	int err = 0;
2577 
2578 	if (!filt->sym_from && !filt->sym_to)
2579 		return 0;
2580 
2581 	if (!filt->filename)
2582 		return addr_filter__resolve_kernel_syms(filt);
2583 
2584 	dso = load_dso(filt->filename);
2585 	if (!dso) {
2586 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2587 		return -EINVAL;
2588 	}
2589 
2590 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2591 		err = addr_filter__entire_dso(filt, dso);
2592 		goto put_dso;
2593 	}
2594 
2595 	if (filt->sym_from) {
2596 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2597 				   filt->sym_from_idx);
2598 		if (err)
2599 			goto put_dso;
2600 		filt->addr = start;
2601 		if (filt->range && !filt->size && !filt->sym_to)
2602 			filt->size = size;
2603 	}
2604 
2605 	if (filt->sym_to) {
2606 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2607 				   filt->sym_to_idx);
2608 		if (err)
2609 			goto put_dso;
2610 
2611 		err = check_end_after_start(filt, start, size);
2612 		if (err)
2613 			return err;
2614 
2615 		filt->size = start + size - filt->addr;
2616 	}
2617 
2618 put_dso:
2619 	dso__put(dso);
2620 
2621 	return err;
2622 }
2623 
2624 static char *addr_filter__to_str(struct addr_filter *filt)
2625 {
2626 	char filename_buf[PATH_MAX];
2627 	const char *at = "";
2628 	const char *fn = "";
2629 	char *filter;
2630 	int err;
2631 
2632 	if (filt->filename) {
2633 		at = "@";
2634 		fn = realpath(filt->filename, filename_buf);
2635 		if (!fn)
2636 			return NULL;
2637 	}
2638 
2639 	if (filt->range) {
2640 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2641 			       filt->action, filt->addr, filt->size, at, fn);
2642 	} else {
2643 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2644 			       filt->action, filt->addr, at, fn);
2645 	}
2646 
2647 	return err < 0 ? NULL : filter;
2648 }
2649 
2650 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2651 			     int max_nr)
2652 {
2653 	struct addr_filters filts;
2654 	struct addr_filter *filt;
2655 	int err;
2656 
2657 	addr_filters__init(&filts);
2658 
2659 	err = addr_filters__parse_bare_filter(&filts, filter);
2660 	if (err)
2661 		goto out_exit;
2662 
2663 	if (filts.cnt > max_nr) {
2664 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2665 		       filts.cnt, max_nr);
2666 		err = -EINVAL;
2667 		goto out_exit;
2668 	}
2669 
2670 	list_for_each_entry(filt, &filts.head, list) {
2671 		char *new_filter;
2672 
2673 		err = addr_filter__resolve_syms(filt);
2674 		if (err)
2675 			goto out_exit;
2676 
2677 		new_filter = addr_filter__to_str(filt);
2678 		if (!new_filter) {
2679 			err = -ENOMEM;
2680 			goto out_exit;
2681 		}
2682 
2683 		if (evsel__append_addr_filter(evsel, new_filter)) {
2684 			err = -ENOMEM;
2685 			goto out_exit;
2686 		}
2687 	}
2688 
2689 out_exit:
2690 	addr_filters__exit(&filts);
2691 
2692 	if (err) {
2693 		pr_err("Failed to parse address filter: '%s'\n", filter);
2694 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2695 		pr_err("Where multiple filters are separated by space or comma.\n");
2696 	}
2697 
2698 	return err;
2699 }
2700 
2701 static int evsel__nr_addr_filter(struct evsel *evsel)
2702 {
2703 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2704 	int nr_addr_filters = 0;
2705 
2706 	if (!pmu)
2707 		return 0;
2708 
2709 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2710 
2711 	return nr_addr_filters;
2712 }
2713 
2714 int auxtrace_parse_filters(struct evlist *evlist)
2715 {
2716 	struct evsel *evsel;
2717 	char *filter;
2718 	int err, max_nr;
2719 
2720 	evlist__for_each_entry(evlist, evsel) {
2721 		filter = evsel->filter;
2722 		max_nr = evsel__nr_addr_filter(evsel);
2723 		if (!filter || !max_nr)
2724 			continue;
2725 		evsel->filter = NULL;
2726 		err = parse_addr_filter(evsel, filter, max_nr);
2727 		free(filter);
2728 		if (err)
2729 			return err;
2730 		pr_debug("Address filter: %s\n", evsel->filter);
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2737 			    struct perf_sample *sample, struct perf_tool *tool)
2738 {
2739 	if (!session->auxtrace)
2740 		return 0;
2741 
2742 	return session->auxtrace->process_event(session, event, sample, tool);
2743 }
2744 
2745 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2746 				    struct perf_sample *sample)
2747 {
2748 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2749 	    auxtrace__dont_decode(session))
2750 		return;
2751 
2752 	session->auxtrace->dump_auxtrace_sample(session, sample);
2753 }
2754 
2755 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2756 {
2757 	if (!session->auxtrace)
2758 		return 0;
2759 
2760 	return session->auxtrace->flush_events(session, tool);
2761 }
2762 
2763 void auxtrace__free_events(struct perf_session *session)
2764 {
2765 	if (!session->auxtrace)
2766 		return;
2767 
2768 	return session->auxtrace->free_events(session);
2769 }
2770 
2771 void auxtrace__free(struct perf_session *session)
2772 {
2773 	if (!session->auxtrace)
2774 		return;
2775 
2776 	return session->auxtrace->free(session);
2777 }
2778 
2779 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2780 				 struct evsel *evsel)
2781 {
2782 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2783 		return false;
2784 
2785 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2786 }
2787