1 /* 2 * auxtrace.c: AUX area trace support 3 * Copyright (c) 2013-2015, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 */ 15 16 #include <inttypes.h> 17 #include <sys/types.h> 18 #include <sys/mman.h> 19 #include <stdbool.h> 20 #include <string.h> 21 #include <limits.h> 22 #include <errno.h> 23 24 #include <linux/kernel.h> 25 #include <linux/perf_event.h> 26 #include <linux/types.h> 27 #include <linux/bitops.h> 28 #include <linux/log2.h> 29 #include <linux/string.h> 30 31 #include <sys/param.h> 32 #include <stdlib.h> 33 #include <stdio.h> 34 #include <linux/list.h> 35 36 #include "../perf.h" 37 #include "util.h" 38 #include "evlist.h" 39 #include "dso.h" 40 #include "map.h" 41 #include "pmu.h" 42 #include "evsel.h" 43 #include "cpumap.h" 44 #include "thread_map.h" 45 #include "asm/bug.h" 46 #include "auxtrace.h" 47 48 #include <linux/hash.h> 49 50 #include "event.h" 51 #include "session.h" 52 #include "debug.h" 53 #include <subcmd/parse-options.h> 54 55 #include "cs-etm.h" 56 #include "intel-pt.h" 57 #include "intel-bts.h" 58 #include "arm-spe.h" 59 60 #include "sane_ctype.h" 61 #include "symbol/kallsyms.h" 62 63 static bool auxtrace__dont_decode(struct perf_session *session) 64 { 65 return !session->itrace_synth_opts || 66 session->itrace_synth_opts->dont_decode; 67 } 68 69 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 70 struct auxtrace_mmap_params *mp, 71 void *userpg, int fd) 72 { 73 struct perf_event_mmap_page *pc = userpg; 74 75 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 76 77 mm->userpg = userpg; 78 mm->mask = mp->mask; 79 mm->len = mp->len; 80 mm->prev = 0; 81 mm->idx = mp->idx; 82 mm->tid = mp->tid; 83 mm->cpu = mp->cpu; 84 85 if (!mp->len) { 86 mm->base = NULL; 87 return 0; 88 } 89 90 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT) 91 pr_err("Cannot use AUX area tracing mmaps\n"); 92 return -1; 93 #endif 94 95 pc->aux_offset = mp->offset; 96 pc->aux_size = mp->len; 97 98 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 99 if (mm->base == MAP_FAILED) { 100 pr_debug2("failed to mmap AUX area\n"); 101 mm->base = NULL; 102 return -1; 103 } 104 105 return 0; 106 } 107 108 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 109 { 110 if (mm->base) { 111 munmap(mm->base, mm->len); 112 mm->base = NULL; 113 } 114 } 115 116 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 117 off_t auxtrace_offset, 118 unsigned int auxtrace_pages, 119 bool auxtrace_overwrite) 120 { 121 if (auxtrace_pages) { 122 mp->offset = auxtrace_offset; 123 mp->len = auxtrace_pages * (size_t)page_size; 124 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 125 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 126 pr_debug2("AUX area mmap length %zu\n", mp->len); 127 } else { 128 mp->len = 0; 129 } 130 } 131 132 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 133 struct perf_evlist *evlist, int idx, 134 bool per_cpu) 135 { 136 mp->idx = idx; 137 138 if (per_cpu) { 139 mp->cpu = evlist->cpus->map[idx]; 140 if (evlist->threads) 141 mp->tid = thread_map__pid(evlist->threads, 0); 142 else 143 mp->tid = -1; 144 } else { 145 mp->cpu = -1; 146 mp->tid = thread_map__pid(evlist->threads, idx); 147 } 148 } 149 150 #define AUXTRACE_INIT_NR_QUEUES 32 151 152 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 153 { 154 struct auxtrace_queue *queue_array; 155 unsigned int max_nr_queues, i; 156 157 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 158 if (nr_queues > max_nr_queues) 159 return NULL; 160 161 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 162 if (!queue_array) 163 return NULL; 164 165 for (i = 0; i < nr_queues; i++) { 166 INIT_LIST_HEAD(&queue_array[i].head); 167 queue_array[i].priv = NULL; 168 } 169 170 return queue_array; 171 } 172 173 int auxtrace_queues__init(struct auxtrace_queues *queues) 174 { 175 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 176 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 177 if (!queues->queue_array) 178 return -ENOMEM; 179 return 0; 180 } 181 182 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 183 unsigned int new_nr_queues) 184 { 185 unsigned int nr_queues = queues->nr_queues; 186 struct auxtrace_queue *queue_array; 187 unsigned int i; 188 189 if (!nr_queues) 190 nr_queues = AUXTRACE_INIT_NR_QUEUES; 191 192 while (nr_queues && nr_queues < new_nr_queues) 193 nr_queues <<= 1; 194 195 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 196 return -EINVAL; 197 198 queue_array = auxtrace_alloc_queue_array(nr_queues); 199 if (!queue_array) 200 return -ENOMEM; 201 202 for (i = 0; i < queues->nr_queues; i++) { 203 list_splice_tail(&queues->queue_array[i].head, 204 &queue_array[i].head); 205 queue_array[i].priv = queues->queue_array[i].priv; 206 } 207 208 queues->nr_queues = nr_queues; 209 queues->queue_array = queue_array; 210 211 return 0; 212 } 213 214 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 215 { 216 int fd = perf_data__fd(session->data); 217 void *p; 218 ssize_t ret; 219 220 if (size > SSIZE_MAX) 221 return NULL; 222 223 p = malloc(size); 224 if (!p) 225 return NULL; 226 227 ret = readn(fd, p, size); 228 if (ret != (ssize_t)size) { 229 free(p); 230 return NULL; 231 } 232 233 return p; 234 } 235 236 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 237 unsigned int idx, 238 struct auxtrace_buffer *buffer) 239 { 240 struct auxtrace_queue *queue; 241 int err; 242 243 if (idx >= queues->nr_queues) { 244 err = auxtrace_queues__grow(queues, idx + 1); 245 if (err) 246 return err; 247 } 248 249 queue = &queues->queue_array[idx]; 250 251 if (!queue->set) { 252 queue->set = true; 253 queue->tid = buffer->tid; 254 queue->cpu = buffer->cpu; 255 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) { 256 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n", 257 queue->cpu, queue->tid, buffer->cpu, buffer->tid); 258 return -EINVAL; 259 } 260 261 buffer->buffer_nr = queues->next_buffer_nr++; 262 263 list_add_tail(&buffer->list, &queue->head); 264 265 queues->new_data = true; 266 queues->populated = true; 267 268 return 0; 269 } 270 271 /* Limit buffers to 32MiB on 32-bit */ 272 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 273 274 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 275 unsigned int idx, 276 struct auxtrace_buffer *buffer) 277 { 278 u64 sz = buffer->size; 279 bool consecutive = false; 280 struct auxtrace_buffer *b; 281 int err; 282 283 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 284 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 285 if (!b) 286 return -ENOMEM; 287 b->size = BUFFER_LIMIT_FOR_32_BIT; 288 b->consecutive = consecutive; 289 err = auxtrace_queues__add_buffer(queues, idx, b); 290 if (err) { 291 auxtrace_buffer__free(b); 292 return err; 293 } 294 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 295 sz -= BUFFER_LIMIT_FOR_32_BIT; 296 consecutive = true; 297 } 298 299 buffer->size = sz; 300 buffer->consecutive = consecutive; 301 302 return 0; 303 } 304 305 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues, 306 struct perf_session *session, 307 unsigned int idx, 308 struct auxtrace_buffer *buffer) 309 { 310 if (session->one_mmap) { 311 buffer->data = buffer->data_offset - session->one_mmap_offset + 312 session->one_mmap_addr; 313 } else if (perf_data__is_pipe(session->data)) { 314 buffer->data = auxtrace_copy_data(buffer->size, session); 315 if (!buffer->data) 316 return -ENOMEM; 317 buffer->data_needs_freeing = true; 318 } else if (BITS_PER_LONG == 32 && 319 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 320 int err; 321 322 err = auxtrace_queues__split_buffer(queues, idx, buffer); 323 if (err) 324 return err; 325 } 326 327 return auxtrace_queues__add_buffer(queues, idx, buffer); 328 } 329 330 static bool filter_cpu(struct perf_session *session, int cpu) 331 { 332 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 333 334 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap); 335 } 336 337 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 338 struct perf_session *session, 339 union perf_event *event, off_t data_offset, 340 struct auxtrace_buffer **buffer_ptr) 341 { 342 struct auxtrace_buffer *buffer; 343 unsigned int idx; 344 int err; 345 346 if (filter_cpu(session, event->auxtrace.cpu)) 347 return 0; 348 349 buffer = zalloc(sizeof(struct auxtrace_buffer)); 350 if (!buffer) 351 return -ENOMEM; 352 353 buffer->pid = -1; 354 buffer->tid = event->auxtrace.tid; 355 buffer->cpu = event->auxtrace.cpu; 356 buffer->data_offset = data_offset; 357 buffer->offset = event->auxtrace.offset; 358 buffer->reference = event->auxtrace.reference; 359 buffer->size = event->auxtrace.size; 360 idx = event->auxtrace.idx; 361 362 err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer); 363 if (err) 364 goto out_err; 365 366 if (buffer_ptr) 367 *buffer_ptr = buffer; 368 369 return 0; 370 371 out_err: 372 auxtrace_buffer__free(buffer); 373 return err; 374 } 375 376 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 377 struct perf_session *session, 378 off_t file_offset, size_t sz) 379 { 380 union perf_event *event; 381 int err; 382 char buf[PERF_SAMPLE_MAX_SIZE]; 383 384 err = perf_session__peek_event(session, file_offset, buf, 385 PERF_SAMPLE_MAX_SIZE, &event, NULL); 386 if (err) 387 return err; 388 389 if (event->header.type == PERF_RECORD_AUXTRACE) { 390 if (event->header.size < sizeof(struct auxtrace_event) || 391 event->header.size != sz) { 392 err = -EINVAL; 393 goto out; 394 } 395 file_offset += event->header.size; 396 err = auxtrace_queues__add_event(queues, session, event, 397 file_offset, NULL); 398 } 399 out: 400 return err; 401 } 402 403 void auxtrace_queues__free(struct auxtrace_queues *queues) 404 { 405 unsigned int i; 406 407 for (i = 0; i < queues->nr_queues; i++) { 408 while (!list_empty(&queues->queue_array[i].head)) { 409 struct auxtrace_buffer *buffer; 410 411 buffer = list_entry(queues->queue_array[i].head.next, 412 struct auxtrace_buffer, list); 413 list_del(&buffer->list); 414 auxtrace_buffer__free(buffer); 415 } 416 } 417 418 zfree(&queues->queue_array); 419 queues->nr_queues = 0; 420 } 421 422 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 423 unsigned int pos, unsigned int queue_nr, 424 u64 ordinal) 425 { 426 unsigned int parent; 427 428 while (pos) { 429 parent = (pos - 1) >> 1; 430 if (heap_array[parent].ordinal <= ordinal) 431 break; 432 heap_array[pos] = heap_array[parent]; 433 pos = parent; 434 } 435 heap_array[pos].queue_nr = queue_nr; 436 heap_array[pos].ordinal = ordinal; 437 } 438 439 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 440 u64 ordinal) 441 { 442 struct auxtrace_heap_item *heap_array; 443 444 if (queue_nr >= heap->heap_sz) { 445 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 446 447 while (heap_sz <= queue_nr) 448 heap_sz <<= 1; 449 heap_array = realloc(heap->heap_array, 450 heap_sz * sizeof(struct auxtrace_heap_item)); 451 if (!heap_array) 452 return -ENOMEM; 453 heap->heap_array = heap_array; 454 heap->heap_sz = heap_sz; 455 } 456 457 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 458 459 return 0; 460 } 461 462 void auxtrace_heap__free(struct auxtrace_heap *heap) 463 { 464 zfree(&heap->heap_array); 465 heap->heap_cnt = 0; 466 heap->heap_sz = 0; 467 } 468 469 void auxtrace_heap__pop(struct auxtrace_heap *heap) 470 { 471 unsigned int pos, last, heap_cnt = heap->heap_cnt; 472 struct auxtrace_heap_item *heap_array; 473 474 if (!heap_cnt) 475 return; 476 477 heap->heap_cnt -= 1; 478 479 heap_array = heap->heap_array; 480 481 pos = 0; 482 while (1) { 483 unsigned int left, right; 484 485 left = (pos << 1) + 1; 486 if (left >= heap_cnt) 487 break; 488 right = left + 1; 489 if (right >= heap_cnt) { 490 heap_array[pos] = heap_array[left]; 491 return; 492 } 493 if (heap_array[left].ordinal < heap_array[right].ordinal) { 494 heap_array[pos] = heap_array[left]; 495 pos = left; 496 } else { 497 heap_array[pos] = heap_array[right]; 498 pos = right; 499 } 500 } 501 502 last = heap_cnt - 1; 503 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 504 heap_array[last].ordinal); 505 } 506 507 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 508 struct perf_evlist *evlist) 509 { 510 if (itr) 511 return itr->info_priv_size(itr, evlist); 512 return 0; 513 } 514 515 static int auxtrace_not_supported(void) 516 { 517 pr_err("AUX area tracing is not supported on this architecture\n"); 518 return -EINVAL; 519 } 520 521 int auxtrace_record__info_fill(struct auxtrace_record *itr, 522 struct perf_session *session, 523 struct auxtrace_info_event *auxtrace_info, 524 size_t priv_size) 525 { 526 if (itr) 527 return itr->info_fill(itr, session, auxtrace_info, priv_size); 528 return auxtrace_not_supported(); 529 } 530 531 void auxtrace_record__free(struct auxtrace_record *itr) 532 { 533 if (itr) 534 itr->free(itr); 535 } 536 537 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 538 { 539 if (itr && itr->snapshot_start) 540 return itr->snapshot_start(itr); 541 return 0; 542 } 543 544 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr) 545 { 546 if (itr && itr->snapshot_finish) 547 return itr->snapshot_finish(itr); 548 return 0; 549 } 550 551 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 552 struct auxtrace_mmap *mm, 553 unsigned char *data, u64 *head, u64 *old) 554 { 555 if (itr && itr->find_snapshot) 556 return itr->find_snapshot(itr, idx, mm, data, head, old); 557 return 0; 558 } 559 560 int auxtrace_record__options(struct auxtrace_record *itr, 561 struct perf_evlist *evlist, 562 struct record_opts *opts) 563 { 564 if (itr) 565 return itr->recording_options(itr, evlist, opts); 566 return 0; 567 } 568 569 u64 auxtrace_record__reference(struct auxtrace_record *itr) 570 { 571 if (itr) 572 return itr->reference(itr); 573 return 0; 574 } 575 576 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 577 struct record_opts *opts, const char *str) 578 { 579 if (!str) 580 return 0; 581 582 if (itr) 583 return itr->parse_snapshot_options(itr, opts, str); 584 585 pr_err("No AUX area tracing to snapshot\n"); 586 return -EINVAL; 587 } 588 589 struct auxtrace_record *__weak 590 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err) 591 { 592 *err = 0; 593 return NULL; 594 } 595 596 static int auxtrace_index__alloc(struct list_head *head) 597 { 598 struct auxtrace_index *auxtrace_index; 599 600 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 601 if (!auxtrace_index) 602 return -ENOMEM; 603 604 auxtrace_index->nr = 0; 605 INIT_LIST_HEAD(&auxtrace_index->list); 606 607 list_add_tail(&auxtrace_index->list, head); 608 609 return 0; 610 } 611 612 void auxtrace_index__free(struct list_head *head) 613 { 614 struct auxtrace_index *auxtrace_index, *n; 615 616 list_for_each_entry_safe(auxtrace_index, n, head, list) { 617 list_del(&auxtrace_index->list); 618 free(auxtrace_index); 619 } 620 } 621 622 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 623 { 624 struct auxtrace_index *auxtrace_index; 625 int err; 626 627 if (list_empty(head)) { 628 err = auxtrace_index__alloc(head); 629 if (err) 630 return NULL; 631 } 632 633 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 634 635 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 636 err = auxtrace_index__alloc(head); 637 if (err) 638 return NULL; 639 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 640 list); 641 } 642 643 return auxtrace_index; 644 } 645 646 int auxtrace_index__auxtrace_event(struct list_head *head, 647 union perf_event *event, off_t file_offset) 648 { 649 struct auxtrace_index *auxtrace_index; 650 size_t nr; 651 652 auxtrace_index = auxtrace_index__last(head); 653 if (!auxtrace_index) 654 return -ENOMEM; 655 656 nr = auxtrace_index->nr; 657 auxtrace_index->entries[nr].file_offset = file_offset; 658 auxtrace_index->entries[nr].sz = event->header.size; 659 auxtrace_index->nr += 1; 660 661 return 0; 662 } 663 664 static int auxtrace_index__do_write(int fd, 665 struct auxtrace_index *auxtrace_index) 666 { 667 struct auxtrace_index_entry ent; 668 size_t i; 669 670 for (i = 0; i < auxtrace_index->nr; i++) { 671 ent.file_offset = auxtrace_index->entries[i].file_offset; 672 ent.sz = auxtrace_index->entries[i].sz; 673 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 674 return -errno; 675 } 676 return 0; 677 } 678 679 int auxtrace_index__write(int fd, struct list_head *head) 680 { 681 struct auxtrace_index *auxtrace_index; 682 u64 total = 0; 683 int err; 684 685 list_for_each_entry(auxtrace_index, head, list) 686 total += auxtrace_index->nr; 687 688 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 689 return -errno; 690 691 list_for_each_entry(auxtrace_index, head, list) { 692 err = auxtrace_index__do_write(fd, auxtrace_index); 693 if (err) 694 return err; 695 } 696 697 return 0; 698 } 699 700 static int auxtrace_index__process_entry(int fd, struct list_head *head, 701 bool needs_swap) 702 { 703 struct auxtrace_index *auxtrace_index; 704 struct auxtrace_index_entry ent; 705 size_t nr; 706 707 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 708 return -1; 709 710 auxtrace_index = auxtrace_index__last(head); 711 if (!auxtrace_index) 712 return -1; 713 714 nr = auxtrace_index->nr; 715 if (needs_swap) { 716 auxtrace_index->entries[nr].file_offset = 717 bswap_64(ent.file_offset); 718 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 719 } else { 720 auxtrace_index->entries[nr].file_offset = ent.file_offset; 721 auxtrace_index->entries[nr].sz = ent.sz; 722 } 723 724 auxtrace_index->nr = nr + 1; 725 726 return 0; 727 } 728 729 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 730 bool needs_swap) 731 { 732 struct list_head *head = &session->auxtrace_index; 733 u64 nr; 734 735 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 736 return -1; 737 738 if (needs_swap) 739 nr = bswap_64(nr); 740 741 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 742 return -1; 743 744 while (nr--) { 745 int err; 746 747 err = auxtrace_index__process_entry(fd, head, needs_swap); 748 if (err) 749 return -1; 750 } 751 752 return 0; 753 } 754 755 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 756 struct perf_session *session, 757 struct auxtrace_index_entry *ent) 758 { 759 return auxtrace_queues__add_indexed_event(queues, session, 760 ent->file_offset, ent->sz); 761 } 762 763 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 764 struct perf_session *session) 765 { 766 struct auxtrace_index *auxtrace_index; 767 struct auxtrace_index_entry *ent; 768 size_t i; 769 int err; 770 771 if (auxtrace__dont_decode(session)) 772 return 0; 773 774 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 775 for (i = 0; i < auxtrace_index->nr; i++) { 776 ent = &auxtrace_index->entries[i]; 777 err = auxtrace_queues__process_index_entry(queues, 778 session, 779 ent); 780 if (err) 781 return err; 782 } 783 } 784 return 0; 785 } 786 787 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 788 struct auxtrace_buffer *buffer) 789 { 790 if (buffer) { 791 if (list_is_last(&buffer->list, &queue->head)) 792 return NULL; 793 return list_entry(buffer->list.next, struct auxtrace_buffer, 794 list); 795 } else { 796 if (list_empty(&queue->head)) 797 return NULL; 798 return list_entry(queue->head.next, struct auxtrace_buffer, 799 list); 800 } 801 } 802 803 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd) 804 { 805 size_t adj = buffer->data_offset & (page_size - 1); 806 size_t size = buffer->size + adj; 807 off_t file_offset = buffer->data_offset - adj; 808 void *addr; 809 810 if (buffer->data) 811 return buffer->data; 812 813 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset); 814 if (addr == MAP_FAILED) 815 return NULL; 816 817 buffer->mmap_addr = addr; 818 buffer->mmap_size = size; 819 820 buffer->data = addr + adj; 821 822 return buffer->data; 823 } 824 825 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 826 { 827 if (!buffer->data || !buffer->mmap_addr) 828 return; 829 munmap(buffer->mmap_addr, buffer->mmap_size); 830 buffer->mmap_addr = NULL; 831 buffer->mmap_size = 0; 832 buffer->data = NULL; 833 buffer->use_data = NULL; 834 } 835 836 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 837 { 838 auxtrace_buffer__put_data(buffer); 839 if (buffer->data_needs_freeing) { 840 buffer->data_needs_freeing = false; 841 zfree(&buffer->data); 842 buffer->use_data = NULL; 843 buffer->size = 0; 844 } 845 } 846 847 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 848 { 849 auxtrace_buffer__drop_data(buffer); 850 free(buffer); 851 } 852 853 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type, 854 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 855 const char *msg) 856 { 857 size_t size; 858 859 memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event)); 860 861 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 862 auxtrace_error->type = type; 863 auxtrace_error->code = code; 864 auxtrace_error->cpu = cpu; 865 auxtrace_error->pid = pid; 866 auxtrace_error->tid = tid; 867 auxtrace_error->ip = ip; 868 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 869 870 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 871 strlen(auxtrace_error->msg) + 1; 872 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 873 } 874 875 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 876 struct perf_tool *tool, 877 struct perf_session *session, 878 perf_event__handler_t process) 879 { 880 union perf_event *ev; 881 size_t priv_size; 882 int err; 883 884 pr_debug2("Synthesizing auxtrace information\n"); 885 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 886 ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size); 887 if (!ev) 888 return -ENOMEM; 889 890 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 891 ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) + 892 priv_size; 893 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 894 priv_size); 895 if (err) 896 goto out_free; 897 898 err = process(tool, ev, NULL, NULL); 899 out_free: 900 free(ev); 901 return err; 902 } 903 904 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused, 905 union perf_event *event, 906 struct perf_session *session) 907 { 908 enum auxtrace_type type = event->auxtrace_info.type; 909 910 if (dump_trace) 911 fprintf(stdout, " type: %u\n", type); 912 913 switch (type) { 914 case PERF_AUXTRACE_INTEL_PT: 915 return intel_pt_process_auxtrace_info(event, session); 916 case PERF_AUXTRACE_INTEL_BTS: 917 return intel_bts_process_auxtrace_info(event, session); 918 case PERF_AUXTRACE_ARM_SPE: 919 return arm_spe_process_auxtrace_info(event, session); 920 case PERF_AUXTRACE_CS_ETM: 921 return cs_etm__process_auxtrace_info(event, session); 922 case PERF_AUXTRACE_UNKNOWN: 923 default: 924 return -EINVAL; 925 } 926 } 927 928 s64 perf_event__process_auxtrace(struct perf_tool *tool, 929 union perf_event *event, 930 struct perf_session *session) 931 { 932 s64 err; 933 934 if (dump_trace) 935 fprintf(stdout, " size: %#"PRIx64" offset: %#"PRIx64" ref: %#"PRIx64" idx: %u tid: %d cpu: %d\n", 936 event->auxtrace.size, event->auxtrace.offset, 937 event->auxtrace.reference, event->auxtrace.idx, 938 event->auxtrace.tid, event->auxtrace.cpu); 939 940 if (auxtrace__dont_decode(session)) 941 return event->auxtrace.size; 942 943 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 944 return -EINVAL; 945 946 err = session->auxtrace->process_auxtrace_event(session, event, tool); 947 if (err < 0) 948 return err; 949 950 return event->auxtrace.size; 951 } 952 953 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 954 #define PERF_ITRACE_DEFAULT_PERIOD 100000 955 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 956 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 957 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 958 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 959 960 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts) 961 { 962 synth_opts->instructions = true; 963 synth_opts->branches = true; 964 synth_opts->transactions = true; 965 synth_opts->ptwrites = true; 966 synth_opts->pwr_events = true; 967 synth_opts->errors = true; 968 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 969 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 970 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 971 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 972 synth_opts->initial_skip = 0; 973 } 974 975 /* 976 * Please check tools/perf/Documentation/perf-script.txt for information 977 * about the options parsed here, which is introduced after this cset, 978 * when support in 'perf script' for these options is introduced. 979 */ 980 int itrace_parse_synth_opts(const struct option *opt, const char *str, 981 int unset) 982 { 983 struct itrace_synth_opts *synth_opts = opt->value; 984 const char *p; 985 char *endptr; 986 bool period_type_set = false; 987 bool period_set = false; 988 989 synth_opts->set = true; 990 991 if (unset) { 992 synth_opts->dont_decode = true; 993 return 0; 994 } 995 996 if (!str) { 997 itrace_synth_opts__set_default(synth_opts); 998 return 0; 999 } 1000 1001 for (p = str; *p;) { 1002 switch (*p++) { 1003 case 'i': 1004 synth_opts->instructions = true; 1005 while (*p == ' ' || *p == ',') 1006 p += 1; 1007 if (isdigit(*p)) { 1008 synth_opts->period = strtoull(p, &endptr, 10); 1009 period_set = true; 1010 p = endptr; 1011 while (*p == ' ' || *p == ',') 1012 p += 1; 1013 switch (*p++) { 1014 case 'i': 1015 synth_opts->period_type = 1016 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1017 period_type_set = true; 1018 break; 1019 case 't': 1020 synth_opts->period_type = 1021 PERF_ITRACE_PERIOD_TICKS; 1022 period_type_set = true; 1023 break; 1024 case 'm': 1025 synth_opts->period *= 1000; 1026 /* Fall through */ 1027 case 'u': 1028 synth_opts->period *= 1000; 1029 /* Fall through */ 1030 case 'n': 1031 if (*p++ != 's') 1032 goto out_err; 1033 synth_opts->period_type = 1034 PERF_ITRACE_PERIOD_NANOSECS; 1035 period_type_set = true; 1036 break; 1037 case '\0': 1038 goto out; 1039 default: 1040 goto out_err; 1041 } 1042 } 1043 break; 1044 case 'b': 1045 synth_opts->branches = true; 1046 break; 1047 case 'x': 1048 synth_opts->transactions = true; 1049 break; 1050 case 'w': 1051 synth_opts->ptwrites = true; 1052 break; 1053 case 'p': 1054 synth_opts->pwr_events = true; 1055 break; 1056 case 'e': 1057 synth_opts->errors = true; 1058 break; 1059 case 'd': 1060 synth_opts->log = true; 1061 break; 1062 case 'c': 1063 synth_opts->branches = true; 1064 synth_opts->calls = true; 1065 break; 1066 case 'r': 1067 synth_opts->branches = true; 1068 synth_opts->returns = true; 1069 break; 1070 case 'g': 1071 synth_opts->callchain = true; 1072 synth_opts->callchain_sz = 1073 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1074 while (*p == ' ' || *p == ',') 1075 p += 1; 1076 if (isdigit(*p)) { 1077 unsigned int val; 1078 1079 val = strtoul(p, &endptr, 10); 1080 p = endptr; 1081 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1082 goto out_err; 1083 synth_opts->callchain_sz = val; 1084 } 1085 break; 1086 case 'l': 1087 synth_opts->last_branch = true; 1088 synth_opts->last_branch_sz = 1089 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1090 while (*p == ' ' || *p == ',') 1091 p += 1; 1092 if (isdigit(*p)) { 1093 unsigned int val; 1094 1095 val = strtoul(p, &endptr, 10); 1096 p = endptr; 1097 if (!val || 1098 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1099 goto out_err; 1100 synth_opts->last_branch_sz = val; 1101 } 1102 break; 1103 case 's': 1104 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1105 if (p == endptr) 1106 goto out_err; 1107 p = endptr; 1108 break; 1109 case ' ': 1110 case ',': 1111 break; 1112 default: 1113 goto out_err; 1114 } 1115 } 1116 out: 1117 if (synth_opts->instructions) { 1118 if (!period_type_set) 1119 synth_opts->period_type = 1120 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1121 if (!period_set) 1122 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1123 } 1124 1125 return 0; 1126 1127 out_err: 1128 pr_err("Bad Instruction Tracing options '%s'\n", str); 1129 return -EINVAL; 1130 } 1131 1132 static const char * const auxtrace_error_type_name[] = { 1133 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1134 }; 1135 1136 static const char *auxtrace_error_name(int type) 1137 { 1138 const char *error_type_name = NULL; 1139 1140 if (type < PERF_AUXTRACE_ERROR_MAX) 1141 error_type_name = auxtrace_error_type_name[type]; 1142 if (!error_type_name) 1143 error_type_name = "unknown AUX"; 1144 return error_type_name; 1145 } 1146 1147 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1148 { 1149 struct auxtrace_error_event *e = &event->auxtrace_error; 1150 int ret; 1151 1152 ret = fprintf(fp, " %s error type %u", 1153 auxtrace_error_name(e->type), e->type); 1154 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n", 1155 e->cpu, e->pid, e->tid, e->ip, e->code, e->msg); 1156 return ret; 1157 } 1158 1159 void perf_session__auxtrace_error_inc(struct perf_session *session, 1160 union perf_event *event) 1161 { 1162 struct auxtrace_error_event *e = &event->auxtrace_error; 1163 1164 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1165 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1166 } 1167 1168 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1169 { 1170 int i; 1171 1172 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1173 if (!stats->nr_auxtrace_errors[i]) 1174 continue; 1175 ui__warning("%u %s errors\n", 1176 stats->nr_auxtrace_errors[i], 1177 auxtrace_error_name(i)); 1178 } 1179 } 1180 1181 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused, 1182 union perf_event *event, 1183 struct perf_session *session) 1184 { 1185 if (auxtrace__dont_decode(session)) 1186 return 0; 1187 1188 perf_event__fprintf_auxtrace_error(event, stdout); 1189 return 0; 1190 } 1191 1192 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm, 1193 struct auxtrace_record *itr, 1194 struct perf_tool *tool, process_auxtrace_t fn, 1195 bool snapshot, size_t snapshot_size) 1196 { 1197 u64 head, old = mm->prev, offset, ref; 1198 unsigned char *data = mm->base; 1199 size_t size, head_off, old_off, len1, len2, padding; 1200 union perf_event ev; 1201 void *data1, *data2; 1202 1203 if (snapshot) { 1204 head = auxtrace_mmap__read_snapshot_head(mm); 1205 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data, 1206 &head, &old)) 1207 return -1; 1208 } else { 1209 head = auxtrace_mmap__read_head(mm); 1210 } 1211 1212 if (old == head) 1213 return 0; 1214 1215 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1216 mm->idx, old, head, head - old); 1217 1218 if (mm->mask) { 1219 head_off = head & mm->mask; 1220 old_off = old & mm->mask; 1221 } else { 1222 head_off = head % mm->len; 1223 old_off = old % mm->len; 1224 } 1225 1226 if (head_off > old_off) 1227 size = head_off - old_off; 1228 else 1229 size = mm->len - (old_off - head_off); 1230 1231 if (snapshot && size > snapshot_size) 1232 size = snapshot_size; 1233 1234 ref = auxtrace_record__reference(itr); 1235 1236 if (head > old || size <= head || mm->mask) { 1237 offset = head - size; 1238 } else { 1239 /* 1240 * When the buffer size is not a power of 2, 'head' wraps at the 1241 * highest multiple of the buffer size, so we have to subtract 1242 * the remainder here. 1243 */ 1244 u64 rem = (0ULL - mm->len) % mm->len; 1245 1246 offset = head - size - rem; 1247 } 1248 1249 if (size > head_off) { 1250 len1 = size - head_off; 1251 data1 = &data[mm->len - len1]; 1252 len2 = head_off; 1253 data2 = &data[0]; 1254 } else { 1255 len1 = size; 1256 data1 = &data[head_off - len1]; 1257 len2 = 0; 1258 data2 = NULL; 1259 } 1260 1261 if (itr->alignment) { 1262 unsigned int unwanted = len1 % itr->alignment; 1263 1264 len1 -= unwanted; 1265 size -= unwanted; 1266 } 1267 1268 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1269 padding = size & 7; 1270 if (padding) 1271 padding = 8 - padding; 1272 1273 memset(&ev, 0, sizeof(ev)); 1274 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1275 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1276 ev.auxtrace.size = size + padding; 1277 ev.auxtrace.offset = offset; 1278 ev.auxtrace.reference = ref; 1279 ev.auxtrace.idx = mm->idx; 1280 ev.auxtrace.tid = mm->tid; 1281 ev.auxtrace.cpu = mm->cpu; 1282 1283 if (fn(tool, &ev, data1, len1, data2, len2)) 1284 return -1; 1285 1286 mm->prev = head; 1287 1288 if (!snapshot) { 1289 auxtrace_mmap__write_tail(mm, head); 1290 if (itr->read_finish) { 1291 int err; 1292 1293 err = itr->read_finish(itr, mm->idx); 1294 if (err < 0) 1295 return err; 1296 } 1297 } 1298 1299 return 1; 1300 } 1301 1302 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr, 1303 struct perf_tool *tool, process_auxtrace_t fn) 1304 { 1305 return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0); 1306 } 1307 1308 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm, 1309 struct auxtrace_record *itr, 1310 struct perf_tool *tool, process_auxtrace_t fn, 1311 size_t snapshot_size) 1312 { 1313 return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size); 1314 } 1315 1316 /** 1317 * struct auxtrace_cache - hash table to implement a cache 1318 * @hashtable: the hashtable 1319 * @sz: hashtable size (number of hlists) 1320 * @entry_size: size of an entry 1321 * @limit: limit the number of entries to this maximum, when reached the cache 1322 * is dropped and caching begins again with an empty cache 1323 * @cnt: current number of entries 1324 * @bits: hashtable size (@sz = 2^@bits) 1325 */ 1326 struct auxtrace_cache { 1327 struct hlist_head *hashtable; 1328 size_t sz; 1329 size_t entry_size; 1330 size_t limit; 1331 size_t cnt; 1332 unsigned int bits; 1333 }; 1334 1335 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1336 unsigned int limit_percent) 1337 { 1338 struct auxtrace_cache *c; 1339 struct hlist_head *ht; 1340 size_t sz, i; 1341 1342 c = zalloc(sizeof(struct auxtrace_cache)); 1343 if (!c) 1344 return NULL; 1345 1346 sz = 1UL << bits; 1347 1348 ht = calloc(sz, sizeof(struct hlist_head)); 1349 if (!ht) 1350 goto out_free; 1351 1352 for (i = 0; i < sz; i++) 1353 INIT_HLIST_HEAD(&ht[i]); 1354 1355 c->hashtable = ht; 1356 c->sz = sz; 1357 c->entry_size = entry_size; 1358 c->limit = (c->sz * limit_percent) / 100; 1359 c->bits = bits; 1360 1361 return c; 1362 1363 out_free: 1364 free(c); 1365 return NULL; 1366 } 1367 1368 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1369 { 1370 struct auxtrace_cache_entry *entry; 1371 struct hlist_node *tmp; 1372 size_t i; 1373 1374 if (!c) 1375 return; 1376 1377 for (i = 0; i < c->sz; i++) { 1378 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 1379 hlist_del(&entry->hash); 1380 auxtrace_cache__free_entry(c, entry); 1381 } 1382 } 1383 1384 c->cnt = 0; 1385 } 1386 1387 void auxtrace_cache__free(struct auxtrace_cache *c) 1388 { 1389 if (!c) 1390 return; 1391 1392 auxtrace_cache__drop(c); 1393 free(c->hashtable); 1394 free(c); 1395 } 1396 1397 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 1398 { 1399 return malloc(c->entry_size); 1400 } 1401 1402 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 1403 void *entry) 1404 { 1405 free(entry); 1406 } 1407 1408 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 1409 struct auxtrace_cache_entry *entry) 1410 { 1411 if (c->limit && ++c->cnt > c->limit) 1412 auxtrace_cache__drop(c); 1413 1414 entry->key = key; 1415 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 1416 1417 return 0; 1418 } 1419 1420 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 1421 { 1422 struct auxtrace_cache_entry *entry; 1423 struct hlist_head *hlist; 1424 1425 if (!c) 1426 return NULL; 1427 1428 hlist = &c->hashtable[hash_32(key, c->bits)]; 1429 hlist_for_each_entry(entry, hlist, hash) { 1430 if (entry->key == key) 1431 return entry; 1432 } 1433 1434 return NULL; 1435 } 1436 1437 static void addr_filter__free_str(struct addr_filter *filt) 1438 { 1439 free(filt->str); 1440 filt->action = NULL; 1441 filt->sym_from = NULL; 1442 filt->sym_to = NULL; 1443 filt->filename = NULL; 1444 filt->str = NULL; 1445 } 1446 1447 static struct addr_filter *addr_filter__new(void) 1448 { 1449 struct addr_filter *filt = zalloc(sizeof(*filt)); 1450 1451 if (filt) 1452 INIT_LIST_HEAD(&filt->list); 1453 1454 return filt; 1455 } 1456 1457 static void addr_filter__free(struct addr_filter *filt) 1458 { 1459 if (filt) 1460 addr_filter__free_str(filt); 1461 free(filt); 1462 } 1463 1464 static void addr_filters__add(struct addr_filters *filts, 1465 struct addr_filter *filt) 1466 { 1467 list_add_tail(&filt->list, &filts->head); 1468 filts->cnt += 1; 1469 } 1470 1471 static void addr_filters__del(struct addr_filters *filts, 1472 struct addr_filter *filt) 1473 { 1474 list_del_init(&filt->list); 1475 filts->cnt -= 1; 1476 } 1477 1478 void addr_filters__init(struct addr_filters *filts) 1479 { 1480 INIT_LIST_HEAD(&filts->head); 1481 filts->cnt = 0; 1482 } 1483 1484 void addr_filters__exit(struct addr_filters *filts) 1485 { 1486 struct addr_filter *filt, *n; 1487 1488 list_for_each_entry_safe(filt, n, &filts->head, list) { 1489 addr_filters__del(filts, filt); 1490 addr_filter__free(filt); 1491 } 1492 } 1493 1494 static int parse_num_or_str(char **inp, u64 *num, const char **str, 1495 const char *str_delim) 1496 { 1497 *inp += strspn(*inp, " "); 1498 1499 if (isdigit(**inp)) { 1500 char *endptr; 1501 1502 if (!num) 1503 return -EINVAL; 1504 errno = 0; 1505 *num = strtoull(*inp, &endptr, 0); 1506 if (errno) 1507 return -errno; 1508 if (endptr == *inp) 1509 return -EINVAL; 1510 *inp = endptr; 1511 } else { 1512 size_t n; 1513 1514 if (!str) 1515 return -EINVAL; 1516 *inp += strspn(*inp, " "); 1517 *str = *inp; 1518 n = strcspn(*inp, str_delim); 1519 if (!n) 1520 return -EINVAL; 1521 *inp += n; 1522 if (**inp) { 1523 **inp = '\0'; 1524 *inp += 1; 1525 } 1526 } 1527 return 0; 1528 } 1529 1530 static int parse_action(struct addr_filter *filt) 1531 { 1532 if (!strcmp(filt->action, "filter")) { 1533 filt->start = true; 1534 filt->range = true; 1535 } else if (!strcmp(filt->action, "start")) { 1536 filt->start = true; 1537 } else if (!strcmp(filt->action, "stop")) { 1538 filt->start = false; 1539 } else if (!strcmp(filt->action, "tracestop")) { 1540 filt->start = false; 1541 filt->range = true; 1542 filt->action += 5; /* Change 'tracestop' to 'stop' */ 1543 } else { 1544 return -EINVAL; 1545 } 1546 return 0; 1547 } 1548 1549 static int parse_sym_idx(char **inp, int *idx) 1550 { 1551 *idx = -1; 1552 1553 *inp += strspn(*inp, " "); 1554 1555 if (**inp != '#') 1556 return 0; 1557 1558 *inp += 1; 1559 1560 if (**inp == 'g' || **inp == 'G') { 1561 *inp += 1; 1562 *idx = 0; 1563 } else { 1564 unsigned long num; 1565 char *endptr; 1566 1567 errno = 0; 1568 num = strtoul(*inp, &endptr, 0); 1569 if (errno) 1570 return -errno; 1571 if (endptr == *inp || num > INT_MAX) 1572 return -EINVAL; 1573 *inp = endptr; 1574 *idx = num; 1575 } 1576 1577 return 0; 1578 } 1579 1580 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 1581 { 1582 int err = parse_num_or_str(inp, num, str, " "); 1583 1584 if (!err && *str) 1585 err = parse_sym_idx(inp, idx); 1586 1587 return err; 1588 } 1589 1590 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 1591 { 1592 char *fstr; 1593 int err; 1594 1595 filt->str = fstr = strdup(*filter_inp); 1596 if (!fstr) 1597 return -ENOMEM; 1598 1599 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 1600 if (err) 1601 goto out_err; 1602 1603 err = parse_action(filt); 1604 if (err) 1605 goto out_err; 1606 1607 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 1608 &filt->sym_from_idx); 1609 if (err) 1610 goto out_err; 1611 1612 fstr += strspn(fstr, " "); 1613 1614 if (*fstr == '/') { 1615 fstr += 1; 1616 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 1617 &filt->sym_to_idx); 1618 if (err) 1619 goto out_err; 1620 filt->range = true; 1621 } 1622 1623 fstr += strspn(fstr, " "); 1624 1625 if (*fstr == '@') { 1626 fstr += 1; 1627 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 1628 if (err) 1629 goto out_err; 1630 } 1631 1632 fstr += strspn(fstr, " ,"); 1633 1634 *filter_inp += fstr - filt->str; 1635 1636 return 0; 1637 1638 out_err: 1639 addr_filter__free_str(filt); 1640 1641 return err; 1642 } 1643 1644 int addr_filters__parse_bare_filter(struct addr_filters *filts, 1645 const char *filter) 1646 { 1647 struct addr_filter *filt; 1648 const char *fstr = filter; 1649 int err; 1650 1651 while (*fstr) { 1652 filt = addr_filter__new(); 1653 err = parse_one_filter(filt, &fstr); 1654 if (err) { 1655 addr_filter__free(filt); 1656 addr_filters__exit(filts); 1657 return err; 1658 } 1659 addr_filters__add(filts, filt); 1660 } 1661 1662 return 0; 1663 } 1664 1665 struct sym_args { 1666 const char *name; 1667 u64 start; 1668 u64 size; 1669 int idx; 1670 int cnt; 1671 bool started; 1672 bool global; 1673 bool selected; 1674 bool duplicate; 1675 bool near; 1676 }; 1677 1678 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 1679 { 1680 /* A function with the same name, and global or the n'th found or any */ 1681 return symbol_type__is_a(type, MAP__FUNCTION) && 1682 !strcmp(name, args->name) && 1683 ((args->global && isupper(type)) || 1684 (args->selected && ++(args->cnt) == args->idx) || 1685 (!args->global && !args->selected)); 1686 } 1687 1688 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 1689 { 1690 struct sym_args *args = arg; 1691 1692 if (args->started) { 1693 if (!args->size) 1694 args->size = start - args->start; 1695 if (args->selected) { 1696 if (args->size) 1697 return 1; 1698 } else if (kern_sym_match(args, name, type)) { 1699 args->duplicate = true; 1700 return 1; 1701 } 1702 } else if (kern_sym_match(args, name, type)) { 1703 args->started = true; 1704 args->start = start; 1705 } 1706 1707 return 0; 1708 } 1709 1710 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 1711 { 1712 struct sym_args *args = arg; 1713 1714 if (kern_sym_match(args, name, type)) { 1715 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 1716 ++args->cnt, start, type, name); 1717 args->near = true; 1718 } else if (args->near) { 1719 args->near = false; 1720 pr_err("\t\twhich is near\t\t%s\n", name); 1721 } 1722 1723 return 0; 1724 } 1725 1726 static int sym_not_found_error(const char *sym_name, int idx) 1727 { 1728 if (idx > 0) { 1729 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 1730 idx, sym_name); 1731 } else if (!idx) { 1732 pr_err("Global symbol '%s' not found.\n", sym_name); 1733 } else { 1734 pr_err("Symbol '%s' not found.\n", sym_name); 1735 } 1736 pr_err("Note that symbols must be functions.\n"); 1737 1738 return -EINVAL; 1739 } 1740 1741 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 1742 { 1743 struct sym_args args = { 1744 .name = sym_name, 1745 .idx = idx, 1746 .global = !idx, 1747 .selected = idx > 0, 1748 }; 1749 int err; 1750 1751 *start = 0; 1752 *size = 0; 1753 1754 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 1755 if (err < 0) { 1756 pr_err("Failed to parse /proc/kallsyms\n"); 1757 return err; 1758 } 1759 1760 if (args.duplicate) { 1761 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 1762 args.cnt = 0; 1763 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 1764 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 1765 sym_name); 1766 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 1767 return -EINVAL; 1768 } 1769 1770 if (!args.started) { 1771 pr_err("Kernel symbol lookup: "); 1772 return sym_not_found_error(sym_name, idx); 1773 } 1774 1775 *start = args.start; 1776 *size = args.size; 1777 1778 return 0; 1779 } 1780 1781 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 1782 char type, u64 start) 1783 { 1784 struct sym_args *args = arg; 1785 1786 if (!symbol_type__is_a(type, MAP__FUNCTION)) 1787 return 0; 1788 1789 if (!args->started) { 1790 args->started = true; 1791 args->start = start; 1792 } 1793 /* Don't know exactly where the kernel ends, so we add a page */ 1794 args->size = round_up(start, page_size) + page_size - args->start; 1795 1796 return 0; 1797 } 1798 1799 static int addr_filter__entire_kernel(struct addr_filter *filt) 1800 { 1801 struct sym_args args = { .started = false }; 1802 int err; 1803 1804 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 1805 if (err < 0 || !args.started) { 1806 pr_err("Failed to parse /proc/kallsyms\n"); 1807 return err; 1808 } 1809 1810 filt->addr = args.start; 1811 filt->size = args.size; 1812 1813 return 0; 1814 } 1815 1816 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 1817 { 1818 if (start + size >= filt->addr) 1819 return 0; 1820 1821 if (filt->sym_from) { 1822 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 1823 filt->sym_to, start, filt->sym_from, filt->addr); 1824 } else { 1825 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 1826 filt->sym_to, start, filt->addr); 1827 } 1828 1829 return -EINVAL; 1830 } 1831 1832 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 1833 { 1834 bool no_size = false; 1835 u64 start, size; 1836 int err; 1837 1838 if (symbol_conf.kptr_restrict) { 1839 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 1840 return -EINVAL; 1841 } 1842 1843 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 1844 return addr_filter__entire_kernel(filt); 1845 1846 if (filt->sym_from) { 1847 err = find_kern_sym(filt->sym_from, &start, &size, 1848 filt->sym_from_idx); 1849 if (err) 1850 return err; 1851 filt->addr = start; 1852 if (filt->range && !filt->size && !filt->sym_to) { 1853 filt->size = size; 1854 no_size = !size; 1855 } 1856 } 1857 1858 if (filt->sym_to) { 1859 err = find_kern_sym(filt->sym_to, &start, &size, 1860 filt->sym_to_idx); 1861 if (err) 1862 return err; 1863 1864 err = check_end_after_start(filt, start, size); 1865 if (err) 1866 return err; 1867 filt->size = start + size - filt->addr; 1868 no_size = !size; 1869 } 1870 1871 /* The very last symbol in kallsyms does not imply a particular size */ 1872 if (no_size) { 1873 pr_err("Cannot determine size of symbol '%s'\n", 1874 filt->sym_to ? filt->sym_to : filt->sym_from); 1875 return -EINVAL; 1876 } 1877 1878 return 0; 1879 } 1880 1881 static struct dso *load_dso(const char *name) 1882 { 1883 struct map *map; 1884 struct dso *dso; 1885 1886 map = dso__new_map(name); 1887 if (!map) 1888 return NULL; 1889 1890 map__load(map); 1891 1892 dso = dso__get(map->dso); 1893 1894 map__put(map); 1895 1896 return dso; 1897 } 1898 1899 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 1900 int idx) 1901 { 1902 /* Same name, and global or the n'th found or any */ 1903 return !arch__compare_symbol_names(name, sym->name) && 1904 ((!idx && sym->binding == STB_GLOBAL) || 1905 (idx > 0 && ++*cnt == idx) || 1906 idx < 0); 1907 } 1908 1909 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 1910 { 1911 struct symbol *sym; 1912 bool near = false; 1913 int cnt = 0; 1914 1915 pr_err("Multiple symbols with name '%s'\n", sym_name); 1916 1917 sym = dso__first_symbol(dso, MAP__FUNCTION); 1918 while (sym) { 1919 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 1920 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 1921 ++cnt, sym->start, 1922 sym->binding == STB_GLOBAL ? 'g' : 1923 sym->binding == STB_LOCAL ? 'l' : 'w', 1924 sym->name); 1925 near = true; 1926 } else if (near) { 1927 near = false; 1928 pr_err("\t\twhich is near\t\t%s\n", sym->name); 1929 } 1930 sym = dso__next_symbol(sym); 1931 } 1932 1933 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 1934 sym_name); 1935 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 1936 } 1937 1938 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 1939 u64 *size, int idx) 1940 { 1941 struct symbol *sym; 1942 int cnt = 0; 1943 1944 *start = 0; 1945 *size = 0; 1946 1947 sym = dso__first_symbol(dso, MAP__FUNCTION); 1948 while (sym) { 1949 if (*start) { 1950 if (!*size) 1951 *size = sym->start - *start; 1952 if (idx > 0) { 1953 if (*size) 1954 return 1; 1955 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 1956 print_duplicate_syms(dso, sym_name); 1957 return -EINVAL; 1958 } 1959 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 1960 *start = sym->start; 1961 *size = sym->end - sym->start; 1962 } 1963 sym = dso__next_symbol(sym); 1964 } 1965 1966 if (!*start) 1967 return sym_not_found_error(sym_name, idx); 1968 1969 return 0; 1970 } 1971 1972 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 1973 { 1974 struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION); 1975 struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION); 1976 1977 if (!first_sym || !last_sym) { 1978 pr_err("Failed to determine filter for %s\nNo symbols found.\n", 1979 filt->filename); 1980 return -EINVAL; 1981 } 1982 1983 filt->addr = first_sym->start; 1984 filt->size = last_sym->end - first_sym->start; 1985 1986 return 0; 1987 } 1988 1989 static int addr_filter__resolve_syms(struct addr_filter *filt) 1990 { 1991 u64 start, size; 1992 struct dso *dso; 1993 int err = 0; 1994 1995 if (!filt->sym_from && !filt->sym_to) 1996 return 0; 1997 1998 if (!filt->filename) 1999 return addr_filter__resolve_kernel_syms(filt); 2000 2001 dso = load_dso(filt->filename); 2002 if (!dso) { 2003 pr_err("Failed to load symbols from: %s\n", filt->filename); 2004 return -EINVAL; 2005 } 2006 2007 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2008 err = addr_filter__entire_dso(filt, dso); 2009 goto put_dso; 2010 } 2011 2012 if (filt->sym_from) { 2013 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2014 filt->sym_from_idx); 2015 if (err) 2016 goto put_dso; 2017 filt->addr = start; 2018 if (filt->range && !filt->size && !filt->sym_to) 2019 filt->size = size; 2020 } 2021 2022 if (filt->sym_to) { 2023 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2024 filt->sym_to_idx); 2025 if (err) 2026 goto put_dso; 2027 2028 err = check_end_after_start(filt, start, size); 2029 if (err) 2030 return err; 2031 2032 filt->size = start + size - filt->addr; 2033 } 2034 2035 put_dso: 2036 dso__put(dso); 2037 2038 return err; 2039 } 2040 2041 static char *addr_filter__to_str(struct addr_filter *filt) 2042 { 2043 char filename_buf[PATH_MAX]; 2044 const char *at = ""; 2045 const char *fn = ""; 2046 char *filter; 2047 int err; 2048 2049 if (filt->filename) { 2050 at = "@"; 2051 fn = realpath(filt->filename, filename_buf); 2052 if (!fn) 2053 return NULL; 2054 } 2055 2056 if (filt->range) { 2057 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2058 filt->action, filt->addr, filt->size, at, fn); 2059 } else { 2060 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2061 filt->action, filt->addr, at, fn); 2062 } 2063 2064 return err < 0 ? NULL : filter; 2065 } 2066 2067 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter, 2068 int max_nr) 2069 { 2070 struct addr_filters filts; 2071 struct addr_filter *filt; 2072 int err; 2073 2074 addr_filters__init(&filts); 2075 2076 err = addr_filters__parse_bare_filter(&filts, filter); 2077 if (err) 2078 goto out_exit; 2079 2080 if (filts.cnt > max_nr) { 2081 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2082 filts.cnt, max_nr); 2083 err = -EINVAL; 2084 goto out_exit; 2085 } 2086 2087 list_for_each_entry(filt, &filts.head, list) { 2088 char *new_filter; 2089 2090 err = addr_filter__resolve_syms(filt); 2091 if (err) 2092 goto out_exit; 2093 2094 new_filter = addr_filter__to_str(filt); 2095 if (!new_filter) { 2096 err = -ENOMEM; 2097 goto out_exit; 2098 } 2099 2100 if (perf_evsel__append_addr_filter(evsel, new_filter)) { 2101 err = -ENOMEM; 2102 goto out_exit; 2103 } 2104 } 2105 2106 out_exit: 2107 addr_filters__exit(&filts); 2108 2109 if (err) { 2110 pr_err("Failed to parse address filter: '%s'\n", filter); 2111 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2112 pr_err("Where multiple filters are separated by space or comma.\n"); 2113 } 2114 2115 return err; 2116 } 2117 2118 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel) 2119 { 2120 struct perf_pmu *pmu = NULL; 2121 2122 while ((pmu = perf_pmu__scan(pmu)) != NULL) { 2123 if (pmu->type == evsel->attr.type) 2124 break; 2125 } 2126 2127 return pmu; 2128 } 2129 2130 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel) 2131 { 2132 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel); 2133 int nr_addr_filters = 0; 2134 2135 if (!pmu) 2136 return 0; 2137 2138 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2139 2140 return nr_addr_filters; 2141 } 2142 2143 int auxtrace_parse_filters(struct perf_evlist *evlist) 2144 { 2145 struct perf_evsel *evsel; 2146 char *filter; 2147 int err, max_nr; 2148 2149 evlist__for_each_entry(evlist, evsel) { 2150 filter = evsel->filter; 2151 max_nr = perf_evsel__nr_addr_filter(evsel); 2152 if (!filter || !max_nr) 2153 continue; 2154 evsel->filter = NULL; 2155 err = parse_addr_filter(evsel, filter, max_nr); 2156 free(filter); 2157 if (err) 2158 return err; 2159 pr_debug("Address filter: %s\n", evsel->filter); 2160 } 2161 2162 return 0; 2163 } 2164